
1

FedFM: Anchor-based Feature Matching for Data
Heterogeneity in Federated Learning

Rui Ye, Zhenyang Ni, Chenxin Xu, Jianyu Wang, Siheng Chen Member, IEEE, Yonina C. Eldar Fellow, IEEE

Abstract—One of the key challenges in federated learning
(FL) is local data distribution heterogeneity across clients, which
may cause inconsistent feature spaces across clients. To address
this issue, we propose a novel method FedFM, which guides
each client’s features to match shared category-wise anchors
(landmarks in feature space). This method attempts to mitigate
the negative effects of data heterogeneity in FL by aligning each
client’s feature space. Besides, we tackle the challenge of varying
objective function and provide convergence guarantee for FedFM.
In FedFM, to mitigate the phenomenon of overlapping feature
spaces across categories and enhance the effectiveness of feature
matching, we further propose a more precise and effective feature
matching loss called contrastive-guiding (CG), which guides each
local feature to match with the corresponding anchor while
keeping away from non-corresponding anchors. Additionally, to
achieve higher efficiency and flexibility, we propose a FedFM
variant, called FedFM-Lite, where clients communicate with
server with fewer synchronization times and communication
bandwidth costs. Through extensive experiments, we demonstrate
that FedFM with CG outperforms several works by quantitative
and qualitative comparisons. FedFM-Lite can achieve better
performance than state-of-the-art methods with five to ten times
less communication costs.

Index Terms—Federated Learning, Data Heterogeneity

I. INTRODUCTION

MOST existing deep learning models are trained in a
centralized manner. However, in practice, data may

be distributed on several parties and may not be collected
due to the increasing privacy concerns. Federated learning
(FL) [1] is proposed to address this issue and has become
an emerging research topic [1]–[7]. In standard FL [1], each
client first downloads the same global model from the server
and conducts local model training on its private dataset. Then,
clients upload their trained local models to the server, where
a global model is updated via local models aggregation. This
process is conducted iteratively to obtain a final global model.
This privacy-preserving method has been widely explored
applied to many tasks, such as image classification [8], [9],
language modeling [10], speech recognition [11].

One of the key challenges that hinders FL from per-
forming as well as centralized learning is data distribution
heterogeneity across clients [3], [12], [13]. Due to diverse
conditions of devices and application scenarios, data might

R. Ye, Z. Ni, C. Xu are with the Cooperative Medianet Innovation Center
(CMIC) at Shanghai Jiao Tong University, Shanghai, China. E-mail: yr991129,
0107nzy, xcxwakaka@sjtu.edu.cn.

J. Wang is with Meta Platforms. E-mail: jianyuwang@meta.com.
S. Chen is with Shanghai Jiao Tong University and Shanghai AI laboratory,

Shanghai, China, E-mail: sihengc@sjtu.edu.cn.
Y. C. Eldar is with Department of Computer Science and Applied Mathe-

matics, Weizmann Institute of Science. E-mail: yonina.eldar@weizmann.ac.il.

be not independent and identical distributed (IID) across local
clients. This may result in large variations in the locally trained
models on clients and slow down convergence of the global
model [14], [15]. This phenomenon is also referred to as client
drift [7], [13].

To tackle the above mentioned data heterogeneity issue,
most previous works [6], [7], [16] focus on model-level
corrections, which intend to reduce the variations in locally
trained models. However, these methods fail to ensure the
consistency of multiple local models’ feature spaces. It is
possible that different local models have drastically misaligned
feature spaces. This could lead to unclear decision boundaries
and cause misclassification, which significantly differs from
centralized learning. Fig. 1a empirically shows the T-SNE [17]
of two local clients’ features in FedAvg [1], where the color
indicates categories and the shape indicates clients. We see
that the data samples with the same color, yet different shapes
do not overlap, reflecting two local models fail to share a
consistent feature space. In addition, data samples with the
same shape, yet different colors overlap with each other. This
can be detrimental to classification tasks. Motivated by this,
our work focuses on mitigating the data heterogeneity issue
in federated classification tasks through aligning the feature
spaces across multiple local models.

In this paper, we propose an anchor-based Federated
Feature Matching (FedFM) method, the key idea of which is
to leverage landmarks shared by all clients to provide global
positioning, promoting a more consistent feature space. As a
core concept of FedFM, we define landmarks as the average
of features for the same class/category and name them as
anchors. In each round of FedFM, there are two key steps:
(1) anchor updating; and (2) anchor-based model updating.
In the anchor updating step, first, each client calculates the
local anchors; second, by interacting with the server, global
anchors are updated by aggregating local anchors and sent
back to each client. In the anchor-based model updating step,
each client’s feature is pushed to match with the global anchor
of the corresponding category during the process of local
model training; see the significant improvement in Fig. 1b,
where we regularize the `2 distance between a feature and
its corresponding global anchor to enhance the consistency of
feature spaces across clients. Global anchors are denoted by
star shape.

Moreover, we conduct theoretical analysis to provide con-
vergence guarantee for our proposed FedFM algorithm. Unlike
most existing literature that analyzes fixed objective functions,
the analysis of FedFM faces a distinctive challenge of time-
varying objective functions over rounds. This is because of

ar
X

iv
:2

21
0.

07
61

5v
1

 [
cs

.L
G

]
 1

4
O

ct
 2

02
2

2

(a) FedAvg (b) FedFM with `2 regularization (c) FedFM with CG
Fig. 1. FedFM alleviates the inconsistency in feature space by anchor-based feature matching. (a) In existing methods, there is a large gap between samples
of two clients (triangle and circle) in the feature space. (b) With simple `2 regularization, our FedFM leverages anchors (stars) to align the feature spaces of
two clients. (c) With the proposed contrastive-guiding (CG) method, FedFM achieves more precise and compact matching.

the varying global anchors, which are updated at each round.
We overcome this challenge by proving a key lemma, which
suggests that updating of global anchors also contributes to
optimize the global objective. The theoretical results show that
the proposed FedFM converges at a rate that accords with
many existing theoretical optimization literature [14], [18].

To promote more precise and effective feature matching and
push the feature spaces of different categories to be far away
from each other, we further propose contrastive-guiding (CG)
for feature matching in FedFM. The proposed CG guides each
client’s local feature to match with the corresponding global
anchor while keeping away from non-corresponding global
anchors. Comparing with the standard `2 regularization, CG
contributes to more precise feature matching, which results in
more distant and compact category-wise feature space; see its
improvement over `2 regularization in Fig. 1c.

To achieve higher efficiency and flexibility, we propose a
variant of FedFM, called FedFM-Lite. Compared with FedFM,
FedFM-Lite is more efficient since it communicates only
one time within one federated round and thus requires less
synchronization times (handshakes) among clients and server.
FedFM-Lite is also more flexible to communicate anchors and
models at different frequency. Since models have significantly
more communication bandwidth cost, we propose to commu-
nicate models at a relatively lower frequency, which is capable
to accord with various real-world communication budgets.

At last, through extensive experiments, we verify that
FedFM with CG outperforms the state-of-the-art FL methods,
including FedAvg [1], FedAvgM [19], FedProx [6], SCAF-
FOLD [7], FedDyn [16], FedNova [18] and MOON [20], on
multiple datasets, including CIFAR-10 [21], CINIC-10 [22]
and CIFAR-100. We further visualize the feature space con-
structed by the proposed FedFM with CG, which qualitatively
demonstrates its effectiveness. We also see that FedFM-Lite
can achieve better performance than existing methods with five
to ten times less communication costs and comparable perfor-
mance compared with FedFM with half of the synchonization
times.

Our main contributions are as follows:
1) We propose an anchor-based federated feature matching

(FedFM) method and a contrastive-guiding (CG) tech-
nique in FedFM, which pushes each client’s local fea-
ture to match with corresponding shared global anchor
while keeping away from non-corresponding anchors,
promoting a consistent feature space across clients and
mitigating the notorious data heterogeneity issue;

2) We tackle the distinctive challenge of varying objective
function in the theoretical analysis of FedFM and pro-
vide a convergence guarantee;

3) We propose an efficient and flexible variant, FedFM-
Lite, which can be easily adjusted to accord with various
real-world communication budgets;

4) We conduct extensive experiments and show that FedFM
with CG (and FedFM-Lite) can significantly outperform
state-of-the-art methods.

This paper is organized as the following. Section II reviews
related works. Section III presents several preliminaries in-
cluding notations and motivations. Section IV describes and
discusses our proposed FedFM method and the CG technique.
Section V provides convergence analysis for FedFM. Sec-
tion VI proposes a variant of FedFM, FedFM-Lite. Section VII
shows the experimental results.

