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Abstract—Hybrid beamforming (HBF) is a key enabler for
wideband terahertz (THz) massive multiple-input multiple-
output (mMIMO) communications systems. A core challenge with
designing HBF systems stems from the fact their application
often involves a non-convex, highly complex optimization of large
dimensions. In this paper, we propose HBF schemes that leverage
data to enable efficient designs for both the fully-connected
HBF (FC-HBF) and dynamic sub-connected HBF (SC-HBF)
architectures. We develop a deep unfolding framework based on
factorizing the optimal fully digital beamformer into analog and
digital terms and formulating two corresponding equivalent least
squares (LS) problems. Then, the digital beamformer is obtained
via a closed-form LS solution, while the analog beamformer
is obtained via ManNet, a lightweight sparsely-connected deep
neural network based on unfolding projected gradient descent.
Incorporating ManNet into the developed deep unfolding frame-
work leads to the ManNet-based FC-HBF scheme. We show that
the proposed ManNet can also be applied to SC-HBF designs
after determining the connections between the radio frequency
chain and antennas. We further develop a simplified version
of ManNet, referred to as subManNet, that directly produces
the sparse analog precoder for SC-HBF architectures. Both
networks are trained with an unsupervised training procedure.
Numerical results verify that the proposed ManNet/subManNet-
based HBF approaches outperform the conventional model-based
and deep unfolded counterparts with very low complexity and a
fast run time. For example, in a simulation with 128 transmit
antennas, it attains a slightly higher spectral efficiency than the
Riemannian manifold scheme, but over 1000 times faster and
with a complexity reduction of more than by a factor of six (6).

Index Terms—THz communications, hybrid beamforming,
massive MIMO, deep learning, AI, deep unfolding.

I. INTRODUCTION

Future sixth-generation (6G) wireless networks are expected
to realize Tbps single-user data rates to support emerging ultra-
high-speed applications, such as mobile holograms, immersive
virtual reality, and digital twins [1]. To realize such rapid
growth in data traffic and applications, wideband terahertz
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(THz) massive multiple-input multiple-output (mMIMO) sys-
tems have emerged as key enablers for achieving substantial
improvements in the system spectral and energy efficiency
(SE/EE) [2]. In THz mMIMO transceivers, hybrid beamform-
ing (HBF) can provide a cost- and energy-efficient solution
that yields significant multiplexing gains with a limited num-
ber of power-hungry radio frequency (RF) chains [3], [4].

As HBF delegates some of the beamforming operations
to the analog domain, its design largely depends on the
considered hardware and its associated constraints [5]. A
candidate implementation of HBF systems realizes analog
beamforming via tunable complex gains and phase shifters [6],
which can be efficiently designed using quantized vector
modulators [7]. While these architectures are highly flexi-
ble, they are expected to be very costly when implemented
at high frequencies. Another candidate HBF architecture is
based on metasurface antennas [8], whose implementation
for mMIMO at high frequencies is still an area of active
research. Consequently, the most common mMIMO HBF
architecture considered to date realizes analog beamforming
using adjustable phase shifters [9]. However, optimizing a
phase-shifter-based HBF is challenging due to the need for
constant modulus constraints on the analog beamforming
coefficients and the strong coupling between the analog and
digital beamformers. Thus, efficient HBF methods overcoming
these challenges have attracted much interest in the literature,
with proposed approaches ranging from conventional model-
based optimizations to purely data-driven deep learning (DL).

A. Related Works

HBF designs and optimization usually require cumbersome
algorithms such as Riemannian manifold minimization (MO-
AltMin) [10] and alternating optimization (AO) [11]. In MO-
AltMin, the alternating analog and digital beamformer designs
form a nested loop procedure, wherein the former is solved by
Riemannian manifold optimization, and the latter is obtained
via a least squares (LS) problem. With Nt antennas and NRF
RF chains, AO solves for each of NtNRF analog beamforming
coefficients in an alternating manner until convergence. Al-
though MO-AltMin and AO offer satisfactory performance,
both require nested loops with high complexity and slow
convergence, especially for large mMIMO systems. A low-
complexity alternative for HBF designs is the orthogonal
matching pursuit (OMP) approach [12]. It requires only NRF
iterations to select NRF analog precoding vectors from a
codebook consisting of array response vectors. However, the
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performance of OMP is usually significantly inferior to the
optimum.

While MO-AltMin works for both narrowband and wide-
band scenarios, the original AO and OMP approaches only
apply to narrowband systems. Lee et al. [13] further opti-
mized OMP for orthogonal frequency-division multiplexing
(OFDM)-based MIMO systems. In [14], a variant of AO
was proposed for wideband MIMO-OFDM systems. It is
shown that an analog combiner designed only for the center
frequency and optimal frequency-dependent digital combiners
can achieve near-optimal performance as long as the band-
width is narrow or the array’s dimensions are small enough
so that the array response remains approximately frequency-
non-selective. When the array response becomes frequency-
selective or suffers from the so-called beam squint effect [14]
in wideband THz systems, it can be mitigated by employing
true-time-delay (TTD) lines in the analog beamforming ar-
chitecture [4], [15], [16]. However, the deployment of TTDs
requires additional hardware complexity and power consump-
tion. Yuan et al. [17] proposed a wideband HBF scheme
with two digital beamformers, in which an additional digital
beamformer is introduced to compensate for the performance
loss caused by the constant-amplitude hardware constraints
and channel non-uniformity across the subcarriers. Li et al.
[18] considered an HBF architecture with dynamic antenna
subarrays and low-resolution phase shifters and address the
HBF design with classical block coordinate descent.

Recently, the application of DL to wireless communications
problems has attracted significant attention [19]–[22], with one
of the considered problems being HBF design [23]–[33]. Two
typical DL techniques are often applied: purely data-driven DL
and hybrid model-based DL [34]. The former relies mainly on
the learning capability of deep neural networks (DNNs) [23]–
[25], convolutional neural networks (CNNs) [26]–[29], [35]–
[38], or deep reinforcement learning [39], [40] to generate
HBF beamformers. For example, [38] designed a mMIMO
HBF with a group-of-subarray structure in the low-THz band
via both model-based AO and data-driven CNNs. It was shown
that while the former can achieve better performance, the latter
operates approximately 500 times faster than the model-based
AO. Yet, such a purely data-driven DL approach has major
limitations due to its resource constraints, high complexity,
and black-box nature [20], [41]–[44].

Model-based DL encompasses a family of hybrid method-
ologies for combining domain knowledge with data to realize
efficient inference mappings [45]. A leading hybrid method-
ology is deep unfolding, which leverages DL techniques to
improve model-based iterative optimizers in terms of con-
vergence, robustness, and performance [46]. In the context
of HBF design, Balevi et al. [30] used deep generative
unfolding models to obtain near-optimal hybrid beamformers
with reduced feedback and complexity. Luo et al. [47] and Shi
et al. [32] proposed deep unfolding HBF solutions based on
unfolding AO and iterative gradient descent, respectively.

Most of the aforementioned works focused on HBF design
in conventional narrowband systems. In wideband MIMO-
OFDM systems, the analog beamformer is typically frequency
flat, i.e., a common analog beamforming matrix must serve

the entire frequency band. This imposes extra difficulties on
the HBF design, and the approaches proposed for narrowband
systems are not readily applicable. The work [31] proposed
a low-complexity HBF design by unfolding the projected
gradient ascent (PGA) optimization with a fixed number of
iterations and learning the hyperparameters of the iterative
optimizer from the data. Chen et al. [33] proposed a DNN
architecture that unfolds the weighted minimum mean square
error manifold optimization using fully-connected DNNs to
learn the step size in each iteration, leading to faster conver-
gence and improved performance. However, high complexity
is still required to update the gradient and the solutions in each
iteration. Kang et al. [48] introduced a deep unfolding hybrid
beamforming design induced by a stochastic successive convex
approximation algorithm. This scheme achieves good HBF
performance; however, its highly-parameterized DNN network
architecture is complicated, and the use of black-box DNNs
results in high complexity. In [49], a DNN model referred to
as a multi-generator generative adversarial network (MGGAN)
was introduced for HBF design with rank-deficient channels.
Similar to [48], the MGGAN architecture is highly complex.

