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Hypothesis Test Procedures for Detecting Leakage
Signals in Water Pipeline Channels

Liusha Yang, Matthew R. McKay, Xun Wang

Abstract—We design statistical hypothesis tests for performing
leak detection in water pipeline channels. By applying an appro-
priate model for signal propagation, we show that the detection
problem becomes one of distinguishing signal from noise, with
the noise being described by a multivariate Gaussian distribu-
tion with unknown covariance matrix. We first design a test
procedure based on the generalized likelihood ratio test, which
we show through simulations to offer appreciable leak detection
performance gain over conventional approaches designed in an
analogous context (for radar detection). Our proposed method
requires estimation of the noise covariance matrix, which can
become inaccurate under high-dimensional settings, and when the
measurement data is scarce. To deal with this, we present a second
leak detection method, which employs a regularized covariance
matrix estimate. The regularization parameter is optimized for
the leak detection application by applying results from large
dimensional random matrix theory. This second proposed ap-
proach is shown to yield improved performance in leak detection
compared with the first approach, at the expense of requiring
higher computational complexity.

Index Terms—Leak detection, hypothesis test, random matrix
theory.

I. INTRODUCTION

Leakage in water supply systems causes wastage of water
and energy resources, and poses public health risk due to
water pollution. Leaks may occur, for example, due to ag-
ing pipelines, corrosion, and excessive steady and/or unsteady
pressures in the system [1]. Thus, an effective leakage detec-
tion method is essential.

Most related research in this area has focused on the prob-
lem of leak estimation, for which the objective is usually to
estimate the location of the leak, assuming that a leak actually
exists in the pipeline. For this purpose, various transient-based
leak location estimation methods have been developed (e.g.,
[1–4]). In this work we address the related (but different)
problem of leak detection, by developing suitable statistical
hypothesis testing procedures. Despite being a natural detec-
tion approach, to our knowledge, hypothesis tests have yet to
be developed for leak detection in water pipeline systems.

Generally speaking, we develop data-driven approaches to
decide between the presence or absence of a leak in the pipeline,
and for the former case, return estimates of the leak param-
eters. The measured data corresponds to primary and sec-
ondary measurements of head differences at different frequen-
cies, taken from multiple sensors deployed at different loca-
tions along the water pipeline. Our tests are developed based
on a linearized transient wave model in the frequency do-
main, as proposed in [3, 4], which has been supported by
experimental data [5]. By applying hypothesis testing theory

to this model, we find that, from a technical point of view, the
problem boils down to a binary classification problem that dis-
criminates between a “null hypothesis”, corresponding to zero-
mean complex Gaussian noise with non-trivial correlation, and
an “alternative hypothesis”, corresponding to a structured (de-
terministic) signal embedded within the Gaussian noise. For
the latter hypothesis, the deterministic signal is a function of
the leak parameters, including size and location.

Since the signal and noise model parameters (i.e., noise
covariance, leak location and size) are all unknown, we de-
velop test procedures based on the generalized likelihood ratio
test (GLRT) [6], which constructs a likelihood ratio based
on the two hypotheses, and replaces the unknown parameters
in the likelihood functions by appropriate estimates. We first
consider a traditional strategy of which replaces the unknown
parameters by their maximum likelihood estimates (MLE),
and develop a suitable test statistic. This statistic exploits the
known structure of the leak signals (under the alternative hy-
pothesis), and is proven to have the desirable property of being
a constant false alarm rate (CFAR) statistic; meaning that a de-
tection threshold can be specified which achieves a fixed false
alarm probability, regardless of the model parameters. Through
simulations, we demonstrate the good performance of the pro-
posed method in detecting leaks, and show enhancement over
methods that have been developed for related models in the
context of radar detection. This approach is particularly suited
to “data rich” scenarios, where the MLEs provide accurate
parameter estimates.

One limitation of the proposed approach is that for high
dimensional settings when the number of frequency domain
measurements and/or the number of sensors is large, the num-
ber of parameters to estimate is also large. This is particu-
larly the case for the noise covariance matrix, and it is well
known that under high dimensional settings that the MLE –
corresponding to the conventional sample covariance matrix
(SCM) estimate – is particularly inaccurate. This, in turn,
can degrade the performance of the proposed leak detection
algorithm. To deal with this potential problem, we propose
a second detection algorithm that seeks to design a robust
covariance estimation solution which is suitably optimized for
the task of leak detection, under high dimensional settings. The
approach is to replace the SCM with a regularized version
(termed RSCM) in the GLRT statistic, and to optimize the
regularization parameter to maximize the leak detection accu-
racy subject to a prescribed false alarm criteria. The RSCM
is a simple but effective covariance matrix estimator to deal
with problems of sample deficiency and high dimensionality
by pulling the spread sample eigenvalues toward their grand
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mean [7]. It is used in many fields, including mathematical
finance and adaptive array processing [8–12]. Extensions have
also been proposed which replace the SCM with a robust
covariance matrix estimator (such as Tyler’s estimator) to pro-
vide resilience against outliers [13–15]. The main challenge
is generally to develop data-driven methods to optimize the
regularization parameter, which is typically application depen-
dent. In a similar spirit to previous work (e.g., [7, 8, 11, 16–
18]), our solution draws from recent results in the area of
large dimensional random matrix theory. Most specifically, it
leverages technical results from [17, 18], which considered a
related detection problem, but which considered a different
model to the one in this paper.

The basic idea of the approach is to first characterize the
asymptotic behavior of the false alarm and detection probabil-
ities under certain double-limit asymptotics, which we define,
and subsequently to provide consistent estimators of these
probabilities which are completely data-driven. Based on this,
we can then optimize the regularization parameter in an online
fashion, which maximizes the (estimated) detection probability
while maintaining a prescribed (estimated) false alarm proba-
bility. The performance of this second proposed leak detection
algorithm is demonstrated through simulations, and shown to
outperform the first proposed algorithm, particularly under
high-dimensional model settings, at the expense of increased
complexity.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a reservoir-pipe-valve sys-
tem where the pipe of length l meters is bounded by pU = 0
and pD = l. A total of M pressure sensors deployed near the
downstream node are used to collect pressure head oscilla-
tions* for leak identification. The locations of the M sensors
are pU < x1 < x2 < . . . < xM < pD. We denote the leak
size and the leak location as s and φ.

𝑥𝐿 𝑥1 𝑥2

𝑄0
𝐿

Up Dp


Upstream
reservoir

Downstream
reservoir

Fig. 1. Pipeline configuration. Under hypothesis H0, there is no leak in the
water pipe, while under hypothesis H1, a leak of size s is present at location
φ.

By rapidly closing and/or opening the valve at the down-
stream of the pipe, the sensors measure the pressure head oscil-
lations at different frequencies, which are affected by a leak in
the pipe. Let hm(wj) denote the head oscillation at frequency
wj and location xm, and hom(wj) the computed head oscil-
lation with no leak, where j = 1, . . . , J and m = 1, . . . ,M .
We define the head difference at frequency wj observed by the
sensor at xm as zm(wj) = hm(wj) − hom(wj). If the pipe is

*The pressure head (in meters) relates the pressure of a fluid to the height
of a column of that fluid having an equivalent static pressure at its base. The
head is defined as h = p/(ρg) where p is the pressure (in Pascals), g denotes
gravitational acceleration, and ρ is the density of the fluid. For example, 50
m of head in a pipe implies that if that pipe bursts, the height of the resulting
water jet would be 50 m.

intact (with no leak), zm(wj) = hm(wj)−hom(wj) = nm(wj),
where nm(wj) is the measurement noise, which can be mea-
surement error or environment noise induced by turbulence,
traffic, construction, etc. Otherwise, zm(wj) = sgm(φ,wj) +
nm(wj), in which sgm(φ,wj) is the leak component, which
depends on the leak size s and the leak location φ. The de-
tailed formulas of hom(wj) and gm(φ,wj) are provided in the
Appendix A. Assembling zm(wj) into a vector z0 ∈ CN of
length N = J ×M , we have

z0 = vec[zm(wj), j = 1, . . . , J,m = 1, . . . ,M ].

We denote the hypothesis of whether there exists a leak or not
by H1 and H0, respectively. Then the problem of detecting a
leak in a noise-contaminated water pipe can be posed in terms
of the following binary hypothesis test:{

H0 : z0 = n0,
H1 : z0 = sg(φ) + n0

(1)

where the noise vector n0 = vec[nm(wj)] is assumed to be
Gaussian distributed† with zero mean and covariance matrix
CN , and

g(φ) = vec[gm(φ,wj), j = 1, . . . , J,m = 1, . . . ,M ].

We assume that K independent samples of noise-only data
are available, which are referred to as secondary data:

zk = nk, nk ∼ CN(0,CN ), k = 1, . . . ,K.

These may be obtained, for example, by the steady-state pres-
sure measurements when the pipe is newly built.

Thus, the leak detection problem can be recast as the fol-
lowing hypotheses:{

H0 : z0 = n0, zk = nk, k = 1 . . . ,K
H1 : z0 = sg(φ) + n0, zk = nk, k = 1 . . . ,K.

The joint probability density function (PDF) of the input data
under H0 is

f0(z0, . . . , zK |H0) =

1

(πN det(CN ))K+1
exp

[
−

K∑
k=1

zHk C−1
N zk

]
exp

[
−zH0 C−1

N z0

]
(2)

where det(CN ) is the matrix determinant of CN .
Similarly, the joint PDF of the input data under H1 is

f1(z0, . . . , zK |H1) =

1

(πN det(CN ))K+1
exp

[
−

K∑
k=1

zHk C−1
N zk

]
× exp

[
−(z0 − sg(φ))HC−1

N (z0 − sg(φ))
]
. (3)

The most natural approach to detect the presence of a leak
is the likelihood ratio (LR) test, which computes the LR or
its logarithm and compares it with a certain threshold α [20].
Specifically, the LR test is

L =
f1(z0, . . . , zK |H1)

f0(z0, . . . , zK |H0)

H1

≷
H0

α.

†The Gaussian noise assumption in water pipes with flow is justified by
experimental investigations in laboratory pipe systems [19].
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Namely, if L > α, we decide H1, and if L ≤ α, we decide
H0.

