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Covariance Matrix Recovery from One-Bit Data
with Non-Zero Quantization Thresholds: Algorithm
and Performance Analysis

Yu-Hang Xiao, Member, IEEE, Lei Huang, Senior Member, IEEE, David Ramirez, Senior Member, IEEE, Cheng
Qian, Member, IEEE, and Hing Cheung So, Fellow, IEEE

Abstract—Covariance matrix recovery is a topic of great
significance in the field of one-bit signal processing and has
numerous practical applications. Despite its importance, the
conventional arcsine law with zero threshold is incapable of
recovering the diagonal elements of the covariance matrix. To
address this limitation, recent studies have proposed the use of
non-zero clipping thresholds. However, the relationship between
the estimation error and the sampling threshold is not yet known.
In this paper, we undertake an analysis of the mean squared
error by computing the Fisher information matrix for a given
threshold. Our results reveal that the optimal threshold can
vary considerably, depending on the variances and correlation
coefficients. As a result, it is inappropriate to adopt a constant
threshold to encompass parameters that vary widely. To mitigate
this issue, we present a recovery scheme that incorporates time-
varying thresholds. Our approach differs from existing methods
in that it utilizes the exact values of the threshold, rather than
its statistical properties, to increase the estimation accuracy.
Simulation results, including those of the direction-of-arrival
estimation problem, demonstrate the efficacy of the developed
scheme, especially in complex scenarios where the covariance
elements are widely separated.

Index Terms—Covariance matrix estimation, mean squared
error analysis, non-zero threshold, one-bit sampling.

I. INTRODUCTION

One-bit analog-to-digital converters (ADCs) have garnered
significant attention in recent years due to their unique merits
over high-resolution ADCs. These advantages include cost-
effectiveness, lower power consumption, and simpler hardware
design. In addition, the reduced data flow associated with
one-bit ADCs makes data storage and transmission more
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manageable. This has led to the widespread application of one-
bit signal processing in various fields, such as multiple-input
multiple-output communications [1]-[6], array processing [7]—
[12], and radar [13]-[19].

Despite its numerous advantages, one-bit analog-to-digital
conversion with zero sampling thresholds has created chal-
lenges in applications involving parameter estimation and
detection. The loss of amplitude information has limited its use
in areas that rely on second-order statistics, such as direction-
of-arrival (DOA) estimation [20], spectrum sensing [21]-[23],
and radar target detection [24], [25]. Therefore, the covari-
ance matrix recovery has become a critical topic in one-bit
processing research.

Under the assumption of zero-mean Gaussian inputs, the
most frequently employed criterion for recovering one-bit
covariance matrices is the arcsine law [26]. It can immedi-
ately translate the one-bit covariance matrix into that of the
unquantized data matrix. It does, however, provide a normal-
ized version of the covariance matrix, namely the correlation
matrix,! rather than the original covariance matrix. That is,
unless the diagonal elements of the covariance matrix are
equal, the estimation is biased and inconsistent. It is because
these systems adopt zero as the sampling threshold, meaning
that the likelihood of the quantized signal has no bearing on
the variance of the random variables. As a result, these samples
cannot be used to estimate variances, i.e., the diagonal entries
of the covariance matrix.

To address this issue, Liu and Lin [27] have employed a
constant (non-zero) threshold to enable accurate and consistent
estimates of the covariance matrix, which may be easily
accomplished by adding a DC level to the input signal. With
the addition of the non-zero threshold, the likelihood of the
output being +1 or —1 is no longer fixed at 1/2 but is instead
a function of the ratio between the threshold and the standard
deviation of the random variable. This allows the variance to
be estimated.

In a parallel development, [28] and [29] use time-varying
thresholds to estimate parameters of sinusoidal signals, in-
cluding frequency, phase, and crucially, amplitude—a pa-
rameter not recoverable with the zero-threshold approach.
Moreover, it is shown that employing time-varying thresholds
can considerably increase the recovery capability of one-bit
processing methodologies. For instance, [30] presents an inno-

IThis matrix contains all pairwise correlation coefficients.



vative iterative hard thresholding algorithm devised for signal
reconstruction from one-bit measurements. Besides, [31]-[35]
proves that the use of adaptive or time-varying thresholds
can mitigate the reconstruction error in one-bit compressed
sensing, with [36] notably providing theoretical guarantees
for these schemes in cases of a large number of samples.
It has also been demonstrated that the use of time-varying
sampling thresholds can increase the signal recovery accuracy
in numerous one-bit signal recovery applications, including
unlimited sampling [37], [38], phase retrieval [39], [40], low-
rank matrix sensing [41], [42], among others. As illustrated
in [41], a well-designed threshold can effectively enhance
signal recovery. Moreover, the time-varying nature of the
threshold allows it to be modified adaptively to align better
with the recovery algorithm [43]. For instance, the work in [37]
utilizes the concept of unlimited sampling to design an effec-
tive dithering scheme by minimizing the difference between
the dynamic ranges of input signals and thresholds, thereby
achieving better recovery performance compared to one-bit
3A sampling. In recent works, [44]-[47] suggest the use of
a time-varying threshold for covariance matrix recovery. This
approach, involving the addition of a Gaussian dithering signal
to the original constant threshold, promises to deliver superior
performance. Additionally, [33], [34] demonstrate that dither-
ing enables the reconstruction of signals from non-Gaussian
measurements and enhances robustness against noise. Finally,
employing multiple sequences of dithering signals has been
shown to further enhance performance, as evidenced in [30],
[35], [37], [41], [44].

However, there is still no performance analysis conducted
to derive the estimation error associated with the threshold and
the population covariance matrix, making it impossible to op-
timize the threshold value to improve estimation performance.
In addition, from a statistical sense, the approach in [45]
is equivalent to modifying the population covariance matrix
of the signal prior to quantizing with a constant threshold.
Without such analysis, we cannot set the dithering signal
properly to relocate the covariance matrix to an appropriate
region.

In this paper, we analyze the performance of the constant
threshold estimator in [27], which is also compatible with
the random threshold method in [45]. Due to the absence of
closed-form estimators, it is prohibitive to define their statis-
tical behavior using conventional methodologies. Our idea is
to perform a Taylor’s expansion and then apply the result to
compute the mean squared error (MSE) of the estimators. It
is found that a low threshold facilitates the estimation of the
non-diagonal elements while diagonal ones favour thresholds
comparable to their square roots. Therefore, it is inappropriate
to adopt a constant threshold to deal with all elements in the
covariance matrix, especially when the parameters are distinct
from each other, as is typical when the dimension increases.

To address this issue, we present a novel approach based
on a time-varying threshold, which differs from [44]-[46]
since it uses the exact values of the threshold and not only
its statistical properties. Exploiting Price’s theorem [48], we
calculate the gradient of the orthant probability with regard
to the covariance matrix parameters and seek the maximum

likelihood estimators (MLEs) of the parameters. The algorithm
is also extended to complex-valued scenarios to accommodate
array processing applications. Furthermore, we carry out per-
formance analysis of the new method by computing the inverse
of the Fisher information matrix, which allows us to predict
the performance more efficiently than through Monte Carlo
simulations.