B. Contributions

In this paper, we propose efficient deep unfolding ap-
proaches for the designs of both fully-connected HBF (FC-
HBF) and dynamic sub-connected HBF (SC-HBF) architec-
tures. The proposed deep unfolding frameworks are based on
unrolling iterations of the MO-AltMin algorithm of [10], and
they are thus referred to as ManNet-based HBF. The main idea
is to first transform the challenging SE maximization problem
into an approximate matrix factorization problem, in which
both the analog and digital precoders admit LS formulations.
In each iteration, the analog beamformers are produced by a
DNN, while the digital beamformers are obtained via closed-
form LS solutions. Furthermore, the employed DNN has a low-
complexity sparsely-connected structure based on unfolding
the projected gradient descent (PGD) algorithm. In this sense,
the proposed ManNet-based HBF designs are a two-fold deep
unfolding procedure. We summarize our main contributions as
follows:
• We propose an unfolding framework for the design of

FC-HBF architectures based on unfolding MO-AltMin.
Unlike most existing DL-aided FC-HBF designs, the
unfolding framework is developed by investigating the
matrix factorization problem for HBF design rather than
the original SE maximization. Thereby the complicated
log-det objective function is transformed into a simpler
norm-squared form in which the digital and (vectorized)
analog precoders are alternately solved via LS. This
significantly simplifies the design and reduces the overall
complexity compared to the unfolding methods in [31],
[48].

• Based on the unfolded framework, we develop a
lightweight DNN architecture called ManNet to estimate
the analog beamformer based on PGD. ManNet is a
sparsely connected DNN with an explainable architecture
and low-complexity operations. Specifically, it can output
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reliable analog precoding coefficients with only a few
layers, each requiring only element-wise multiplications
between the input and weight vectors. We also propose
an efficient unsupervised training procedure for ManNet.
The training strategy offers fast convergence with limited
training data and no training labels.

• We then focus on dynamic SC-HBF design. The trained
ManNet can be readily applied here. Specifically, we
propose a low-complexity scheme to establish the dy-
namic connections between the RF chains and antennas,
and the sparse analog precoding matrix is obtained by
matching the channel gains with the output of ManNet.
To further reduce the complexity of the SC-HBF design,
we develop a simplified version of ManNet, referred to as
subManNet, to directly output the sparse analog precoder
for SC-HBF. The proposed schemes can also be applied
to the fixed SC-HBF architecture.

• We present simulation results demonstrating that the
ManNet-based FC-HBF scheme attains better perfor-
mance in much less time and with much lower com-
putational complexity than the conventional MO-AltMin
[10] and AO [11] approaches. In particular, the proposed
ManNet and subManNet-aided SC-HBF schemes achieve
performance similar to that of FC-HBF, and much better
than semidefinite relaxation-based alternating minimiza-
tion (SDR-AltMin) [10].

C. Paper Organization and Notation

The rest of the paper is organized as follows. Section II
presents the signal and channel models, and the considered
design problems. Sections III and IV detail the proposed FC-
HBF and SC-HBF designs, respectively. Numerical results are
given in Section V, while Section VI concludes the paper.

Throughout the paper, numbers, vectors, and matrices are
denoted by lower-case, boldface lower-case, and boldface
upper-case letters, respectively, while [A]i,j represents the
(i, j)-th entry of matrix A. We denote by (·)T and (·)H
the transpose and the conjugate transpose of a matrix or
vector, respectively, and A† is the pseudo-inverse of a matrix
A. The matrix diag{a1, . . . ,aN} is block diagonal with
diagonal columns a1, . . . ,aN . Furthermore, |·| denotes either
the absolute value of a scalar or the cardinality of a set, and
� represents the Hadamard product. (C)N (µ, σ2) denotes a
(complex) normal distribution with mean µ and variance σ2,
while U [a, b] denotes a uniform distribution over given range
[a, b].

II. SIGNAL MODEL AND PROBLEM FORMULATION

A. Signal Model

We consider the downlink of a point-to-point wideband
mMIMO-OFDM system, where the base station (BS) and the
mobile station (MS) are equipped with Nt and Nr antennas,
respectively. Let s[k] ∈ CNs×1 denote the Ns-dimensional
transmit vector from the BS to the MS on the k-th subcarrier,
with E

{
s[k]s[k]H

}
= INs , k = 1, 2, . . . ,K, where K is

the number of subcarriers. The BS employs a frequency-flat
analog precoder FRF ∈ CNt×NRF and a frequency-dependent

digital baseband precoder FBB[k] ∈ CNRF×Ns , where NRF is
the number of RF chains at the BS, Ns ≤ NRF ≤ Nt, and
the normalized transmit power constraint at the BS is given
as ‖FRFFBB[k]‖2F = Ns,∀k. To focus on the design of hybrid
precoders, we assume that Nr is relatively small so that a
fully digital combiner V[k] ∈ CNr×Ns is employed at the MS
receiver for the k-th subcarrier. The post-processed signal at
the MS is expressed as

y[k] =
√
ρV[k]H[k]FRFFBB[k]s[k] + V[k]Hn[k], (1)

where ρ denotes the average received power, n[k] ∼
CN (0, σ2

n INr) is additive white Gaussian noise (AWGN) at
the MS, and H[k] is the channel matrix at the k-th subcarrier.

We adopt the extended Saleh-Valenzuela channel model and
express H[k] as [10]

H[k] = ξ

P∑
p=1

αpe
−j2πτpfkar(θ

r
p, φ

r
p, fk)at(θ

t
p, φ

t
p, fk)H . (2)

In (2), ξ =
√

NrNt

P and fk = fc+ BW(2k−1−K)
2K where BW and

fc represent the system bandwidth and center frequency; P is
the number of propagation paths; αp and τp are the complex
gain and time-of-arrival (ToA) of the p-th path; φt

p(θ
t
p) and

φr
p(θ

r
p) represent the azimuth (elevation) angles of departure

(AoDs) and arrivals (AOAs) of the p-th path; at ∈ CNt×1 and
ar ∈ CNr×1 denote the transmit and receive array response
vectors, respectively. We assume that the BS is equipped with
a UPA of size N h

t ×N v
t , where N h

t and N v
t are the numbers

of antennas in the horizontal and vertical dimensions, and
N h

t N
v
t = Nt. We assume half-wavelength antenna spacing at

the BS, and thus, at(θ
t
p, φ

t
p, fk) is given as [10]

at(θ
t
p, φ

t
p, fk) =

1√
Nr

[
1, . . . , ejπ

fk
fc

(ih sin(φ
t
p) sin(θ

t
p)+iv cos(θ

t
p)),

. . . , ejπ
fk
fc

((N h
r −1) sin(φ

t
p) sin(θ

t
p)+(N v

r −1) cos(θ
t
p))
]T
, (3)

where ih ∈ [0, N h
t ) and iv ∈ [0, N v

t ) denote the antenna indices
on the horizontal and vertical dimensions, respectively. The
array response vector ar(θ

r
p, φ

r
p, fk) at the MS are modeled

similarly.