The LR test is known to maximize the detection probability
PD at a certain false alarm probability PFA. The PD is defined
as the probability that the detector correctly decides hypothesis
H1:

PD = P[L > α|H1],

and the PFA is defined as the probability that the detector
decides hypothesis H1 when the true hypothesis is H0:

PFA = P[L > α|H0]. (4)

For leak detection in a water pipeline system, we usually do
not know the parameters s, φ and CN in the PDFs f0(z0, . . . , zK |H0)
and f1(z0, . . . , zK |H1). In this context, the LR test can not
be employed. The GLRT, which employs the MLEs of the
unknown parameters, is a suitable solution.

III. GENERALIZED LIKELIHOOD RATIO TEST (GLRT)

In this section, we derive a GLRT-based leak detection ap-
proach and demonstrate its desirable CFAR property. The per-
formance of our proposed approach is also assessed by nu-
merical simulations.

A. Derivation of GLRT

We denote the leak component in the data model as p =
sg(φ) and assume that K ≥ N . By estimating s and φ, we
get the estimate of p. The considered GLRT is

L =
maxs,φ maxCN f1(z0, . . . , zK |H1)

maxCN f0(z0, . . . , zK |H0)

H1

≷
H0

α. (5)

The MLEs of CN under H0 and H1 are equal to the SCM,
which are well known [21]. Namely, the MLE of CN under
H0 is 1

K+1

∑K
k=0 zkz

H
k and the MLE of CN under H1 is

1
K+1

[
(z0 − sg(φ))(z0 − sg(φ))H +

∑K
k=1 zkz

H
k

]
.

Denote SN =
∑K
k=1 zkz

H
k . Following similar derivation

steps in [6], we obtain the MLEs of s and φ:

ŝ =
Re{gH(φ)S−1

N z0}
gH(φ)S−1

N g(φ)
, (6)

and the MLE of φ is

φ̂ = argmax
φ∈[pU,pD]

Re2{gH(φ)S−1
N z0}

gH(φ)S−1
N g(φ)

. (7)

The statistic in (7) can be seen as a generalization of the
leak location estimator presented in [3, 4], which considered
the problem of leak estimation under white Gaussian noise.
Because of the complicated structure of g(φ), it is not easy
to obtain an explicit formula for φ̂ from (7), unlike for the
other parameters. Thus, we obtain the MLE of φ through a
grid search in the range [pU, pD] that minimizes λ.

By plugging the MLEs of s, φ and CN , the test (5) becomes

1 + zH0 S−1
N z0

1 + zH0 S−1
N z0 −

Re2{gH(φ̂)S−1
N z0}

gH(φ̂)S−1
N g(φ̂)

H1

≷
H0

α. (8)

Denote α1 = 1 − 1
α . The hypothesis test (8) can be further

simplified as

∆ =
Re2{gH(φ̂)S−1

N z0}
(1 + zH0 S−1

N z0)gH(φ̂)S−1
N g(φ̂)

H1

≷
H0

α1. (9)

Similar to the GLRT in [6], the distribution of the test
statistic ∆ under H0 is independent of CN and g(φ̂). Hence,
the cumulative distribution function (CDF) of ∆ under H0, de-
noted as F∆, remains the same for any covariance matrix CN

and nonzero vector g(φ̂). Consequently, although a closed-
form expression of F∆ is difficult to derive, it is sufficient to
apply Monte-Carlo simulations to obtain the empirical CDF
F∆ based on simulated data by setting g(φ̂) = [1, 0, . . . , 0]T ,
CN = IN and generating zi, i = 0, . . . ,K as standard normal
distributed random vectors. The threshold α1 for a desired PFA

can then be determined by computing α1 = F−1
∆ (1− PFA).

Although the GLRT in (5) is similar to that in [6], we should
point out the main differences between the two GLRTs. Firstly,
in (5), the leak size s is confined to be a real number but in
[6], s is complex, which leads to a different MLE expression
of s as in (6). Additionally, while in [6], the signal vector g
is known, in our case, g is parameterized by unknown leak
location φ, which is estimated in (7).

The detection procedure is summarized in Algorithm 1. As
the detection test (9) uses the SCM as the estimate of CN ,
we refer to this leak detection (LD) scheme as LD-SCM.

Algorithm 1 LD-SCM

1) Determine the threshold α1 corresponding to the prescribed PFA

and the empirical CDF F∆:

α1 = F−1
∆ (1− PFA).

2) Find the optimal estimate of φ and thus g(φ̂) by numerically
solving:

φ̂ = argmax
φ∈[pU,pD]

Re2{gH(φ)S−1
N z0}

gH(φ)S−1
N g(φ)

. (10)

3) Compute the test statistic:

∆ =
Re2{gH(φ̂)S−1

N z0}
(1 + zH0 S−1

N z0)gH(φ̂)S−1
N g(φ̂)

.

4) Accept H0 (“no leak”), if ∆ ≤ α1; otherwise accept H1 (“leak
present”).

5) If H1 accepted, set the estimates of φ from (10) and s:

ŝ =
Re{gH(φ̂)S−1

N z0}
gH(φ̂)S−1

N g(φ̂)
.

B. Performance evaluation and comparison

Here we demonstrate the performance of our proposed LD-
SCM scheme, and compare it against alternative detection
methods. The system configuration is shown in Fig. 1. A wa-
ter pipe in a horizontal plane with length l = 2000 m and
diameter D = 0.5 m is considered. The locations of upstream
and downstream reservoirs are assumed to be pU = 0 m
and pD = 2000 m, respectively. Two pressure sensors are
situated at x1 = 1800 m and x2 = 2000 m. The wave speed
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is a = 1000 m/s. The utilized frequencies are w = jwth,
j = 1, 2, . . . , 32, where wth = aπ/(2l) is the fundamental
frequency (first resonant frequency). Thus N = 64. Under
the hypothesis H1, the leak location is φ = 600 m and the
leak size is s = 1.4 × 10−4 m2. Other necessary parameters
required in the system model (see Appendix A) are: f = 0.02,
eL = 0, Q0 = 0.0153 m3/s, g = 9.8 m/s2 and HL

0 = 23.5
m. In the following simulations, we carry out Monte Carlo
simulations using 105 runs.

We compare the performance of our proposed LD-SCM
scheme against alternative detection methods. First, we con-
sider the “oracle” detector with perfect knowledge of parame-
ters s, φ and CN . Although the oracle detector is unachievable
in practice, it provides an upper bound on the performance of
leak detection. We also compare with a classical method used
in radar detection [22], which also uses the SCM as the esti-
mate of CN and is referred to as RD-SCM. Different from the
LD-SCM scheme, this method estimates the leak component
p = sg(φ) as a whole. It ignores the structure of p and does
not estimate s and φ separately. Detailed descriptions of the
oracle detector and the RD-SCM are provided in Appendix B.

In the simulations, we set K = 600, [CN ]i,j = ν20.9|i−j|

and define the signal to noise ratio (SNR) as SNR = ‖p‖2
ν2 .

Fig. 2(a) shows the detection probability PD against different
SNRs under PFA = 10−3. Our proposed LD-SCM has higher
PD than that realized by the RD-SCM over different SNRs,
and performs fairly close to the oracle.

To further demonstrate the performance of the LD-SCM,
we plot receiver operating characteristic (ROC) curves for the
different approaches. Fig. 2(b) shows that while the oracle
detector naturally performs the best, the LD-SCM uniformly
outperforms the RD-SCM over the entire span of PFA.

To show the effect of the sample size K of the secondary
data, we further compare the leak detection performance of
the LD-SCM for fixed N = 64 and different K. As we see
from Fig. 3, the detection probability PD decreases when K
becomes smaller. This is because the sample size K is closely
related to the estimation accuracy of the SCM. It is well known
that the estimation error of the SCM becomes large when the
sample size K is small compared to the data dimension N
[23–25]. This has been demonstrated rigorously using random
matrix theory, which considers the setting when K and N
are both large, and which has shown that the eigenvalues and
eigenvectors of the SCM behave very differently from those
of CN [26–29]. Thus, the performance degradation of the LD-
SCM is caused in part by the estimation error of the SCM.
To deal with this, a more robust covariance matrix estimate
may help to enhance the leak detection performance when K
is not substantially larger than N . This is the main focus of
the subsequent section.

IV. LEAK DETECTION WITH REGULARIZED SAMPLE
COVARIANCE MATRIX

As shown in the last section, the performance of the LD-
SCM degrades when the sample size K does not greatly ex-
ceed the matrix dimension N . Since the measurements are
collected through M sensors at J frequencies, it is possible
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(a) PD against SNR with prescribed PFA = 10−3.
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(b) ROCs with fixed SNR = -3 dB.

Fig. 2. Performance comparison of the oracle detector, LD-SCM and RD-
SCM when N = 64, K = 600.
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Fig. 3. PD of LD-SCM against SNR with prescribed PFA = 10−3, for
N = 64 and different K.

that the data dimension N = J ×M is large, compared to the
sample size K. Thus it is desirable to design a leak detection
method that yields good performance when the data dimension
is high or the sample size of the secondary data is small. As
the performance degradation is, to some extent, caused by the
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increased estimation error of the SCM, we may apply a more
robust high dimensional covariance matrix estimator. A pop-
ular approach is the regularized SCM (RSCM) [7, 8, 11, 17].
We consider in this paper the design of an RSCM estimator,
with the regularization parameter specifically optimized for the
leak detection problem. We denote this second proposed leak
detection scheme as LD-RSCM. It is inspired by recent works
[17, 18] on radar detection.

A. Derivation of LD-RSCM with unknown φ (under H1)

Initially, we introduce the design of the LD-RSCM with
unknown leak location φ ∈ Rl asRl = [pU, pD] in the hypoth-
esis H1. The problem with unknown leak location (which is
the case in practice) is addressed in Section IV-B, in which the
estimation of φ under H1 is considered. With g(φ) remained
untouched, our data model becomes similar to that in radar
detection [6]. From results in [6, 30], the MLE of s under H1

is a function of φ:

ŝ(φ) = argmax
s

f1(z0, . . . , zK |H1) =
Re{gH(φ)C−1

N z0}
gH(φ)C−1

N g(φ)
.