Finally, simulation results are presented to demonstrate
the effectiveness of our proposed approach. We consider
the DOA estimation of coherent sources, which requires the
reconstruction of the received signals covariance matrix, as
an example. We first estimate the covariance matrix through
different methods and then process the results with the En-
hanced Principal-singular-vector Utilization for Modal Anal-
ysis (EPUMA) [20] algorithm to produce DOA estimates. It
is shown that compared to constant and random threshold-
based methods, our algorithm achieves significantly improved
accuracy and stability.

The key contributions of this paper are as follows:

1) We conduct a thorough performance analysis of the
constant threshold approach by leveraging a Taylor’s
expansion to analyze the estimator, proving that it is
challenging to use a constant threshold to effectively
estimate parameters distributed over a wide range. This
finding opens up the opportunity for optimization of the
sampling threshold.

2) We introduce a new sampling strategy that utilizes
time-varying thresholds and the corresponding recovery
algorithm. In comparison to the existing constant and
random threshold approaches, our solution offers higher
estimation accuracy and demonstrates improved robust-
ness against parameter unevenness and high correlation
coefficients.

3) To further analyze the algorithm performance, we com-
pute the Fisher information corresponding to each
threshold value. Our results demonstrate that the Fisher
information provides a precise performance indicator
even when the likelihood function is inconsistent across
different samples.

4) Finally, we extend the covariance matrix estimator to
the complex-valued scenario and integrate it with the
EPUMA for DOA estimation, highlighting the broad
range of potential applications.

We proceed under the assumption of zero-mean Gaussian
inputs, a practice that aligns with most of the research in
this field. It is noteworthy that some studies do explore
non-Gaussian settings. For instance, in the field of one-bit
compressed sensing, [50]-[53] focus on the recovery of sub-
Gaussian signals by exploiting sparsity rather than statistical
distributions. On the other hand, in the field of covariance
matrix recovery, [49] extends the arcsine law to all complex
elliptically symmetric distributions. More recently, [47] has
derived a sharp non-asymptotic error bound for the arcsine law
estimator, and proposed a simplified reconstruction method for
sub-Gaussian signals with theoretical guarantees, demonstrat-
ing that the probability of the estimation error exceeding a
certain level decays exponentially. The effectiveness of this



approach has further been validated in a channel estimation
application [54].

Nonetheless, in our study, the spotlight remains on the
Gaussian signal case, since the proposed method and analysis
are based on the likelihood function. We also operate under
the assumption of a large number of available samples—a
common scenario in one-bit sampling [40], [41], facilitated by
its simplicity that enables a high sampling rate. Moreover, our
analysis diverges subtly from [47], [54] in that we scrutinize
the individual MSE of the elements to be estimated, rather
than the matrix norms. This focus is driven by our intent to
understand how threshold settings individually influence the
estimation accuracy of variance and covariance. The overall
estimation error can then be evaluated by aggregating the
individual MSEs.

Finally, we assume that the dimension of the covariance ma-
trix to be recovered is significantly smaller than the number of
samples. Namely, our analysis considers the case of N — oo
and M/N — 0, where M and N represent the dimension of
the covariance matrix and the number of samples, respectively.
Worth mentioning, however, is [47] and a recent study [55] that
show that the recovery of high-dimensional sparse covariance
matrices under sub-Gaussian and heavy-tailed distributions is
feasible. Yet, the task of a general high-dimensional one-
bit covariance matrix recovery method remains an arduous
challenge and is beyond the scope of this paper.

Notation: Throughout this paper, we use boldface upper-
case letters for matrices, boldface lowercase letters for column
vectors, and lightface lowercase letters for scalar quantities.
The notation A € RP*9 (CP*7) indicates that A is a p X ¢
real (complex) matrix. The operators E[a] and V[a] denote,
respectively, the expectation and variance of random variable
a, Cla,b] is the covariance between @ and b, and ~ means
“distributed as”. The superscript ¢ denotes the estimate of
a. Finally, the operators Re(-) and Im(-) extract the real
and imaginary parts of their argument and + = /—1 is the
imaginary unit.

II. PRELIMINARIES

In this section, we present the problem of one-bit covariance
estimation and review existing methods based on various
sampling schemes, including the zero threshold, constant
threshold, and random threshold approaches.

A. Problem Formulation

Suppose y € RM*! follows a zero-mean multivariate Gaus-
sian distribution N'(0, X,). Assume we have N i.i.d. one-bit
quantized observations of y, x(t) = sign(y(¢t) — v(t)), t=
1,---,N, where x(t) = [21(t), - o), y(t) =
[yl (t)a e 7yM(t)]T7 and V(t) = [Ul (t)v e 7UM(t)]T’ is the
quantization threshold vector. The function sign(-) is the
quantization operator

+1, >0

sign(x) = { ’ -7 (1)

-1, =z <0.

Our aim is to recover the covariance matrix of the unquantized
signal y, 3y = E[yy”], given its one-bit quantized samples,

ie., X = [x(1), -+ ,x(N)]. To simplify our discussion, we
focus on the 2 x 2 case:
0'2 g
= 1 12 , 2
Y {012 o3 @)

which can be easily extended to the general case in a pairwise
manner.

There are various methods of setting the threshold v(t).
Traditionally, it is fixed at v(¢) = 02, resulting in the complete
loss of amplitude information and only the correlation coef-
ficients can be obtained. In order to estimate the variance of
the random variables, it is necessary to set v(¢) to be non-zero
by incorporating a control sequence at the input of the ADC.
This control sequence can be a DC level [27], or taking a time-
varying form, such as a sine wave [56], or a random sequence,
which can be generated with thermal noise diodes [32], [36],
[45].

B. Zero Threshold

When the sampling threshold is 0, the relationship between
3« and Xy can be described using the well-known arcsine
law [26]:

2 _1 _1
¥, = Zsin~! (Dy 3, D, ) , 3)

v
where Dy, = diag(3,,). Assuming that D, is the identity ma-
trix, a natural estimator of 3, is ﬁ]y = sin (ﬁ)xﬂ/ 2) , where

ﬁ)x is the sample covariance matrix of x, ﬁ]x = XXT /N.
In the complex-valued case, where the sampling process is
modified as x = Q(y) = sign(Re(y)—v)+usign(Im(y) —v),
the estimator is modified accordingly as

3, =sin (%Re(ﬁ)x)) + 2sin (%Im(ﬁ]ﬂ) . 4)

Interestingly, the work [49] demonstrated that (4) holds not
only for complex circular Gaussian distributions, but all com-
plex elliptically symmetric distributions. However, a signif-
icant drawback of the arcsine law is that it is incapable
of estimating the diagonal entries of X, as the likelihood
function does not include these entries. That said, if the
assumption of unit diagonal entries is violated, the arcsine
law becomes biased and inconsistent.