B. FC-HBF and SC-HBF Architectures

We consider both FC-HBF and SC-HBF phase-shifter-based
architectures. In the former, each RF chain is connected to all
Nt antennas, requiring a total of NRFNt phase shifters. In this
case, the analog precoder is constrained as

FRF ∈ Afull ,
{
FRF : [FRF]m,n = ejζm,n , ∀m,n

}
, (4)

where ζm,n represents the effect of the phase shifter between
the n-th RF chain and the m-th antenna.

In the SC-HBF architecture, each RF chain only connects
to a subset of M , Nt

NRF
antennas to reduce the hardware

complexity and power consumption (assuming that Nt
NRF

is an
integer for simplicity). Such an analog network requires only
Nt phase shifters in total, which is a factor of NRF lower than
FC-HBF. We assume a dynamic sub-connected architecture in
which RF chains are connected to non-overlapping subsets of
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antennas. In this case, the sub-connected analog precoder is
constrained as

FRF ∈ Asub ,
{

FRF : [FRF]m,n ∈
{

0, ejζm,n
}
,

Nt∑
m=1

|[FRF]m,n| = M,

NRF∑
n=1

|[FRF]m,n| = 1, ∀m,n
}
, (5)

i.e., the (m,n)-th entry of FRF can be either a non-zero (unit-
modulus) coefficient, when the n-th RF chain is connected to
the m-th antenna, or zero otherwise. Furthermore, in each row
and column of FRF, there are only a single and M nonzero
elements, respectively. Note that the conventional fixed SC-
HBF architecture is a special case of the dynamic one, i.e.,
when the n-th RF chain is connected to M adjacent antennas
indexed from (n−1)M+1 to nM . In this case, we have FRF =
blkdiag

{
f̄1, . . . , f̄n, . . . , f̄NRF

}
, where f̄n = [f1,n, . . . , fM,n]

T ,
as considered in [10].

Compared to the fixed SC-HBF architecture, the dynamic
approach additionally requires Nt switches in the analog pre-
coding network to dynamically configure the connections be-
tween the RF chains and the antennas. However, the switches
do not significantly impact the total power consumption of
the system. The power consumption of a typical switch is 6
times less than that of a phase shifter and 40 times less than a
digital-to-analog converter (DAC) [9], [50]. Furthermore, low-
power, low-cost, and high-speed tunable switches can be used
[9], [51], [52] in dynamic SC-HBF structures.

C. Problem Formulation

Based on (1), the average per-subcarrier achievable SE for
Gaussian symbols is given by [10]

R =
1

K

K∑
k=1

log2 det
(
INs +

ρ

σ2
nNs

V[k]†H[k]FRFFBB[k]

× FBB[k]HFHRFH[k]HV[k]
)
. (6)

We aim at designing the precoders and combiners
{FRF,FBB[k],V[k]} to maximize R, which is challenging due
to the strong coupling among the variables. However, given
{FRF,FBB[k]}, the optimal solution for V[k] is the matrix
whose columns are the Ns left singular vectors corresponding
to the Ns largest singular values of H[k]FRFFBB[k] [53].
Therefore, we focus on the designs of the hybrid precoders
{FRF,FBB[k]} in the sequel.

The SE maximizing hybrid precoding design can be approx-
imately achieved via the following optimization [10], [12]:

minimize
FRF,{FBB[k]}Kk=1

K∑
k=1

‖Fopt[k]− FRFFBB[k]‖F (7a)

subject to FRF ∈ A, (7b)

‖FRFFBB[k]‖2F = Ns, ∀k, (7c)

where Fopt[k] ∈ CNt×Ns is the unconstrained optimal digital
precoder at the k-th subcarrier, whose columns are the Ns right
singular vectors corresponding to the Ns largest singular values
of H[k] and scaled with water-filling power factors. In (7b),
the feasible set A of the analog precoder can be either Afull
or Asub, defined in (4) and (5), respectively, depending on the

HBF architecture. This constraint enforces the unit modulus
of the analog precoding coefficients and the configuration of
the sub-connected analog network. The per-subcarrier transmit
power is constrained in (7c).

Problem (7) is a non-convex matrix factorization problem,
and joint optimization of FRF and {FBB[k]}Kk=1 is complicated
due to constraint (7b). MO-AltMin [10] and OMP [12] are
two conventional model-based algorithms for tackling (7). As
discussed earlier, MO-AltMin is highly complex and converges
slowly when the system dimensions are large. In contrast,
OMP maintains low complexity, but it has unsatisfactory
performance. We overcome these deficiencies by proposing
an efficient deep unfolding approach next.

III. PROPOSED FC-HBF DESIGN

We first focus on the design of FC-HBF, i.e., the design in
(7) with FRF ∈ Afull. To this end, we propose a deep unfolding
approach referred to as ManNet-based FC-HBF. Its main idea
is to unfold the MO-AltMin algorithm, estimating the solution
to FRF using ManNet, an unfolding DNN designed based on
PGD optimization.

A. Proposed ManNet-Based FC-HBF Approach
1) Main Idea: In the proposed approach, we apply the

iterative alternating minimization method of [10]. Specifically,
in each iteration, we first optimize FRF with FBB[k] given and
constraint (7c) omitted. Then we design FBB[k] to meet the
constraint given the optimized FRF. Thus, we first consider
the following problem:

minimize
FRF

K∑
k=1

‖Fopt[k]− FRFFBB[k]‖2F , (8a)

subject to FRF ∈ Afull, (8b)

where the quadratic form of the objective function is intro-
duced without affecting the solution. Let us denote

x̃ , vec(FRF) ∈ CNtNRF×1, (9)

z̃[k] , vec(Fopt[k]) ∈ CNtNs×1, (10)

B̃[k] , (FBB[k])T ⊗ INt ∈ CNtNs×NtNRF . (11)

Then, the objective function in (8) can be re-expressed as
K∑
k=1

‖Fopt[k]− FRFFBB[k]‖2F =

K∑
k=1

‖z̃[k]− B̃[k]x̃‖2. (12)

Furthermore, by denoting

x ,

[
R(x̃)
I(x̃)

]
∈ R2NtNRF×1, (13)

z[k] ,

[
R(z̃[k])
I(z̃[k])

]
∈ R2NtNs×1, (14)

B[k] ,

R(B̃[k]
)
−I
(
B̃[k]

)
I
(
B̃[k]

)
R
(
B̃[k]

)  ∈ R2NtNs×2NtNRF , (15)

with R(·) and I(·) representing the real and imaginary parts
of a complex vector/matrix, respectively, we can write

K∑
k=1

‖Fopt[k]− FRFFBB[k]‖2F =

K∑
k=1

‖z[k]−B[k]x‖2 . (16)
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Fig. 1. Activation functions ψt(x) and tanh(x).

Define the transformation

V : FRF → x and V−1 : x→ FRF (17)

which transforms the complex-valued matrix FRF into the
real-valued vector x and vice versa, respectively. With the
newly introduced variables, the optimal solution to problem
(8) admits the LS form

x? = argmin
x:V−1(x)∈Afull

K∑
k=1

‖z[k]−B[k]x‖2 . (18)

Based on (18), a deep unfolding DNN of L layers is
designed to mimic the PGD algorithm to approximate x?.
Specifically, let x` be the output of the `-th layer of the DNN.
From (18), x` can be produced as [54]

x` = T`

(
x− δ`

∂
∑K
k=1 ‖z[k]−B[k]x‖2

∂x

)
x=x`−1

= T`

(
x`−1 −

K∑
k=1

(
δ`B[k]T z[k] + δ`B[k]TB[k]x`−1

))

= T`

(
x`−1 − δ`z̄ + δ`

K∑
k=1

B̄[k]x`−1

)
, (19)

where δ` denotes a step size, T`(·) represents a nonlinear
projection operator, and in the last equality we denote z̄ ,∑K
k=1 B[k]T z[k] and B̄[k] , B[k]TB[k],∀k. The relationship

in (19) motivates a DNN model to learn x? wherein the output
of a given layer (i.e., x` in the `-th layer) results from a
nonlinear projection applied to the output of the previous layer
(i.e., x`−1 in the (`−1)-th layer) and other given information,
including z̄ and {B̄[k]} which is short for {B̄[k]}Kk=1. The
nonlinear projection is performed with trainable parameters,
i.e., the weights of the DNN. Applied over multiple layers,
the DNN can be structured and trained such that its final
output, i.e., xL, will be a good estimate of x?. In the following,
we develop such an efficient DNN architecture referred to as
ManNet.