(11)

By substituting ŝ(φ) for s in f1, the logarithm of the LR test
statistic becomes

L(φ) = ln
maxs f1(z0, . . . , zK |H1)

f0(z0, . . . , zK |H0)
=

Re2{gH(φ)C−1
N z0}

gH(φ)C−1
N g(φ)

.

(12)

Since CN is unknown in (12) and in order to cope with
a possible deficiency in samples and improve the covariance
matrix estimation accuracy, we use the RSCM as the estimate
of CN , which is defined as follows:

ĈN (ρ) = (1− ρ)
N

tr(RN )
RN + ρIN ,

where ρ ∈ (0, 1] is the regularization parameter and RN =
1
K

∑K
k=1 zkz

H
k is the SCM computed with the secondary data.

We normalize the trace of RN to be of the same scale with that
of IN to ensure ĈN (ρ) to be sensitive to ρ. By plugging the
RSCM into the test statistic L(φ) in (12), we obtain L(ρ, φ)
as a function of the regularization parameter ρ and the leak
location φ, and the hypothesis test becomes

L(ρ, φ) =
Re2{gH(φ)Ĉ−1

N (ρ)z0}
gH(φ)Ĉ−1

N (ρ)g(φ)

H1

≷
H0

α. (13)

Our aim is to find the optimal ρ, for any φ (which would
be estimated), that can asymptotically maximize the detection
probability PD = P [L(ρ, φ) > α|H1] under a pre-determined
false alarm probability PFA = P [L(ρ, φ) > α|H0]. For fixed
N and K, this is not an easy task. Additionally, it is obvious
to see that the distribution of L(ρ, φ) in (13) depends on CN

and unlike the LD-SCM method, the LD-RSCM scheme does
not enjoy the CFAR property. This adds to the difficulty of
determining the threshold α.

Inspired by [17, 18], we resort to asymptotic tools from
random matrix theory to address this problem. The approach
is to first characterize the asymptotic false alarm and detec-
tion probabilities for all ρ within a specified range, under the

assumption that N,K → ∞ with cN = N/K → c. We
subsequently provide consistent estimators of the asymptotic
false alarm and detection probabilities that are defined only in
terms of the observed primary and secondary data. Based on
this, we fix the estimated false alarm probability and optimize
online over ρ to maximize the estimated detection probability.

Following this approach, we assume that lim supN ‖CN‖ <
∞ where ‖CN‖ is the spectral norm of CN . Additionally, we
make an extra assumption on the order of magnitude of s with
respect to N to avoid getting trivial limiting results as N →
∞. To see this, consider hypothesis H1, and recall (1), noting
that ‖g(φ)‖2 = O(

√
N) (since g(φ) is an N -dimensional

vector whose elements do not depend on N ). Then, if s re-
mains fixed as N →∞, (13) implies that L(ρ, φ)→∞, and
consequently, PD → 1 for any fixed threshold α. In order
to avoid this, we assume that s = O( 1√

N
). In practice, this

indicates that a small leak size is considered, which makes the
detection problem even more difficult.

We first observe that the structure of L(ρ, φ) in (13) is
similar to that of the test statistic T̂RSCM

N (ρ) described in [17],
which is

T̂RSCM
N (ρ) =

∣∣∣gHĈ−1
N (ρ)z0

∣∣∣√
zH0 Ĉ−1

N (ρ)z0

√
gHĈ−1

N (ρ)g
.

The forms of L(ρ, φ) and T̂RSCM
N (ρ) are similar, but not

exactly the same. Especially, in T̂RSCM
N (ρ), g is known, not

parameterized by unknown φ. Nonetheless, the subsequent
analysis will draw significantly from the technical derivations
in [17] (also [18]).

To demonstrate our results, we first introduce some fre-
quently used quantities. Denote for z ∈ C\R+ by mN (z)
the unique complex solution to

mN (z)=

(
−z+cN (1− ρ)

1

N
trCN (IN+(1−ρ)mN (z)CN )−1

)−1

.

Define for κ > 0, Rκ as Rκ , [κ, 1]. Also denote ρ ,
ρ

ρ+
(1−ρ)N
tr(CN )

. With these notations at hand, we are now ready to

analyze the asymptotic behaviors of PFA and PD.

Theorem 1 (False alarm probability). Under the assumption
that φ is independent of z0, z1, . . . , zK , we have as N,K →
∞, with cN = N/K → c ∈ (0, 1),

sup
ρ∈Rκ,φ∈Rl

∣∣∣∣P [L(ρ, φ) > α|H0]−Q1

(
α

σ2(ρ, φ)

)∣∣∣∣→ 0,

where

σ2(ρ, φ) =
1

2ρ

1

gH(φ)QN (ρ)g(φ)

×
gH(φ)CNQ2

N (ρ)g(φ)

1− cm2
N (−ρ)(1− ρ)2 1

N trC2
NQ2

N (ρ)
, (14)

QN (ρ) = (IN + (1− ρ)mN (−ρ)CN )−1

and Q1

(
α

σ2(ρ,φ)

)
is the regularized gamma function*

Q1

(
α

σ2(ρ, φ)

)
= Q

(
1

2
,

α

2σ2(ρ, φ)

)
. (15)
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Proof: See Appendix C-A.
This is a uniform convergence result over both ρ and φ,

which is essential in the sequel. The uniform convergence over
ρ allows the design of setting ρ that maximizes PD at a certain
PFA, while the uniform convergence over φ ensures Theorem 1
and the following results still hold with the unknown φ being
replaced by its corresponding estimate.

The proof of Theorem 1 follows a similar methodology used
in [18]. First, we prove the pointwise convergence for each
ρ ∈ Rκ and φ ∈ Rl. Then we generalize the convergence
result to uniform convergence across ρ ∈ Rκ and φ ∈ Rl. In
contrast to [18], the key challenge lies in the additional study
of the uniform convergence across φ ∈ Rl. Due to the space
limitation, detailed proof is included in the Supplementary
Material S1.

Theorem 1 provides an asymptotic expression for PFA. The
following theorem provides an asymptotic expression for the
detection probability PD.

Theorem 2 (Detection probability). Under the assumption
that φ is independent of z0, z1, . . . , zK , we have as N,K →
∞, with cN → c ∈ (0, 1),

sup
ρ∈Rκ,φ∈Rl

∣∣∣∣P [L(ρ, φ) > α|H1]−Q2

(
β2(ρ, φ),

α

σ2(ρ, φ)

)∣∣∣∣→ 0,

where Q2 is

Q2(λ, x) = e−λ/2
∞∑
j=0

(λ/2)j

j!

γ( 1+2j
2 , x/2)

Γ( 1+2j
2 )

while γ(r, x) =
∫ x

0
tr−1e−tdt, and

β(ρ, φ) =
√

2s
gH(φ)QN (ρ)g(φ)√
gH(φ)CNQ2

N (ρ)g(φ)

×
√

1− cm2
N (−ρ)(1− ρ)2

1

N
trC2

NQ2
N (ρ).

Proof: See Appendix C-B.
According to Theorem 1 and Theorem 2, L(ρ, φ) behaves

quite differently depending on whether there is a leak in the
water pipe or not. In particular, under H0, L(ρ, φ) asymp-
totically behaves like a chi-squared random variable, with 1
degree of freedom parameterized by σ2(ρ, φ); while it is well
approximated under H1 by a noncentral chi-squared random
variable with 1 degree of freedom, parameterized by σ2(ρ, φ)
and β2(ρ, φ).

We will now discuss the choice of the regularization param-
eter ρ and the threshold α. We aim at setting ρ and α for any
certain φ ∈ Rl in such a way as to maximize the asymptotic
PD, with the asymptotic PFA set to a fixed (tolerable) value η.
From Theorem 1, one can easily see that the values of α and
ρ that provide an asymptotic PFA equal to η should satisfy

α

σ2(ρ, φ)
= Q−1

1 (η).

*Q(r, x) is defined as Q(r, x) =
Γ(r,x)
Γ(r)

where the upper incomplete
gamma function Γ(r, x) is Γ(r, x) =

∫∞
x tr−1e−tdt and the gamma

function Γ(r) is Γ(r) = Γ(r, 0) =
∫∞
0 tr−1e−tdt.

From these choices, we then look for those values that max-
imize the asymptotic detection probability which is given,
according to Theorem 2, by

Q2

(
β2(ρ, φ),

α

σ2(ρ, φ)

)
.

The second argument of Q2 should be kept fixed in order
to ensure the required asymptotic PFA. Noting also that Q2

increases with respect to the first argument, which depends on
ρ but not α, the optimization of PD boils down to considering
any ρ∗ satisfying:

ρ∗ ∈ argmax
ρ∈Rκ

{θ(ρ, φ)} (16)

where θ(ρ, φ) , 1
2s2 β

2(ρ, φ). Note the presence of “∈” in
(16), since the optimization on the right-hand side can adopt
multiple solutions. Then the corresponding threshold should
be

α∗ = σ2(ρ∗, φ)Q−1
1 (η). (17)

The maximal asymptotic PD that can be obtained while satis-
fying an asymptotic PFA equal to η is thus given by

PD = Q2

(
2s2θ(ρ∗, φ),

α∗

σ2(ρ∗, φ)

)
.

These solutions for ρ∗ and α∗ should be seen as “oracle”
solutions, since they are not directly realizable from mea-
sured data. Specifically, they require knowledge of σ2(ρ, φ)
and θ(ρ, φ), which involve the unknown covariance matrix
CN (and also the unknown φ, to be addressed subsequently).
Hence, to provide a practically useful solution, it is necessary
to obtain consistent estimates of σ2(ρ, φ) and θ(ρ, φ) based
on the available sample data. Such estimates, which do not
require specific knowledge of CN , are provided in the fol-
lowing propositions.

Proposition 1. For ρ ∈ (0, 1) and φ ∈ Rl, define

σ̂2(ρ, φ) =
tr(RN )

2(1− ρ)N

1− ρgH(φ)Ĉ−2
N (ρ)g(φ)

gH(φ)Ĉ−1
N (ρ)g(φ)(

1− cN + cNρ
1
N trĈ−1

N (ρ)
)2 (18)

and let σ̂2(1, φ) = limρ↑1 σ̂
2(ρ, φ) = gH(φ)RNg(φ)

2gH(φ)g(φ)
. Under the

assumption that φ is independent of z0, z1, . . . , zK , we have,
as N,K →∞, with cN → c ∈ (0, 1),

sup
ρ∈Rκ,φ∈Rl

∣∣σ̂2(ρ, φ)− σ2(ρ, φ)
∣∣ a.s.−→ 0.

