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Abstract

Distributed tensor decomposition (DTD) is a fundamental data-analytics technique that extracts

latent important properties from high-dimensional multi-attribute datasets distributed over edge devices.

Conventionally its wireless implementation follows a one-shot approach that first computes local results

at devices using local data and then aggregates them to a server with communication-efficient techniques

such as over-the-air computation (AirComp) for global computation. Such implementation is confronted

with the issues of limited storage-and-computation capacities and link interruption, which motivates us to

propose a framework of on-the-fly communication-and-computing (FlyCom2) in this work. The proposed

framework enables streaming computation with low complexity by leveraging a random sketching

technique and achieves progressive global aggregation through the integration of progressive uploading

and multiple-input-multiple-output (MIMO) AirComp. To develop FlyCom2, an on-the-fly sub-space

estimator is designed to take real-time sketches accumulated at the server to generate online estimates

for the decomposition. Its performance is evaluated by deriving both deterministic and probabilistic

error bounds using the perturbation theory and concentration of measure. Both results reveal that the

decomposition error is inversely proportional to the population of sketching observations received by

the server. To further rein in the noise effect on the error, we propose a threshold-based scheme to select

a subset of sufficiently reliable received sketches for DTD at the server. Experimental results validate

the performance gain of the proposed selection algorithm and show that compared to its one-shot

counterparts, the proposed FlyCom2 achieves comparable (even better in the case of large eigen-gaps)

decomposition accuracy besides dramatically reducing devices’ complexity costs.
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I. INTRODUCTION

In mobile networks, enormous amounts of data are continuously being generated by billions

of edge devices. Data analytics can be performed on distributed data to support a broad range

of mobile applications, ranging from e-commerce to autonomous driving to IoT sensing [1],

[2]. One basic class of techniques is tensor decomposition, which extracts a low-dimensional

structure from large-scale multi-attribute data with a tensor representation (a high-dimensional

counterpart of a matrix) [3], [4]. A popular technique in this class, the Tucker decomposition, is

a higher-dimensional extension of the singular-value decomposition (SVD) that has supported

diverse applications such as Google’s image recognition and Cynefin’s spotting of anomalies.

In mobile networks, tensor decomposition can be implemented in a centralized manner, which

requires uploading of high-dimensional data from many devices to a central server. However,

such implementation is stymied not only by a communication bottleneck but also by data privacy

issues [5], [6].

In view of these issues, we focus on distributed tensor decomposition (DTD) that avoids

direct data uploading and reduces communication overhead by distributing the computation of

data tensors to the devices. A direct distributed implementation would call for parallel iterative

methods such as alternating least squares [7] and stochastic gradient descent [8], [9] over edge

devices, which, however, results in high communication overhead due to slow convergence. On

the other hand, DTD can be realized via one-shot distributed matrix analysis techniques [10]–

[12], since the desired orthogonal factor matrices can be estimated as the principal eigenspaces

of unfolding matrices of the tensor along different modes [13]. These one-shot methods improve

communication efficiency at a slight cost of decomposition accuracy by following two steps: 1)

computing local estimates of the desired factor matrix at each of the devices using local data;

2) uploading and aggregating the local estimates at the server to compute a global estimate.

Though alleviated, the communication bottleneck still exists due to the required aggregation of

high-dimensional local tensors over potentially many devices. This multi-access problem can be

addressed by using a technique called over-the-air computation (AirComp), which exploits the

waveform superposition property of a multi-access channel to realize over-the-air data aggre-

gation in one shot [5], [14]. AirComp finds applications in communication-efficient distributed

computing and learning, and has been especially popular for federated learning (see, e.g., [15]–

[17]).
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Considering a DTD system with AirComp, this work aims to solve two open problems.

The first is the prohibitive cost and latency of computation at resource-constrained devices. A

traditional one-shot DTD algorithm requires each device to perform eigenvalue decomposition

of a potentially high-dimensional local dataset. The resulting computation complexity increases

super-linearly with the data dimensions [18], and the consequent latency makes it difficult for

DTD to support emerging mission-critical applications [19]. The second problem is that the one-

shot transmissions by devices are susceptible to link disruption. Specifically, a loss of connection

during the transmission of high-dimensional local principal components can render the already

received partial data useless. In other words, the existing designs lack the feature of graceful

performance degradation due to fading.

To solve these problems, we propose the novel framework on-the-fly communication-and-

computing (FlyCom2). Underpinning this framework is the use of a technique from randomized

linear algebra, randomized sketching, that generates low-dimensional random representations,

called sketches, of a high-dimensional data sample by projecting it onto randomly generated

low-dimensional sub-spaces [20], [21]. This technique has been successfully used in diverse

applications ranging from online data tracking [22] to matrix approximation [21]. In FlyCom2,

in place of the traditional high-dimensional local eigenspaces, each device generates a stream

of low-dimensional sketches for uploading to the server. Considering a multiple-input-multiple-

output (MIMO) channel, the simultaneous transmission of local sketches is enabled by spatially

multiplexed AirComp [23]. Upon its arrival at the server, each aggregated sketch is immedi-

ately used to improve the global tensor decomposition, giving the name of FlyCom2. Since

random sketches serve as independent observations of the tensor, the server can produce an

estimate for tensor decomposition in every time slot based on the sketches already received. The

FlyCom2 framework addresses the above-mentioned open problems in several aspects. First,

random sketching that involves matrix multiplication has much lower complexity than eigen-

decomposition and helps reduce the complexity of on-device computation. Second, the DTD

accuracy depends on the number of successfully received sketches and hence is robust to loss of

sketches in the transmission. This gives FlyCom2 a graceful degradation property in the event

of link disruptions or packet losses. Third, as the principal components of a high-dimensional

tensor are usually low-dimensional, the progressive DTD at the server is shown to approach its

optimal performance quickly as the number of aggregated sketches increases, thereby reining

in the communication overhead. Last, the parallel streaming communication and computation in
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FlyCom2 are more efficient than the sequential operations of the traditional one-shot algorithms

due to the communication-computation separation.

In designing the FlyCom2 framework, this work makes the following key contributions.

• On-the-Fly Sub-space Detection: One key component of the framework is an optimal on-

the-fly detector at the server to estimate the tensor’s principal eigenspace from the received,

noisy (aggregated) sketches. To design a maximum likelihood (ML) detector, a whitening

technique is used to pre-process the sketches so as to yield an effective global observation,

which is shown to have the covariance matrix sharing the same eigenspace as the tensor.

Using the result, the ML estimation problem is formulated as a sub-space alignment problem

and is solved in closed form. It is observed from the solution that the optimal estimate

of the desired principal eigenspace approaches its ground truth as the said observation’s

dimensionality grows (or equivalently more sketches are received).

• DTD Error Analysis: The end-to-end performance of the FlyCom2-based DTD system is

measured by the squared error of the estimated principal eigenspace with respect to (w.r.t.) its

ground truth. Using perturbation theory and concentration of measure, bounds are derived on

both the error and its expectation. These results reveal that the error consists of one residual

component contributed by non-principal components and the other component caused by

random sketching. Moreover, the error is observed to be linearly proportional to the number

of received sketches, validating the earlier claims on the progressive nature of the designed

DTD as well as its feature of graceful degradation. This also suggests a controllable trade-

off between the decomposition accuracy and communication overhead, which is useful for

practical implementation.