II. RELATED WORK

Federated learning (FL) is proposed in [1] and has been
widely applied to many fields. In image processing, it is
widely adopted since it takes advantage of the computational
ability and locally-stored data of edge devices [8], [9]. It
also attracts much attention in healthcare due to its privacy-
preserving property [23]–[25]. But when the standard FL
method FedAvg [1] meets the situation of data distribution
heterogeneity across clients, the global model could move far
away from the true global optimum due to the large variations
in each local optima, which is referred to as client drift [7].
There have been numerous works trying to tackle this issue and
two key approaches are local correction and global adjustment.

3

A. Local Correction
One main approach is conducting correction during the

process of local model training, which aims to reduce the
difference among trained local models. Most previous works
conduct correction on the model-level. FedProx [6] applies
a l2-norm distance regularization between the current local
model and the previous global model. FedDyn [16] proposes
a dynamic regularizer to align local and global solutions.
Variance reduction methods, such as SCAFFOLD [7] and
VRLSGD [26], utilize the previous difference between local
and global gradient to debias the gradient at each local training
step. MOON [20] maximizes the similarity between the feature
(intermediate layer output) of current local model and that
of the previous global model, which requires three times
computation cost and has no convergence guarantee. Our
proposed FedFM conducts local correction in the feature-level,
which employs shared category-wise global anchors to guide
local feature learning. That is, MOON [20] aligns features of
two models that belong to the same sample and FedFM aligns
features of all samples that belong to the same category. We
also provide a convergence guarantee of FedFM.

B. Global Adjustment
Another key direction is global adjustment during the

process of model interaction, which aims to obtain a bet-
ter global model utilizing the uploaded local models. Fe-
dAvgM [19] introduces momentum to global model updating,
which stabilizes the global model optimization. FedNova [18]
normalizes local updates according to the number of SGD
steps, which eliminates objective inconsistency and achieves
fast convergence. Using the Knowledge-Distillation technique,
FedGen [27] learns a generator to assist local model training.
FedDF [28] and FedFTG [29] refine the global model by
learning from the uploaded local models. Our proposed FedFM
is orthogonal to these global adjustment methods and can be
easily incorporated with these techniques.

As the above local correction and global adjustment meth-
ods, the focus of this paper is generalized FL, which aims
for collaboratively training a global model. Personalized FL
aims at collaboratively training multiple personalized local
models, including FedRep [30], FedAMP [31], pFedMe [32]
and Personalized FedAvg [33]. Targeting personalized FL,
FedProto [34] utilizes prototype to provide extra feature in-
formation from other clients to enhance personalization of
each client. In comparison, our FedFM targets generalized FL,
which uses anchors as landmarks to align clients’ category-
wise feature spaces to enhance generalization of all clients.
We also propose a new contrastive-guiding (CG) technique.
CG pushes local feature close to corresponding anchor and
keeps it far away from non-corresponding anchors, which is
shown to be significantly effective.

We compare FedFM with several representative methods in
generalized FL in Table I.

III. PRELIMINARIES

In this section, we present several key notations and the
general process of FL. Then, we demonstrate two key empiri-
cal observations through preliminary experiments, including

TABLE I
RELATED WORK COMPARISONS. CONV. DENOTES CONVERGENCE

GUARANTEE. MEM. AND BAND. DENOTE MEMORY COST AND
BANDWIDTH COST ROUGHLY COMPARED WITH FEDAVG.

Method Local Correction Conv. Mem. Band.
FedAvg [1] - X × 1 × 1

FedAvgM [19] - X × 1 × 1
FedProx [6] Model X × 2 × 1

SCAFFOLD [7] Model X × 2 × 2
FedDyn [16] Model X × 2 × 1
FedNova [18] - X × 1 × 1
MOON [20] Feature - × 3 × 1

FedFM (ours) Feature X × 1 × 1

inconsistent feature spaces across clients and overlapping
feature spaces across categories, which motivate the proposal
of our FedFM method and CG loss.

A. Notations

Suppose there are K clients, where the kth client holds a
local dataset Bk = {(xi, ci)|i = 1, 2, ..., |Bk|}, where xi and
ci are the data and the label of the ith sample, respectively.
FL aims to leverage the local datasets at multiple clients to
collectively train a global model w in the server without
sharing raw data [1]. Here we focus on a C-classification task
and each local dataset Bk can be further split to C category-
wise sub-datasets, each of which is Bk,c = {(xi, ci) ∈ Bk|ci =
c}. Let ffull(·, ·) be an end-to-end classification model with
ffull(w,x) ∈ RC the final classification output given the input
data sample x and model parameters w. We also consider the
intermediate features as fmid(w,x) ∈ Rd, where fmid(·, ·)
denotes the feature-extract module in the full classification
model ffull(·, ·). A standard global objective of FL is

F (w) =

K∑
k=1

pkFk(w) =

K∑
k=1

pk
|Bk|

∑
(x,c)∈Bk

`(ffull(w,x), c),

(1)
where pk = |Bk|/

∑K
k=1 |Bk| is the aggregation weight of

the kth client and `(·) is the task-specific loss function. To
optimize the objective in a federated setting, at each commu-
nication round t, each client k downloads the same global
model w(t) and conducts τ iterations of SGD on it, which
normally applies supervision on final output ffull(w,x) while
we could also consider supervision on the feature fmid(w,x).
Then, each client k uploads the updated model w(t,τ)

k to the
server, which is aggregated to update the global model w(t+1)

for next round.
Since each local dataset Bk could have different data dis-

tributions, conventional method (1) could results in divergent
global model and degraded performance. In this work, our goal
is to introduce a regularization term to the global objective,
mitigating the effects of data heterogeneity.

B. Motivation

Most FL methods do not explore clients’ behavior in feature
space. We conduct the following FL (FedAvg [1]) experiment
on CIFAR-10 with two clients. Each holds an imbalanced
dataset of size 5000, where Client 1 has 50% of data in

4

(a) Inconsistent features (b) Overlapping features
Fig. 2. Motivating examples. Fig. 2a visualizes the scatter plot of intermediate
features of all the samples across two clients, where each color denotes
one client. The triangles are the features of cat category. This shows that
although each client has learned well-clustered features, the features are quite
inconsistent across clients. Fig. 2b shows the scatter plot of intermediate
features of all samples in Client 1, while each color denotes one category.
This shows that airplane category occupies larger feature space and overlap
with that of ship category.

airplane category while the rest is equally distributed to 9
other categories (car category for Client 2). Each client runs 10
epochs of local model training based on the same initial model.
We use a ResNet18 [35] model to implement ffull(·, ·), where
the feature-extraction module fmid(·, ·) is ResNet18 without
the last fully-connected layer. We then visualize intermediate
features of several validation sample by T-SNE [17]. From the
experimental results, we notice two unsatisfying phenomena
in feature space that might cause bad performance in FL.

Inconsistent feature spaces across clients. Fig. 2a illus-
trates the scatter plot of several samples’ features from two
clients, where two colors indicate two different clients and
cat category is highlighted in the triangle shape. We see
that the samples from cat category across two local clients
have a huge gap, reflecting that the feature spaces of two
local clients are seriously inconsistent. This distinctly differs
from centralized training, where samples of the same category
should be gathered without an obvious gap. The intuition
behind this phenomenon might be that two clients have two
significantly different data distributions, resulting in distinct
local models and therefore inconsistent behaviors in feature
space. Motivated by this, we propose FedFM (anchor-based
federated feature matching) to align the category-wise feature
spaces across clients. The core idea is to establish shared
global anchors as the landmarks in the feature space to
guide feature learning across multiple clients; see details in
Section IV-B.

Overlapping feature spaces across categories. Fig. 2b
illustrates the scatter plot of several samples’ features from
various categories within Client 1, where various colors in-
dicate different categories. We see that the samples from
two categories (airplane and ship) greatly overlap, causing
misclassification. This phenomenon often happens when the
sample sizes across multiple categories are highly imbalanced.
Motivated by this, we further propose a contrastive-guiding
method in FedFM, which pushes each feature close to its
corresponding anchor while keeping far away from non-

corresponding anchors to avoid overlapping. This also ends
up enlarging the distance between two distinct categories in
the feature space and further mitigates overlapping; see details
in Section IV-C.

IV. METHODOLOGY

This section introduces the proposed federated learning with
anchor-based feature matching (FedFM) from both aspects
of mathematical optimization and federated implementation.
Based on the proposed framework, we further propose a
contrastive-guiding (CG) loss to mitigate overlapping feature
spaces across categories. Finally, we discuss the communica-
tion cost and privacy concerns.