2) ManNet Architecture: Denote

u`−1 , −z̄ +

K∑
k=1

B̄[k]x`−1, (20)

and rewrite (19) as

x` = T` (x`−1 + δ`u`−1) . (21)

We propose ManNet as a network of L layers defined by (21)
with the objective of learning x?. It takes x`−1 and u`−1 as the
input of the `-th layer, and outputs x` as the sum of the outputs
of two other sub-networks based on the two input vectors x`−1
and u`−1 in (21). Importantly, the n-th element of x` only
depends on the n-th elements of x`−1 and u`−1. Thus, only
the nodes (or neurons) at the same vertical level between the
layers are connected making ManNet a sparsely connected
DNN. Furthermore, we define the activation function

ψt(x) = −1 +
1

|t|
(σ(x+ t)− σ(x− t)) , (22)

where σ(·) is the rectified linear unit (ReLU) activation
function, and t is a hyperparameter. This guarantees that the
amplitudes of the elements of x` are in the range [−1, 1],∀t,
i.e., |xi| ≤ 1, i = 1, . . . , 2NtNRF.1 As a result, its correspond-
ing complex-valued matrix representation, denoted as F

(`)
RF =

V−1(x`), has elements satisfying |[F(`)
RF ]m,n| ≤

√
2, ∀m,n, `.

As this does not immediately ensure F
(`)
RF ∈ Afull as con-

strained in (8b), the final output of the DNN (xL) is normal-
ized to produce a solution FRF = V−1(xL) satisfying (8b).

Let {w`,1,w`,2}L`=1 be the weight vectors of the two sub-
networks associated with inputs x`−1 and u`−1 in the `-th
layer of ManNet. A detailed network architecture illustrating
the operation of each layer of ManNet is shown in Fig. 2(b).

3) Training ManNet: We employ an unsupervised training
approach for ManNet with the loss function

L
(
{w`,1,w`,2}L`=1

)
=

L∑
`=1

log(`)

(
K∑
k=1

‖z[k]−B[k]x`‖2
)
,

(23)
which sums the total weighted objective values of all L
layers. The DNN is trained to optimize the parameter set
{w`,1,w`,2}L`=1 such that L

(
{w`,1,w`,2}L`=1

)
is minimized,

which also directly minimizes the objective function in (18)
at the network output x` = xL. We note here that, oth-
erwise, if supervised training were used, it would require
the implementation of a conventional high-complexity HBF
scheme to obtain the training labels, i.e., the analog precoding
coefficients. This would dramatically increase the training
complexity. Because optimal solutions to obtain the labels are
unavailable, employing sub-optimal solutions for supervised
training may limit the performance of ManNet.

In Algorithm 1, we summarize the ManNet training process
using a training data set D. To initialize the training, the weight
vectors are first randomly generated from the distribution
N (0, 0.01), and an initial learning rate is set. Then, ManNet is
trained over E epochs, each using B batches {H(b)}Bb=1, where
H(b) =

{
{H[k]}1, . . . , {H[k]}|H(b)|

}
, and

∣∣H(b)
∣∣ denotes the

training batch size. For the b-th batch, we randomly generate
F

(b,0)
RF , and {FBB[k]}(b,0) is obtained via the LS solution

FBB[k](b,i) = (F
(b,i)
RF )†Fopt[k](b),∀k, b, i, (24)

1The activation function tanh(x) = ex−e−x

ex+e−x can also output values in
[−1, 1], as seen in Fig. 1. However, its slope is fixed, causing a fixed mapping
when applying the activation function. We have found via simulation that by
proper fine-tuning of t, ψt(x) provides better performance than tanh(x).
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Fig. 2. Illustration of (a) the proposed deep unfolding framework for FC-HBF and SC-HBF designs, the `-th layer of (b) ManNet and (c) subManNet.

where Fopt[k](b) is the optimal fully digital precoder for the
channels at the k-th subcarrier in H(b), and X(b,i) denotes
the data X in the b-th batch of the i-th iteration. From step
6, the iterative process of optimizing the ManNet weights
is performed. Specifically, in the i-th iteration, for given
F

(b,i)
RF and {FBB[k]}(b,i), the real-valued x(b,i), {z[k](b,i)},

and {B[k](b,i)} are constructed based on (9)–(15) in step 7,
allowing computation of z̄(b,i) and {B̄[k](b,i)} in steps 8 and
9, respectively. Steps 10–16 update x̂

(b,i)
` and the loss value,

which is then used in an optimizer to update the weights in
step 18. It is seen that the training for each data batch is
an iterative process over I train

net iterations. After each iteration,
F

(b,i)
RF and {FBB[k]}(b,i) are updated and utilized for the next

set of training iterations until I train
net iterations are completed.

This iterative approach is efficient in reducing the amount
of training data and accelerating the convergence, as we
empirically show in Section V.

B. Overall ManNet-Based FC-HBF Algorithm

Once the offline training process is completed, ManNet with
the trained weight vectors is readily applied to online FC-
HBF design. We refer to this approach as ManNet-based FC-
HBF, and it is summarized in Algorithm 2. Specifically, we
generate the initial analog precoder and compute the digital
one in step 1. From step 2, the unfolding HBF design is
performed over Inet iterations. In steps 3–5, x, {z[k]}, and
{B[k]} are obtained to compute z̄ and {B̄[k]} in steps 4 and 5,
respectively. After that, ManNet iteratively executes steps 6–10
to construct the outputs of its layers. Note that only element-
wise multiplications between the weight and input vectors are
required, as seen in step 8 and Fig. 2. The final output of
ManNet, i.e., xL, is reconstructed as the feasible solution to
FRF in step 11, and the FBB[k] are updated via LS, i.e.,

FBB[k](i) = (F
(i)
RF)†Fopt[k], ∀k, i. (25)

Algorithm 1 Unsupervised Training in ManNet
Input: Training set D of channels.
Output: Network parameters {w`,1,w`,2}L`=1.

1: Initialize weights {w(1,1)
`,1 ,w

(1,1)
`,2 }

L
`=1 and learning rate.

2: for e = 1→ E do
3: Randomly divide D into B batches {H(b)}Bb=1.
4: for b = 1→ B do
5: Obtain F

(b)
opt , randomly initialize F

(b,0)
RF , and compute

{FBB[k](b,0)} based on (24).
6: for i = 1→ I train

net do
7: Obtain x(b,i), {z[k](b,i)}, and {B[k](b,i)} from F

(b)
opt ,

F
(b,i−1)
RF , and {FBB[k](b,i−1)} based on (9)–(15).

8: Compute z̄(b,i) =
∑K

k=1(B[k](b,i))T z[k](b,i).
9: Compute B̄[k](b,i) , (B[k](b,i))TB[k](b,i),∀k.

10: L(b,i) = 0,x
(b,i)
0 = 0.