• Threshold-Based Sketch Selection: Removing severely channel distorted sketches from use

in the sub-space detection can lead to performance improvements. This motivates the design

of a sketch-selection scheme that applies a threshold on a scaling factor in MIMO AirComp

that reflects the received signal-to-noise ratio (SNR) of an aggregated sketch. We show that

such a threshold can be efficiently optimized by an enumeration method whose complexity

is polynomial in the population of received sketches.

The remainder of the paper is organized as follows. Section II introduces system models and

metrics. Section III gives an overview of the proposed FlyCom2 framework. Then, Section IV

presents the design of the on-the-fly sub-space estimator and its error analysis. The sketch-

May 16, 2023 DRAFT



5

2

Edge 
Server

···
···

Devices

Global Sketching

UpdateLocal Sketching

Analog Linear 
Modulation

Transmit 
Beamforming

CSI

⋯

Transmitter

Streaming input of dimension 
reduction mapping (DRM)

Sketches

Mode-  
Unfolding Matrix

n

DRM DRM Pre-ProcessingSuperposed 
symbolsReceiver

Subspace
Detection

Data Tensor

Mode-  Factor 
Matrix for DTD

n

Receive 
Beamforming

Air
Co
mp

Fig. 1. On-the-fly communication-and-computing for distributed tensor decomposition.

selection scheme is proposed in Section V. Numerical results are provided in Section VI, followed

by concluding remarks in Section VII.

II. MODELS, OPERATIONS, AND METRICS

We consider the support of DTD in a MIMO system, as illustrated in Fig. 1. The relevant

models, operations and metrics are described in what follows.

A. Distributed Tensor Decomposition

We consider the distributed implementation of the popular Tucker method for tensor decompo-

sition [13]. For ease of notation, the tensor is assumed to have N modes; these modes generalize

the concepts of columns and rows in matrices with the first (N − 1) modes corresponding to

data features and mode N indexing data samples. For instance, in a surveillance system, images

captured by multiple cameras are expressed as local tensors with three modes indicating pixels,

colors, and data sample indices, respectively. Let the samples collected by device k be represented

by a local tensor Xk ∈ RI
(k)
1 ×I

(k)
2 ···×I

(k)
N , where I(k)n denotes the dimensionality of mode n of local

tensor k. To simplify notation, we assume that local tensors have the same dimensions for their

feature modes: I(k)n = In, ∀k, 1 ≤ n ≤ N − 1. Next, these local tensors are aggregated from K

devices to form a global tensor X ∈ RI1×I2···×IN with IN =
∑

k I
(k)
N . The Tucker decomposition

of X can be written as [13]

X ≈ G ×1 U1 ×2 U2 · · · ×N UN
4
= X̃ , (1)

where G ∈ Rr1×r2···×rN represents a core tensor [that generalizes the singular values in SVD],

Un ∈ RIn×rn is an orthogonal factor matrix corresponding to the n-th mode, satisfying U>nUn =

Irn with rn (rn ≤ In) representing the number of principal dimensions, and ×n denotes the
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mode-n matrix product [13]. In the sequel, we pursue these factor matrices {Un} as they reveal

the characteristics of the data tensor at different modes. Given {Un}, the computation of G is

straightforward [3]. In centralized computation with full data aggregation, {Un} can be computed

by using the higher-order SVD approach [3], [20]. In this approach, the tensor is first flattened

along a chosen mode n to yield a matrix X(n) ∈ RIn×Jn with Jn =
∏N

j=1,j 6=n In, termed mode-n

unfolding; then the desired factor matrix is computed as Un = [u1, · · · ,urn ] where ui is given

by the i-th principal eigenvector of the mode-n unfolding. Let this operation be represented by

Srn(·) and hence Un = Srn(X(n)(X(n))>).

In contrast with its centralized counterpart, DTD computes the eigenspaces of different un-

folding matrices distributively. This avoids the aggregation of raw data and preserves the data

ownership [10], [11]. Considering the computation of Un, DTD goes through the following

procedure: 1) local tensors are flattened along chosen mode n to generate local unfoldings,

denoted by {X(n)
k }; 2) devices compute low-dimensional component {Sk} from local unfoldings

{X(n)
k } through dimensionality reduction techniques; 3) the server gathers these local components

from devices and aggregates them into a global component, denoted by S, to yield a global

estimate of the ground truth, Un. It is worth mentioning that the computation results {Sk}

depend on a particular dimensionality reduction technique. For example, when using principal

component analysis (PCA) [10], [11], {Sk} are computed as the principal eigenspaces of {X(n)
k }

at the devices, and then the server averages them to estimate Un. In this work, a random sketching

approach is adopted as elaborated in Section III.

B. MIMO Over-the-Air Computation

FlyCom2 builds on MIMO AirComp to aggregate local results over the air, which is described

as follows. First, let Nr and Nt, with Nr ≥ Nt, denote the numbers of antennas at the edge server

and each device, respectively. We assume perfect transmit channel state information (CSI) as

well as symbol-level and phase synchronization between the devices [23]. Time is slotted and

then grouped to form coherence blocks with t denoting the block index. In each time slot, an

Nt×1 vector of complex scalar symbols is transmitted over Nt antennas. Then a coherence block

spans at least I symbol slots to support the transmission of an Nt × I matrix. In an arbitrary

block, say t, all edge devices transmit simultaneously their I × M real matrices, denoted as

{St,k}, each of which is termed a matrix symbol. As a result, the server receives an over-the-air
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aggregated matrix symbol, Yt, as

Yt = At

K∑
k=1

Ht,kBt,kS
>
t,k + AtZt,

where Ht,k ∈ CNr×Nt denotes the channel matrix corresponding to device k, Zt models additive

Gaussian noise with independent and identically distributed (i.i.d.) elements of CN (0, σ2),

At ∈ CM×Nr and Bt,k ∈ CNt×M (M ≤ Nt) denote receive and transmit beamforming ma-

trices, respectively. To realize AirComp, we consider zero forcing (ZF) transmit beamforming

that inverts individual MIMO channels [23]. Mathematically, conditioned on a fixed receive

beamformer, transmit beamforming matrices are given as

Bt,k = (AtHt,k)
H (AtHt,kH

H
t,kA

H
t

)−1
. (2)

The received matrix Yt is then rewritten as

Yt =
K∑
k=1

S>t,k + AtZt. (3)

In the absence of noise, the AirComp in (3) provides the one-shot realization of the desired

aggregation operation for DTD. The average transmission power of each device is constrained

to not exceed a power budget of P per slot, i.e. ∀t, k

E
[
‖Bt,kS

>
t,k‖2F

]
= Tr

((
AtHt,kH

H
t,kA

H
t

)−1
E[S>t,kSt,k]

)
≤ IP. (4)

The transmit SNR is then given by γ = P
σ2 .

C. Error Metric

With the above-described MIMO AirComp, a noisy version of Un, denoted by Ũn, will be

computed progressively from a set of received matrices {Yt} (see Section III). The Ũn deviates

from the ground truth due to both distributed computation and channel noise. The resulting

error can be a performance metric of DTD in the wireless system. Mathematically, given X̃

as the tensor derived from {Ũn}, the error is measured as ‖X − X̃‖2F that can be bounded as

‖X−X̃‖2F ≤
∑N

n=1 ‖(IIn−ŨnŨ
>
n )X(n)‖2F [20]. This suggests that the overall error is determined
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by the error of independently decomposing each unfolding matrix. Hence, we define the DTD

error as

d
(
Ũn,X

(n)
)

= ‖(IIn − ŨnŨ
>
n )X(n)‖2F . (5)

III. OVERVIEW OF ON-THE-FLY COMMUNICATION-AND-COMPUTING

To support DTD over edge devices with limited computation power, we propose a FlyCom2

framework as shown in Fig. 1. Next, we first briefly introduce the random approach exploited

in FlyCom2 and then explain how to use FlyCom2 to support DTD.