A. Optimization Problem

To address the issue of inconsistent feature spaces across
clients, we propose anchor-based feature matching, which
introduces anchors to serve as the shared landmarks for
aligning all the clients’ feature spaces. Mathematically, let
A = {ac}Cc=1 be a global anchor set, where ac is the anchor
of the cth category. The overall optimization problem with
respect to the model parameter w and the anchor set A is

min
w,A

Φ(w;A) = min
w,A

K∑
k=1

pkΦk(w;A) (2)

= min
w,A

K∑
k=1

pk

(
Fk(w) + λQk(w;A)

)
,

where pk is the predefined aggregation weight of the kth client,
with relative dataset size a standard choice |Bk|/

∑K
k=1 |Bk|,

Φk(·) is the kth client’s objective, λ is a hyperparameter
to balance the task-specific loss and the regularization term,
Fk(w) =

∑
(x,c)∈Bk

` (ffull(w,x), c) /|Bk| is the task-specific
loss at the kth client with Bk the kth client’s local dataset and

Qk(w;A) =
∑

(x,c)∈Bk

1

|Bk|
q(fmid(w,x),A|c)

=
∑

(x,c)∈Bk

1

|Bk|
‖fmid(w,x)− ac‖22 (3)

is the kth client’s anchor-based feature matching term, which
forces each sample to match with the corresponding category-
wise global anchor at each client. Since each global anchor
is the proxy of each category and is shared across all the
clients, with the anchor-based matching, the feature space at
each client is evolving towards the same formation, enhancing
the feature consistency across clients. Without anchor-based
regularization term Qk(w;A), the overall objective degener-
ates to the standard federated learning objective.

To solve the optimization (2), we sequentially optimize the
anchor set A and the model parameter w at each round t.

a) Optimizing global anchors A: Fixing the model pa-
rameter at the previous round, w(t), we optimize over the the
anchor set A by solving

A(t) = arg min
A

Φ(w(t);A) =

K∑
k=1

pkΦk(w(t);A). (4)

5

A1. Local anchors calculation

Server
Global Anchors & Model aggregation

Client 1

Overall Architecture

…

Model interaction

Anchor interaction

B1. Local model training

Local anchors calculation

Feature
Extractor

Client K

Local
dataset

A2 B2

Local model training

𝐵!𝒂" =$𝑝!,"𝒂!,"

$

"%&

𝒘 =$𝑝!𝒘!

'

!%&

Feature
Extractor Classifier

𝒂(

𝒂&

𝒂)

Maximize

Minimize

Label

Local
dataset 𝐵!

Anchor-based
Feature Matching

Input
𝒙

Anchor
aggregationMidpoint

Feature
Anchor

𝒂!,(

𝒂!,&

𝒂!,)
Parameters

fixed

Server-Client
interaction

Order: A1⇒A2⇒B1⇒B2 ⇒A1

CG

𝑓*+,(𝒘, 𝒙) 𝑓-.//(𝒘, 𝒙)

Fig. 3. Overview of FedFM for a 3-classification task. The left shows the overall architecture. The right shows two key steps in detail, where local anchors
calculation generates feature anchors for each category and local model training utilizes these anchors to conduct anchor-based feature matching (e.g. contrastive
guiding in the figure, which is described in Section IV-C). Here, a feature (in circle shape) is the intermediate layer output of a model and an anchor (in star
shape) is an integration of features that belong to the same category.

Since the task-specific loss has nothing to do with the anchors,
the optimal anchor only relates to the anchor-based regulariza-
tion term. Furthermore, the global anchor of the cth category
only depends on the data sample belonging to the cth category.
Mathematically, the global anchor of the cth category has a
straightforward closed-form solution as

a(t)c = arg min
a

K∑
k=1

∑
(x,c)∈Bk

∥∥∥fmid(w(t),x)− ac

∥∥∥2
2

=
1∑K

k=1 |Bk,c|

K∑
k=1

∑
(x,c)∈Bk,c

fmid(w(t),x), (5)

where Bk,c is the kth client’s local dataset that belongs to
the cth category. However, in the federated learning setting,
since the global server cannot directly access the local data,
each global anchor cannot be directly computed in the global
server as in (5). In Section IV-B, we will consider a federated
implementation.

b) Optimizing global model w: Fixing the global anchors
A(t), we optimize over the the model parameter w by solving

w(t+1) = arg min
w

Φ(w;A(t)) =

K∑
k=1

pkΦk(w;A(t)). (6)

We can consider an iterative solver based on the standard
gradient descent. Mathematically, the global model parameters
can be updated as

w(t+1) = w(t)−η
K∑
k=1

pk

(
∂Fk(w)

∂w
+λ

∂Qk(w;A(t))

∂w

)
, (7)

where η is the step size. Similarly to the optimization of global
anchors, the model parameters cannot be directly updated in

the global server as in (7). A federated implementation is
introduced in next.

B. Federated Implementation
Previously, we propose the mathematical optimization of

federated learning with anchor-based feature matching. How-
ever, the solver is impractical due to the federated setting. Here
we introduce a federated implementation, called FedFM.

1) Overview.: Fig. 3 overviews the proposed FedFM. In
each communication round, it consists of two main steps:
anchor updating and model updating, where anchor updating
solves the subproblem (4) and model updating solves the
subproblem (6).

In the step of anchor updating, after downloading the
same global model, each client calculates local anchors and
uploads them to the server, where global anchors are updated
by aggregating local anchors. These global anchors are then
broadcast to be shared by all clients. In the step of model
updating, each client conducts several iterations of local
model training supervised by task-driven loss as well as an
anchor-based feature matching loss, after which the updated
local model is uploaded to server. Then, the server updates the
global model by aggregating local models.

We now illustrate these two steps in detail.
a) Step 1: Anchor Updating: Here we aim to imple-

ment (5) in a federated fashion, which requires the coordi-
nation of both the clients and the server. This involves two
substeps: local anchors calculation for integrating features of
the same category, working on the client side, and global
anchors aggregation for aggregating anchors from all clients,
working on the server side.

Local anchors calculation. After downloading the global
model, at the start of each new round, each client conducts

6

Algorithm 1 FedFM

Initialization: Global model w(0).
for t = 0, 1, ..., T − 1 do

Sends global model w(t) to initialize each client w(t,0)
k

A(t)
k ← Local Anchors Calculation (w(t,0)

k) using (8)
A(t) ← Global Anchors Aggregation ({A(t)

k }Kk=1) using
(9)
w

(t,τ)
k ← Local Model Training (w(t,0)

k ,A(t)) for τ
iterations using (10)
w(t+1) ← Global Model Aggregation ({w(t,τ)

k }Kk=1)
using (11)

end for
return final global model w(T)

local anchors calculation by computing the category-wise
midpoints of features; that is, local anchors are integration of
features from the same category in each client. Mathematically,
let w(t,r)

k be the kth client’s model parameter at the tth com-
munication round with iteration r and w

(t,0)
k := w(t), which

means that the local client’s model parameter at iteration 0 is
initialized by the global model in the previous communication
round. Then, the local anchor of the category c in client k at
round t is calculated as

a
(t)
k,c =

1

|Bk,c|
∑

(x,c)∈Bk,c

fmid(w(t),x) ∈ Rd, (8)

where fmid(w,x) is the intermediate layer output (feature) of
a model w given a sample x. Here a

(t)
k,c ∈ Rd is essentially

the midpoint of features of category c data in sub-dataset Bk,c.
Client k performs the calculation for each category c and then
sends all C local anchors to the server.

Global anchors aggregation. The server conducts global
anchors aggregation by aggregating local anchors from clients
so that global anchors are integration of features from the
same category across all clients. Mathematically, receiving the
local anchors from all the K clients, the server conducts the
following dataset size weighted aggregation for each category
c to obtain global anchor; that is,

a(t)c : =
1∑K

k=1 |Bk,c|

K∑
k=1

|Bk,c|a(t)k,c

=
1∑K

k=1 |Bk,c|

K∑
k=1

∑
(x,c)∈Bk,c

fmid(w(t),x) ∈ Rd.
(9)

We see that each global anchor a
(t)
c ∈ Rd still matches with

the optimized results in (5) and is the midpoint of features
of all data that belongs to Bk,c, k ∈ {1, 2, ...,K}. All these
global anchors A(t) = {a(t)c }Cc=1 are then broadcast to be
shared by all clients. At this point, the acquired shared anchors
are representative of the whole dataset. These are then used to
guide the feature learning at each client’s local model training.

b) Step 2: Model Updating: Here we implement the part
of the update in (7) in a federated fashion, which generally
requires more than one step of SGD update for each round.
This involves two substeps: local model training for updating

local models, working on the client side, and global model
aggregation for aggregating local models from clients, working
on the server side.