C. Constant Threshold Approach

The use of a constant threshold has been introduced in [27]
for covariance matrix recovery. The reconstruction can be
accomplished based on the following probabilities:

pi =Pr{z; =+1} =Q <;}> , =12, (5
p12 = Pr{z; = +1,20 = +1}
/ / <y1,yg o )dyldy27 (6)

where v is the threshold, f(y1,y2]p) is the probability density
function of bivariate Gaussian distribution with unit variances
and correlation coefficient p, given by

y? — 2py1y2 + 3 ;
3 , ()
2(1-p?)

fyr,v21p) S (
, = ————— X —



and

o] 1 _t2
a) = ——exp | — | dt. 8
wo- [ Gro(Fa o
The MLEs of the probabilities are:

5 — Ziml@®) +1
2N
Eililo(t) + lwa(t) + 1

P12 = AN .

i=1,2, €))

(10)

As a consequence, and using the invariance property of the
MLE, the MLEs of the variances are 6; = v/Q~!(p;). On the
other hand, the right hand side of (6) can be rewritten as the
following infinite polynomial form:>

w2 v v
prz = = - i o <\/§&1> o (\/562) Rty H1H2
T

p
k1 |
Pt 2k+1(k 4 1)! 4
(11)
where
v
Hi = 2Q <A> - 17 L= 172; (12)
g;
and
b o2 & .
Hy(a) = (=1)" PP (13)

is the Hermite polynomial of order k. The correlation coef-
ficient p can then be estimated numerically by solving the
equation omitting higher-order terms of the polynomial. It is
worth mentioning that, although no theoretical guarantee was
reported in [27], simulations show that the approximation is
reasonably accurate for |p| < 0.6. This will be evidenced by
our numerical results in Section IV-F.

D. Random Threshold

In [44] and [45], the use of a random threshold with a
Gaussian distribution N'(d1,, 3;) is suggested. This is equiv-
alent to adding a zero-mean dithering signal to the constant
sampling threshold d1,;, resembling the “dithered quantiza-
tion” in the traditional multi-bit scenarios [57]. Consequently,
the covariance matrix is adjusted to 2;, = Xy, + X;. When
designed appropriately, this dithering signal has the potential
to reduce estimation errors.

Interestingly, [44] and [45] presented a modified arcsine

law:
Z(Uiajfcr%/.) ke 2
&@ﬁzej{ 21+J”%w¢
™ (O‘iO'j —O'Z-Qj) 0 B’ﬂ ﬂn 2571

T « o a?
_ 22 n Brdly —1, (14
mmg(wm)eB } (19

2Note that the result here is slightly modified, as opposed to the original
version in [27], to cope with the non-uniform variances.

with
o, — d(al-siné—&—ojcosé—J;:j(coséi—&—sime))7 (152)
(O’ia'j _Uij)
8, = ojcos? 0+ o;sin® 0 — o5 sin29’ (15b)

2 (aiaj — aizj)

and the population parameters o; and o;; are drawn from 2;,.
Furthermore, it was shown in [45] that 0;; could be determined
through minimization of the cost function:

. 2
G (0y5) = log (‘Ex(i,j) - H, (Ufyaf,gij)‘ ) . (6

In this case, H, (a;-* 70';,0'“‘) serves as an approximation to
the aforementioned modified arcsine law. Importantly, [45]
proposed three distinct approximations. The first is based on
the Padé approximation and results in a non-convex opti-
mization problem. The remaining two methods rely on the
Gauss-Legendre quadrature approximation and Monte-Carlo
integration, which respectively generate a convex optimization
problem ensuring a global optimum.

Notably, [45] presented a modified version of the Bussgang
law [58], [59], which is useful for analyzing the correlation
between the quantized signal x and unquantized signal y.
Specifically, the cross-covariance matrix between x and y is:

Exy(i,j) = Exv(i,j)—l—[elaij —€2d(0'j —O’ij)]. (17

Here, 3., representing the cross-covariance matrix between
x and the random threshold v, can be estimated from samples.
The parameters €; and €3 are given by

2 2 1 d?
O 20; /7T0']2 2" 205
(18)
1 d
= _—— erf 19
35} 7; er < To‘]> s ( )

where I'(+) denotes the Gamma function. It is also worth men-
tioning that the above results have been extended to stationary
Gaussian inputs where the covariance matrix is Toeplitz, also
with convex programs containing a global solution, as detailed
in [46].

In general, non-zero threshold approaches surpass the arc-
sine law as they allow for the full recovery of the covariance
matrix. However, it remains unclear whether a constant thresh-
old is optimal. Particularly, no performance analysis has been
conducted to determine whether estimating X, or 2; provides
smaller MSE, which makes it impossible to determine the
shifting matrix 3J;. In addition, it is unknown which threshold
provides optimum estimation for different diagonal and non-
diagonal elements.

In this paper, we first analyze the MSE of the constant
threshold estimator, revealing that the optimal threshold for
estimating different variances and covariances are distinct.
We then present a recovery algorithm based on time-varying
thresholds, where the thresholds are known deterministic val-
ues instead of random variables, as opposed to [45].



ITI. PERFORMANCE ANALYSIS OF CONSTANT THRESHOLD
APPROACH

In this section, we analyze the MSE of the constant-
threshold-based approach with regard to both variance and
covariance estimation. The analysis is conducted by applying
a Taylor’s expansion to the expressions of the estimators. For
variance estimation, a Taylor’s expansion up to the second
order is applied, while for the estimation of covariances, a
first-order expansion is employed due to the complexity of
the estimator.

A. MSE of Diagonal Elements

The approximation is made under the assumption that N
is large, which is a common scenario in one-bit systems as
the sampling rate is typically very high. Furthermore, as it
has been proved that the bias of MLE approaches 0 as N —
oo [60], the MSE of the detector becomes equivalent to the
variance of the estimators.

Recall that the estimator for o; (i =1,2) is

v
6i=—"=- (20)
CQ (i)
We first compute the second-order Taylor’s expansion of the
estimator. For simplicity, we define

v

Q*(a)’

and the second-order Taylor’s expansion of h(a) at a = p; is:

h(a) = 1)

h(a) = h(p;) + 1 (pi)(a — p;)
+3h ) —p) + O(a—pi)?), @)

where
2mo? v?
B (p;) = L , 23
)T (2) -
v? drod
h'(pi) = exp (cr2> ( v; - 27T<Ti> . (24)
Proof: See Appendix A. ]

According to (22), the variance of 6; can be approximated
as:

V() ~ (W (pi) = W' (po)pi)*V (D) + i[h”(m)PV(ﬁ?)

+ (W (pi) = K (pi)pi) R (:)C(Ps, 7). (25)

Next, we calculate the terms V(p;), V(p?) and C(p;,p?),
which requires us to first compute the second- to fourth-
order moments of p;. Since N; = Np; follows a binomial
distribution, its moments can be evaluated by the following
lemma [61].

Lemma 1: The cth order moment of a binomial distributed
random variable ¢} with success probability p; and number of
trials N is:

E[0°] = SpNEpf, (26)
k=0

where S is the Stirling number of the second kind:

k c—1
[T ) Lo S — 27)
D B VT ]
and N% is the k—th falling power of N:
NE=N(N-1)---(N—k+1). (28)

Using Lemma 1 with ¥ = Np;, the required moments of p;
are:

Ag] _ Di —i—p?(N - 1)

my=E[p; N ; (29)
. 2 _ 3 _ o
ms=E[p?] = pi +3p;(N —1) J]FVZQ% (N -1)(N 2), (30)
. i + Tp2(N — 1) + 6p3(N — 1)(N — 2
e ALE B AL (W
pi(N — (N —2)(N —3)
+ e : @31

where my denotes the k—th order moment of p;. Therefore,
we have

V(pi) = ma — pZ, (32)
V(p7) = mg —m3, (33)
C(ps, p7) = m3 — pima. (34)

Substituting (32)-(34) into (25) results in the variance of ;.