A. Data Dimensionality Reduction via Random Sketching

Recall that the DTD requires data dimensionality reduction on devices prior to transmission.

For high-dimensional tensors, the traditional PCA technique becomes too complex for resource-

constrained devices. To address this issue, we adopt a technique for random dimensionality

reduction, known as random sketching, which is simpler than PCA as it only relies on matrix

multiplication and also requires a smaller number of passes over the datasets [21]. Specifically,

given an I×J data matrix X, random sketching uses a J×M random matrix, termed dimension

reduction mapping (DRM) and denoted by Ω, to map X to an I ×M sketch matrix S with

J �M : S = XΩ. The mapping Ω can be composed of i.i.d. Gaussian elements and projects the

high-dimensional X to random directions in a space of low dimensionality. Despite the random

projection, the mutual vector distances between the rows of X can be approximately preserved

such that the principal (column) eigenspace of the sketch, S, constitutes a good approximation

of X. The approximation accuracy grows as M increases and becomes perfect when M is equal

to J [21]. Importantly, to estimate an r-dimensional principal eigenspace, random sketching

has the complexity of O(IJM) and requires a single data pass of memory, as opposed to the

complexity of O(min{I, J}2 ×max{I, J}) and O(r) memory passes in PCA [18].

B. FlyCom2-Based DTD

Based on the preceding random-sketching technique, we propose the FlyCom2 framework that

decomposes the high-dimensional DTD into on-the-fly processing and transmission of streams of

low-dimensional random sketches. Thereby, we not only overcome devices’ resource constraints

but also achieve a graceful reduction of DTD error as the communication time increases. Without

loss of generality, we focus on the computation of the principal eigenspace Un for an arbitrary
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data-feature mode n with n ∈ [1, · · · , N − 1]. To simplify notation, the superscript (n) and

subscript n are omitted. The detailed operations of FlyCom2 are described as follows.

1) On-the-Fly Computation at Devices: Each device streams a sequence of low-dimensional

local sketches to the server by generating and transmitting them one by one in data packets.

First, the progressive computation of local sketches at devices is introduced as follows. Let

each local tensor, say Xk at device k, be flattened along the desired mode to generate the

unfolding matrix Xk. Then, in the (matrix-symbol) slot t, each device k draws i.i.d. N (0, 1)

entries to form a J ×M DRM, denoted by Ωt,k, or retrieves it efficiently from memory [24].

Then an M -dimensional local sketch for Xk can be computed as St,k = XkΩt,k, which is then

uploaded to the server immediately before computing the next sketch St+1,k. This allows efficient

communication-and-computation parallelization as shown in Fig. 2.

2) On-the-Fly Global Random Sketching: MIMO AirComp is used for low-latency aggre-

gation of the local sketches simultaneously streamed by devices. Local temporal sketches are

progressively aggregated at the server by linearly modulating them as MIMO AirComp symbols.

Consider the uploading of the t-th local sketches. It follows from (3) that the matrix symbol

received at the server can be written as

Y>t =
∑
k

XkΩt,k + Z>t A>t . (6)

To explain how to use Yt in estimating the principal eigenspace of the global unfolding matrix

X, we first consider the case without channel noise, in which Y>t =
∑

k XkΩt,k. Since the

global tensor X is given by assembling local tensors along mode N , the corresponding global

unfolding matrix, denoted by X, is related to the local unfoldings {Xk} as

X = [X1,X2, · · · ,XK ]. (7)
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It follows that

Y>t = [X1, · · · ,XK ][Ω>t,1, · · · ,Ω>t,K ]>
4
= XFt,

where we define

Ft = [Ω>t,1, · · · ,Ω>t,K ]>.

As {Ωt,k} are mutually independent, Ft has i.i.d. N (0, 1) elements and can be used as an M -

dimensional DRM for randomly sketching X. Therefore, in the absence of channel noise, Yt

gives an M -dimensional global sketch for X. The dimension of the global sketch grows, thereby

improving the DTD accuracy, as more aggregated local sketches are received (or equivalently

as t progresses), giving the name of on-the-fly global sketching.

3) On-the-Fly Sub-space Detection at the Server: In the case with channel noise, the server

can produce an estimate of the desired principal eigenspace, U, based on the noisy observations

accumulated up to the current symbol slot. Specifically, in slot t, given the current and past

received matrix symbols, {Y`}`≤t, and the receive beamformers {A`}`≤t (discussed in the

sequel), the server estimates U as

Ũ = f({Y`}`≤t, {A`}`≤t), (8)

where the estimator f(·) is optimized in the sequel to minimize the DTD error in (5).

Following the above discussion, the procedure for FlyCom2-based DTD is summarized as

follows.

To compute the principal eigenspace of the global unfolding matrix X, initialize t = 1, and
FlyCom2-based DTD repeats:

Step 1: Each device, say device k, computes a local sketch using St,k = XkΩt,k;
Step 2: The server receives Y>t =

∑
k XkΩt,k + Z>t A>t via MIMO AirComp;

Step 3: The server computes an estimate of the eigenspace of X: Ũ = f({Y`}`≤t, {A`}`≤t);
Step 4: Set t = t+ 1;

Until t = T .

The key component of the FlyCom2 framework, the on-the-fly sub-space estimator f(·), is

designed in Section IV. The performance of FlyCom2-based DTD is enhanced using a sketch

selection algorithm designed in Section V.
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IV. OPTIMAL SUB-SPACE DETECTION FOR FLYCOM2

In this section, we design the sub-space detection function of the FlyCom2 framework, namely

f(·) mentioned in the preceding section. It consists of two stages – pre-processing of received

symbols and the subsequent sub-space estimation, which are summarized in Algorithm 1 and

designed in the following sub-sections. Furthermore, the resultant DTD error is analyzed.

A. Pre-Processing of Received Matrix Symbols

The pre-processing function is to accumulate received matrix symbols from slot 1 to the

current slot, t, and generate from them an effective matrix for the ensuing sub-space detec-

tion. The operation is instrumental for on-the-fly detection to obtain a progressive performance

improvement. The design of the pre-processing takes several steps. First, since the transmitted

symbol XFt is real but the channel noise is complex, the real part of the received symbols,

namely Yt in (6), gives an effective observation of the transmitted symbol1. Let Ỹt denote the

effective observation in slot t and Z̃t the real part of AtZt. It follows that

Ỹt = <{Y>t } = XFt + Z̃>t . (9)

Second, the relation between the eigenspace of X and the accumulated observations up to the

current slot is derived as follows. To this end, let the SVD of X be expressed as

X = UXΣXV>X, (10)

where ΣX comprises descending singular values along its diagonal. Then, the accumulation of

the current and past observations, denoted by Ŷt = [Ỹ1, Ỹ2, · · · , Ỹt], is a random Gaussian

matrix as shown below.