Local model training. Each client conducts local model
training on its private dataset with the task supervision and
anchor-based feature matching loss. The kth local client’s
model parameter at the communication round t with iteration
r is updated as

w
(t,r+1)
k = w

(t,r)
k − η

(∂Fk(w)

∂w
+ λ

∂Qk(w;At)
∂w

)
, (10)

where Fk(·) and Qk(·) are the kth client’s task-specific loss
and anchor-based feature matching loss (2), respectively. After
τ iterations of local training, each client k obtains a local
model with parameters w

(t,τ)
k and uploads it to the server.

Global model aggregation. The server receives and aggre-
gates the local models from all the clients and obtains an
updated global model for the next round; that is, the global
model for the next round t+ 1 is obtained as:

w(t+1) ←
K∑
k=1

pkw
(t,τ)
k , (11)

where pk is the predefined aggregation weight.
2) Strengths of Feature Matching: The proposed anchor-

based feature matching can significantly relieve the incon-
sistency phenomenon in Section III-B. Since each client’s
features are trained to match the shared global anchors, the
discrepancy of learned feature spaces across clients can be
reduced. Therefore, clients’ models establish a more consistent
feature space of every category. Furthermore, global anchors
contain overall information since they are obtained by ag-
gregating all local anchors. With global anchors, information
of other clients is infused into each client, which provides
additional guidance on local feature learning especially those
categories with relatively few data samples.

C. Contrastive-Guiding Loss

1) Method: To address the problem of overlapping feature
space across categories in Section III-B, we further propose
contrastive-guiding (CG) loss to replace the `2-based loss in
the feature matching term (3). The idea is to force each feature
to be close to the corresponding anchor while keeping far away
from non-corresponding anchors. Let A(t) = {a(t)n }Cn=1 be the
global anchors and w

(t,r)
k be the local model for client k at

training round t and iteration r. For data sample x, the feature
matching loss is

q
(
fmid(w

(t,r)
k ,x),A(t)|c

)
= LCE(s, c),

where LCE is the cross-entropy loss function and s =
[s1, s2, ..., sC] ∈ AC is a similarity vector, whose nth element
measures the distance with the nth anchor:

sn =
exp(〈a(t)n , fmid(w

(t,r)
k ,x)/α〉)∑C

i=1 exp(〈a(t)i , fmid(w
(t,r)
k ,x)/α〉)

,

with a temperature value α determining the level of concen-
tration and 〈·, ·〉 is inner product. By minimizing the cross

7

Fig. 4. Illustration of `2-Guiding and contrastive-guiding. Each color denotes
one category. `2-Guiding only minimizes the distance between the feature
and corresponding anchor, which ends up locating the feature at the feature
space overlap of categories. However, contrastive-guiding also maximizes the
distance between the feature and non-corresponding anchors, which feasibly
locates the feature at space that merely belongs to the corresponding category.

entropy, we both maximize the similarity between the feature
and its corresponding anchor a(t)c and minimize the similarity
between this feature and each non-corresponding anchor in
{a(t)n }n 6=c.

2) Strengths of CG: Fig. 4 compares the aforementioned
`2-Guiding and CG. We see that the CG loss achieves more
effective feature matching and therefore better targets the
overlapping phenomenon from the following two perspectives.

i) CG can provide a more precise target. As shown in the
figure, there could be overlap among feature spaces of different
categories. For `2 loss, only minimizing the distance between
the feature and its corresponding anchor could end up locating
the feature at that feature space overlap of several categories.
However, CG provides a more precise target by simultaneously
minimizing the distance between the feature and correspond-
ing anchor and maximizing the distance between the feature
and non-corresponding anchors, which feasibly locates the
feature at space that merely belongs to the corresponding
category.

ii) CG can enlarge the gap across categories. In each round,
each feature is further pushed away from non-corresponding
anchors, that is, more features are pushed to the non-overlap
area as shown in Fig. 4. After this, each anchor (category-
wise feature midpoint) is recalculated. Since more features
are pushed to the non-overlap area, each recalculated anchor
also moves towards the non-overlap area, which ends up en-
larging the distance between anchors. This process repeats and
eventually the feature space of different categories would be
enlarged distinctly, which alleviates the overlap phenomenon.

D. Further Discussions

1) Communication Cost: The FedFM method involves two
streams of communication, model parameters communication,
which is required for most FL methods, and anchors com-
munication, which is relatively negligible. Here, we take a
normal setting as example, where the model is ResNet18 [35],
category number C = 10, feature dimension d = 512. In this
case, the anchors cost of each client is C × d = 5.12 × 103

units while the model cost of each client is 1.17× 107 units.

As a result, communicating anchors only requires approximate
0.04% more bandwidth cost.

2) Privacy Analysis: While some feature inversion
method [36] attempts to reconstruct image from a single
feature, the communicated anchors are the average of a number
of features, which makes the reconstruction difficult. This is
also verified by [37], making FedFM a privacy-preserving
method. Meanwhile, Secure Aggregation [38] is often used in
practice to ensure the safety of model parameters, which can
also be adopted to further secure the anchors communication.
As CCVR [37] and FedFTG [29], the previously illustrated
process requires uploading clients’ category distributions for
weighted aggregating local anchors. For cases when this is pro-
hibited, we can directly compute the simple arithmetic mean,
where clients are not asked to upload category distributions.
We empirically verify that simple arithmetic mean of anchors
achieves comparable performance in Section VII-D1.

V. CONVERGENCE ANALYSIS

This section provides theoretical convergence analysis of
FedFM, including the required assumptions, lemmas and the
derived theorem and corollary.

We provide convergence analysis of the global objective
function Φ(w;A) in (2), which relies on the following 4 as-
sumptions. In Assumption 1, the assumption of smoothness of
Fk(w) is used in standard analysis of SGD and assumptions on
Qk(w;A) are additionally made since that we care about the
property of Φk(w;A). Assumptions 2, 3 and 4 are commonly
used in the FL literature [6], [7], [14], [18], [39]. Here, `2 loss
is applied for simplicity.

Assumption 1 (Smoothness). Each loss function Fk(w) is
Lipschitz-smooth. Feature function fmid(wk,x) is Lipschitz-
continuous and Lipschitz-smooth.

Assumption 2 (Bounded Scalar). Φk(w;A) is bounded
below by Φinf .

Assumption 3 (Unbiased Gradient and Bounded Vari-
ance). For each client, the stochastic gradient is unbiased:
Eξ[gk(w|ξ)] = ∇Φk(w;A), and has bounded variance:
Eξ[||gk(w|ξ)−∇Φk(w;A)||2] ≤ σ2.

Assumption 4 (Bounded Dissimilarity). For any set
of weights {pk ≥ 0}Kk=1 subject to

∑K
k=1 pk = 1,

there exists constants β2 ≥ 1 and κ2 ≥ 0 such that∑K
k=1 pk||∇Φk(w;A)||2 ≤ β2||∇Φ(w;A)||2 + κ2.
The smoothness property of Φk(w;A) is necessary for

convergence analysis. Since A changes over communication
round t, smoothness assumption on Qk(w;A) would be too
strong, which requires T assumptions. Thus, we only make
one minor assumption on the feature function fmid(wk,x) in
Assumption 1 and prove the smoothness of Φk(w;A) as stated
in Lemma 1.

Lemma 1: The local objective function Φk(w;A) is
Lipschitz-smooth: ||∇Φk(x;A) − ∇Φk(y;A)|| ≤ L||x − y||
for some L.

The fact that A changes over round t makes it challenging
to prove convergence as it changes the global loss function at
each round t. In Lemma 2, we show that at each communi-
cation point, the aggregation and updating of anchors reduces
(or keeps) the global loss value.

8

Lemma 2: The global loss function is non-increasing
when updating global anchors. That is: Φ(w(t+1);A(t+1)) ≤
Φ(w(t+1);A(t)).

Based on this key lemma, we derive our main Theorem,
which is stated as follows:

Theorem 1 (Optimization bound of the global objec-
tive function). Under Assumptions 1 to 4, if we set ηL ≤
min{ 1

2τ ,
1√

2τ(τ−1)(2β2+1)
}, the optimization error will be

bounded as follows:

min
t

E||∇Φ(w(t);A(t))||2

≤4[Φ(w(0);A(0))− Φinf]

τηT
+ 4ηLσ2

K∑
k=1

p2k

+ 3(τ − 1)η2σ2L2 + 6τ(τ − 1)η2L2κ2,

where η is the client learning rate and τ is the number of
local iterations.