B. MSE of Non-Diagonal Elements

The analysis of the covariance estimator is more complex
compared to the variance estimator as it depends not only on
Dij» but also on the estimated variances ; and ;. Therefore, a
second-order analysis is not feasible and a first-order analysis
is conducted instead. This involves constructing a linear ap-
proximation of &;;, resulting in a simplified representation of
its behavior. The result is summarized in the following lemma.

Lemma 2: The first-order Taylor’s expansion of o192 as a
function of pi, ps and pio is

012 — 12 = bp1 — P1,pa — o, p1z — Pra) (35)
where
0012 aP12 ’ 0012 31012 ’ 3012]
= |~ h’ y h v o | (36)
[ Op12 0o 1) Op12 0oy (p2) Op12
with
b) o121 7" 1
pie =[ ”12} = f(”,”p) (37)
o2 8p12 0102 01 02
0 1
= —yg (“,”,p>, (38)
01 g1 g1 02
0 1
= g (”,”,p), (39)
g9 g9 09 01
and

9(k1,k2,0)

2 _
~ e (“1) 0 (%) — of (K1, Kalo) . (40)
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Fig. 1: Mean squared error versus threshold.

Proof: See Appendix B. [ |
Using the previous lemma, the variance of &12 can be

computed as
V[612] ~ bRbZ, 41)

where R is the covariance matrix of the random vector

[p1, P2, P12] "
DP1P1 P12 —P1P2  P12Dh1
R= N [Pz Pip2 P2D2 p12D2 |, (42)
D12P1 DP12D2 P12D12
with py =1 —p1, P2 =1 — p2, and p12 = 1 — p1o.
Proof: See Appendix C. ]

Having obtained the theoretical performance of the constant-
threshold estimator, we now conduct a simulation to study
how the estimation errors of the standard deviation and
covariance fluctuate with regard to the threshold value. As
illustrated in Fig. 1, three different groups of o1, 09,012 are
selected: [0.25,0.6,—0.08], [0.9,1.2,0.2], and [1.5,2,—0.3].
Correspondingly, the threshold ranges from 0.1 to 1.6, 4, and
6. It is clearly demonstrated that the optimal threshold for the
three parameters can vary significantly. In this simulation, the
optimal threshold value for the standard deviation estimation
is approximately 1.6 times the population standard deviation,
whereas the estimation of covariance prefers a low threshold.
As a result, it is difficult to use a single threshold to deal with
all the parameters. This issue is further compounded in real-
world applications, where the parameters may be distributed
over a broad range as the dimension increases. Consequently,
recovery schemes incorporating time-varying thresholds are
needed.

IV. PROPOSED COVARIANCE RECOVERY SCHEME

In this section, we propose the implementation of a time-
varying, known sampling threshold in lieu of constant or
random sampling thresholds. Specifically, the sampling period
is divided into [ sub-intervals of length n, with each sub-
interval employing a distinct constant threshold. Compared
to [27], [45], our approach has the potential to increase
robustness, particularly in situations where the diagonal entries
differ significantly or the correlation coefficients are high. To
achieve this, we first establish the MLEs of ¢; and o9 using
the data from their respective channels, and then search for the

MLE of 015 with the previously estimated o7 and o2 fixed.
Then, the obtained values are used as the starting point for
an iterative process that ultimately yields the joint MLE of
0 = [01,02,012]T. Finally, we prove that the joint MLE is
numerically close to the initial estimates when the number of
sub-intervals is small. In such cases, we can omit using the
joint MLE with negligible performance loss and significant
computational savings.

A. Diagonal Entries

Without loss of generality, we study the MLE of o; based
on x; = [x;(1),---,2;(IN)]. The log-likelihood of o; can be
written as:

£@500=:§;bg(Q[x42:xw}>'

Consequently, the MLE of o; is the solution of the following
equation:

(43)

8£(Xi;0'1) _ N Al,t(Ui) _ 0, (44)
do; —1 (o)
where
v; (t v? t
Ay (o) = \/%;izexp <_20(i2)> , (45)
i(t)—1
¢it(oi) = % + pii(04), (46)
with t)
pie(0s) = Q (”J) . @7)

We then obtain the ML estimate of o; by the following
Newton’s iteration:

J(utl) A OL(xi504) 7 02L(x4;0) 4
\ =6 8
0—1, O—'L 60'1 / 80-12 o-i:&{“) ? ( )
where the second-order derivative is calculated as:
O2L(x:07) o qi(03)Agi(07) — A2 (0
(X27 o, ) _ Z Qt( ) 2,t(2 ) 1,t( )7 (49)
do; =1 q; (o)
with
v3(t) — 20 (t)o? v (t)
A ) — v — ). 50
z,t(Uz) \/ﬁof exp( 20? ) (50)



B. Non-Diagonal Entries

After obtaining the MLEs of o7 and o9, the covariance
012 can be estimated by assuming o; = &7 and g = 4s.

Therefore, we have
dy,d
/Ul(f) \/HQ(t) Y1, Y2 ) y1ay2.

where p = 012/(6162). According to the Price theorem [27],
[48], the derivative of p;o with respect to p is calculated as:

D12, f (51

3p1;,f(ﬂ) _ <U1A(t)’ U%(t) ‘ﬁ) . (52)
14 o1 02
Then, the log-likelihood function is
N ~
=105 ((8)). (53)
t=1
where 0 = [61,62,012]T and
p12,4(P), x(t) = [+1,4+1]7,
Ot(é): pl,t(a'l) _p12,t(p~)7 X(t) = [+17_1]T7
P2,¢(02) — p12,:(P), x(t) = [-1,+1]7,
1—p1,4(61) —p2,t(62) +p12,4(p), x(t) = [-1,—1]T.
(54)
The first-order derivative of the log-likelihood is
~ N
. Al
I0L(X;0) _ Z 1,t~(P)’ (55)
do12 = 0:(0)
where
e f (w),w()]p)
AL (p) —— ; (56)
0109
with
wn(t) = 28 w(y =20 (s7)
01 02

In addition, the second-order derivative can be computed as

L )AL, (p) — A, (p)]?
= 2 , 58
8012 ; 0% (0) 9
where
A/ (ﬁ) _ 1 |:[) + ws (t)wQ(t) _ ﬁut(ﬁ)
2 2161690/1 - P 1-p? (152
with
us(p) = wi(t) + wi(t) — 2pwy ()w(t). (60)

Similarly, we construct the Newton’s iteration algorithm to
solve this problem, which is:

A = o) -

2 .0 2 .0
9 L(X,B)/ 82L(X; ) o

60'12

2
doiy (W
012=019

C. Joint MLE

Having obtained the initial estimates, we now seek the joint
MLE of o, 02, and o012, which can be achieved using a
gradient descent approach. Following the argument in (38) and
(39), it is easy to obtain the gradients of the log-likelihood with
respect to o1 and o9 as

IL(X;0) &
- 62
80'1 ; o1 t)aZQ(t)vxl(t)QTQ(t)p), (62)

IL(X;0) &
T o, ; o2 2o(t), 21 (t), z1 (t)z2(t)p), (63)

where z;(t) = v(t)x;(t)/o;. Furthermore, since

IL(X;0)
t t 64
D01 z:: p——r f(t), 2@)lp), (64
the iterative procedure is
A(utl)  A(u) () 0L(X;0)
0 =0 "+v o0 g’ (65)

where (%) is the learning rate at the uth iteration.