Lemma 1. The accumulated aggregations, Ŷt, can be decomposed as

Ŷt = C
1
2 WD

1
2 ,

1It is possible to transmit the coefficients of XFt over both the in-phase and quadrature channels, which halves air latency.
The extension is straightforward (see, e.g. [10, Section II]) but complicates the notation without providing new insights. Hence,
only the in-phase channel is used in this work.
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where the left covariance matrix C = XX> + 1
2tM

σ2
∑

`≤t Tr(A
H
` A`)II , the right covariance

matrix D =
Tr(X>X)ItM+ 1

2
Iσ2diag(A1AH

1 ,··· ,AtAH
t )

Tr(X>X)+ 1
2tM

Iσ2
∑
`≤t Tr(A

H
` A`)

, and W is a random Gaussian matrix with i.i.d.

N (0, 1) entries.

Proof. See Appendix A

Third, based on (10), the covariance matrix, C, in Lemma 1 can be rewritten as

C
4
= UXΛU>X, (11)

where we define Λ = Σ2
X + 1

2tM
σ2
∑

`≤t Tr(A
H
` A`)II . Hence, the square root, C

1
2 , is given as

C
1
2 = UXΛ

1
2 . (12)

Remark 1 (Effective Sketching with Channel Noise). According to Lemma 1 and (12), the

accumulated observations, Ŷt, gives a sketch of the matrix UXΛ
1
2 using a Gaussian DRM with

the covariance of D. The matrix UXΛ
1
2 and the unfolding matrix X share the eigenspace, UX.

Furthermore, as Λ retains the singular values in descending order, the top-r principal eigenspace

of UXΛ
1
2 is identical to that of X for any 1 ≤ r ≤M .

Finally, according to the preceding discussion, the desired principal eigenspace of X can

be estimated from the sketch Ŷt. It is known that randomized sketching prefers DRMs with

i.i.d. entries [21]. To improve the performance, Ŷt can be further “whitened” to equalize the

right covariance D. Specifically, let Ŷt be right-multiplied by D−
1
2 to yield the final effective

observation in time slot t as

Φt = ŶtD
− 1

2 = UXΛ
1
2 W. (13)

To compute the covariance matrix D, the server needs to acquire the value of Tr(XX>) =∑
k Tr(XkX

>
k ). Note that each term in the summation, say Tr(XkX

>
k ), relates to the covariance

of transmitted symbols, E[S>t,kSt,k], as

E[S>t,kSt,k] = E[Ω>t,kX
>
k XkΩt,k] = Tr(X>k Xk)IM .

Then, Tr(X>k Xk) can be acquired at the server by one-time feedback.
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B. Optimal Sub-space Estimation

In this sub-section, the principal eigenspace of the unfolding matrix X with dimensions fixed

as r, is estimated from the effective observation given in (13) under the ML criterion. First,

using (13), the distribution of the observation Φt conditioned on U and Λ is given as

Pr (Φt|UX,Λ) =
exp

(
− tM

2
Tr
(
Φ>t UXΛ−1U>XΦt

))
(2π)ItM/2det(Λ)tM/2

.

This yields the logarithm of the likelihood function, required for ML estimation, as

L (UX; Φt,Λ) = ln (Pr (Φt|UX,Λ)) ,

=− tM

2
Tr
(
Φ>t UXΛ−1U>XΦt

)
− ItM

2
ln(2π)− tM

2
ln(det(Λ)). (14)

Let U denote the desired r-dimensional principal components of X, as obtained from splitting

UX = [U,U⊥]. It is observed from (14) that only the first term depends on the variable U. Then

letting (Ũ, ŨX) denote an estimate of (U,UX), the ML-estimation problem can be formulated

as
min
Ũ

Tr
(
Φ>t ŨXΛ−1Ũ>XΦt

)
s.t. Ũ>XŨX = ŨXŨ>X = I,

ŨX = [Ũ, Ũ⊥].

(15)

Despite the non-convex orthogonality constraints, the problem in (15) can be solved optimally

in closed form, as follows. First, define the eigenvalue decomposition ΦtΦ
>
t = QΓQT with

Q = [q1, · · · ,qI ] and Γ = diag(γ1, · · · , γI) with eigenvalues arranged in a descending order.

Then, given Λ = diag(λ1, · · · , λI) and UX = [u1, · · · ,uI ], the objective function of (15) can

be rewritten as

Tr
(
Λ−1U>XΦtΦ

>
t UX

)
=

I∑
i=1

I∑
j=1

λ−1j γi(q
>
i uj)

2.

Next, define xij = q>i uj and rewrite the constraints in (15) as
∑I

i=1 x
2
ij = u>j QQ>uj = 1 and∑I

j=1 x
2
ij = q>i UU>ui = 1. Without loss of optimality, such constraints can be further relaxed

as
∑I

i=1 x
2
ij ≥ 1 and

∑I
j=1 x

2
ij ≥ 1. This allows the problem in (15) to be reformulated as a
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Algorithm 1: On-the-Fly Sub-space Detection for FlyCom2 Based DTD

Initialize: Received in-phase matrix symbols {Ỹ`}`≤t in slot t;
Perform:

1: Aggregation: Aggregate all received matrix symbol {Ỹ`}`≤t into Ŷt = [Ỹ1, · · · , Ỹt];
2: Whitening: Compute the whitened version, Φt, of the aggregated matrix Ŷt by (13);
3: Sub-space extraction: Compute the first r eigenvectors of ΦtΦ

>
t and aggregate them into

Ũ.
Output: Ũ used as the principal eigenspace of the unfolding matrix X.

convex problem:

min
{xij}

I∑
i=1

I∑
j=1

λ−1j γix
2
ij

s.t.
I∑
l=1

x2il ≥ 1,
I∑
l=1

x2lj ≥ 1, ∀i, j.

(16)

Since λ1 ≥ λ2 ≥ · · · ≥ λI , the objective of (16) subject to the constraints is lower bounded as

I∑
i=1

I∑
j=1

λ−1j γix
2
ij ≥

I∑
i=1

λ−1i γi. (17)

The lower bound can be achieved by letting xii = 1, ∀i and xij = 0, ∀i 6= j. The optimal

solution for (16) follows as shown below.

Proposition 1. Based on the ML criterion, in slot t, the optimal on-the-fly estimate of the

r-dimensional principal components of the unfolding matrix, X, is denoted as Ũ? and given as

Ũ? = [q1, · · · ,qr] = Sr
(
ΦtΦ

>
t

)
, (18)

where Φt is the effective observation in slot t as given in (13) and we recall Sr(·) to yield the

r-dimensional principal eigenspace of its argument.

Remark 2 (Minimum Number of FlyCom2 Operations). For the result in (18) to hold, the

dimensions of the current effective observations Φt should be larger than those of U, i.e. tM ≥ r.

This implies that the FlyCom2 should run at least t ≥ r/M rounds to enable the estimation of

an r-dimensional principal eigenspace of the tensor.
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C. DTD Error Analysis

Based on the optimal sub-space detection designed in the preceding sub-section, we mathe-

matically quantify the key feature of FlyCom2 that the DTD error gracefully decreases with com-

munication rounds. The existing error analysis for random sketching does not target distributed

implementation and hence requires no communication links [20], [21]. The new challenge for

the current analysis arises from the need to account for the distortion increased by the MIMO

AirComp transmission. In what follows, we derive deterministic and probabilistic bounds on the

DTD error defined in (5).