Moreover,

sup
ρ∈Rκ,φ∈Rl

∣∣∣∣P [L(ρ, φ) > α|H0]−Q1

(
α

σ̂2(ρ, φ)

)∣∣∣∣→ 0.

Proof: See Appendix C-C.

Proposition 2. For ρ ∈ (0, 1) and φ ∈ Rl, define θ̂(ρ, φ) as

θ̂(ρ, φ) =
(1− ρ)N

tr(RN )

(
1− cN + cNρ

1

N
trĈ−1

N (ρ)

)2

×
(gH(φ)Ĉ−1

N (ρ)g(φ))2

gH(φ)Ĉ−1
N (ρ)g(φ)− ρgH(φ)Ĉ−2

N (ρ)g(φ)
(19)
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and let θ̂(1, φ) , limρ↑1 θ̂(ρ, φ) = (gH(φ)g(φ))2

gH(φ)SNg(φ)
. Under the

assumption that φ is independent of z0, z1, . . . , zK , we have
as N,K →∞, with cN → c ∈ (0, 1),

sup
ρ∈Rκ,φ∈Rl

∣∣∣θ̂(ρ, φ)− θ(ρ, φ)
∣∣∣ a.s.−→ 0.

Moreover

sup
ρ∈Rκ,φ∈Rl

∣∣∣∣P [L(ρ, φ) > α|H1]−Q2

(
2s2θ̂(ρ, φ),

α

σ̂2(ρ, φ)

)∣∣∣∣→ 0.

Proof: Since the structure of θ(ρ, φ) is similar to that of
σ2(ρ, φ), Proposition 2 can be proved similarly to Proposition
1.

Next, since the convergence results in Theorem 2 and Propo-
sition 2 are uniform in ρ, we can establish the following:

Corollary 1. For φ ∈ Rl, define ρ̂∗ as any value satisfying

ρ̂∗ ∈ argmax
ρ∈Rκ

θ̂(ρ, φ).

Under the assumption that φ is independent of z0, z1, . . . , zK ,
for every α > 0 and φ ∈ Rl, as N,K → ∞ with cN → c ∈
(0, 1),∣∣∣∣P [L(ρ̂∗, φ) > α|H1]− max

ρ∈Rκ
{P [L(ρ, φ) > α|H1]}

∣∣∣∣→ 0.

Proof: This can be proved following the same steps as in
the proof of [18, Corollary 1], and therefore is omitted.

Hence, ρ̂∗ provides an asymptotically optimal estimate of
ρ∗. Moreover, from (17) and Proposition 1, we construct a
consistent estimate of α∗ (for achieving an asymptotic PFA of
a prescribed value η) as follows:

α̂ = σ̂2(ρ̂∗, φ)Q−1
1 (η).

The final remaining issue, required to establish a completely
data-dependent leak detection algorithm, is to address the prob-
lem of unknown φ. This is pursued in the following.

B. Estimation of unknown leak location φ

Here we develop an estimator φ̂ and correspondingly g(φ̂)
that can be substituted for the unknown g(φ) in the test statis-
tic L(ρ, φ) in (13). From (3) and (11), the MLE of φ with
measurement z0 is

φ̂ = argmax
φ∈[pU,pD]

f1(z0, z1, . . . , zK |CN , ŝ, H1)

= argmax
φ∈[pU,pD]

Re2{gH(φ)C−1
N z0}

gH(φ)C−1
N g(φ)

. (20)

However, the MLE of φ̂ in (20) is based on the unobservable
CN . In the following theorem, we show that the estimate
φ̂{RN ,z0} given by (20) but with CN replaced by the SCM
RN , is asymptotically equivalent to the estimate φ̂ in (20).

Theorem 3. Define φ̂{RN ,z0} as any value satisfying

φ̂{RN ,z0} ∈ argmax
φ∈Rl

Re2{gH(φ)R−1
N z0}

gH(φ)R−1
N g(φ)

. (21)

As N,K →∞, with cN = N/K → c ∈ (0, 1),∣∣∣∣∣ Re2{gH(φ̂{RN ,z0})C
−1
N z0}

gH(φ̂{RN ,z0})C
−1
N g(φ̂{RN ,z0})

−
Re2{gH(φ̂)C−1

N z0}
gH(φ̂)C−1

N g(φ̂)

∣∣∣∣∣ a.s.−→ 0.

Proof: See Appendix C-D.
With φ̂{RN ,z0}, and correspondingly g(φ̂{RN ,z0}), the test

statistic L(ρ, φ) in (13) becomes, by substituting g(φ̂{RN ,z0})
for g(φ),

L(φ̂{RN ,z0}, ρ) =
Re2{gH(φ̂{RN ,z0})Ĉ

−1
N (ρ)z0}

gH(φ̂{RN ,z0})Ĉ
−1
N (ρ)g(φ̂{RN ,z0})

.

However, it is difficult to study the asymptotic PFA and PD of
statistic L(ρ, φ̂{RN ,z0}), unlike the analysis of L(ρ, φ) given
in Theorem 1 and Theorem 2, in which φ is independent of
z0, z1, . . . , zK . As we can see from (21), φ̂{RN ,z0} depends on
primary data z0 and RN constructed from the secondary data
z1, . . . , zk. This dependency makes the asymptotic analysis of
L(ρ, φ̂ρ,{RN ,z0}) even more complicated.

If we were to have access to a parallel independent set of
data for estimating φ (i.e., y0 in place of z0, and y1, . . . ,yK
in place of z1, . . . , zK), such that

φ̂{WN ,y0} ∈ argmax
φ∈Rl

Re2{gH(φ)W−1
N y0}

gH(φ)W−1
N g(φ)

(22)

where WN = 1
K

∑K
k=1 yky

H
k , then φ̂{WN ,y0} is independent

of z0, z1, . . . , zK and all the results presented in Section IV-A
hold upon substituting g(φ̂{WN ,y0}) for g(φ).

In the absence of such parallel data set, however, we can
still apply the proposed statistic L(ρ, φ), but it will generally
be suboptimal. Nonetheless, through simulations, which are
not shown due to space limitations, we find that in practice
there is no need to have a complete parallel data set to achieve
good performance, but rather, it is sufficient to simply have
access to y0. This is because the correlations induced by using
z1, . . . , zK in estimating φ are rather weak and thus minimally
affect performance, whereas the dependencies induced by z0

are strong and lead to substantial performance degradation.
Thus, we propose to employ the estimator φ̂{RN ,y0} as any
value satisfying

φ̂{RN ,y0} ∈ argmax
φ∈[pU,pD]

Re2{gH(φ)R−1
N y0}

gH(φ)R−1
N g(φ)

. (23)

Based on the results in Section IV-A with the estimated leak
location φ̂{RN ,y0} substituted for φ, we obtain the optimized
regularization parameter ρ̂∗ and test statistic L(ρ̂∗, φ̂{RN ,y0}).
Both φ̂{RN ,y0} and ρ̂∗ can be computed through simple nu-
merical searches in the range of Rl and Rκ respectively. Our
proposed leak detection scheme, LD-RSCM, is summarized in
Algorithm 2.

C. Simulation Results
Here we present simulation results to test the performance

of the proposed leak detection algorithm, LD-RSCM. We con-
sider a scenario with K comparable to N , setting K = 128,
N = 64. Other than the choice of K and N , the same simu-
lation settings are used as described in Section III-B. Results
are averaged over Monte Carlo simulations of 105 runs.



8

Algorithm 2 LD-RSCM

1) Compute the estimated leak location φ̂{RN ,y0} based on (23).
2) Set the regularization parameter ρ̂∗ as

ρ̂∗ ∈ argmax
ρ∈Rκ

θ̂(ρ, φ̂{RN ,y0})

with θ̂(·) given by (19), but with φ replaced by φ̂{RN ,y0}.
3) For a user-prescribed false alarm probability η, set the threshold

α̂ as

α̂ = σ̂2(ρ̂∗, φ̂{RN ,y0})Q
−1
1 (η)

with Q1(·) defined in (38) and σ̂(·) defined as in (18), but with
φ replaced by φ̂{RN ,y0}.

4) Construct the test statistic

L(ρ̂∗, φ̂{RN ,y0}) =
Re2{gH(φ̂{RN ,y0})Ĉ

−1
N (ρ̂∗)z0}

gH(φ̂{RN ,y0})Ĉ
−1
N (ρ̂∗)g(φ̂{RN ,y0})

.

5) Accept H0 (“no leak”), if L̃(ρ̂∗, φ̂{RN ,y0}) ≤ α̂; otherwise
accept H1 (“leak present”).

6) If H1 accepted, set the estimates of φ and s:

φ̂ = φ̂{RN ,y0}, ŝ =
Re{gH(φ̂{RN ,y0})Ĉ

−1
N (ρ̂∗)z0}

gH(φ̂{RN ,y0})Ĉ
−1
N (ρ̂∗)g(φ̂{RN ,y0})

.

1) Accuracy of theoretical approximations for false alarm
and detection probabilities: We start by checking the accuracy
of the asymptotic theoretical results for the false alarm proba-
bility. Specifically, for L(ρ, φ) in (13), in Fig. 4(a) we plot the
exact value of PFA = P [L(ρ, φ) > α|H0] (computed empiri-
cally), and compare with the deterministic asymptotic approxi-
mation Q1

(
α/σ2(ρ, φ)

)
from Theorem 1, and the correspond-

ing approximation with estimated σ̂2(ρ, φ), Q1

(
α/σ̂2(ρ, φ)

)
from Proposition 1. All curves are in good agreement. We
further check the accuracy of the asymptotic theoretical re-
sults for the detection probability in Fig. 4(b), plotting the
exact value of PD = P [L(ρ, φ) > α|H1] (computed empir-
ically), along with the deterministic asymptotic approxima-
tion Q2

(
β2(ρ, φ), α

σ2(ρ,φ)

)
from Theorem 2, and the cor-

responding approximation with estimated values of β2(ρ, φ)

and σ2(ρ, φ), Q2

(
2s2θ̂(ρ, φ), α

σ̂2(ρ,φ)

)
, from Proposition 2.