However, when the number of sub-intervals [ is small, i.e.,
the number of different thresholds is small, the above iterative
process can be omitted with minimal performance loss and
the estimates are given by those in previous sections. This
assertion is proved in Appendix D and, in the next section, it
is also verified by numerical simulations.

Remark 1: When considering dimension greater than 2, our
approach involves recursively employing the 2 x 2 algorithm
to reconstruct the covariance matrix. Theoretically, as the
dimensions increase, there is a potential risk for the resulting
matrix to be not positive-semidefinite. However, it is worth
noting that throughout our extensive simulations, we have yet
to encounter this particular issue. Special attention should be
given to this potential limitation, especially in applications
involving extremely high-dimensional settings.

D. Complex-Valued Case

We now assume x follows a multivariate complex Gaussian
distribution with covariance matrix 3. We perform the widely
linear transformation [62], namely, stacking the real and imag-
inary parts of x as x = [wT, 27T, where w = Re(x) and
z = Im(x). Then, the covariance matrix of x is

_ Yww Zwz
= [zzw 2}

(66)
Accordingly, we perform the same procedure to transform the
one-bit samples y into y. Then, 3. is estimated from y via the
algorithm in the previous subsection. Finally, we reconstruct
the covariance matrix of x from Xy as
Ex = wa + 2zz + Z(Ezzw -

Swz). (67)



E. Performance Analysis of the Estimator

This section delves into the analysis of the MSE for the pro-
posed time-varying threshold-based approach. To summarize
our findings, we present the following theorem.

Theorem 1: The MSE matrix of the MLE can be approxi-
mated asymptotically (N — oo) by

Q=F1(6).

Here, F(6) denotes the Fisher information matrix (FIM)
defined as:

(68)

OL(X;0) IL(X; 0)

FO)=E . 69
Furthermore, 6y = [01,09,012]7 represents the genuine
parameter vector.

Proof: See Appendix E. ]

Since the samples are mutually independent, we can compute
the Fisher information contributed by each sample separately.
Using the first-order derivatives in (62)-(64) and the fact that
x(t) € {£1,£1}, for t =1,--- , N, the FIM is computed as

0=y %

t=1x(t)e{+1,+1}

OL(x(t)) OL(x(t))
Ot (0) |: 90 80T

Building upon Theorem 1, the asymptotic MSE for the indi-
vidual components can be gleaned from the diagonal entries
of F_l (0()).

Remark 2: A crucial application of the above result is the
optimization of the sampling threshold. This threshold can be
dynamically adjusted in practice. More specifically, we can
assess the MSE by utilizing the current covariance matrix
estimate, and then adopt the threshold value to minimize the
MSE in the subsequent stages of the observation process.
Though optimizing the overall MSE can be a challenging task
due to the presence of the matrix inverse operator, a more
straightforward but approximate strategy could be minimizing
the most significant MSE among all elements. As observed
in Fig. 1, the optimal threshold value for variance estimation
is approximately 1.6 times the standard deviation. In contrast,
determining the optimal threshold for covariance estimation is
more complicated. While it can be approximated numerically
by creating a plot akin to Fig. 1, the exploration of potential
numerical optimization techniques could prove beneficial for
future work.

. (70)

F. Complexity Analysis

During the iterative process, the primary computational load
originates from two sources: 1) computation of the ) function,
denoted as (4, and 2) computation of the 2-dimensional
orthant probability (2-D OP), denoted as C5. We segment the
entire sampling process into distinct sub-intervals, and within
each, a separate () function is computed for the evaluation of
p1 and po. Furthermore, we calculate an additional ) function
alongside a 2-D OP for p15. The total number of iterations for
the ¢th variance estimation is designated as ¢;, while that for
the covariance is denoted as ¢12. The total computational load
for variance estimation is thus [(¢; + t) x C4, while that for

covariance estimation equates to [t15 X Cs. In the joint MLE
process, a total computation of Ir x (Cy + C3) is required,
where 7 is the number of iterations in this step. Consequently,
the total computational load primarily comprises:

C =1t +t2+7")01+l(t12+7“)02. 71)

Evidently, C' is influenced by two factors: the number of
iterations and the computation of the () function and the 2-D
OP.

We begin our study with the number of iterations using
simulations. We establish a threshold that ranges from 0.1 to 1,
increasing in increments of 0.1, with each value maintained for
1/10 of the sampling period. The standard deviations ¢ and
o4 are independently generated within [0.5, 1.5], while p falls
within [—0.95,0.95], all according to a uniform distribution.
After conducting 10,000 simulations, we find the average
number of iterations for variance estimation to be 4.3 and
4.7 for covariance estimation. We then explore the number of
iterations necessary for joint MLE. To showcase the efficacy
of employing separate MLEs as initial values in reducing
the iteration numbers, we also explore the scenario where
separate MLEs are not adopted as the initial value, opting for
I, instead. Our findings show that an average of 5.2 iterations
are needed with initial estimates, while 270.2 iterations are
required without them. Thus, utilizing separate MLEs limits
the total number of iterations effectively.

Next, we delve into the computational loads C; and Cs.
Given the () function’s computational maturity and the avail-
ability of numerous efficient algorithms, its computational load
is relatively low. In contrast, the 2-D OP requires numeri-
cal evaluation or the application of the Hermite polynomial
method as detailed in [27]. To compare the accuracy and
evaluation times between these two methods, we first plot
the relative error of the Hermite polynomial method. From
(11), it is clear that accuracy is primarily influenced by the
parameter p. Hence, p is varied from —0.95 to 0.95, and the
two variances are independently generated uniformly within
[0.5,1.5] with a threshold of 1. We carry out 1000 trials at each
point, documenting the maximum relative error. The results,
depicted in Fig. 2, affirm the polynomial method’s reasonable
accuracy for |p| < 0.6. As a result, in each iteration step, based
on the current value of p, we opt for numerical integration
if |p| > 0.6 and use the Hermit polynomial method when
lp] < 0.6.

Secondly, we study the average elapsed time, utilizing a
computer equipped with a 3.8 GHz Intel i9 processor and 32
GB RAM for the simulation. The average elapsed time is 4.86
ms for numerical integration and a significantly lower 0.014
ms for the Hermite polynomial method. We can thus express
the total computational cost as:

C =1ty +ta +7)0C1 + I(thy +7)C, + 1(t]y +7")CY.
(72)

Here, C! denotes the cost of numerical integration and C%
signifies the cost of the Hermite polynomial method. The
variables ¢}, and r’ encapsulate the numbers of instances
when |p| > 0.6 for the estimation of 15 and the joint MLE,
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respectively. Meanwhile, ¢/, and " represent the number of
occurrences when |p| < 0.6.