1) Deterministic Error Bound: As the unfolding matrix comprises r principal components,

its singular values can be represented as ΣX = diag(σ1, σ2, · · · , σI) with σ1 = · · · = σr �

σr+1 ≥ · · · ≥ σI , where we assume the same principal singular values following the literature

(see, e.g. [20]).

Lemma 2. Consider the DTD of the unfolding matrix X in tensor decomposition that has an r-

dimensional principal eigenspace U = [u1, · · · ,ur] and the singular values ΣX. The estimation

of U as in (18) yields the DTD error given as

d(Ũ,X) =
r∑
i=1

∑
j≥r+1

(σ2
i − σ2

j )〈ũi,uj〉2 +
∑
i≥r+1

σ2
i . (19)

Proof. See Appendix B.

On the right hand side, the first term,
∑r

i=1

∑
j≥r+1(σ

2
i −σ2

j )〈ũi,uj〉2, represents the error due

to random sketching; the second term
∑

i≥r+1 σ
2
i represents the residual error due to non-zero

non-principal components of X.

Next, we make an attempt to characterize the behavior of each error term, (σ2
i −σ2

j )〈ũi,uj〉2.

Let ũi and uj denote the i-th and j-th (i ≤ r < j) eigenvectors of the sample covariance matrix
1
tM

ΦtΦ
>
t and the covariance matrix UXΛU>X, respectively. The error in (19) is caused by the

perturbation ∆ = 1
tM

ΦtΦ
>
t −UXΛU>X. Using this fact allows us to obtain the following desired

result.

Lemma 3. Consider a fixed realization W in the DRM, Φt, in (13) and the error term, (σ2
i −

σ2
j )〈ũi,uj〉2, in Lemma 2 is upper bounded as

(σ2
i − σ2

j )〈ũi,uj〉2 ≤ max
{

4, δ2ij
} ‖∆uj‖22
σ2
i − σ2

j

, i ≤ r < j,
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where δij
4
=

min{2|λ̃i−λi|,(σ2
i−σ2

j )}
|λ̃i−λj |

with λi and λ̃i being the i-th eigenvalues of UXΛU>X and
1
tM

ΦtΦ
>
t , respectively.

Proof. See Appendix C.

The upper bound in Lemma 3 suggests two scaling regions of the DTD error, namely δij ≥ 2

and δij < 2. Invoking the well-known Weyl’s theorem (see, e.g. [25]), the norm of the perturbation

∆ and hence the value of δij reduce as FlyCom2 progresses in time. This is aligned with the

result in Fig. 3(a) where the average value of {δij} is observed to decrease with increasing

communication time t. To simplify the analysis, we focus on the case of δij ≤ 2, ∀i ≤ r < j,

by assuming sufficiently large t. In this case, the upper bound in Lemma 3 simplifies to

(σ2
i − σ2

j )〈ũi,uj〉2 ≤
4‖∆uj‖22
σ2
i − σ2

j

, i ≤ r < j. (20)

Next, based on Lemma 2 and (20), the desired deterministic error bound is derived as follows.

Theorem 1 (Expected Error Bound). Given the receive beamformers {A`}`≤t of FlyCom2-based

DTD and δij ≤ 2, ∀i ≤ r < j, the expected error can be bounded as

E[d(Ũ,X)] ≤ 4

tM

r∑
i=1

∑
j≥r+1

λ2j + λjTr(Λ)

σ2
i − σ2

j

+
∑
i≥r+1

σ2
i ,

where δij and λj follow those in Lemma 3.

Proof. See Appendix D.

The error bound in the Theorem 1 is compared numerically with the exact error and that of

centralized tensor decomposition in Fig. 3(b). One can observe the bound to capture the trend

of decreasing DTD error as t progresses. In particular, it shows that under a small perturbation,

E[d(Ũ,X)] ∝ 1

tM
.

2) Probabilistic Error Bound: We derive in the sequel a probabilistic bound on the DTD

error using the method of concentration of measure. A relevant useful result is given below.

Lemma 4 (McDiarmid’s Inequality [26]). Let g be a positive function on independent variables
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Fig. 3. Validation of theoretical results under the settings of r = 12, I = 100, ΣX = diag(1, · · · , 1, 1
2
, 1
3
, · · · , 1

88
), and

AtA
>
t = 1

10σ
I

{Wm} satisfying the bounded difference property:

sup
{WM}M 6=m,Wm,WM

|g({WM}M 6=m,Wm)

− g({WM}M 6=m,WM)| ≤ cm, ∀m,

with constants {cm} and WM being i.i.d. as Wm. Then, for any ε > 0,

Pr [g({Wm})− E[g({Wm})] ≥ ε] ≤ exp

(
− 2ε2∑

m c
2
m

)
.

Using Lemma 4, the desired result is obtained as shown below.

Theorem 2 (Probabilistic Error Bound). Given receive beamformers {A`}`≤t and δij ≤ 2,

∀i ≤ r < j, for any ε ≥ 0, the error of the FlyCom2-baded DTD can be upper bounded as

d(Ũ,X) ≤ 4(1 + ε)

tM

r∑
i=1

∑
j≥r+1

λ2j + λjTr(Λ)

σ2
i − σ2

j

+
∑
i≥r+1

σ2
i ,

with the probability of at least
[
1− e−

ε2

2κ8

]
erf
(

κ√
2

)tM(I−r)
, where erf(·) denotes the error

function defined as erf(y) = 2√
π

∫ y
0
e−x

2
dx and κ ≥ 1.

Proof. See Appendix E.

The upper bound on the DTD error in Theorem 2 holds almost surely if the constant ε is
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sufficiently large. Comparing Theorem 1 and Theorem 2, one can make the important observation

that as the communication time (t) progresses, both the DTD error and its expectation vanish at

the same rate of

Error ∝ 1

tM

r∑
i=1

∑
j≥r+1

λ2j + λjTr(Λ)

σ2
i − σ2

j

. (21)

Another observation is that non-principal components of the tensor contribute to the DTD error

but the effect is negligible when the eigen-gap is large.

V. OPTIMAL SKETCH SELECTION FOR FLYCOM2

Discarding aggregated sketches that have been transmitted under unfavourable channel con-

ditions can improve the FlyCom2 performance. This motivates us to design a sketch-selection

scheme in this section.

A. Threshold Based Sketch Selection

First, we follow the approach in [23] to design the receive beamforming, {At}, for MIMO

AirComp. To this end, we decompose At as At = ηtUAt , where the positive scalar ηt is called

a denoising factor and UAt is an M × Nr unitary matrix. Following similar steps as in [23],

we can show that to minimize the DTD error bounds in Theorem 1 and 2, the beamformer

component should be aligned with the channels of devices as

U>At
= SM

(
1

K

∑
k

λHt,k
UHt,k

U>Ht,k

)
, (22)

where λHt,k
and UHt,k

denote the Nt-th eigenvalue and the first Nt eigenvectors of Ht,kH
>
t,k,

respectively. Furthermore, the denoising factor ηt should cope with the weakest channel by being

ηt = max
k

Tr(X>k Xk)

IP
Tr
((

UAtHt,kH
H
t,kU

H
At

)−1)
. (23)

It follows from (22) and (23) that Tr(AH
t At) = ηtM and λj in DTD error bounds in Theorem 1

and 2 can be expressed as

λj = σ2
j +

σ2

2t

∑
`≤t

η`, (24)

which shows that the error relies on only the denoising factor up to the current time slot. The

result also suggests that it is preferable to select from the received sketches {Ỹn}`≤t those
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associated with small η` that reflects a favorable channel condition. Naturally, we can derive a

threshold based selection scheme as follows:

Ỹ` is selected if η` ≤ ηth, ∀` ≤ t, (25)

where the threshold ηth is optimized in the sequel.