11: for ` = 1→ L do
12: u

(b,i)
`−1 = −z̄(b,i) +

∑K
k=1 B̄[k](b,i)x

(b,i)
`−1 .

13: x̂
(b,i)
` = w

(b,i)
`,1 � x

(b,i)
`−1 + w

(b,i)
`,2 � u

(b,i)
`−1 .

14: x
(b,i)
` = ψt(x̂

(b,i)
` ).

15: Accumulate the average loss value of the batch over
ManNet’s layers based on (23): L(b,i) = L(b,i) +

log(`) 1

K|H(b)|
∑K

k=1

∥∥∥z[k](b,i) −B[k](b,i)x
(b,i)
`

∥∥∥2.
16: end for
17: L({w(b,i)

`,1 ,w
(b,i)
`,2 }

L
`=1) = L(b,i).

18: Obtain {w(b,i+1)
`,1 ,w

(b,i+1)
`,2 } with an optimizer.

19: Update F
(b,i)
RF = V−1(x

(b,i)
` ) and compute FBB[k](b,i)

based on (24).
20: end for
21: end for
22: end for
23: Return {w`,1,w`,2} =

{
w

(B,Itrain
net )

`,1 ,w
(B,Itrain

net )

`,2

}
The solutions for FRF and FBB[k] are then utilized for the next
iteration until Inet iterations are completed. Finally, with FRF
obtained, the optimal digital precoder directly maximizing the
SE in (6) can be solved by the problem

(PBB) : maximize
{FBB[k]}

RBB ({FBB[k]}) (26a)
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Algorithm 2 ManNet-based FC-HBF

Input: H,Fopt, ManNet’s trained parameters
{
{w`,1,w`,2}L`=1

}
.

Output: FRF, {FBB[k]}.
1: Initialize F

(0)
RF and compute {FBB[k](0)} based on (25).

2: for i = 1, . . . , Inet do
3: Obtain x(i), {z[k](i)}, and {B[k](i)} from F

(i−1)
RF and

{FBB[k](i−1)} based on (9)–(15). Set x(i)
0 = 0.

4: Compute z̄(i) =
∑K

k=1(B[k](i))T z[k](i).
5: Compute B̄[k](i) = (B[k](i))TB[k](i), ∀k.
6: for ` = 1→ L do
7: Construct the input: u(i)

`−1 =
∑K

k=1 B̄[k](i)x
(i)
`−1 − z̄(i).

8: Apply weights: x̂(i)
` = w`,1 � x

(i)
`−1 + w`,2 � u

(i)
`−1.

9: Apply the activation function: x(i)
` = ψt(x̂

(i)
` ).

10: end for
11: Reconstruct the complex RF precoding matrix F

(i)
RF from x

(i)
L ,

i.e., F(i)
RF = V−1(x(i)).

12: For iterations 1, . . . , Inet − 1, compute {FBB[k](i)} based on
(25). For the last iteration, i.e., i = Inet, set FRF = F

(Inet)
RF and

obtain {FBB[k]} based on (27).
13: end for

subject to trace
(
QFBB[k]FBB[k]H

)
= Ns, ∀k,

(26b)
where

RBB ({FBB[k]}) ,

1

K

K∑
k=1

log2 det

(
INs +

ρ

σ2
nNs

H̃FBB[k]FBB[k]HH̃H

)
,

H̃ , HFRF, and Q , FHRFFRF. This problem has a well-
known water-filling solution:

FBB[k] = Q−
1
2 ŨΓ̃, (27)

where the columns of Ũ are taken from the right singular
vectors corresponding to the Ns largest singular values of
H̃Q−

1
2 , and Γ̃ is a diagonal matrix whose elements are

defined by the power allocated to the Ns data streams [11]. In
Algorithm 2, the final solution to {FBB[k]} is obtained based
on (27) in the last iteration, as shown in step 12. We illustrate
the entire proposed deep unfolding framework of the ManNet-
based FC-HBF design in Fig. 2(a).

We note that the modular architecture of our unfolded
network allows numbers of iterations in the training and online
application phases of ManNet, i.e., I train

net and Inet in Algorithms
1 and 2, respectively, to be different. In particular, we noted
that during training, where the goal is to set the weights of
ManNet, reliable learning can be achieved with just a few
iterations, e.g., I train

net = 3, which are also enough for fast
convergence. During inference, when the goal is to set the
hybrid precoders, the setting of Inet can balance performance-
complexity tradeoff: while the performance of the ManNet-
based FC-HBF scheme improves with Inet, its computational
complexity linearly increases with Inet, as will be shown next.

C. Complexity Analysis

We herein analyze the computational complexity of the
proposed ManNet-based FC-HBF scheme in Algorithm 2. It
is observed from (11) and (15) that B[k] is a sparse matrix,
in which only 2NRF and 2Ns (out of 2NtNRF and 2NtNs)
elements in each row and column, respectively, are nonzero

real-valued numbers. Thus, the complexity for computing
z̄ and {B̄[k]} in steps 4 and 5 is only O(KNsNRF) and
O(KN2

RFNs), respectively. Furthermore, B̄[k] has only 2NRF
nonzero elements in each row and column, and hence step
7 requires a complexity of O(Nt + 2KNsNRF). The weight-
ing in step 8 performs only element-wise vector multipli-
cation/addition, which has a complexity of 3O(NtNRF). In
step 12, obtaining {FBB[k]} with (25) has a complexity of
O(NtKN

2
RF), while the complexity of (27) is 2O(NtKNRF).

As a result, the total complexity of Algorithm 2 can be
approximated as

CManNet-FCHBF = (Inet − 1)O(NtKN
2
RF) +O(NtKNRF)

+ InetO(2KN2
RFNs + L(3NtNRF + 2KNRFNs)). (28)

Compared to MO-AltMin [10], AO [11], [41], and OMP
[12], the proposed ManNet-based FC-HBF scheme has low
complexity. These approaches require complexities of

CMO-AltMin =

Iout
MOO

(
NtKN

2
RF + I in

MO(3NtNRF + 2K(N2
RF +NRF)Ns)

)
,

CAO = 2O(NtKNRF) + IAOO(2N2
t N

2
RF),

COMP = O(NtKN
2
RF + 2NtPNs + 4NtN

2
RF + 4NtNRFNs)

respectively, where I in
MO, Iout

MO, and IAO denote the number of
inner and outer iterations for MO-AltMin and the number of
iterations for AO, respectively. The number of iterations for
the analog precoding designs in these schemes is Iout

MOI in
MO and

NtNRFIAO respectively, while that of the proposed ManNet-
based design is only InetL. In general, both Inet and L are
of the same order as NRF, and thus, InetL � NtNRFIAO
and InetL � I in

MOIout
MO. For example, in a simulation with

Nt = 128, Nr = NRF = Ns = 2, and K = 128, we
found that Inet = 10 and L = 7 are sufficient for ManNet-
based FC-HBF to achieve satisfactory performance, whereas
AO and MO-AltMin require up to NtNRFIAO = 250 and
Iout

MOI in
MO = 500 iterations to converge, respectively (this will

be shown in Section V, Fig. 4). Therefore, the proposed
algorithm performs much faster than MO-AltMin, and its
computational complexity is considerably lower than MO-
AltMin and AO, and comparable with that of OMP.