Again, we see close alignment between the theoretical and
empirical results.

2) Performance of the proposed test statistic with different
φ estimators: Next we check the performance, in terms of
both false alarm probability and detection probability, of the
proposed test statistic L(ρ, φ̂) when constructed from differ-
ent estimates of φ. Specifically, in Fig. 5, we compare PFA

and PD (computed empirically) for L(ρ, φ̂) constructed using
φ̂{WN ,y0}, φ̂{RN ,y0} and φ̂{RN ,z0}, with WN and y0 defined
as in (22). We first observe that if φ is estimated using RN

and z0 (equivalently, from z0, z1, . . . , zK), the performance
deteriorates substantially, at least in terms of false alarm prob-
ability. On the other hand, the performance is similar whether
φ is estimated based on RN and y0 or from WN and y0,
confirming the claims made above, leading to the proposed
estimate in (23). Moreover, as shown in the figure, even though
not theoretically concrete, our asymptotic approximations for
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(b) PD, empirical and theoretical. Results for PFA = 10−3.

Fig. 4. Empirical and theoretical results for the false alarm and detection
probabilities achieved with L(ρ). Results for [CN ]i,j = ν20.9|i−j|, SNR =
−3 dB, φ = 600 m and ρ = 0.5.

the false alarm and detection probabilities remain accurate for
φ estimates constructed from RN and y0, but they completely
break down when such estimates are constructed from RN and
z0. This reinforces the need for the additional independent
sample y0, for the proposed algorithm to perform well.

3) Performance comparison of LD-RSCM and LD-SCM:
We compute the performance of the proposed LD-RSCM leak
detector, and compare this against the LD-SCM detector that
we proposed earlier. For the implementation of LD-RSCM, we
assume having an extra primary data y0, which is not needed
in LD-SCM. In Fig. 6(a) we plot the detection probability PD

against SNR, for PFA = 10−3, [CN ]i,j = ν20.9|i−j|. Evi-
dently, LD-RSCM achieves higher detection probability than
LD-SCM over the entire span of SNRs. Performance gains
are also reflected in Fig. 6(b), which presents ROC curves
for SNR = −3 dB. These results clearly demonstrate the
advantage of employing a robust covariance matrix estimate
to achieve superior leak detection accuracy under high dimen-
sional settings.

V. DISCUSSION

This paper has presented methods for automatically detect-
ing leaks in a water pipeline. This is an important problem for
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(b) PD, empirical and theoretical. Results for PFA = 10−3

Fig. 5. Empirical and theoretical results for the false alarm and detection
probabilities achieved with L(φ̂, ρ), with different estimators φ̂. Results for
[CN ]i,j = ν20.9|i−j|, SNR = −3 dB, and ρ = 0.5.

practical water supply systems, which are plagued by ineffi-
ciencies caused by pipeline leakages. Such leakages can not
only lead to loss of valuable natural resources, but they can
also lead to compromised water quality and potentially affect
public health.

As we have shown, the leak detection problem naturally can
be formulated as a binary hypothesis test which, technically,
amounts to detecting structured signals (originating due to
leakages) in the presence of correlated noise. By adopting the
GLRT testing principle, we proposed a simple test procedure
which we demonstrated to perform well, particularly when the
number of measured samples is not low. The proposed method
also has the practically-desirable CFAR property. To further
improve performance under data limited (or high-dimensional)
scenarios, we further leveraged results from random matrix
theory to present a more robust solution. This method revealed
better performance, at the expense of requiring higher imple-
mentation complexity.

Overall, our work provides a first attempt at designing hy-
pothesis tests which are specifically tailored for the problem of
detecting leaks in pipelines. Further experimental work will be
needed to confirm the performance of the methods in the field.
Moreover, an important extension will be to generalize the
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(a) PD against SNR with prescribed PFA = 10−3.
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(b) ROCs with fixed SNR = -3 dB.

Fig. 6. Performance comparison of LD-RSCM and LD-SCM when N = 64,
K = 128.

framework, possibly using multiple hypothesis testing theory,
to detect multiple leaks in a pipeline, and to handle more
complex pipeline configurations.

APPENDIX A
WATER PIPELINE SIGNAL MODEL DESCRIPTION

Here we provide a brief introduction for the physical model
in Section II, considering a water pipeline with a single leak.
Especially we give a discussion about the derivations of h0

m(wj)
and gm(φ,wj) in the model. Further discussion about the
model can be found in [3, 31, 32].

The discharge and head oscillations due to a fluid tran-
sient are represented by q and h. These are described by
the linearized unsteady-oscillatory continuity and momentum
equations in the time domain [32]

∂q

∂x
+
gA

a2

∂h

∂t
− QL0

2(HL
0 − eL)

h(φ)δ(x− φ) = 0, (24)

1

gA

∂q

∂t
+
∂h

∂x
+Rq = 0, (25)

for x ∈ [pU, pD], in which a is the wave speed, g is the
gravitational acceleration, A is the area of the pipeline, φ is the
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leak location, QL0 and HL
0 are the steady-state discharge and

head at the leak, eL is the elevation of the pipe at the leak, R is
the steady-state resistance term being R = (fQ0)/(gDA2) for
turbulent flows, f is the Darcy-Weisbach friction factor, Q0 is
the steady-state discharge in the pipe and D is the pipe diame-
ter. Physically, (24) represents the mass conservation principle.
The first term in the left hand side of (24) is the divergence of
mass at a point x along the pipe. The second term represents
the rate of accumulation of mass at x. Therefore, a net mass
flux towards x 6= φ (i.e., a

2

gA
∂q
∂x < 0) is accommodated by mass

accumulation towards x (i.e., ∂h
∂t > 0). This accumulation is

fundamentally due to the compressibility of the fluid and the
elasticity of the pipe. The last term in the left hand side of
(24) depicts the mass conservation at the leak. Let φ− and φ+

represent respectively just upstream and just downstream of
the leak. With the assumption

h(φ−) = h(φ+) = h(φ), (26)

Eq. (24) leads to

q(φ−) = q(φ+) + q(φ) = q(φ+)− QL0
2(HL

0 − eL)
h(φ). (27)

Eq. (25) is Newton’s second law along the pipe. The first term
( 1
gA

∂q
∂t ) has its origin in the axial acceleration of the fluid. The

second term (∂h∂x ) represents the net pressure force. The third
term (Rq) is the resistance force due to the friction between
the fluid and pipe wall.

Readers with electrical engineering background should note
that there is a one to one correspondence between (24) and (25)
and the Telegrapher equations [33]. The head h is analogous to
the voltage; the flow rate of fluid q is analogous to the current;
the friction coefficient R is analogous to the resistance; gAa2 is
the capacitance; 1

gA is the inductance; QL0
2(HL0 −eL)

is analogous
to the conductance of the shunt.

The model in this paper considers momentum along the
pipe, but neglects momentum in the radial and azimuthal direc-
tions. This implies that the current model is for low frequency
waves where the wavelength is much larger than the pipe
diameter. In addition, the model is linearized (i.e., nonlinear
terms are neglected). This assumption is valid if (i) the wave
amplitude is much lower than the steady-state pressure and
(ii) the Mach number� 1. Typically, the steady-state pressure
head is in the range 40 m to 70 m. Therefore, the assumption
(i) is not limiting in practice. In addition, in practice the flow
velocity is of the order of 1 m/s and the wave speed range is
from 350 m/s to 1500 m/s. Therefore, the Mach number is of
order 1/350 or less. Thus, the assumption (ii) is also not of
concern in practice.

Taking the Fourier transform of (24) and (25) with respect
to t gives q and h in the frequency domain for x ∈ [pU, φ) ∪
(φ, pD]:

a2

gA

∂q

∂x
+ iwh = 0, (28)

∂h

∂x
+

(
iw

gA
+R

)
q = 0, (29)

where w is the angular frequency. Solving (28) and (29) with
the head and mass conservation conditions across the leak,

i.e., (27) and (26), the quantities at xm can be computed in
the following way [32]:(
q(xm)
h(xm)

)
=M0(xm − φ)

(
1 − QL0

2(HL0 −eL)

0 1

)
M0(φ)

(
q(pU)
h(pU)

)
.

(30)
In this equation,

M0(x) =

(
cosh (µx) − 1

Z sinh (µx)
−Z sinh (µx) cosh (µx)

)
(31)

is the field matrix, where Z = µa2/(iwgA) is the character-
istic impedance and µ = a−1

√
−w2 + igAwR is the propa-

gation function. If the pipe is frictionless (f = 0), µ = ik,
where k = w/a is the wavenumber.

The transfer matrix on the right hand side of (30) can be
simplified as [3]:

M0(xm−φ)

(
1 − QL0

2(HL0 −eL)

0 1

)
M0(φ) = M0(xm)+sM1(φ),

(32)
in which

M1(φ) =

√
g

2(HL
0 − eL)

×
(
Z sinh (µφ) cosh (µ(xm−φ)) − cosh (µφ) cosh (µ(xm−φ))
−Z2 sinh (µφ) sinh (µ(xm−φ)) Z cosh (µφ) sinh (µ(xm−φ))

)
(33)

is a matrix related to the location φ of the leak but independent
of the leak size s.

By combining (30)–(33), the head at xm for a given angular
frequency wj is

hm(wj) = h0
m(wj) + sgm(φ,wj),

wherein

h0
m(wj) =− Z(wj) sinh (µ(wj)xm) q(pU, wj)+

cosh (µ(wj)xm)h(pU, wj)

and

gm(φ,wj) = −
√
gZ(wj) sinh(µ(wj)(xm − φ))√

2(HL
0 − eL)

×(Z(wj) sinh(µ(wj)φ)q(pU, wj)−cosh(µ(wj)φ)h(pU, wj)) .

Applying the boundary condition that h(pU, wj) = 0 (as the
upstream pU is connected to a reservoir), then

h0
m(wj) = −Z(wj) sinh (µ(wj)xm) q(pU, wj)

and

gm(φ,wj) =−
√
gZ(wj) sinh(µ(wj)(xm − φ))√

2(HL
0 − eL)

× Z(wj) sinh(µ(wj)φ)q(pU, wj),

where q(pU, ωj) can be estimated by [4]

q(pU, ωj) = − h(pU + ε, wj)

Z(ωj) sinh(µ(ωj)ε)
,

where h(pU + ε, wj) is a pressure head measured at a location
very close to pU (denoted by pU + ε where 0 < ε� l).
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Since the measured head hm(wj) is contaminated by noise
nm(wj), it can be represented as

hm(wj) = h0
m(wj) + sgm(φ,wj) + nm(wj).