B. Threshold Optimization

The threshold, ηth, in (25), needs to be optimized to minimize the error in (21). Solving the

problem is hindered by that the singular values {σj} are not available at the server in advance.

We tackle this problem by designing a practical optimization scheme. To this end, we resort to

using an upper bound on the DTD error as shown below.

Lemma 5. Let M̃ denote the number of aggregated sketches selected from {Ỹ`}`≤t based on (25)

with the threshold ηth, the DTD error in (21) satisfies

1

M̃

r∑
i=1

∑
j≥r+1

λ2j + λjTr(Λ)

σ2
i − σ2

j

≤ c

M̃

[
1 +

rσ2ηth
2
∑

k Tr(X
>
k Xk)

]2
,

where c is a constant.

Proof. See Appendix F.

Lemma 5 suggests that a sub-optimal threshold can be obtained by minimizing the error upper

bound. Let S denote a set and |S| its cardinality. Then, the threshold-optimization problem can

be formulated as

min
ηth

1

|S|

[
1 +

rσ2ηth
2
∑

k Tr(X
>
k Xk)

]2
s.t. S = {η`|η` ≤ ηth, ` ≤ t} ,

(26)

where η` follows the definition in (23). One can observe that the objective function of (26)

is a monotonically increasing function w.r.t. the variable ηth if M̃ is fixed. Such piecewise

monotonicity of the objective function (26) renders a linear-search solution method (e.g. bisection

search) infeasible, but allows the optimal solution, η?th, to be restricted into a finite set, say

η?th ∈ {η1, η2, · · · , ηt}. Then, finding η?th is simple by exhausted enumeration as follows. Let M̃`
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Fig. 4. Error-performance comparison between FlyCom2 with and without sketch selection, SNR γ = 10dB.

denote the number of selected sketches corresponding to the threshold fixed as ηth = η`. Define

`? = arg min
`≤t

1

M̃`

[
1 +

rσ2η`
2
∑

k Tr(X
>
k Xk)

]2
.

The optimal threshold solving the problem in (26) is ηth = η`? . Two remarks are offered as

follows. First, the above research for the optimal threshold has complexity linearly proportional

to t, the population of accumulated sketches at the server. Second, the implementation of the

optimization at the server requires feedback of a scalar from each device, namely Tr
(
X>k Xk

)
from device k.

VI. EXPERIMENTAL RESULTS

A. Experimental Settings

First, the MIMO AirComp system is configured to have the following settings. There are

K = 20 edge devices connected to the server. The array sizes at each device and the server are

set as Nt = 4 and Nr = 16, respectively. The Rayleigh channel with shadow fading is adopted,

in which each MIMO channel is given as Ht,k =
√
βt,kĤt,k with βt,k following a Gamma

distribution Γ(1.2, 0.83) (see, e.g. [27]) and Ĥt,k comprising i.i.d. CN (0, 1) entries. Different

channels are independent. Second, we use a synthetic data model following the DTD literature

(see, e.g. [20]). Considering the computation of the n-th factor matrix, the unfolding matrix of the

data tensor has the size of In×(
∏N

j=1,j 6=n) = 100×1500, and its columns are uniformly distributed

over devices. Under such settings, each local sketch has the length of In = 100 that is smaller than

a single channel coherence block (see, e.g. [28], for justification). To demonstrate the performance
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of the proposed FlyCom2 for data with a range of parameterized spectral distribution, the singular

values of the unfolding matrix are set to decay with a polynomial rate:

ΣX = diag

(
1, · · · , 1, 1

2ξ
,

1

3ξ
, · · · , 1

(In − r)ξ

)
,

where the first r = 12 principal singular values are fixed as 1 and ξ > 0 controls the decay

rate of residual values. Furthermore, the left and right eigenspaces of the unfolding matrix are

generated as those of random matrices with i.i.d. N (0, 1) entries [20].

Third, we consider two benchmarking schemes that are variants of SVD-based DTD.

• Centroid SVD-DTD: Devices compute local principal eigenspaces {Ûk} of their on-device

data samples by using SVD and the server then aggregates these local results as P =

1
K

∑
k ÛkÛ

>
k . The principal eigenspace of P represents the centroid of all local estimates

{Ûk} on the Grassmannian manifold and is extracted to form a global estimate of the

ground truth [10], [11].

• Alignment SVD-DTD: The scheme follows a similar procedure as above except for aggre-

gating local results, {Ûk}, as P = 1
K

∑
k ÛkJk, where the orthogonal matrices {Jk} are

alignment matrices that are to be optimized by using past global estimates to improve the

system performance [12].

The aggregation operations in both benchmark schemes are implemented using MIMO Air-

Comp [14], [23] as FlyCom2 for fair comparison.

B. Performance Gain of Sketch Selection

In Fig. 4, we compare the error performance of FlyCom2 between the cases with and without

sketch selection. The communication time is measured by the total number of symbol slots used in

uploading local sketches, namely tIn, where In is the number of rows of local sketches. We vary

the dimension of the receive beamformer, M , from 1 to 4 to achieve different tradeoffs between

channel diversity and multiplexing. It is observed from Fig. 4 that the proposed selection scheme

helps reduce the expected DTD error for different M . The gain emerges when the communication

time exceeds M -dependent threshold (e.g. 6000 time slots for M = 1) as the total number of

available sketches becomes sufficiently large. Another observation from Fig. 4 is that the DTD

error without selection decreases at an approximately linear rate w.r.t. the communication time,

which is aligned with our conclusion in (21). In the sequel, FlyCom2 is assumed to have sketch

selection with M fixed as 2.
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Fig. 5. FlyCom2 versus Benchmark schemes, SNR γ = 10dB.
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Fig. 6. Computation-cost comparison between FlyCom2 based DTD and benchmarking schemes.

C. Error Performance of FlyCom2

While FlyCom2 requires much simpler on-device computation than benchmarking schemes

(see Section VI-D), we demonstrate in Fig. 5 that it can achieve comparable or even better error

performance than the latter. Fig. 5 shows the expected DTD error versus the communication time.

The performance of the benchmark schemes with one-shot computation and communication

appears as single points in the figure. The results in Fig. 5 show that FlyCom2-based DTD

achieves comparable decomposition accuracy as the benchmark schemes with progressing time.

Furthermore, its performance is improved by increasing the decay rate (ξ) of the singular values,

which validates our conclusion that large eigen-gaps help distinguish principal from non-principal
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eigenvectors during random sketching. For instance, for ξ = 2, the proposed scheme approaches

the centroid and alignment based SVD-DTD in performance for communication time larger than

2600 and 4000 symbol slots, respectively. As ξ increases to 3, the former achieves the same error

performance as the alignment-based method while outperforming the centroid based method.

Furthermore, one can observe from Fig. 5 that the proposed on-the-fly framework realizes a

flexible trade-off between the decomposition accuracy and communication time, which is the

distinctive feature of the design.