Lastly, performing the joint MLE for dimensions higher
than 2 can prove quite expensive due to the rapidly in-
creasing complexity of higher-order orthant probabilities with
the dimension [63]. Hence, in practical scenarios, it is often
sufficient to recover the covariance matrix by first estimating
the variances, followed by pairwise covariance estimation.
Under such circumstances, the total computational cost can
be represented as:

m m 1—1
C=>1t:Cr+ > D Ut Ch+ 50y, (73)
i=1 i=1 j=1

In this formulation, ¢; represents the number of iterations in
the estimation of the ith variance, ¢;; represents the number of
iterations in the estimation of the (¢, j)th covariance where nu-
merical integration is employed, and t;’] signifies the instance

where the Hermite polynomial method is applied.

V. NUMERICAL RESULTS

In this section, we conduct numerical simulations to com-
pare the proposed recovery scheme with existing results using
constant [27] and random [45], [46] thresholds in both station-
ary and non-stationary scenarios. Additionally, we validate the
accuracy of our MSE analysis. Each result represents a Monte
Carlo simulation based on 10° independent tests.

A. Usefulness of Exact Threshold Values

We commence our simulation by examining the benefits of
using the exact values of the thresholds over their statistical
properties to decrease the MSE. Here we establish o; at 0.7, o2
at 0.9, and o1, at 0.25, and the number of samples N to vary
from 1000 to 3000. The threshold adheres to a Gaussian dis-
tribution A(0.512, 0.1I5). The difference is that our proposed
method uses the exact values of the threshold, whereas [45]
perceives the thresholds as random and utilizes their statistical
attributes. As the outcome in Fig. 3 reveals, the MSEs of 01, o4
and o2 all undergo a reduction, thus affirming the advantage
of employing exact threshold values. This superiority arises

from the fact that exact values inherently contain more useful
information than statistical properties, thereby facilitating a
more accurate and efficient estimation process that leads to a
reduction in MSE.
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Fig. 3: Mean squared error versus number of samples

B. Comparison of Mean Squared Errors

Subsequently, we compare the overall MSE of our pro-
posed method with [27], [45], [46] in both stationary and
non-stationary cases. We begin with the more general non-
stationary case. In Fig. 4 (a), the population parameters are
chosen as 07 = 0.25, oo = 0.6, and 012 = —0.08, and the
number of samples is N = 1000. Our approach employs a
threshold that varies from 0.1 to 1, with increments of 0.1, and
each value is maintained for 1/10 of the sampling period. The
constant threshold approach takes a different value between 0.1
and 1 for each simulation. For the random threshold method,
the thresholds are combined with a dithering signal following
N (02,0.15-15). We plot the total MSE of 1, 02, and o15. The
results show that the time-varying threshold provides a lower
MSE than any constant threshold value, as it can effectively
estimate parameters over a wider range. It also outperforms
the random threshold approach as it exploits the exact values
of the threshold rather than their statistical properties.

Next, we compare our method with [27] and [46] in
the context of stationary signals. Specifically, the covariance
matrix of stationary signals is a Toeplitz matrix, and we have
set its first column to [1,—0.3,0.1,0]”. For our method, the
stationary property is exploited by averaging the elements
on each diagonal of the estimated covariance matrix. The
threshold of our method is set as linearly spaced within the
range of 0.2 to 0.3, comprised of 10 points, each lasting for
1/10 of the sampling period. We collect the total MSE of the
4 parameters and the result is plotted in Fig. 4 (b). Yet again,
we observe that our proposed method excels both constant
and random threshold approaches across any threshold value.
However, the performance improvement decreases compared
with the non-stationary case. This effect will be elaborated
upon in Subsection D.
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C. Influence of Correlation Coefficient

Next, we examine the impact of the correlation coefficient
on estimation accuracy. We set o1 = 0.25 and oo = 0.6,
while the correlation coefficient ranges from —0.95 to 0.95,
and the number of samples is still N = 1000. The constant
threshold approach employs a threshold value of 0.5, while
the dithering signal corresponding to the random threshold
approach and the threshold for our approach remain as in the
previous experiment.

Compared to fixed or random thresholds, our method gener-
ally yields smaller MSE and demonstrates greater robustness,
as shown in Fig. 5. The dithering approach is also more stable
than the constant threshold although it yields a higher MSE
on average.

D. Influence of Variance Unevenness

As illustrated in Fig. 1, the optimal threshold for variance
estimation is approximately 1.6 times the standard deviation.
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Therefore, different variances will make the estimation more
challenging for a constant threshold. In the next experiment,
we set 01 = 0.6 + 6 and oo = 0.6 — J. The correlation
coefficient is set to 0.5 and N = 1000.

It is clear that all three approaches experience degrada-
tion in performance as the level of unevenness increases, as
Fig. 6 shows. However, the time-varying threshold approach
demonstrates the smallest increase in estimation error, which
highlights its robustness when estimating covariance matrices
with diverse parameters, which is a common in real-world
applications.

E. Influence of Threshold Strategy

Now, we investigate the impact of the threshold strategy
on our proposed time-varying known threshold approach.
Specifically, we study two aspects: the range window and the
resolution of the threshold. For this purpose, we set o1 = 0.5,
oy = 0.7, and 012 = 0.08. The threshold window is in
the form of [0.1 + §,1 + §], with 0 ranging in a linspace
between [0,0.8] with a length of 10. We experiment with a
high-resolution strategy with 10 different threshold values, as
well as a low-resolution strategy with 3 values. A total of
N = 3000 samples are collected. The results are presented in
Fig. 7, indicating that the MSE of ¢; and o2 in the [ = 10
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TABLE I: Absolute initial gradient and MSE comparison
between joint and separate MLEs

Largest gradient MSE (Separate) MSE (Joint)

o1 8.382 x 10~3 2.201 x 1074 2.241 x 104
o2 9.213 x 10~% 1.024 x 103 1.023 x 10~3
o12 8.496 x 10~ 7 2.160 x 104 2,137 x 104

case is relatively stable, while that in the | = 3 case exhibits
more fluctuations. Interestingly, the MSE of 012 in the [ = 10
case increases more quickly than in the [ = 3 case. This
is because the | = 3 case retains more low thresholds as
0 increases. Therefore, in practice, it is important to set a
portion of low thresholds to improve covariance recovery.
Moreover, the analysis reveals that the original setting with
0 = 0, where the threshold ranges linearly between 0.1 and
1 with [ = 10, offers robust performance for all o1, o2 and
012, thus presenting itself as an effective choice in practical
applications.

F. Influence of Joint MLE

In this subsection, we verify the effectiveness of estimating
variances separately versus seeking the joint MLE. We collect
the largest gradients that emerged in the iterative procedure in
(65) and compare the MSE with and without this process. The
results are presented in Table I for oy = 0.25,09 = 0.6,p =
0.5, and N = 1000. We observe that even the largest gradients
exhibit negligible values, indicating that the iterative process
for joint MLE has a minimal impact on the estimation result.
Furthermore, the initial estimates provide nearly identical MSE
values as the joint MLE, implying that the iterative process for
joint MLE can be safely omitted without any adverse effects
on performance as shown in Appendix D.