APPENDIX B
BENCHMARK METHODS

A. Oracle detector
If for benchmarking purposes one supposes that under hy-

pothesis H1 the leak size s, leak location φ and noise covari-
ance matrix CN are assumed known, then the likelihood ratio
test can be applied (instead of the GLRT), which maximizes
the detection probability PD at a certain false alarm probabil-
ity PFA [20]. For this oracle detector, from (2) and (3), the
logarithm of the likelihood ratio statistic is equal to

L = ln
f1(z0, . . . , zK)

f0(z0, . . . , zK)

= 2Re{sgH(φ)C−1
N z0} − sgH(φ)C−1

N sg(φ).

Comparing with a threshold α results in the following optimal
decision rule:

2Re{sgH(φ)C−1
N z0} − sgH(φ)C−1

N sg(φ)
H1

≷
H0

α,

which, after straightforward simplification, can be rewritten as

∆oracle = Re{sgH(φ)C−1
N z0}

H1

≷
H0

α2

where α2 = 1
2 (α+sgH(φ)C−1

N sg(φ)). With this statistic, the
false alarm probability is given by PFA = P [∆oracle > α2|H0],
and the detection probability is given by PD = P [∆oracle >
α2|H1].

It is important to note that the assumption of s, φ, and CN

being known is not practically meaningful, but nonetheless,
this oracle detector provides an upper bound on the perfor-
mance that can be achieved by GLRT-based methods, which
estimate these unknown quantities.

B. RD-SCM

In our data model described in Section II, the leak compo-
nent p is parameterized by the unknown leak size s and the
leak location φ. If we were to ignore the structure of p and
estimate this vector as a whole, the solution of the resulting
leak detection problem would be the same as that considered
previously in radar detection [22]. We refer to this method as
RD-SCM, as indicated in Section III-B. In this case, the GLRT
becomes:

L2 =
maxCN maxp f1(z0, . . . , zK)

maxCN f0(z0, . . . , zK)

H1

≷
H0

α.

Under H0, the MLE of CN is 1
K+1

∑K
k=0 zkz

H
k , whereas un-

der H1, the MLEs of p and CN are z0 and 1
K+1

∑K
k=1 zkz

H
k

respectively [22]. Thus

L2 =

det
(
z0z

H
0 +

∑K
k=1 zkz

H
k

)
det
(∑K

k=1 zkz
H
k

)
K+1

.

Denote SN =
∑K
k=1 zkz

H
k and since

det

(
z0z

H
0 +

K∑
k=1

zkz
H
k

)
= det (SN )

(
1 + zH0 S−1

N z0

)
, (34)

the GLRT becomes

L2 =
(
1 + zH0 S−1

N z0

)K+1 H1

≷
H0

α. (35)

the GLRT (35) is equivalent to the following test:

∆2 = zH0 S−1
N z0

H1

≷
H0

α3

where α3 = K+1
√
α− 1.

One advantage of this approach is that the probability den-
sities of ∆2 under H0 and H1 can be obtained analytically, as
given in [22, 34]. Thus, PFA and PD for this RD-SCM scheme
can be written in closed-form [22, 34]. We can also observe
that the probability distribution of ∆2 is independent of CN

under H0, and thus the RD-SCM also has the CFAR property,
which is illustrated in detail in [22].

APPENDIX C
TECHNICAL PROOFS

A. Proof of Theorem 1

The proof follows by applying the methodology used in
[18]. First, we prove the convergence for each ρ ∈ Rκ and
φ ∈ Rl. We characterize the asymptotic behavior of the de-
nominator and numerator of L(ρ, φ) separately. Shown in [17],
as N,K → ∞, with cN = N/K → c ∈ (0, 1), the following
results hold:∣∣∣∣ 1

N
gH(φ)Ĉ−1

N (ρ)g(φ)− 1

Nρ
gH(φ)QN (ρ)g(φ)

∣∣∣∣ a.s.−→ 0

(36)

and for some x ∼ N(0, 1),
1√
N

Re(gH(φ)Ĉ−1
N (ρ)z0)−√

1

2ρ2N

gH(φ)CNQ2
N (ρ)g(φ)

1− cmN (−ρ)2(1− ρ)2 1
N

trC2
NQ2

N (ρ)
x = op(1)

This shows in particular that 1
NRe2{gH(φ)Ĉ−1

N (ρ)z0} be-
haves asymptotically as a chi-squared random variable with

scale
√

1
2ρ2N

gH(φ)CNQ2
N (ρ)g(φ)

1−cmN (−ρ)2(1−ρ)2 1
N trC2

NQ2
N (ρ)

and degree of free-

dom 1. Using this result along with Slutsky’s lemma [35],
we conclude that, under H0, L(ρ, φ) is also asymptotically
equivalent to a chi-squared random variable but with scale
σ(ρ, φ). We therefore get, for fixed ρ ∈ Rκ and φ ∈ Rl,∣∣∣∣P [L(ρ, φ) > α|H0]−Q1

(
α

σ2(ρ, φ)

)∣∣∣∣→ 0. (37)

Q1

(
α

σ2(ρ,φ)

)
is the regularized gamma function*

Q1

(
α

σ2(ρ, φ)

)
= Q

(
1

2
,

α

2σ2(ρ, φ)

)
. (38)

The generalization to uniform convergence across ρ ∈ Rκ
then follows via the same arguments as in [18].
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Next we prove the uniform convergence across φ ∈ Rl.
To reduce the amount of notations, we drop the parameter ρ
in function L(ρ, φ) and covariance estimator CN (ρ, φ) in the
following. We shall exploit a φ-Lipschitz property of L(φ) to
reduce the uniform convergence over Rl to a uniform conver-
gence over finitely many values of φ.

The φ-Lipschitz property we shall need is as follows: for
each ε > 0,

lim
δ→0

lim
N→∞

P

 sup
φ,φ′∈Rl
|φ−φ′|<δ

|L(φ)− L(φ′)| > ε

 = 0. (39)

Let us prove this result. Let η > 0 be small and AηN ,
{∃φ ∈ Rl, 1

N gH(φ)Ĉ−1
N g(φ) < η}. Developing the difference

L(φ) − L(φ′) and isolating the denominator according to its
belonging to AηN or not, we may write

P

 sup
φ,φ′∈Rl
|φ−φ′|<δ

|L(φ)− L(φ′)| > ε


≤ P (AηN ) + P

 sup
φ,φ′∈Rl
|φ−φ′|<δ

VN (φ, φ′) > εη


where

VN (φ, φ′) ,
1

N2
Re2{gH(φ)Ĉ−1

N z0}gH(φ′)Ĉ−1
N g(φ′)

− 1

N2
Re2{gH(φ′)Ĉ−1

N z0}gH(φ)Ĉ−1
N g(φ).

It is obvious that P (AηN )→ 0 for a sufficiently small choice
of η. To prove that

lim
δ→0

lim sup
N

P

(
sup

|φ−φ′|<η
VN (φ, φ′) > εη

)
= 0,

it is then sufficient to show that

lim
δ→0

lim sup
N

P

 sup
φ,φ′∈Rl
|φ−φ′|<δ

1√
N

∣∣∣gH(φ)Ĉ−1
N z0−gH(φ′)Ĉ−1

N z0

∣∣∣ > ε′


= 0 (40)

for any ε′ > 0 and similarly for gH(φ′)Ĉ−1
N g(φ′)−gH(φ)Ĉ−1

N g(φ).
Let us prove (40), the other result following essentially the
same line of arguments. For this, by Kallenberg [36, Corollary
16.9], it is sufficient to prove, say

sup
φ,φ′∈Rl
|φ6=φ′|

sup
N

E
[

1
N |g

H(φ)Ĉ−1
N z0 − gH(φ′)Ĉ−1

N z0|2
]

|φ− φ′|2
<∞.

(41)

Since

1

N
E

[∣∣∣gH(φ)Ĉ−1
N z0 − gH(φ′)Ĉ−1

N z0

∣∣∣2]
=

1

N
‖g(φ)− g(φ′)‖2E

[∥∥∥Ĉ−2
N

∥∥∥∥∥z0z
H
0

∥∥] ,

and E
[∥∥∥Ĉ−2

N

∥∥∥∥∥z0z
H
0

∥∥] < ∞, to prove (41), we only need
to prove

1
N ‖g(φ)− g(φ′)‖2

|φ− φ′|2
<∞. (42)

Since

1

N
‖g(φ)− g(φ′)‖2 =

1

N

N∑
m=1

|gm(φ)− gm(φ′)|2,

we first focus on analyzing |gm(φ)−gm(φ′)| for i = 1, . . . , N .
Denote φ′ = φ+ τ ,

|gm(φ)− gm(φ′)| =
∣∣∣∣−1

2
cosh(2µmφ− µmxm)

+
1

2
cosh(2µmφ+ 2µmτ − µmxm)

∣∣∣∣
=

∣∣∣∣12 cosh(2µmφ− µmxm)(cosh 2µmmτ − 1)

+
1

2
sinh(2µmφ− µmxm) sinh 2µmτ

∣∣∣∣
≤ 1

2
|coshµmL(cosh 2µmτ − 1)+sinhµmL sinh 2µτ | , (43)

where the equality in (43) is obtained when φ = L and xm =
L.

Therefore we establish the following inequality

1
N

∑N
m=1 |gm(φ)− gm(φ′)|2

|φ− φ′|2
≤ ∆

where

∆ =
1
N

∑N
m=1

1
4
| coshµmL(cosh 2µmτ − 1) + sinhµmL sinh 2µmτ |2

τ2
.

The Tyler expansions of cosh 2µmτ and sinh 2µmτ are

cosh 2µmτ =1 +
(2µmτ)2

2!
+

(2µmτ)4

4!
+

(2µmτ)6

6!

+
(2µmτ)8

8!
+ · · · ,

sinh 2µmτ =2µmτ +
(2µmτ)3

3!
+

(2µmτ)5

5!