IV. PROPOSED SC-HBF DESIGNS

Next, we present the deep unfolding based dynamic SC-
HBF design. As the fixed SC-HBF architecture is a special
case of the dynamic one, below we present the general solution
to the latter. We first consider the following problem:

minimize
FRF,{FBB[k]}

K∑
k=1

‖Fopt[k]− FRFFBB[k]‖2F , (29a)

subject to FRF ∈ Asub. (29b)

Compared to the FC-HBF design in (8), problem (29) inherits
the nonconvexity due to the unit-modulus constraint of the
nonzero analog precoding coefficients. Furthermore, unlike
the cases of FC-HBF and fixed SC-HBF, the connections
between the RF chains and antennas are also design variables
in this problem. The joint optimization of the RF chain-
antenna connections, FRF, and FBB[k] is challenging. Herein
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we propose efficient algorithms to solve (29) with the main
idea being to decouple the design variables.

A. ManNet-based Heuristic FC-HBF Design

Let C ∈ NNt×NRF denote the mapping matrix defining the
connections between the NRF RF chains and Nt antennas such
that

[C]m,n =

{
1, if [FRF]m,n 6= 0

0, otherwise
, ∀m,n, (30)

Nt∑
m=1

[C]m,n = M, ∀n, (31)

NRF∑
n=1

[C]m,n = 1, ∀m. (32)

With the introduction of variable C, the dynamic SC-HBF
optimization can be rewritten as

minimize
C,F̃RF,{FBB[k]}

K∑
k=1

∥∥∥Fopt[k]− (C� F̃RF)FBB[k]
∥∥∥2
F
, (33a)

subject to F̃RF ∈ Afull, (33b)
(30)− (32). (33c)

Note that in this problem, the sub-connected structure con-
straint on the analog precoder, i.e., (29b), has been relaxed, as
seen in (33b). This efficiently decouples the designs of the RF
chain/antenna connections and the analog precoder. Because
C is a matrix of binary entries, its optimal solution could be
found by exhaustive search over all possibilities, but with a
prohibitive complexity (exponential in NtNRF). To avoid this,
we investigate the achievable SE of the analog precoders given
as RRF = 1

K

∑K
k=1RRF,k, where

RRF,k = log2 det
(
INr +

ρ

σ2
nNs

H[k](C� FRF)

× (C� FRF)HH[k]H
)
. (34)

It is observed that for a given H[k], to achieve the highest
signal-to-noise ratio (SNR), C should be designed to match
the nonzero entries in FRF with the “best” coefficients of
H[k], i.e., those with the largest absolute values. Based on
this observation, we propose Algorithm 3 to determine C for
any H[k]. Furthermore, because of the relaxation in (33b),
ManNet can be used to produce F̃RF ∈ Afull. Then, for each
H[k̃], with k̃ ∈ K̃ ⊆ {1, 2, . . . ,K}, C is determined using
Algorithm 3, and the FBB[k] are found using (27). The final
solutions for FRF and {FBB[k]} are those that provide the best
performance, i.e., the largest SE. This heuristic ManNet-based
SC-HBF approach is summarized in Algorithm 4.

We note that although the proposed ManNet-based SC-
HBF scheme can avoid an exhaustive search for C for each
channel H[k], it still requires |K̃| iterations to obtain F

(k̃)
RF

and {FBB[k]}(k̃), (k̃ ∈ K̃). We will show later that such an
iterative process yields very satisfactory performance for SC-
HBF, at the expense of increased complexity and run time.

Algorithm 3 Dynamic RF chain - antenna Mapping

Input: H[k].
Output: C satisfying (30)-(32).

1: Set H̃[k] to the matrix containing NRF rows of H[k] with largest
norm values. Obtain H̄ such that [H̄]i,j =

∣∣∣[H̃[k]]i,j

∣∣∣ ,∀i, j.
2: Set C with [C]m,n = 1, ∀m,n.
3: for m = 1→M do
4: for n = 1→ NRF do
5: Set m0 to the index of the smallest element in the n-th

column of H̄.
6: Set [C]m0,n = 0.
7: Set all elements in the m0-th row of H̄ to zeros.
8: end for
9: end for

Algorithm 4 Heuristic ManNet-based SC-HBF
Input: H,Fopt, and the trained ManNet.
Output: FRF, {FBB[k]}.

1: Apply Algorithm 2 to obtain F̃RF ∈ Afull.
2: for k̃ ∈ K̃ do
3: Obtain C(k̃) for H[k̃] using Algorithm 3.
4: Obtain F

(k̃)
RF = C(k̃) � F̃RF.

5: Solve {FBB[k]}(k̃) using (27).
6: end for
7: Return FRF and {FBB[k]} that provide the largest SE.

B. Low-Complexity subManNet-based SC-HBF

Here we propose a computationally efficient SC-HBF design
to avoid the iterative procedure as well as the extra complexity
to produce F̃RF ∈ Afull, as done in Algorithm 4. This can be
achieved if a good channel is chosen in advance to design
C, and if the employed DNN only generates the nonzero
coefficients of FRF ∈ Asub. These assumptions motivate a
subcarrier selection scheme and the design of subManNet, a
simplified version of ManNet proposed below.

1) Subcarrier Selection: First, we observe from (34) that
the transmissions via different subcarriers have different con-
tributions to the total achievable SE. Specifically, let RRF,k?

be the maximum SE of all the sub-carriers, i.e., RRF,k? =
max{RRF,1, . . . , RRF,K}. Then, RRF,k? has the most signifi-
cant contribution to RRF. On the other hand, for any given
FRF ∈ Asub, the FBB[k] can be optimally found using
the closed-form solution in (27). These observations moti-
vate us to design C to maximize RRF,k? = log2 det(INr +
ρ

σ2
n Ns

H[k?](C�FRF)(C�FRF)HH[k?]H). Here, because of
the unity-modulus constraints on the non-zero elements of
FRF, subcarrier k? is chosen such that the channel H[k?] has
the largest Frobenius norm among all the channels. Thus, C
is determined based on H[k?] using Algorithm 3.

2) subManNet-based SC-HBF: Once C is determined, let

c = V(C + jC) ∈ RN×1, (35)

where V is defined in (17). By similar transformations as in
(9)–(36), we can rewrite the objective of problem (29) as

K∑
k=1

‖Fopt[k]− FRFFBB[k]‖2F

=

K∑
k=1

∥∥∥Fopt[k]− (C� F̃RF)FBB[k]
∥∥∥2
F
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=

K∑
k=1

‖z[k]−B[k](c� x)‖2 . (36)

Problem (29) is then transformed to

x? = argmin
x:V−1(x)∈Asub

K∑
k=1

‖z[k]−B[k](c� x)‖2 . (37)

This motivates us to specialize ManNet for SC-HBF design.
Specifically, we propose subManNet to learn and output x?

in (37). In subManNet, the activation function is set to

σt,c(x) = c� ψt(x), (38)

where ψt(·) is defined in (22) and u`−1 is modified as

ũ`−1 = c� u`−1. (39)

As a result, the n-th nodes in both the sub-networks associated
with input vectors x`−1 and ũ`−1 do not require any compu-
tations if cn = 0. In other words, subManNet produces the
output based on the predetermined RF chain/antenna connec-
tions specified in C. The offline training and online application
of subManNet can be performed similarly to ManNet, except
for the aforementioned modifications. We omit the detailed
training process here but summarize the proposed subManNet-
based SC-HBF design in Algorithm 5. Its first step is to design
the mapping matrix C for the best channel H[k?], and the
remaining process is similar to Algorithm 2, except for the pre-
processing of u`−1. We outline the structure of subManNet in
Fig. 2(c).