G. Theoretical Mean Squared Error

Now we examine the accuracy of the theoretical MSE of
the variance estimator and covariance estimator obtained by
inverting the FIM in (70). The population parameters are set
as o1 = 0.8, 02 = 0.9, 012 = 0.25, and N = 1000. We begin

by investigating the theoretical performance of our approach in
Fig. 8 (a), where the sampling thresholds remain unchanged as
previously. The result corresponding to the constant threshold
is illustrated in Fig 8 (b). It is worth noting that the covariance
matrix of the dithering signal in the random threshold approach
can be incorporated into that of the signal part, thus, the
performance of the random threshold approach is predictable
by the result of the constant threshold approach, eliminating
the need for a different simulation.
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Fig. 8: Mean squared error versus number of samples

H. DOA Estimation of Coherent sources

Finally, we assess the performance of the three methods
in a real-world application, namely, the DOA estimation of
coherent sources. The covariance matrix is first reconstructed
using each of the three methods, and then processed by the
EPUMA [20] algorithm. A total of 6 antennas are considered
and there are three sources located at 15°,45°, and 75°,
with a signal-to-noise-ratio (SNR) of 20dB. The source signal
is generated from a circular complex Gaussian distribution,



wherein the first two sources are coherent, while the last
source is independent of the first two. The number of samples
is 10000, and a total of 20 simulations were conducted.
For comparative purposes, we also consider a one-bit DOA
estimation method designed for zero thresholds, as proposed
by [64]. Fig. 9 shows that our time-varying threshold approach
provides the most accurate and reliable results compared to the
constant threshold and random threshold methods. This is due
to the fact that the parameters of the actual covariance matrix
can span a wide range, making robustness a crucial factor in
ensuring estimation precision. Additionally, it is observed that
the zero-threshold method produces very stable estimates, but
the DOA of the last source exhibits a bias. This occurs because,
in the case of correlated sources, the diagonal elements of the
covariance matrix become non-uniform, and the zero-threshold
hinders their estimation. This insight underscores the practical
benefits of employing non-zero thresholds.
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VI. CONCLUSION

The results of this paper demonstrate the importance of
threshold selection in one-bit estimation of covariance ma-
trices. By examining the limitations of a static threshold ap-
proach, a novel time-varying threshold-based recovery scheme
is developed to achieve improved accuracy in the estimation
of covariance matrices. The superior performance is demon-
strated through both theoretical analysis and numerical simu-
lations, and the results show significantly reduced MSE and
enhanced robustness in complex scenarios. This study opens
the door for future research to further optimize the threshold
selection based on the derived theoretical results of the MSE.
The results of this study also have a wide range of potential
applications in many areas, including array processing and
communications.

APPENDIX A
PROOF OF (22)

The first- and second-order derivatives of h(a) are

TN v 8Q71(pi)

SRR T 7

poy Q7 )] 1, Q" (p)

h(p’)‘[cw(pi)]?’(Q[ o R e
(75)

Using the formulas of the derivative of inverse functions, we
have:

9Q(a) 1
= , 76
da Q@ @) o
2M)—1 1 —1
da? [Q(Q 1 (a))]?
Now, taking into consideration that
Q' (p) = — (78)
and
oy 0Qa) 1 a?
Q'(a) = 0 Vo exp (2> ) (79)
vy 9%°Qa)  a a’
Q (G,) - da2 - \/ﬂ exp <_2) ) (80)
the derivatives become
Q' (py) _ v?
o —V2mexp <%2> , 81
92Q " (p; 9 2
Substituting (81), (82), and (78) into (74)-(75) yields
v NS (P
h'(pi) = T, P (w) ; (83)
" v? 4 ?
B (p;) = exp (UQ) ( Z;’ —2mi). (84)

APPENDIX B
PROOF OF LEMMA 2

We first establish the first-order Taylor’s expansion pio at
P12

D12 = p12(61,62,512)

Op12 ..
~ pi2(o1,02,012) + 9o (61 —01)
Op12 . Op12 .
— — . 85
+ 90, (62 02)+8012(012 o12) (85)
Rearranging terms, we get:
012 — 012 =
9012 P12 — D _@(J _ 5 )_%(U — 6)
Opr1a 12 12 9ot 1 1 90 2 2) 1
(36)



where we have used the inverse function rule. In the previous
subsection, we obtained

oi — 6 = h'(pi)(pi — i) + O((pi — $:)%), i=1,2. (87)

Combining (86) and (87) we have the following linear func-
tion:

Op12
80'1

0012 [ X
~ o |P12 — P12 —
Op12

12 — 012 B (p1)(p1 — p1)

Op12 / o
Do h (p2)(p2 — p2)
= b [p1 — p1,pa — P2s P12 — Pra) - (88)

Moreover, since

P12 = / / f($1,$2|p) dl‘ldl‘g, (89)

v v

a1 T2

the partial derivative Op12/007 is computed via the following
integration:

Op12 v [ v
=3 = 552‘0 dxo
doy 07 Jo o1
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where we have used Leibniz integral rule and also (52) to
compute the last term. Similarly, we could obtain dp;2/905.
Finally, and using again the derivative dp;2/0p that has been
calculated in (52), it is straightforward to obtain

Op12 Op 1 (v v )
= = f{l——=lr)-

8,0 80'12 0109 0'170'2

Op12

80’12 (91)

APPENDIX C
PROOF OF (42)

As p1, po and pio are scaled binomial random variables,
the diagonal entries of R are easily determined as:

2
[RJ2 = P 92)
2
[Rlzo = 222, 93)
2
P12 — P19
Rl33 = ——=. 4
[Rlss = 22 (94)
The covariance between p; and pio is
C(p1,p12) = E[p1p12] — pip12
= E[N1N12]/N? — p1p12, 95)

where N7 = Np; and N3 = Npyo. The value of E[N]Nis]
is

E[N,Nya) =

N Ta(k)+ 1oy (D) + L as(l) + 1
> e[ |

2 2
k=1

N
Y E
k=1

N
+ZE{ 5 5 ]

<x1(k2)+1>2x2(k2)+1

2
k=1
fitl
= Npi2 + N(N — 1)p1p12
= N?pip1a + Np12(1 — p1), (96)

where we have used the independence between (k) and
22(1). Therefore, the covariance becomes

R 1-
C(p1,p12) = w 7
Similarly, we can obtain
A 1-
C(p2,p12) = w (98)
Finally, since E[N; No] is
z1(k) +1zo(l) +1
SRTTIS S CACESRES)
k=1
N
2 2
k=1
N Ta(k)+1aa(l)+1
1 2
+ Y E [ 5 5 ]
k=1
k#l
= Np12 + N(N — 1)p1p2, 99)

where we have used again the independence between x (k)
and x5(1), the last covariance is

C(p1, p2) = E[N1N2]/N? — p1po
P12 — P1p2
=" 100
N (100)
The proof is complete.