Theorem 1 indicates that as T → ∞, the expectation of
optimization error will be bounded by a constant number for
fixed η. When setting a proper learning rate η, we have the
following corollary:

Corollary 1 (Convergence of the global objective func-
tion) By setting η = 1√

τT
, FedFM will converge to a stationary

point. Specifically, the bound could be further optimized as:

min
t

E||∇Φ(w(t);A(t))||2

≤
4[Φ(w(0);A(0))− Φinf] + 4Lσ2

∑K
k=1 p

2
k√

τT

+
3(τ − 1)σ2L2

τT
+

6τ(τ − 1)L2κ2

τT

=O(
1√
τT

) +O(
1

T
) +O(

τ

T
).

This corollary indicates that as T → ∞, the error’s upper
bound approaches 0. Also, given a finite T , there exists a best
τ that minimizes the error’s upper bound. These analyses show
that FedFM can achieve the same convergence rate as most
methods, such as FedAvg [14], [18]. Therefore, FedFM can
achieve feature matching across clients without affecting its
convergence. The detailed proof is included in the Appendix.

VI. AN EFFICIENT VARIANT: FEDFM-LITE

We also propose an efficient and flexible variant of FedFM,
called FedFM-Lite. The previously proposed FedFM involves
two separate communication flows, anchors communication
before local model training and models communication after
local model training. Though we have discussed that the
anchors communication introduces minor bandwidth cost,
FedFM requires twice handshakes between client and server
within a federated round, which could be a drawback in real-
world application since that each handshake requires some
synchronization time. Thus, to mitigate this issue, we propose
a more efficient variant, FedFM-Lite, which requires one
handshake between client and server. We compare FedFM and
FedFM-Lite in Fig. 5.

In FedFM-Lite, each client computes local anchors after the
process of local model training and sends the local anchors

Fig. 5. Comparison between FedFM and FedFM-Lite. FedFM introduces
minor bandwidth cost but requires 2 handshakes each round. FedFM-Lite
further eliminates this issue, which introduces minor bandwidth cost and
requires only 1 handshake.

together with model parameters. In this way, models and
anchors are communicated within one handshake, which saves
some synchronization time and makes it more efficient in real-
world application. Beside higher efficiency, FedFM-Lite is also
more flexible for real-world implementation since that models
and anchors can be communicated at different frequencies.
As discussed before, communicating anchors requires much
less costs compared with model parameters. This motivates
us to consider reducing the frequency of models communi-
cation and utilize anchors communication as compensation.
Specifically, in a federated learning process that consists of T
communication rounds, we can communicate anchors for each
round while communicate models for every a rounds. This
results in roughly a times less communication costs compared
with most existing methods, such as FedAvg [1], FedProx [6],
FedDyn [16] and 2× a less than SCAFFOLD [7].

VII. EXPERIMENTS

This section presents experimental details and results. We
compare our proposed FedFM with state-of-the-art methods
on various heterogeneous settings and datasets, which are
evaluated by accuracy, feature space quality, memory and
communication bandwidth cost.

A. Experimental Setup

a) Federated Setting: We set the number of clients K =
10 and conduct experiments on datasets including CIFAR-
10 [21], CINIC-10 [22] and CIFAR-100. Here we consider
three data heterogeneity (non-IID) settings. 1) NIID-1: the
category distributions of clients follow a Dirichlet distribution
Dir10(β), where β (default 0.5) correlates to the heterogeneity
level, which is a widely considered setting [40], [41]; 2) NIID-
2: each client has several dominant categories (with much
more data samples) while we keep the dataset size of each
client the same. We consider this setting to focus on the
distribution heterogeneity but not quantity imbalance; 3) NIID-
3: each client has no data sample from several categories,
which is also considered in [1], [6]. Fig.9 in appendix shows
the data distribution of these three Non-IID settings on CIFAR-
10.

9

TABLE II
CLASSIFICATION ACCURACY (%) UNDER NIID-1 AND NIID-2 SETTINGS ON CIFAR-10 [21], CINIC-10 [22] AND CIFAR-100. NIID-1 IS UNDER

DIRICHLET DISTRIBUTION Dir10(0.5) AND NIID-2 IS THE DISTRIBUTION WHERE EACH CLIENT HAS ONE DOMINANT CATEGORY. MEMORY SHOWS THE
REQUIRED NUMBER OF FLOATING NUMBERS OF EACH CLIENT IN EACH ROUND (×103). FEDFM CONSISTENTLY OUTPERFORMS OTHER

STATE-OF-THE-ART METHODS WITH RELATIVELY LESS MEMORY COST ACROSS VARIOUS SETTINGS.

Method CIFAR-10 CINIC-10 CIFAR-100
NIID-1 NIID-2 Memory NIID-1 NIID-2 Memory NIID-1 NIID-2 Memory

FedAvg [1] 66.69 ±0.69 69.47 ±0.48 11,182 55.96 ±0.16 58.56 ±0.22 11,182 62.16 ±0.04 62.33 ±0.27 23,705
FedAvgM [19] 66.85 ±0.42 67.87 ±0.17 11,182 56.15 ±0.45 58.79 ±0.30 11,182 61.23 ±0.12 61.30 ±0.27 23,705

FedProx [6] 66.99 ±0.26 69.42 ±0.38 22,364 55.58 ±0.13 58.32 ±0.11 22,364 61.96 ±0.05 62.20 ±0.28 47,410
SCAFFOLD [7] 69.91 ±0.54 71.48 ±0.23 22,364 58.60 ±0.27 60.78 ±0.32 22,364 67.32 ±0.29 67.24 ±0.03 47,410

FedDyn [16] 68.32 ±0.34 67.63 ±0.16 22,364 56.71 ±0.50 59.92 ±0.15 22,364 43.41 ±0.54 46.44 ±0.87 47,410
FedNova [18] 66.80 ±0.81 69.45 ±0.49 11,182 55.67 ±0.24 58.63 ±0.22 11,182 62.35 ±0.20 62.31 ±0.26 23,705
MOON [20] 67.74 ±0.30 71.09 ±0.22 33,546 57.25 ±0.07 59.28 ±0.03 33,546 62.56 ±0.22 62.99 ±0.13 71,115

FedFM (ours) 72.89 ±0.22 74.52 ±0.21 11,187 62.56 ±0.40 65.75 ±0.46 11,187 71.48 ±0.25 72.13 ±0.45 23,909

TABLE III
CLASSIFICATION ACCURACY (%) UNDER NIID-3 SETTING ON CIFAR-10. MISSING x SETTING REPRESENTS THAT EACH CLIENT HAS NO DATA SAMPLE
OF x CATEGORIES. MEMORY AND BANDWIDTH SHOW THE REQUIRED NUMBER OF FLOATING NUMBERS OF EACH CLIENT IN EACH ROUND (×103). OUR

PROPOSED FEDFM CONSISTENTLY OUTPERFORMS OTHER STATE-OF-THE-ART METHODS WITH MINOR ADDITIONAL RESOURCE COST.

Method Missing 1 Missing 2 Missing 3 Missing 5 Missing 7 Memory Bandwidth
FedAvg [1] 70.54 ±0.22 70.50 ±0.24 69.87 ±0.30 67.25 ±0.54 59.52 ±0.59 11,182 11,182

FedAvgM [19] 70.02 ±0.40 69.93 ±0.57 69.34 ±0.37 67.04 ±0.47 57.08 ±0.66 11,182 11,182
FedProx [6] 71.16 ±0.42 70.72 ±0.35 69.82 ±0.23 67.25 ±0.54 58.58 ±0.23 22,364 11,182

SCAFFOLD [7] 72.67 ±0.39 72.94 ±0.30 72.60 ±0.22 71.43 ±0.05 64.28 ±0.60 22,364 22,364
FedDyn [16] 67.43 ±0.51 67.76 ±0.64 67.78 ±0.28 69.53 ±0.59 64.75 ±0.30 22,364 11,182
FedNova [18] 70.56 ±0.25 70.48 ±0.23 70.05 ±0.15 67.56 ±0.52 59.66 ±0.42 11,182 11,182
MOON [20] 72.64 ±0.25 72.21 ±0.22 71.57 ±0.23 68.86 ±0.27 57.80 ±1.02 33,546 11,182

FedFM (ours) 75.97 ±0.44 75.84 ±0.23 75.04 ±0.29 73.23 ±0.35 65.24 ±0.52 11,187 11,187

b) Implementation: We run T = 100 communication
rounds for all experiments. In each round, every client
runs for 10 local epochs with a batch size of 64. We ap-
ply ResNet18 [35] for CIFAR-10 [21] and CINIC-10 [22],
ResNet50 for CIFAR-100 [21]. We use SGD optimizer with
learning rate 0.01, weight decay rate 1e−5 and SGD momen-
tum 0.9. These are commonly used experimental settings [20],
[37]. For evaluation, we hold out a testing dataset at the server
side and conduct the above non-IID partitions on the training
set. For each client, 20% of the training set is held out for
validation. We average the results on each local validation set
and save the best model. Finally, we report the testing accuracy
of the best model on the testing dataset.