D. Device Computation Costs of FlyCom2

In Fig. 6, we compare two kinds of computational costs at devices, namely complexity and

memory passes, between FlyCom2 and benchmark schemes. The complexity refers to the flop

count of computation, and the memory passes are equal to the number of memory visits for

reading data entries. The computational advantage of FlyCom2 is demonstrated by comparing

the cost of matrix-vector multiplication in random sketching with that of deterministic SVD

used in the one-shot benchmarking schemes. Specifically, given I × J local unfolding matrices,

deterministic SVD has the complexity proportional to min{I, J}2 ×max{I, J} [18]; based on

matrix multiplication, the complexity of FlyCom2 to yield an M -dimensional sketch at each time

slot is IJM . For the schemes in comparison, their curves of computation complexity versus

sample size are plotted in Fig. 6(a). One can observe that the proposed FlyCom2 dramatically

reduces devices’ complexity by more than an order of magnitude. On the other hand, Fig. 6(b)

displays the curves of the number of memory passes versus the principal dimensionality, r. The

proposed design keeps a constant memory pass for matrix multiplication, as opposed to that of

SVD which increases linearly with the principal dimensionality. For example, the number of

memory passes is reduced using FlyCom2 by 30 times for r = 30.

VII. CONCLUSION

We have proposed the FlyCom2 framework, that supports the progressive computation of

DTD in mobile networks. Through the use of random sketching techniques at devices, the

traditional one-shot high-dimensional mobile communication and computation is reduced to

low-dimensional operations spread over multiple time slots. Thereby, the resource constraints

of devices are overcome. Furthermore, FlyCom2 obtains its distinctive feature of progressive

improvement of DTD accuracy with increasing communication time, providing robustness against
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link disruptions. To develop the FlyCom2 based DTD framework, we have designed an on-

the-fly sub-space estimator and a sketch-selection scheme to ensure close-to-optimal system

performance.

Beyond DTD, high-dimensional communication and computation pose a general challenge

for machine learning and data analytics in wireless networks. We expect that FlyCom2 can be

further developed into a broad approach for efficient deployment of relevant algorithms such

as federated learning and distributed optimization. For the current FlyCom2 targeting DTD, its

extension to accommodate other wireless techniques such as broadband transmission and radio

resource management is also a direction worth pursuing.

APPENDIX

A. Proof of Lemma 1

In (9), both the Ft and Z̃t have i.i.d. zero-mean Gaussian entries, thereby enforcing the

observation Ỹt to be a Gaussian matrix. This conclusion holds for all observations and thus the

aggregation Ŷt is a Gaussian matrix and can be decomposed into C
1
2 WD

1
2 . Therein, W has

i.i.d. N (0, 1) entries. The covariance matrices C and D are computed as follows. First, there

is E[ŶtŶ
>
t ] = E[C

1
2 WDW>C

1
2 ], where the right hand side of the equation equals to CTr(D)

while the left hand side is given as

E[ŶtŶ
>
t ] =

∑
`≤t

E[ỸtỸ
>
t ]

= tMXX> +
1

2
σ2
∑
`≤t

Tr(AH
` A`)II .

On the other hand, using E[Ŷ>t Ŷt] = E[D
1
2 W>CWD

1
2 ] = DTr(C), we have

DTr(C) = E
[
[Ỹ1, Ỹ2, · · · , Ỹt]

>[Ỹ1, Ỹ2, · · · , Ỹt]
]

= diag
(
E[Ỹ>1 Ỹ1], · · · ,E[Ỹ>t Ỹt]

)
,

where an arbitrary diagonal block, say E[Ỹ>` Ỹ`], ∀` ≤ t, can be expressed as

E[Ỹ>` Ỹ`] = E[F>X>XF] + E[Z̃tZ̃
>
t ]

= Tr(X>X)IM +
1

2
Iσ2A`A

H
` .
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Concluding the above results yields the covariance matrices as C = XX>+ 1
2tM

σ2
∑

`≤t Tr(A
H
` A`)II

and D =
tMTr(X>X)ItM+ 1

2
ItMσ2diag(A1AH

1 ,··· ,AtAH
t )

tMTr(X>X)+ 1
2
Iσ2

∑
`≤t Tr(A

H
` A`)

, respectively. This completes the proof.

B. Proof of Lemma 2

First, rewrite the error as

‖(II − ŨŨ>)X‖2F

=
I∑
j=1

σ2
j −

r∑
i=1

∑
j 6=i

σ2
j 〈ũi,uj〉2 −

r∑
i=1

σ2
i 〈ũi,ui〉2

=
∑
j≥r+1

σ2
j −

r∑
i=1

∑
j 6=i

(σ2
i − σ2

j )〈ũi,uj〉2,

where the last step is due to 〈ũi,ui〉2 = 1−
∑

j 6=i〈ũi,uj〉2.

Then, under the assumption of σi = σj , ∀i, j ≤ r, the second term on the right side of the

above equation can be rewritten as

r∑
i=1

∑
j 6=i

(σ2
i − σ2

j )〈ũi,uj〉2

=
r∑
i=1

I∑
j≥r+1

(σ2
i − σ2

j )〈ũi,uj〉2

+
r∑
i=1

r∑
j=1,j 6=i

(σ2
i − σ2

j )〈ũi,uj〉2︸ ︷︷ ︸
=0

=
r∑
i=1

I∑
j≥r+1

(σ2
i − σ2

j )〈ũi,uj〉2.

Putting the results above together, the conclusion in Lemma 2 follows.

C. Proof of Lemma 3

According to Remark 1, we have λi > λj , ∀i ≤ r < j. Then, using the perturbation theory [29,

Theorem 3.1 & Theorem 3.2], the 〈ũi,uj〉 can be upper bounded as

〈ũi,uj〉 ≤ min

{
max

{
2, 2
|λ̃i − λi|
|λ̃i − λj|

}
,
λi − λj
|λ̃i − λj|

}
‖∆uj‖2
λi − λj

,
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where λi and λ̃i denote the i-th eigenvalues of Λ and 1
tM

ΦtΦ
>
t , respectively. Based on min{max{a, b}, c} =

max{min{a, c},min{b, c}} ≤ max{a,min{b, c}}, the upper bound can be further written as

〈ũi,uj〉 ≤ max

{
2,min

{
2|λ̃i − λi|
|λ̃i − λj|

,
λi − λj
|λ̃i − λj|

}}
‖∆uj‖2
λi − λj

= max

{
2,

2 min{|λ̃i − λi|, λi − λj}
|λ̃i − λj|

}
‖∆uj‖2
λi − λj

.

Recall that λi = σ2
i + σ2

∑
`≤t Tr(A

H
` A`)/2tM , we have λi − λj = σ2

i − σ2
j , which yields

(σ2
i − σ2

j )〈ũi,uj〉2

= max

{
4,

min{4|λ̃i − λi|2, (σ2
i − σ2

j )
2}

|λ̃i − λj|2

}
‖∆uj‖22
σ2
i − σ2

j

,

which completes the proof.