APPENDIX D
PROOF OF THE VANISHING GRADIENT WITH SMALL
NUMBER OF SUB-INTERVALS
Let us denote the original estimates by @,/ obtained in
Sections IV-A and IV-B, and the joint MLE by 6', obtained in
Section IV-C after the gradient-based algorithm converges. We
start by considering the first sub-interval, which is of length
n and define the following random variables:

K, = Sz (8) 4+ 1) [za(t) + 1]

- 7 (101)
. - Zialo®) Iﬂl][:m(t) -1 (102)
K, = Zta[n®) ;n” iU R TS
o, il (t) = lwa(t) +1] (104)

4n ’



which estimate the probability of x(t) = €;, with

er = [+1,+1]7,
€3 = [_17_1]Ta

€2 = [+1a 71]T7

€= [-1,+1]". (105)

Then, the derivative of the log-likelihood with respect to o4
evaluated at the original estimate is

" OL(x(t); 0) . OL(x = €;;0)
Z 0o . Z " 0o .
t=1 0=0 1=1 0=06
_ 24: nKig <U(t?€i,1 , v(tA)ei72’ﬁ> ,
=1 4 o1 02
(106)
where p = 612/6162, and
oo oo
qi :/ / f (yl;y? Tiﬁ) dy1dys, (107)
Ti"il“’) Tiiiz(t)
51 Go

is the probability that x = €;, with 7; = ¢; 1€; 2. Recalling the
definition of g(z1, 22, p) in (40), it is easily seen that

9(5175279) = _g(_"il?’%Q?_Q)' (108)
Therefore, it can be shown that
z": OL(x(t):0)|  _ <K1 B K4> (v(t) o(t) )
o1 0—b q1 Q4 g o1 69 P

+n (K2 - K‘°’) g <”(t) _u —ﬁ) . (109)
q2 qs3 01 02

Since (nK1,nKa,nkKs,nKy) follows a multinomial distri-
bution with probabilities (q1, ¢2, ¢3, q4), the random variables
%, %, %, % follow asymptotically a Gaussian distribution
/\/]'(147 C), where

1—gq; i =
Cl.., {"?;’ z#j’ (110)
Then, we have
?_%:o(rpé), (111
1 4
&_&:o(n—%), (112)
q2 a3
and (109) becomes
3 OLE1:6)|  _ (n%) . (113)
60’1 o
t=1 =6

Note, that this derivative is not zero because 61 was obtained
using the likelihood of x(t),t = 1,..., N. To proceed, we
apply a first-order Taylor’s expansion to the derivative of the
log-likelihood, which results in

OL(x(t); 0)
Z 801

t=1

6=06

a 0L(x(t); 0
Bs (0,0

0=6
N 9270 (x(4):
(0 - o) Y TEELG)

507 (114)

t=1 0—=0

Since 67 is the solution to the equation
N

3 OLx(t);0))  _, (115)
t=1 0oy =6’
we have
N
3 OL(x(t);0)
t=1 9o 5
6 — 61~ —— 0=0 (116)

N 920(x(t): 0
3 (x(t); 0)

2
Oos

6=0
Now we investigate the second-order derivative. When n is
large, it becomes

"L 92L(x(t); 0
3 (x(t); 0)

%L (x(t); 0)
60% nlk {

2
0o

0=06
which is of order n since E [02L(x(t);0)/00%|4_g] = O (1).
Therefore, the numerator in (116) is a summation of [ terms
of order n2 while the denominator is a summation of [ terms
of order n, where [ is the number of sub-intervals. As a result,
we obtain

} )
0=06

t=1

& — & zo(n—%). (118)
This implies that when [ is small and n = N/I is large, the
estimated o in the joint MLE is close to the initial estimate.
Similarly, we can obtain 6% — &, ~ O(n~2). Furthermore,
since 012 is obtained using the two-channel data by solving

aE(X, 617 &25 012)
0012

=0, (119)

012=012

its initial gradient is already 0. With &; and &2 remaining

almost unchanged, the gradient of o5 is also negligible. Then,
A ~1

the original estimate 8 and the joint MLE by @ are close.

APPENDIX E
PROOF OF THEOREM 1

We first prove that, for each sample vector x(t), (¢ =

1,---, N), the regularity condition holds, namely:
OL(x(t); 0)
E|{————~| =0. 120
et =

Then the result naturally holds for the collection of all samples.
At first, we have

E {35(;((7?;9)]

- ¥

x(t)e{x1,£1}

S L (0 v ).

0L(x(t); 0)

0,5(0) 80'1

x(t)efzt,+1} 71 a1 o2
(121)
Taking into account (108), it can be shown that
OL(x(t);0) _OL(x(t);0)
601 x(t)=€1 60-1 x(t)=€a ’
OL(x(t); 0) _ _8£(x(t); 0) 7 (122)
doy x(t)=€2 doy x(t)=e3




which yields E[0L(x(t);0)/do1] = 0. This verifies the
regularity condition for oy, which can be easily extended to
o2. Similarly, we have

g [PLn0)] _

80'12

IL(x(t); 0)

80'12

>

0:(0)
x(t)e{£1,+1}
n(0a(t) (v(t)wl(t) v(D)a(t) ‘p) |

0102 g1 ’ g2

x(t)e{+1,£1}
(123)

Since f (21, 22|p) = f(—z1,22| —p), following the same
process as above, we can prove that the summation in (123)
is 0. Given the above, and by referencing [60, Appendix 3A],
we can conclude that

. {az:(;;; 0) a,ca(zcjie)] g [azce(;;e)] |

We next assert the consistency of the proposed estimator.
Our proof strategy mirrors that of [60, Appendix 7B]. Specif-
ically, for a large n and the kth sub-interval, we can write:

(124)

iﬁimﬁm%EMﬁ@]

t:Vk

xe{£1,£1}

of (80)1In ok (0), (125)

where vy, = (k — 1)n, n, = kn and of denotes the likelihood
function on the kth subinterval. Thus, we arrive at:

l
L(x(t);0)=>Y > of(80)nof(6).

k=1xc{+1,£1}

(126)

Let us consider two estimators: 6; = 6 and 05 # 0. Utiliz-
ing the non-negativity of the Kullback-Leibler divergence, we
have:

k(0
> of (80) 10 290 5 (127)
xe{£1,+1} 0f(82)
which leads to:
> o (B0)Inof(60) = > of (B)nof(8y).
xe{£1,£1} xe{£1,£1}
(128)

From this, we can infer that @; = 8, maximizes o¥ () for k =
1,--- I, and subsequently, the likelihood function in (126).
Therefore, the MLE converges to the true parameter, proving
the estimator’s consistency.

Applying the first-order Taylor’s expansion, we get:

0lnp(X;0) ~ 0lnp(X;0)
00 od 00 0—0,
9?Inp(X;0) 5
g ansy) 0—0,), (129
0000" 9:@( o) (129

where 6y < 6<0. Using its consistency property, it is evident
that & — 6. Moreover, from
0lnp(X;0)

20 (130)

we derive

—1
0lnp(X;0)
00

A 9?Inp(X;0)
R AT

6=0, .
(131)

0=0¢

With n — oo, it follows that

Nk 2 Nk 2
9" Inp(x(t); 0) E:a In p(x(t); 0)
_ - 7 _]E I S S
00007 00067

t=vp t=vy,

=F.(0),

where F(0) is the FIM in the the kth subinterval and we
have used (124). Thus,

(132)

9?Inp(X;0)
0000"

l
— Y Fi(0y) = F(6o). (133)
6=60 k=1

From (131), it can be shown that
Q:Eﬁé—amé—%ﬂlew@*,

which completes the proof.

(134)
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