We consider ffull(·, ·) as a standard ResNet and the feature
extractor fmid(·, ·) as ffull(·, ·) without the last fully-connected
layer. For feature matching, the feature is normalized before
applying the feature matching loss term. FedFM denotes
FedFM with CG unless explicitly specified. We run FedAvg
for the first Ts rounds and then launch our proposed FedFM.
For all methods, we tune the hyper-parameters in a reasonable
range and report the best results. Generally, for FedFM,
λ = 50.0 and Ts = 20 is a relatively better choice.

B. Main Results

We compare FedFM with seven existing classical methods,
including FedAvg [1], FedAvgM [19], FedProx [6], SCAF-
FOLD [7], FedDyn [16], FedNova [18] and MOON [20] on
various non-IID settings and datasets. We first show accuracy
comparisons quantitatively and then demonstrate qualitative
comparisons in feature space by T-SNE [17] visualization.

1) Quantitative Analysis: Table II presents accuracy com-
parisons on three datasets under both NIID-1 and NIID-2
settings. For each entry in the table, we run three inde-
pendent trials and report the mean and standard deviation
results. We see that i) FedFM consistently outperforms other
state-of-the-art methods on all tasks. ii) On the relatively
more complicated task, NIID-1 setting on CIFAR100, the
proposed FedFM significantly outperforms other methods.
Specifically, compared with standard FL, FedAvg [1], FedFM
achieves 9.40% higher accuracy. iii) On the six different tasks,
FedFM outperforms the second-best method (SCAFFOLD [7])
2.98%, 3.04%, 3.96%, 4.97%, 4.16%, 4.89%, respectively. It is
also worth mentioning that SCAFFOLD [7] requires roughly
twice the memory and communication bandwidth costs.

Table III shows the accuracy, memory, bandwidth compar-
isons under NIID-3 setting on CIFAR-10. In NIID-3, each
client has no data sample from several (x) categories, which
is denoted as Missing x setting. We conduct experiments
on different x ∈ {1, 2, 3, 5, 7}. We see that i) the perfor-
mances of all methods degrade as x increases since larger
x corresponds to a more heterogeneous setting. This verifies
that data heterogeneity significantly affects the performance of
FL. ii) FedFM consistently outperforms other state-of-the-art
methods. Specifically, it outperforms FedAvg [1] by 5.53%
and SCAFFOLD [7] by 2.28% on average. iii) Compared
with FedAvg [1], FedFM achieves significantly better per-
formance while introducing minor memory and bandwidth
costs. Compared with SCAFFOLD [7], FedFM achieves better
performance with nearly half of the memory and bandwidth
costs.

10

(a) FedAvg [1] (b) FedAvgM [19] (c) FedProx [6] (d) SCAFFOLD [7]

(e) FedDyn [16] (f) FedNova [18] (g) MOON [20] (h) FedFM (ours)
Fig. 6. Qualitative comparisons among methods through T-SNE [17] visualization. Each dot represents the feature of one data sample, whose color denotes its
category. FedFM establishes the most compact and distinct clusters in feature space. FedDyn [16] has moderately good visualization results but only achieves
68.32% accuracy while FedFM achieves 72.89%.

TABLE IV
NUMERICAL QUALITY EVALUATION OF FEATURE SPACES. HIGHER NMI AND SS CORRESPOND TO HIGHER QUALITY OF FEATURE SPACES. OUR

PROPOSED FEDFM ACHIEVES SIGNIFICANTLY HIGHEST NMI AND SS.

Metric FedAvg [1] FedAvgM [19] FedProx [6] SCAFFOLD [7] FedDyn [16] FedNova [18] MOON [20] FedFM (ours)
NMI 0.413 0.411 0.397 0.432 0.485 0.416 0.481 0.557
SS 0.036 0.038 0.006 0.056 0.136 0.049 0.068 0.173

2) Qualitative Analysis: Fig. 6 presents T-SNE [17] vi-
sualization results in feature space of each method, where
different color denote different category. All the sampled
data is fed into the final global model of each method to
obtain the corresponding features, which are then plot using
T-SNE [17]. We see that i) most previous methods suffer from
slack category-wise feature space while our FedFM establishes
significantly more compact category-wise feature space, which
reflects the effectiveness of utilizing anchors to conduct feature
matching. ii) Most previous methods suffer from ambiguous
boundaries. However, our FedFM establishes clusters with
clear boundaries and large gap which are contributed by using
anchors to attract features and the contrastive-guiding loss.
These two phenomena indicate that our proposed FedFM
indeed benefits the establishment of feature space and gives
the evidence of significantly improved performance. Note that
though FedDyn [16] seems to establish a good feature space, it
only achieves a 68.32% accuracy, which is significantly lower
than that of our proposed FedFM (72.89%).

For more comprehensive comparisons, we also evaluate the
quality of feature space in Fig. 6 using normalized mutual
information (NMI) and silhouette score (SS) [42]. NMI is
capable of measuring the quality of clustering. SS is a measure
of how similar an object is to its own cluster compared to other

clusters. Note that for NMI, we first apply the K-Means [43]
to perform clustering on sampled features of all methods and
then use NMI to measure the clustering quality. Both NMI
and SS are mesured using Scikit-learn [44]. Higher NMI and
SS correspond to higher quality of feature spaces. We present
the evaluation results in Table IV. The table shows that our
proposed FedFM achieves significantly higher NMI and SS.
Specifically, compared with FedDyn [16], FedFM achieves
14.8% higher NMI and 27.2% higher SS. This gives evidence
for the seemly great feature space but ordinary accuracy
performance of FedDyn [16] in a way.

C. Further Comparisons
1) Comparisons with FedProto: Targeting a different task,

personalization in FL, FedProto [34] uses prototype to provide
feature information from others to enhance personalization
while FedFM focuses on generalization in FL. To further
verify their difference, we implement a generalized version
of FedProto [34] and compare it with FedFM under NIID-1
setting on CIFAR-10 [21]. Experiments show that generalized
FedProto achieves 67.33 ± 0.49% accuracy, which is outper-
formed by SCAFFOLD [7], FedDyn [16] and MOON [20].
Our proposed FedFM achieves 72.89±0.22% accuracy, which
outperforms generalized FedProto [34] by 5.56%.

11

TABLE V
COMPARISONS OF ACCURACY, MEMORY AND BANDWIDTH COSTS ON CIFAR-100. EACH ENTRY SHOWS CLASSIFICATION ACCURACY (%). WITHIN
PARENTHESES, IT SHOWS THE REQUIRED MEMORY / BANDWIDTH COST, EVALUATED BY FLOATING NUMBERS (×108). WHEN K = 100, I) FEDFM

TAKES ONLY 0.86% MORE RESOURCE OVERHEAD TO ACHIEVE 13.97% HIGHER ACCURACY THAN FEDAVG [1], II) FEDFM ACHIEVES 7.68% HIGHER
ACCURACY WITH ONLY HALF THE MEMORY AND BANDWIDTH COSTS COMPARED WITH SCAFFOLD [7].