D. Proof of Theorem 1

First, the square vector norm, ‖∆uj‖22, can be rewritten as

‖∆uj‖22 =u>j

(
1

tM
ΦtΦ

>
t −UXΛU>X

)2

uj

=λ2j −
2λ2j
tM

ejWW>e>j

+
λj

(tM)2
ejWW>ΛWW>e>j ,

where we define ej = [0, · · · , 0, 1, 0, · · · , 0] with the j-th element being 1 and other elements be-

ing 0. Since W has i.i.d. N (0, 1) entries, the expectation of the upper bound of (σ2
i −σ2

j )〈ũi,uj〉2

can be expressed as

(σ2
i − σ2

j )E[〈ũi,uj〉2]

≤ 4

σ2
i − σ2

j

E[‖∆uj‖22]

=
4

σ2
i − σ2

j

[
λj

(tM)2
ejE[WW>ΛWW>]e>j − λ2j

]
.
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The result of ejE[WW>ΛWW>]e>j can be derived by representing W = [w>1 ,w
>
2 , · · · ,w>I ]>,

where wi has i.i.d. N (0, 1) entries and is independent with wj with i 6= j. In specific, there is

ejE[WW>ΛWW>]e>j

= λjE[wjw
>
j wjw

>
j ] +

∑
i 6=j

λiE[wjE[w>i wi]w
>
j ]

= tM [Tr(Λ) + (tM + 1)λj].

Putting the above results together yields

(σ2
i − σ2

j )E[〈ũi,uj〉2] ≤
4[λ2j + λjTr(Λ)]

tM(σ2
i − σ2

j )
,

which completes the proof.

E. Proof of Theorem 2

Using Lemma 3, we rewrite the error bound as

‖(II − ŨŨ>)X‖2F −
∑
i≥r+1

σ2
i

≤ g(W) +
r∑
i=1

∑
j≥r+1

4λ2j
σ2
i − σ2

j

,

where the involved random part is defined as g(W)
4
= Tr

(
WW>ΛWW>Λ1

)
−Tr

(
WW>Λ2

)
with Λ1 =

∑r
i=1

∑
j≥r+1

4
σ2
i−σ2

j

λj
(tM)2

e>j ej and Λ2 =
∑r

i=1

∑
j≥r+1

8λ2j
(σ2
i−σ2

j )tM
e>j ej . It then follows

that the probabilistic error bound is upper bounded as

Pr

[
‖(II − ŨŨ>)X‖2F −

∑
i≥r+1

σ2
i ≥ E[g(W)] + ε

]

≤ Pr [g(W)− E[g(W)] ≥ ε] .

Next, rewrite W = [w̃1, w̃2, · · · , w̃tM ] and the random variable g(W) can be rewritten as

g(W) =
∑
m1,m2

w̃>m1
Λw̃m2w̃

>
m2

Λ1w̃m1 −
∑
m3

w̃>m3
Λ2w̃m3 .
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Let ŵm be an independent copy of w̃m and then there is

|g′ ({w̃M}M 6=m, w̃m)− g′ ({w̃M}M 6=m, ŵm) |

= |ŵ>mΛ2ŵm − w̃>mΛ2w̃m

+ w̃>mΛw̃mw̃>mΛ1w̃m − ŵ>mΛŵmŵ>mΛ1ŵm

+
∑
m1 6=m

w̃>m1
Λ(w̃mw̃>m − ŵmŵ>m)Λ1w̃m1

+
∑
m2 6=m

w̃>m2
Λ1(w̃mw̃>m − ŵmŵ>m)Λw̃m2|.

Note that the above equation does not have an upper bound since the Gaussian random variables

go from minus infinity to infinity. To endow on g(W) the bounded difference property, the

Gaussian concentration is exploited as follows. Specifically, a N (0, 1) variable w can be smaller

than a threshold, say κ > 1, with the probability of p(|w| ≤ κ) = erf
(

κ√
2

)
4
= pκ, where erf (·)

denotes the error function. Hence, let the event that the abstract value of the last I − r elements

in the vectors w̃m and ŵm are bounded by κ be denoted by BD and its complement by UBD.

Then, there are Pr(BD) = p
tM(I−r)
κ and Pr(UBD) = 1− ptM(I−r)

κ . Hence, with the probability of

Pr(BD), |g′ ({w̃M}M 6=m, w̃m)− g′ ({w̃M}M 6=m, ŵm) | can be upper bounded as

|g′ ({w̃M}M 6=m, w̃m)− g′ ({w̃M}M 6=m, ŵm) |

≤ κ4Tr(Λ)Tr(Λ1)− κ2Tr(Λ2) + 2(tM − 1)κ4Tr(Λ)Tr(Λ1)

=
r∑
i=1

∑
j≥r+1

8λj
(σ2

i − σ2
j )tM

[
tM − 1/2

tM
κ4Tr(Λ)− λjκ2

]

≤ 2κ4
r∑
i=1

∑
j≥r+1

4λj
(σ2

i − σ2
j )tM

[Tr(Λ) + λj]

= 2κ4E[g(W)],

which allows us to leverage the concentration theorem shown in Lemma 4 to give

Pr [g(W)− E[g(W)] ≥ ε|BD] ≤ exp

(
− ε2

2κ8E2[g(W)]

)
.
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Concluding both cases of BD and UBD, the probabilistic error bound can be expressed as

Pr [g(W)− E[g(W)] ≥ ε]

= Pr [g(W)− E[g(W)] ≥ ε|BD]Pr[BD]

+ Pr [g(W)− E[g(W)] ≥ ε|UBD]Pr[UBD]

≤ exp

(
− ε2

2κ8E2[g(W)]

)
ptM(I−r)
κ

+ Pr [g(W)− E[g(W)] ≥ ε|UBD] (1− ptM(I−r)
κ )

≤ exp

(
− ε2

2κ8E2[g(W)]

)
ptM(I−r)
κ + 1− ptM(I−r)

κ ,

where the last inequality is due to the fact that a conditional probability is always smaller than

1. Finally, with proper algebraic substitution, we have

Pr

[
‖(II − ŨŨ>)X‖2F ≤ E[g(W)](1 + ε) +

∑
i≥r+1

σ2
i

]

≥
[
1− exp

(
− ε2

2κ8

)]
ptM(I−r)
κ ,

which completes the proof.

F. Proof of Lemma 5

First of all, for any i ≤ r and j ≥ r + 1, we have σ2
i − σ2

j ≥ σ2
r − σ2

r+1, which gives

1

M̃

r∑
i=1

∑
j≥r+1

λ2j + λjTr(Λ)

σ2
i − σ2

j

≤ r

M̃(σ2
r − σ2

r+1)

∑
j≥r+1

λj[λj + Tr(Λ)].

Then, define C =
∑

k Tr
(
X>k Xk

)
=
∑I

i=1 σ
2
i and ηth = ζthC. It follows that σ2

j ≤ σ2
i ≤ C/r,

∀j ≥ r+ 1 > i, which further gives rλj ≤ rσ2
j + rσ2

2
ζthC ≤ (1 + rσ2

2
ζth)C. As a result, one can

obtain ∑
j≥r+1

rλj[λj + Tr(Λ)] ≤ (1 +
rσ2

2
ζth)C

∑
j≥r+1

[λj + Tr(Λ)],
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where the summation term can be upper bounded as

(I − r)Tr(Λ) +
∑
j≥r+1

λj

≤ (I − r)C + (I − r)Iσ
2

2
ζthC +

I − r
r

C + (I − r)σ
2

2
ζthC

≤ I − r
(I + 1)r

(1 +
rσ2

2
ζth)C.

Putting the above results together yields

1

M̃

r∑
i=1

∑
j≥r+1

λ2j + λjTr(Λ)

σ2
i − σ2

j

≤ (I − r)C2

(σ2
r − σ2

r+1)(I + 1)r

(1 + rσ2

2
ζth)

2

M̃
,

where (I−r)C2

(σ2
r−σ2

r+1)(I+1)r
can be treated as a constant independent from the variable ζth. This

completes the proof.
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