C. Complexity Analysis

In Algorithm 4, each iteration is performed with a com-
plexity of O(2NtNrNRF). This is mainly to solve {FBB[k]}(k̃)
with (27), while steps 3 and 4 require very few computations.
Thus, we approximate the total complexity of Algorithm 4 as

Cheuristic
ManNet-SCHBF = CManNet-FCHBF + |K̃|O(2NtNrNRF). (40)

On the other hand, subManNet offers a complexity reduc-
tion by a factor of NRF compared to ManNet. This is consistent
with the requirement of NRF times fewer phase shifters in the
sub-connected architecture. Thus, the overall complexity of the
subManNet-based SC-HBF scheme in Algorithm 5 is

CsubManNet-SCHBF = (Inet − 1)O(NtKN
2
RF) +O(NtKNRF)

+ InetO(2KN2
RFNs + L(3Nt + 2KNs)), (41)

based on the complexity analysis of the ManNet-based FC-
HBF scheme in Section III-C. In particular, subManNet inher-
its the fast convergence and low complexity of ManNet, i.e., it
only requires small Inet and L to achieve good performance.
SDR-AltMin [10] requires complexities of O(KNtNs) and
O(KN3

s N
3
RF) to obtain the analog and digital precoders,

respectively, in each iteration. Thus, its total complexity is
CSDR-AltMin = ISDRO(NtKNs + KN3

s N
3
RF), where ISDR is

the number of iterations for alternating updates of FRF and
FBB[k]. Our simulations will show that the proposed design
also performs better and much faster than SDR-AltMin.

Based on the fact that Nt,K � NRF, Ns, Nr, L, we present
the approximate complexities of the discussed approaches in
Table I to facilitate complexity comparisons. It can be seen that

Table I. Computational complexity of ManNet/subManNet based FC-
HBF/SC-HBF compared with MO-AltMin, AO, OMP, and SDR-AltMin.

Structure Schemes Overall complexity

FC-HBF

ManNet InetO(NtK +Nt +K)

MO-AltMin Iout
MOO(NtK) + Iout

MOI in
MOO(Nt +K)

AO O(NtK) + IAOO(N2
t )

OMP O(NtK +Nt)

SC-HBF
ManNet InetO(NtK +Nt +K) + 2|K̃|O(Nt)

subManNet InetO(NtK +Nt +K)

SDR-AltMin ISDRO(NtK +K)

Algorithm 5 subManNet-based SC-HBF

Input: H,Fopt, ManNet’s trained parameters
{
{w`,1,w`,2}L`=1, t

}
.

Output: FRF, {FBB[k]}.
1: Apply Algorithm 3 for H[k?] = max{H[1], . . . ,H[K]} to

obtain RF chain - antenna mapping matrix C.
2: Apply Algorithm 2 with ψt(x̂

(i)
` ) and u`−1 replaced by σt,c(x)

and ũ`−1 in (38) and (39), respectively, to obtain FRF ∈ Asub
and {FBB[k]}.

the proposed deep unfolding schemes, OMP, and SDR-AltMin
have comparable complexities, which are all much lower than
those of AO and MO-AltMin. In particular, the complexity of
AO increases exponentially with Nt.

V. SIMULATION RESULTS

In this section, we provide numerical results to demonstrate
the performance of the proposed deep unfolding solutions for
FC-HBF and SC-HBF designs. We first detail the simulation
setup and benchmarks, after which we discuss the results in
terms of SE and complexity.

A. Simulation Setup and Training of DNNs

We assume scenarios with Nt = {16, 32, 64, 128}, K =
128, and Nr = NRF = Ns = 2. The channel realizations are
generated based on (2) with P = 4, φt

p, φ
r
p ∼ U [0◦, 360◦),

θt
p, θ

r
p ∼ U [−90◦, 90◦], αp ∼ CN (0, 1) [10], and τp ∼

U [0, τmax], where τmax = QTs with Ts being the sampling
period and Q being the cyclic prefix length, which is set to
K
4 similar to IEEE 802.11ad [55], [56]. The center frequency

and bandwidth are set to fc = 300 GHz and BW = 30
GHz, respectively. ManNet and subManNet are implemented
using Python with the Pytorch library and a Tesla V100-SXM2
processor. For the training phase, a learning rate of 0.0001 is
used with the Adam optimizer, and we set L = {4, 5, 6, 7}
and |D| = {400, 500, 600, 700} for Nt = {16, 32, 64, 128},
respectively. The SNR is defined as SNR = ρ/σ2

n . The results
are averaged over 100 iterations.

We first show the loss obtained in (23) during training Man-
Net and subManNet with Nt = 64 and Nr = NRF = Ns = 2
in Fig. 3. Both networks are trained using Algorithm 1, but
the latter employs the modified activation function (38) and
input vector (39), as discussed earlier in Section IV-B. We
consider I train

net = {1, 3}, corresponding to the non-iterative and
iterative training approaches, respectively. It is seen for both
the DNNs that the loss decreases and essentially converges,
but at different speeds and to different values. Specifically,
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Fig. 3. Normalized training loss of ManNet and subManNet with Nt = 64,
K = 128, Nr = NRF = Ns = 2, L = 6, and I train

net = {1, 3}.

it is clear that with I train
net = 3, the DNNs converge rapidly

after about 800 batches. In contrast, when the non-iterative
training is applied, they converge more slowly, and conver-
gence has not been reached even after 1500 batches. Because
the objective

∑K
k=1 ‖Fopt[k]− FRFFBB[k]‖2F attained by FC-

HBF is smaller than that of SC-HBF, it is reasonable that the
converged loss of ManNet is smaller than that of subManNet.
As the loss function (23) also measures the objective in (8) and
(29), the convergence of the training loss reflects the abilities
of ManNet and subManNet to solve problems (8) and (29),
respectively. Note that in Fig. 3, the training loss is with
respect to the total number of batches over all training epochs.
Equivalently, the training losses for the iterative and non-
iterative schemes have converged within 30 and 50 epochs,
respectively.

B. Performance of Proposed Deep Unfolding HBF Schemes

Here, we investigate the performance of the proposed deep
unfolding FC-HBF and SC-HBF designs based on ManNet
and subManNet in their online applications, i.e., in Algorithms
2–5. We train the DNNs over I train

net = 3 iterations. For
comparisons of FC-HBF designs with ManNet in Algorithm
2, we consider optimal fully digital beamforming (DBF), MO-
AltMin [10], OMP [12], [13], and AO [14]. The dynamic
SC-HBF designs with ManNet in Algorithm 4 and with
subManNet in Algorithm 5 are compared with the SDR-
AltMin scheme [10].

In Fig. 4, we compare the convergence of the considered
schemes with Nt = 128, Nr = NRF = Ns = 2, K = 128, SNR
= {10, 20} dB, L = 7, and Inet = 10. We note that OMP and
optimal DBF are not iterative, so their performance is constant
over the number of iterations. Among the iterative schemes,
MO-AltMin converges the slowest, and it has not strictly
converged after 500 iterations. AO converges faster than MO-
AltMin, but still requires about 250 iterations and converges
to unsatisfactory performance. In contrast, the performance of
the proposed ManNet-based FC-HBF and subManNet-based
SC-HBF methods improves rapidly and reaches satisfactory
values after only tens of iterations. Particularly, among the sub-
optimal schemes, ManNet-HBF achieves the highest SE. It is

0 50 100 150 200 250 300 350 400 450 500

4

6

8

10

12

14

16

18

(a) SNR = 10 dB

0 50 100 150 200 250 300 350 400 450 500

10

15

20

25

(b) SNR = 20 dB

Fig. 4. Convergence of ManNet and subManNet-based HBF with Nt = 128,
Nr = NRF = Ns = 2, and SNR = {10, 20} dB.

observed that the SE of ManNet-HBF increases step-by-step,
over Inet = 10 steps, and reaches its maximum after InetL =
70 iterations. This is because L = 7 layers is the number of
inner iterations used to perform steps 6–10 in Algorithm 2, and
in these layers the performance does not improve. However,
because the weights of the DNNs are applied once to generate
the output, the maximum SE of ManNet and subManNet is
reached after only Inet iterations. This figure clearly shows
the advantages of the proposed scheme in accelerating HBF
transceiver design and optimization.