K 20 30 50 100
FedAvg [1] 58.48 (474 / 474) 54.46 (711 / 711) 50.20 (1,185 / 1,185) 41.41 (2,370 / 2,370)

FedAvgM [19] 58.36 (474 / 474) 54.48 (711 / 711) 52.86 (1,185 / 1,185) 46.72 (2,370 / 2,370)
FedProx [6] 58.27 (948 / 474) 54.50 (1,422 / 711) 50.55 (2,370 / 1,185) 40.62 (4,740 / 2,370)

SCAFFOLD [7] 64.65 (948 / 948) 61.82 (1,422 / 1,422) 56.71 (2,370 / 2,370) 47.70 (4,740 / 4,740)
FedDyn [16] 41.90 (948 / 474) 41.13 (1,422 / 711) 39.30 (2,370 / 1,185) 31.21 (4,740 / 2,370)
FedNova [18] 58.01 (474 / 474) 53.83 (711 / 711) 50.34 (1,185 / 1,185) 42.61 (2,370 / 2,370)
MOON [20] 57.63 (1,422 / 474) 52.71 (2,133 / 711) 47.84 (3,555 / 1,185) 38.45 (7,110 / 2,370)

FedFM (ours) 69.49 (478 / 478) 67.70 (717 / 717) 64.22 (1,195 / 1,195) 55.38 (2,390 / 2,390)

×𝟓

×𝟏𝟎

FedDyn
MOON

FedAvg

SCAFFOLD

FedFM-Lite

FedFM

Fig. 7. Comparison of performances and communication costs among
FedFM-Lite and several classical methods. Our proposed FedFM-Lite can
achieve significantly better performance while saving 5 or even 10 times
communication costs compared with existing techniques.

2) Performance and Resource Costs: FedFM introduces
minor resource costs while bringing significantly better per-
formance. To verify this point, we conduct experiments
on CIFAR-100 [21] under various client numbers (K ∈
{20, 30, 50, 100}). Beside accuracy comparisons, we also com-
pare the memory and bandwidth cost of these methods, which
are evaluated by the number of required floating numbers
(×108) for the overall FL process. We present the results
in Table V. Experiments show that i) our proposed FedFM
consistently outperforms state-of-the-art methods for various
client numbers, indicating its applicability to scenario with
large client number. ii) FedFM achieves significantly better
performance with minor additional memory and bandwidth
overhead. Specifically, FedFM takes only 0.86% more com-
munication overhead to achieve 13.97% better classification
performance than FedAvg [1] when K = 100. Compared with
the second-best method (SCAFFOLD [7]), FedFM achieves
7.68% higher accuracy when K = 100 with only half the
memory and bandwidth costs.

3) Performance of An Efficient Variant: FedFM-Lite: In
Section VI, we propose an efficient variant, called FedFM-
Lite, which is more efficient and flexible in practice. Since
anchors require less communication bandwidth costs than
model communication, we propose to reduce the communi-

TABLE VI
EFFECTS OF GLOBAL ANCHORS AGGREGATION MANNER. (WEIGHTED)

DENOTES AGGREGATING CATEGORY-WISE ANCHORS ACCORDING TO
EACH CLIENT’S NUMBER OF CORRESPONDING SAMPLES. (UNIFORM)

DENOTES COMPUTING SIMPLE ARITHMETIC MEAN OF ANCHORS.
EXPERIMENTS SHOW THAT FEDFM (UNIFORM) PERFORMS COMPARABLY
WITH FEDFM (WEIGHTED) WHILE FEDFM (UNIFORM) DOES NOT NEED

UPLOADING CLIENT’S CATEGORY DISTRIBUTION.

Method FedAvg [1] FedFM (Weighted) FedFM (Uniform)
Accuracy 66.69 ±0.69 72.89 ±0.22 72.87 ±0.26

cation frequency of model communication while keeping the
communication frequency of anchor communication, which
can be easily achieved in FedFM-Lite. This modification saves
communication bandwidth costs to a large extent.

To empirically verify this efficiency and flexibility, we
conduct the following experiments. We communicate anchors
for each round while we communicate models every a ∈
{1, 2, 5, 10} round(s), that is, larger a corresponds to less
communication cost. We show the communication cost and
final performance of each trial in Fig. 7. We also present
several representative methods for comparison.

Experiments show that when we communicate models every
a ∈ {1, 2, 5} communication round(s), FedFM-Lite can sig-
nificantly outperform compared methods. Specifically, when
a = 5, FedFM-Lite outperforms FedDyn [16] by 2.34% with 5
times less communication costs and SCAFFOLD [7] by 0.75%
with 10 times less communication costs. These experiments
show that for bandwidth limited scenarios, FedFM-Lite can
be an efficient candidate algorithm.

D. Ablation Study

1) Effects of global anchors aggregation manner: Here,
we show that FedFM can still achieve great performance
without uploading clients’ category distributions as discussed
in Section IV-D2. We compare two manners of global an-
chors aggregation, sample-number-based weighted aggrega-
tion and uniform aggregation. For the weighted aggregation,
each category-wise global anchor is updated by weighted
aggregating local anchors according to each client’s number of
data samples of the corresponding category. This aggregation
manner might not be allowed for its requirement for uploading
clients’ category distributions. For the uniform aggregation,

12

(a) Modularity of FM (b) `2-Guiding and CG (c) Ts and λ
Fig. 8. Ablation study. (a) shows that FM consistently brings performance gain to four methods. (b) shows that CG significantly improve the effectiveness
of FM. (c) shows that Ts = 20 and λ = 10 ∼ 100 is roughly an optimal solution.

each category-wise global anchor is updated by uniform ag-
gregating local anchors of the corresponding category, which
relieves the above issue. As an experimental detail, for those
categories where a client has no data sample, we adopt
the corresponding global anchors as the local anchors for
aggregation.

We conduct experiments under NIID-1 on CIFAR-10 [21]
and present the results in Table VI. Experiments show that
FedFM with uniform aggregation performs comparably to
FedFM with weighted aggregation (only 0.02% performance
drop). The reason behind this could be that for each category,
all clients’ features are pushed to the same shared global
anchor. As a result, all clients’ local anchors of the same
category are close to each other, making it similar between
applying weighted aggregation and uniform aggregation.

2) Modularity of Feature Matching: One advantage of our
anchor-based feature matching (FM) method is its modularity,
that is, it can be combined with most existing methods.
Fig. 8a shows the performances before and after feature
matching (FM) with contrastive-guiding combined with sev-
eral existing methods. Here, we take FedAvg [1], FedProx [6],
FedNova [18] and MOON [20] as example and conduct
experiments under NIID-1 setting on CIFAR10 [21]. Note
that the previous explored FedFM corresponds to FedAvg [1]
incorporated with FM.

From the figure, we see that applying our FM consistently
brings performance gain to these four methods, achieving
4.63% higher accuracy than corresponding baselines on av-
erage. Note that all these methods with FM outperforms the
state-of-the-art performance 69.91% (SCAFFOLD [7]).

3) Effects of contrastive-guiding loss: Fig. 8b presents
the performance of FedAvg [1], FedFM with `2 loss and
FedFM with contrastive-guiding (CG) loss under different
heterogeneous levels. Note that smaller β corresponds to more
severe heterogeneous level. We see that i) the performance
of all methods degrades as the heterogeneous level increases
(β decreases), which verifies that data heterogeneity affects
the performance of FL. ii) Both FedFM `2 and CG loss
outperform baseline FedAvg [1], indicating that anchor-based
feature matching brings performance improvement to standard
FL. iii) FedFM with CG significantly enhances the perfor-

mance compared with FedFM with `2, which indicates the
effectiveness of our proposed CG loss.

4) Effects of the weight of feature matching loss λ: Fig. 8c
presents the relationship between the final results and weight
of feature matching loss λ. Specifically, for each curve in the
figure, the launching round Ts of FedFM is fixed while the λ is
tuned in {1, 5, 10, 50, 100, 500, 1000}. Note that when λ = 0,
FedFM reduces to FedAvg [1], which is denoted by a star.
We see that i) applying feature matching brings performance
gain over FedAvg [1] for a wide range of λ, indicating the
effectiveness of feature matching; ii) a moderate λ ranging
from 10 ∼ 100 tends to perform better.

5) Effects of the round Ts to launch FedFM: Fig. 8c
presents the relationship between the final results and launch-
ing round Ts of FedFM. Specifically, for each fixed λ, we
compare the performance of three different Ts ∈ {1, 20, 40}.
We see that a moderate Ts = 20 performs the best or
comparably in most cases. This is reasonable since at the initial
rounds of FL, the established anchors are less representative
and still in drastic change, which makes such feature matching
less effective.

We also explore the effects of the number of epochs of
local model training and the performance under partial client
participation scenario in Table VII and VIII in appendix.