+
(2µmτ)7

7!
+

(2µmτ)9

9!
+ · · · .

By plugging in these Tyler expansions in ∆, we obtain

∆ =
1

N

N∑
m=1

1

4

∣∣∣∣coshµmL

(
(2µm)2τ

2!
+

(2µm)4τ3

4!
+

(2µm)6τ5

6!

+
(2µm)8τ7

8!
+ · · ·

)
+ sinhµmL

(
2µm +

(2µm)3τ2

3!

+
(2µm)5τ4

5!
+

(2µm)7τ6

7!
+

(2µm)9τ8

9!
+ · · · .

)∣∣∣∣2 .
It can be observed that ∆ is an increasing function of τ . Since
τ ≤ L, we have

{∆(τ)}max = ∆(L) =
1

L2

1

N

N∑
m=1

1

4
|coshµmL(cosh 2µmL− 1)

+ sinhµmL sinh 2µmL|2 <∞.
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Therefore we have proven (42) and (41), and also complete
the proof of (39).

Getting back to our original problem, let us now take ε > 0
arbitrary, φ1 < . . . < φJ be a regular sampling of Rl, and
δ = L

J . Then by (37), J being fixed, for all n > n0(ε),

max
1≤j≤J

∣∣∣∣P (L(φj) > α)−Q1

(
α

σ2(φj)

)∣∣∣∣ < ε. (44)

Also, from (39), for small enough δ,

max
1≤j≤J

P

 sup
φ∈Rl
|φ−φj |<δ

|L(φ)− L(φj)| > αξ


≤ P

 sup
φ,φ′∈Rl
|φ−φ′|<δ

|L(φ)− L(φ′)| > αξ

 < ε

for all large n > n′0(ε, ξ) > n0(ε) where ξ > 0 is also taken
arbitrarily small. Thus we have, for each φ ∈ Rl and for
n > n′0(ε, ξ),

P (L(φ) > α) ≤ P (L(φi) > α(1− ξ))+P
(∣∣L(φ)− L(φ′)

∣∣ > αξ
)

≤ P (L(φi) > α(1− ξ)) + ε

for i ≤ J the unique index such that |φ− φi| < δ and where
the inequality holds uniformly on φ ∈ Rl.

Similarly, reversing the roles of φ and φ′,

P (L(φ) > α) ≥ P (L(φi) > α(1 + ξ))− ε.

As a consequence, by (44), for n > n′0(ε, ξ), uniformly on
φ ∈ Rl,

P (L(φ) > α) ≤ Q1

(
α(1− ξ)
2σ2(φi)

)
+ 2ε

P (L(φ) > α) ≥ Q1

(
α(1 + ξ)

2σ2(φi)

)
− 2ε

which, by continuity of Q1 and φ 7→ σ2, letting ξ and δ small
enough (up to growing n′0(ε, ξ)), leads to

sup
φ∈Rl

∣∣∣∣P (L(φ) > α)−Q1

(
α

2σ2(φ)

)∣∣∣∣ ≤ 3ε

for all n′0(ε, ξ), which completes the uniform convergence
across φ ∈ Rl.

B. Proof of Theorem 2

We first study the asymptotic behavior of the detection prob-
ability for fixed ρ ∈ Rκ and φ ∈ Rl. As shown in [17], un-
der H1, 1√

N
Re(gH(φ)Ĉ−1

N (ρ)z0) behaves asymptotically as a
Gaussian variable with mean µ = s√

Nρ
gH(φ)QN (ρ)g(φ) and

variance ν2 = 1
2ρ2N

gH(φ)CNQ2
N (ρ)g(φ)

1−cmN (−ρ)2(1−ρ)2 1
N trC2

NQ2
N (ρ)

as N,K→
∞, with cN =N/K→c ∈ (0, 1). Thus, 1

NRe2{gH(φ)Ĉ−1
N (ρ)z0}

behaves asymptotically as a noncentral chi-squared random
variable with degree of freedom 1, parameterized by the loca-
tion µ2 and scale ν. Combining this result and (36) along with
Slutsky’s lemma, we conclude that, under H1, L(ρ, φ) in (13)
is also asymptotically equivalent to a noncentral chi-squared
random variable with degree of freedom 1, but with location

µ2

gH(φ)QN (ρ)g(φ)
and scale σ.

Defining β(ρ, φ) = µ

σ
√

gH(φ)QN (ρ)g(φ)
, we therefore con-

clude, for fixed ρ ∈ Rκ and φ ∈ Rl, that∣∣∣∣P [L(ρ, φ) > α|H1]−Q2

(
β2(ρ, φ)),

α

σ2(ρ)

)∣∣∣∣→ 0.

As before, the generalization to include uniform convergence
across ρ ∈ Rκ and φ ∈ Rl can be derived by following the
same procedure as in [18] and the proof of Theorem 1, and is
therefore again not reproduced.

C. Proof of Proposition 1

The proof consists of two steps. Firstly we prove that for a
fixed φ ∈ Rl, the following convergence result holds:

sup
ρ∈Rκ

∣∣σ̂2(ρ, φ)− σ2(ρ, φ)
∣∣ a.s.−→ 0. (45)

Then the uniform convergence over φ ∈ Rl is deducted, which
completes the proof.

In the first step, we start by showing that σ̂2(1, φ) is well
defined. It is easy to observe that σ̂2(ρ, φ) in (18) is undefined
(zero over zero) when ρ = 1. We use l’Hopital’s rule to obtain
the value of σ̂2(ρ, φ) when ρ approaches 1. Define σ̂2(ρ, φ) =
h(ρ,φ)
w(ρ) with h(ρ, φ) and w(ρ) given by

h(ρ, φ) = 1−
ρgH(φ)Ĉ−2

N (ρ)g(φ)

gH(φ)Ĉ−1
N (ρ)g(φ)

and

w(ρ) =
2(1− ρ)N

tr(RN )

(
1− cN + cNρ

1

N
trĈ−1

N (ρ)

)2

.

By a uniform variation of l’Hopital’s rule [17, Lemma 13], we
have

lim
ρ↑1

lim sup
N

∣∣∣∣σ̂2(ρ, φ)− h′(1, φ)

w′(1)

∣∣∣∣ a.s.−→ 0.

Using the differentiation rules d
dρĈ−1

N (ρ)=−Ĉ−2
N (ρ)(−RN+

IN ) and d
dρĈ−2

N (ρ) = −Ĉ−3
N (ρ)(−RN + IN ) [17], we then

prove

lim
ρ↑1

lim sup
N

∣∣∣∣σ̂2(ρ, φ)− gH(φ)RNg(φ)

2gH(φ)g(φ)

∣∣∣∣ a.s.−→ 0.

Now, using the fact that as N,K →∞, with cN → c ∈ (0, 1),
1
N gH(φ)RNg(φ)− 1

N gH(φ)CNg(φ)
a.s.−→ 0 [17], we obtain

lim
ρ↑1

lim sup
N

∣∣∣∣σ̂2(ρ, φ)− gH(φ)CNg(φ)

2gH(φ)g(φ)

∣∣∣∣ a.s.−→ 0 .

Since σ2(1, φ) = gH(φ)CNg(φ)
2gH(φ)g(φ)

, we have thus proved as N,K →
∞, with cN → c ∈ (0, 1),

∣∣σ̂2(1, φ)− σ2(1, φ)
∣∣ a.s.−→ 0 where

σ̂2(1, φ) = limρ↑1 σ̂
2(ρ, φ).

It then suffices to prove (45) when ρ belongs to the set R̃κ ,
[κ, 1 − κ]. By (36), we could obtain the consistent estimator
of the first part of σ2(ρ, φ), that is 1

2ρ
1

gH(φ)QN (ρ)g(φ)
. For the
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remaining part of σ2(ρ, φ),
gH(φ)CNQ2

N (ρ)g(φ)

1−cm2
N (−ρ)(1−ρ)2 1

N trC2
NQ2

N (ρ)
, the

following convergence results in [18] are exploited:

sup
ρ∈R̃κ

∣∣∣∣∣ 1N gH(φ)Ĉ−1
N (ρ)g(φ)−ρgH(φ)Ĉ−2

N (ρ)g(φ)

(1− ρ)m2
N (−ρ)

(
ρ+

(1− ρ)N

tr(RN )

)

− 1

N

gH(φ)CNQ2
N (ρ)g(φ)

1− cm2
N (−ρ)(1− ρ)2 1

N
trC2

NQ2
N (ρ)

∣∣∣∣∣ a.s.−→ 0 (46)

and

sup
ρ∈R̃κ

∣∣∣∣∣
(

1− cN
ρ

+ cN
1

N
trĈ−1

N (ρ)

(
ρ+

(1− ρ)N

tr(RN )

))
−mN (−ρ)

∣∣ a.s.−→ 0. (47)

By combining (46) and (47), we have

sup
ρ∈R̃κ

∣∣∣∣∣ 1

N

gH(φ)CNQ2
N (ρ)g(φ)

1− cm2
N (−ρ)(1− ρ)2 1

N
trC2

NQ2
N (ρ)

− 1

N

tr(RN )

(1− ρ)N

gH(φ)Ĉ−1
N (ρ)g(φ)− ρgH(φ)Ĉ−2

N (ρ)g(φ)(
1− cN + cNρ

1
N

trĈ−1
N (ρ)

)2

∣∣∣∣∣∣∣ a.s.−→ 0.

Together with (36), we prove the uniform convergence (45)
over ρ ∈ Rκ.