In Figs. 5 and 6, we compare the SE performance attained
by the proposed deep unfolding schemes, including ManNet-
and subManNet-based FC-HBF and SC-HBF in Algorithms
2–5, with that of the optimal DBF, MO-AltMin, AO, OMP,
SDR-AltMin, and the unfolded PGA approach [31] with 5
iterations. Furthermore, we also show the performance of
the dynamic SC-HBF based on ManNet without a heuristic
search for C (referred to as “Dynamic SC-HBF, ManNet, with
H[k?]” in the figures). In addition, we present the results
for the fixed SC-HBF scheme based on ManNet (referred to
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Fig. 5. SE performance of the proposed ManNet-HBF designs for FC-HBF
and SC-HBF with Nt = 128, Nr = NRF = Ns = 2, and K = 128.

as “Fixed SC-HBF, ManNet”), i.e., in which C is fixed to
C = blkdiag{1M , . . . ,1M}, where 1M denotes a column
vector of M ones.

In Fig. 5, we set Nt = 128, Nr = NRF = Ns = 2, and
K = 128. The convergence tolerance is set to 10−3 for the
iterative MO-AltMin, AO, and SDR-AltMin approaches, and
Inet = {1, 10} is set for the ManNet-based FC-HBF scheme.
Note that for Inet = 1, FRF is obtained directly using ManNet
without an iterative update, and the FBB[k] are solved directly
using (27). For the heuristic ManNet-based SC-HBF scheme
in Algorithm 4, we use K̃ = {1, 3, 5, . . . ,K − 1}. From Fig.
5, the following observations are made:

• In Fig. 5(a), FC-HBF based on ManNet with Inet = 10
performs better than MO-AltMin and AO, and much
better than five unfolded PGA iterations and OMP, even
with only Inet = 1 iteration. At SNR = 10 dB, the
proposed ManNet-based FC-HBF scheme with Inet = 10
achieves 90.95% of the optimal performance, while the
performance of MO-AltMin, AO, unfolded PGA, and
OMP are only at 90.38%, 86.82%, 83.16% and 81.82%
of the optimum, respectively.
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Fig. 6. SE performance of ManNet and subManNet-based HBF schemes
with Nt ∈ [16, 128], Nr = NRF = Ns = 2, and SNR = 10 dB.

• The heuristic dynamic SC-HBF design based on ManNet
(i.e., Algorithm 4) provides superior performance, as seen
in Fig. 5(b). The other deep unfolding SC-HBF schemes
perform slightly worse than the heuristic one, but they
all outperform SDR-AltMin for SNR ≥ −5 dB. At SNR
= 10 dB, the proposed deep unfolding SC-HBF schemes
achieve 90− 93% of the FC-HBF performance based on
MO-AltMin, while that achieved by SDR-AltMin is only
at 70%.

• SC-HBF designs based on ManNet perform better than
that with subManNet. This is reasonable since the fully-
connected analog precoder produced by ManNet is more
reliable than the sub-connected version, as observed from
Fig. 3. The dynamic ManNet-based SC-HBF algorithm
performs just slightly better than the fixed version. We
note here that larger gains can be attained with smaller
Nt, as will be shown next.

In Fig. 6, we plot the SE performance of the considered
schemes for Nt = {16, 32, 64, 128}, Nr = NRF = Ns = 2,
K = 128, SNR = 10 dB, and Inet = 10. It is observed
that OMP only performs well for small Nt and has significant
performance loss as Nt increases. Among the sub-optimal FC-
HBF schemes, the proposed ManNet-HBF approach achieves
the best performance, which is slightly better than MO-AltMin
and far better than AO and OMP for all considered Nt.
Comparing the SC-HBF schemes, the heuristic ManNet-based
SC-HBF design has the best performance. The subManNet-
based SC-HBF algorithm performs very close to the heuristic
one for Nt ≤ 64. Furthermore, it is seen that compared to
fixed SC-HBF, the gains achieved from dynamic SC-HBF are
more significant for small and moderate Nt. This is reasonable
because as Nt increases, all the sub-arrays become large
and the beamforming gain is guaranteed even without the
optimized connections between RF chains and antennas.

C. Computational and Time Complexity Comparison

In Figs. 7 and 8, we compare the execution time and
computational complexities of the considered schemes with
the same simulation parameters as those for Fig. 6. The
complexities are counted as the total number of additions
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Fig. 7. Computational complexity of ManNet and subManNet-based HBF
schemes with Nt ∈ [16, 128], Nr = NRF = Ns = 2, and SNR = 10 dB.

and multiplications performed in the considered algorithms.
The proposed deep unfolding schemes have low complexi-
ties thanks to ManNet and subManNet’s small numbers of
iterations, layers, and the simple operations in each layer.
In particular, their complexities are just as low as OMP and
slightly higher than SDR-AltMin, but they offer much better
performance, as discussed earlier in Section V-B. Among the
proposed deep unfolding schemes, as expected, subManNet-
based SC-HBF has the lowest complexity, and the heuristic
ManNet-based SC-HBF approach requires the highest com-
plexity due to the iterations required for the search. Compared
to these algorithms, the complexities of MO-AltMin and AO
are much higher, and that of AO increases exponentially with
Nt, whereas the complexity of the algorithms is almost linear
with Nt. This agrees with the analysis in Section IV-C.

Finally, we show the run time of the considered schemes in
Fig. 8, but we omit the results for SDR-AltMin because they
are very large (up to 822s for Nt = 128), making it difficult
to see the difference among the other schemes. SDR-AltMin
employs CVX to solve for the FBB[k] in each iteration, and
it is thus extremely slow. Among the other methods, MO-
AltMin is the slowest and is much slower than AO, OMP,
and the proposed deep unfolding approaches, especially for
large Nt. This is because of its slow convergence (see Fig.
4) and nested iterations involving a line search. In contrast,
the proposed deep unfolding algorithms execute very rapidly.
With Nt = 128, while MO-AltMin requires more than 10s to
execute, the time required by the non-heuristic ManNet and
sub-ManNet-aided HBF schemes are only around 0.01s. The
heuristic ManNet-based dynamic SC-HBF approach outlined
in Algorithm 4 requires a longer run time than the ManNet
and subManNet-aided SC-HBF schemes. Furthermore, despite
the slow convergence, AO executes relatively fast because
only arithmetic operations and element-wise normalization are
performed in each iteration.

VI. CONCLUSION

The nonconvexity and high-dimensional variables have im-
posed significant challenges to HBF designs in the literature.
The available solutions have usually required cumbersome
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Fig. 8. Run time of ManNet and subManNet-based HBF schemes with Nt ∈
[16, 128], Nr = NRF = Ns = 2, and SNR = 10 dB.

iterative procedures. We have overcome these difficulties
by proposing efficient deep unfolding frameworks for FC-
HBF and SC-HBF designs based on unfolding MO-AltMin
and PGD. In these schemes, the low-complexity ManNet
and subManNet approaches produce fully-connected and sub-
connected analog precoders with only several layers and sparse
connections in each, which explains the computational and
time efficiency of the proposed algorithms. Our extensive
simulation results demonstrate that compared to the state-of-
the-art HBF algorithms, the proposed deep unfolding solutions
for HBF designs have superior performance with lightweight
implementation, low complexity, and fast execution. For future
studies, deep unfolding models for a joint HBF design and
channel estimation will be considered.
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