VIII. CONCLUSION

Facing statistical data heterogeneity, there are two unsatisfy-
ing phenomena in feature space for existing federated learning
methods. Motivated by this, we propose a novel anchor-based
federated feature matching (FedFM) method, which utilizes
shared anchors to guide feature learning at multiple local
models, promoting a consistent feature space. Tackling the the-
oretical challenge of varying objective function, we prove the
convergence of FedFM. For more precise guiding, we further
propose a novel contrastive-guiding (CG) loss, which guides
the feature of each sample to match with the corresponding an-
chor while keeping far away from non-corresponding anchors.
We propose a more efficient and flexible variant of FedFM,
FedFM-Lite, which is capable of communicating anchors and
models at different frequency. Experiments show that FedFM

13

with CG (and FedFM-Lite) consistently outperform state-of-
the-art methods.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[2] T. Gafni, N. Shlezinger, K. Cohen, Y. C. Eldar, and H. V. Poor,
“Federated learning: A signal processing perspective,” IEEE Signal
Processing Magazine, vol. 39, no. 3, pp. 14–41, 2022.

[3] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and
Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[4] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[5] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” Advances in neural information processing systems,
vol. 30, 2017.

[6] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of
Machine Learning and Systems, vol. 2, pp. 429–450, 2020.

[7] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “Scaffold: Stochastic controlled averaging for federated learn-
ing,” in International Conference on Machine Learning. PMLR, 2020,
pp. 5132–5143.

[8] T.-M. H. Hsu, H. Qi, and M. Brown, “Federated visual classification
with real-world data distribution,” in European Conference on Computer
Vision. Springer, 2020, pp. 76–92.

[9] Hsu, Tzu-Ming Harry and Qi, Hang and Brown, Matthew, “Measuring
the effects of non-identical data distribution for federated visual classi-
fication,” arXiv preprint arXiv:1909.06335, 2019.

[10] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augen-
stein, H. Eichner, C. Kiddon, and D. Ramage, “Federated learning for
mobile keyboard prediction,” arXiv preprint arXiv:1811.03604, 2018.

[11] D. Leroy, A. Coucke, T. Lavril, T. Gisselbrecht, and J. Dureau, “Fed-
erated learning for keyword spotting,” in ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2019, pp. 6341–6345.

[12] S. AbdulRahman, H. Tout, H. Ould-Slimane, A. Mourad, C. Talhi,
and M. Guizani, “A survey on federated learning: The journey from
centralized to distributed on-site learning and beyond,” IEEE Internet of
Things Journal, vol. 8, no. 7, pp. 5476–5497, 2020.

[13] J. Wang, Z. Charles, Z. Xu, G. Joshi, H. B. McMahan, M. Al-Shedivat,
G. Andrew, S. Avestimehr, K. Daly, D. Data et al., “A field guide to
federated optimization,” arXiv preprint arXiv:2107.06917, 2021.

[14] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” in International Conference on Learning
Representations, 2019.

[15] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[16] D. A. E. Acar, Y. Zhao, R. Matas, M. Mattina, P. Whatmough, and
V. Saligrama, “Federated learning based on dynamic regularization,” in
International Conference on Learning Representations, 2020.

[17] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

[18] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “A novel framework
for the analysis and design of heterogeneous federated learning,” IEEE
Transactions on Signal Processing, vol. 69, pp. 5234–5249, 2021.

[19] T.-M. H. Hsu, H. Qi, and M. Brown, “Measuring the effects of non-
identical data distribution for federated visual classification,” arXiv
preprint arXiv:1909.06335, 2019.

[20] Q. Li, B. He, and D. Song, “Model-contrastive federated learning,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 10 713–10 722.

[21] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[22] L. N. Darlow, E. J. Crowley, A. Antoniou, and A. J. Storkey, “Cinic-10
is not imagenet or cifar-10,” arXiv preprint arXiv:1810.03505, 2018.

[23] G. A. Kaissis, M. R. Makowski, D. Rückert, and R. F. Braren, “Secure,
privacy-preserving and federated machine learning in medical imaging,”
Nature Machine Intelligence, vol. 2, no. 6, pp. 305–311, 2020.

[24] Y. Chen, X. Qin, J. Wang, C. Yu, and W. Gao, “Fedhealth: A federated
transfer learning framework for wearable healthcare,” IEEE Intelligent
Systems, vol. 35, no. 4, pp. 83–93, 2020.

[25] Z. Chen, C. Yang, M. Zhu, Z. Peng, and Y. Yuan, “Personalized
retrogress-resilient federated learning towards imbalanced medical data,”
IEEE Transactions on Medical Imaging, pp. 1–1, 2022.

[26] X. Liang, S. Shen, J. Liu, Z. Pan, E. Chen, and Y. Cheng, “Variance
reduced local sgd with lower communication complexity,” arXiv preprint
arXiv:1912.12844, 2019.

[27] Z. Zhu, J. Hong, and J. Zhou, “Data-free knowledge distillation for het-
erogeneous federated learning,” in International Conference on Machine
Learning. PMLR, 2021, pp. 12 878–12 889.

[28] T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble distillation
for robust model fusion in federated learning,” Advances in Neural
Information Processing Systems, vol. 33, pp. 2351–2363, 2020.

[29] L. Zhang, L. Shen, L. Ding, D. Tao, and L.-Y. Duan, “Fine-tuning
global model via data-free knowledge distillation for non-iid federated
learning,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 10 174–10 183.

[30] L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai, “Exploiting
shared representations for personalized federated learning,” in Interna-
tional Conference on Machine Learning. PMLR, 2021, pp. 2089–2099.

[31] Y. Huang, L. Chu, Z. Zhou, L. Wang, J. Liu, J. Pei, and Y. Zhang, “Per-
sonalized cross-silo federated learning on non-iid data,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 35, no. 9, 2021,
pp. 7865–7873.

[32] C. T Dinh, N. Tran, and J. Nguyen, “Personalized federated learning
with moreau envelopes,” Advances in Neural Information Processing
Systems, vol. 33, pp. 21 394–21 405, 2020.

[33] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated
learning with theoretical guarantees: A model-agnostic meta-learning
approach,” Advances in Neural Information Processing Systems, vol. 33,
pp. 3557–3568, 2020.

[34] Y. Tan, G. Long, L. Liu, T. Zhou, Q. Lu, J. Jiang, and C. Zhang,
“Fedproto: Federated prototype learning over heterogeneous devices,”
arXiv preprint arXiv:2105.00243, 2021.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[36] N. Zhao, Z. Wu, R. W. Lau, and S. Lin, “What makes instance
discrimination good for transfer learning?” in International Conference
on Learning Representations, 2020.

[37] M. Luo, F. Chen, D. Hu, Y. Zhang, J. Liang, and J. Feng, “No fear
of heterogeneity: Classifier calibration for federated learning with non-
iid data,” Advances in Neural Information Processing Systems, vol. 34,
2021.

[38] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 1175–1191.

[39] S. J. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečnỳ,
S. Kumar, and H. B. McMahan, “Adaptive federated optimization,” in
International Conference on Learning Representations, 2020.

[40] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni,
“Federated learning with matched averaging,” in International
Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=BkluqlSFDS

[41] M. Yurochkin, M. Agarwal, S. Ghosh, K. Greenewald, N. Hoang,
and Y. Khazaeni, “Bayesian nonparametric federated learning of neural
networks,” in International Conference on Machine Learning. PMLR,
2019, pp. 7252–7261.

[42] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of computational and applied
mathematics, vol. 20, pp. 53–65, 1987.

[43] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on
information theory, vol. 28, no. 2, pp. 129–137, 1982.

[44] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

https://openreview.net/forum?id=BkluqlSFDS

	I Introduction
	II Related Work
	II-A Local Correction
	II-B Global Adjustment

	III Preliminaries
	III-A Notations
	III-B Motivation

	IV Methodology
	IV-A Optimization Problem
	IV-B Federated Implementation
	IV-B1 Overview.
	IV-B2 Strengths of Feature Matching

	IV-C Contrastive-Guiding Loss
	IV-C1 Method
	IV-C2 Strengths of CG

	IV-D Further Discussions
	IV-D1 Communication Cost
	IV-D2 Privacy Analysis

	V Convergence Analysis
	VI An Efficient Variant: FedFM-Lite
	VII Experiments
	VII-A Experimental Setup
	VII-B Main Results
	VII-B1 Quantitative Analysis
	VII-B2 Qualitative Analysis

	VII-C Further Comparisons
	VII-C1 Comparisons with FedProto
	VII-C2 Performance and Resource Costs
	VII-C3 Performance of An Efficient Variant: FedFM-Lite

	VII-D Ablation Study
	VII-D1 Effects of global anchors aggregation manner
	VII-D2 Modularity of Feature Matching
	VII-D3 Effects of contrastive-guiding loss
	VII-D4 Effects of the weight of feature matching loss
	VII-D5 Effects of the round Ts to launch FedFM

	VIII Conclusion
	References