In the second step, we prove the uniform convergence over
φ ∈ Rl. To simplify notations, we again drop the parameter ρ,
that is, we aim to prove, as N,K →∞, with cN → c ∈ (0, 1),

sup
φ∈Rl

∣∣σ̂2(φ)− σ2(φ)
∣∣ a.s.−→ 0. (48)

From the definition of uniform convergence, this amounts to
showing that for some C > 0 and any given ε > 0,

sup
φ∈Rl

∣∣σ̂2(φ)− σ2(φ)
∣∣ < Cε (49)

for all large K almost surely.
Taking φ1 < . . . < φJ be a regular sampling of Rl, and

δ = L
J , there exist φi that satisfies |φ−φi| < δ. With this, we

can write:

sup
φ∈Rl

|σ̂2(φ)− σ2(φ)| ≤ sup
φ∈Rl

{
|σ̂2(φ)− σ̂2(φi)|

+|σ2(φi)− σ2(φ)|+ |σ̂2(φi)− σ2(φi)|
}

≤ sup
φ∈Rl

|σ2(φi)− σ2(φ)|+ sup
φ∈Rl

|σ̂2(φ)− σ̂2(φi)|

+ max
i
|σ̂2(φi)− σ2(φi)|. (50)

Hence, it follows that the relation (49) would be established
upon proving that, for certain C1 > 0, C2 > 0 and C3 > 0,
we have supφ∈Rl |σ

2(φi)− σ2(φ)| < C2ε, supφ∈Rl |σ̂
2(φ)−

σ̂2(φi)| < C1ε, maxi |σ̂2(φi) − σ2(φi)| < C3ε for all large
K almost surely.

To establish the first bound, we start by using (14) to write

|σ2(φi)− σ2(φ)| = q ∗
∣∣∣∣gH(φi)CNQ2

Ng(φi)

gH(φi)QNg(φi)
− gH(φ)CNQ2

Ng(φ)

gH(φ)QNg(φ)

∣∣∣∣
=

q

gH(φi)QNg(φi)gH(φ)QNg(φ)

∣∣∣gH(φi)CNQ2
Ng(φi)g

H(φ)QNg(φ)

−gH(φ)CNQ2
Ng(φ)gH(φi)QNg(φi)

∣∣∣ ,
where q = 1

2ρ
1

1−cm2
N (−ρ)(1−ρ)2 1

N trC2
NQ2

N (ρ)
.

Rewrite |σ2(φi)− σ2(φ)| = q ∗ AB , where

A,
1

N2
gH(φ)QNg(φ)[gH(φi)CNQ2

Ng(φi)−gH(φ)CNQ2
Ng(φ)]

+
1

N2
[gH(φ)QNg(φ)−gH(φi)QNg(φi)]g

H(φ)CNQ2
Ng(φ),

B ,
1

N2
gH(φi)QNg(φi)g

H(φ)QNg(φ).

We first deal with A. Since

1

N
[gH(φi)CNQ2

Ng(φi)− gH(φ)CNQ2
Ng(φ)]

=
1

N
(g(φi)− g(φ))HCNQ2

N (g(φ) + g(φi))

≤ 1√
N
‖g(φ)− g(φi)‖‖CNQ2

N‖
1√
N
‖g(φ) + g(φi)‖

and

1

N
[gH(φ)QNg(φ)− gH(φi)QNg(φi)]

=
1

N
(g(φ)− g(φi))

HQN (g(φ) + g(φi))

≤ 1√
N
‖g(φ)− g(φi)‖‖QN‖

1√
N
‖g(φ) + g(φi)‖,

we have

A ≤ 1√
N
‖g(φ)− g(φi)‖

×
(

1

N
gH(φ)QNg(φ)‖CNQ2

N‖
1√
N
‖g(φ) + g(φi)‖

+‖QN‖
1√
N
‖g(φ) + g(φi)‖

1

N
gH(φ)CNQ2

Ng(φ)

)
.

Denote φi = φ+ τ , |τ | < δ < L, we obtain

gm(φi)− gm(φ) = cosh(2µmφ− µmxm) sinh2 µmτ

+ sinh(2µmφ− µmxm) sinhµmτ coshµmτ

= sinhµmτ [cosh(2µmφ− µmxm) sinhµmτ

+ sinh(2µmφ− µmxm) coshµmτ ]

< sinhµmτ [cosh(2µmφ− µmxm) sinhµmL

+ sinh(2µmφ− µmxm) coshµmL].

By taking δ satisfies maxm sinhµmδ < ε, we obtain, for each
m, m = 1, . . . , N ,

gm(φi)− gm(φ) < hmε,

where hm = cosh(2µmφ−µmxm) sinhµmL+ sinh(2µmφ−
µmxm) coshµmL.

Since

1√
N
‖g(φ)− g(φi)‖ =

1√
N

√√√√ N∑
m=1

|gm(φ)− gm(φi)|2

<
1√
N

√√√√ N∑
m=1

h2
mε,
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we obtain

A <

(
1

N
gH(φ)QNg(φ)‖CNQ2

N‖
1√
N
‖g(φ) + g(φi)‖

+‖QN‖
1√
N
‖g(φ) + g(φi)‖

1

N
gH(φ)CNQ2

Ng(φ)

)
1√
N

√√√√ N∑
m=1

h2
mε

<
2

N
‖g(φ)‖2 1√

N
‖g(φ) + g(φi)‖‖QN‖‖CNQ2

N‖
1√
N

√√√√ N∑
m=1

h2
mε.

As 1√
N
‖g(φ)‖, ‖CN‖ and ‖QN‖ are bounded, we have A <

p1ε for some constant p1.
Similarly, since

B ≥ 1

N2
‖g(φi)‖2‖g(φ)‖2‖QN‖2

and 1√
N
‖g(φ)‖ and ‖QN‖ is bounded, we have B > p2, for

some constant p2. Therefore, we have established the desired
property

|σ2(φi)− σ2(φ)| = q ∗ A
B
<
qp1

p2
ε. (51)

We now turn to deriving the analogous result for the second
term in (50). To this end, similar to before, we start with

|σ̂2(φ)− σ̂2(φi)| = r ×

∣∣∣∣∣gH(φ)Ĉ−2
N g(φ)

gH(φ)Ĉ−2
N g(φ)

− gH(φi)Ĉ
−2
N g(φi)

gH(φi)Ĉ
−2
N g(φi)

∣∣∣∣∣
=

r
1
N2 gH(φ)Ĉ−1

N g(φ)gH(φi)Ĉ
−1
N g(φi)

×
∣∣∣∣ 1

N2
[gH(φ)Ĉ−2

N g(φ)gH(φi)Ĉ
−1
N g(φi)−

gH(φi)Ĉ
−2
N g(φi)g

H(φ)Ĉ−1
N g(φ)]

∣∣∣ ,
where r = tr(RN )

2(1−ρ)N
1

(1−cN+cNρ
1
N trĈ−1

N (ρ))
2 .

Rewrite |σ̂2(φ)− σ̂2(φi)| = r ∗ DE , where

D ,
1

N2
gH(φ)Ĉ−2

N g(φ)[gH(φi)Ĉ
−1
N g(φi)− gH(φ)Ĉ−1

N g(φ)]

+
1

N2
[gH(φ)Ĉ−2

N g(φ)− gH(φi)Ĉ
−2
N g(φi)]g

H(φ)Ĉ−1
N g(φ),

E ,
1

N2
gH(φ)Ĉ−1

N g(φ)gH(φi)Ĉ
−1
N g(φi).

We first deal with D. Since

1

N
[gH(φi)Ĉ

−1
N g(φi)− gH(φ)Ĉ−1

N g(φ)]

=
1

N
(g(φi)− g(φ))HĈ−1

N (g(φ) + g(φi))

≤ 1√
N
‖g(φ)− g(φi)‖‖Ĉ−1

N ‖
1√
N
‖g(φ) + g(φi)‖

and

1

N
[gH(φi)Ĉ

−2
N g(φi)− gH(φ)Ĉ−2

N g(φ)]

=
1

N
(g(φi)− g(φ))HĈ−2

N (g(φ) + g(φi))

≤ 1√
N
‖g(φ)− g(φi)‖‖Ĉ−2

N ‖
1√
N
‖g(φ) + g(φi)‖,

we have

D ≤ 1√
N
‖g(φ)− g(φi)‖

×
(

1

N
gH(φ)Ĉ−2

N g(φ)‖Ĉ−1
N ‖

1√
N
‖g(φ) + g(φi)‖

+‖Ĉ−2
N ‖

1√
N
‖g(φ) + g(φi)‖

1

N
gH(φ)Ĉ−1

N g(φ)

)
≤ 1√

N
‖g(φ)− g(φi)‖

2

N
‖g(φ)‖2‖Ĉ−2

N ‖‖Ĉ
−1
N ‖

× 1√
N
‖g(φ) + g(φi)‖.

As we have proved that

1√
N
‖g(φ)− g(φi)‖ <

1√
N

√√√√ N∑
m=1

h2
mε,

and 1√
N
‖g(φ)‖, ‖Ĉ−1

N ‖ are bounded, we have D < p3ε for
some constant p3.

Similarly, since

E ≥ 1

N2
‖g(φi)‖2‖g(φ)‖2‖Ĉ−1

N ‖
2

and 1√
N
‖g(φ)‖ and ‖Ĉ−1

N ‖ are bounded, we have E > p4, for
some constant p4. Therefore, we have established the desired
property

|σ̂2(φ)− σ̂2(φi)| = r ∗ D
E
<
rp3

p4
ε. (52)

Finally, we turn to deriving the analogous result (for all
large K almost surely) for the third term in (50). Since, as
already established, for each φi, as N,K → ∞, with cN →
c ∈ (0, 1),

∣∣σ̂2(φi)− σ2(φi)
∣∣ a.s.−→ 0, we have that for each φi,∣∣σ̂2(φi)− σ2(φi)

∣∣ < ε for all large K almost surely. Thus,

max
i
|σ̂2(φi)− σ2(φi)| <

J∑
i=1

|σ̂2(φi)− σ2(φi)| < Jε.

This, combined with (51) and (52) completes the proof that
(49) holds, hence establishing the desired uniform convergence
(48).

D. Proof of Theorem 3

The proof relies on the following convergence results, which
will be derived subsequently: As N,K → ∞, with cN =
N/K → c ∈ (0, 1),

max
φ∈Rl

∣∣∣∣ 1

N
gH(φ)R−1

N g(φ)− 1

1− c
1

N
gH(φ)C−1

N g(φ)

∣∣∣∣ a.s.−→0

(53)

and

max
φ∈Rl]

∣∣∣∣ 1

N
Re2{gH(φ)R−1

N z0}

− 1

(1− c)2

1

N
Re2{gH(φ)C−1

N z0}
∣∣∣∣ a.s.−→ 0. (54)

We then have

max
φ∈Rl

∣∣∣∣Re2{gH(φ)R−1
N z0}

gH(φ)R−1
N g(φ)

− 1

1− c
Re2{gH(φ)C−1

N z0}
gH(φ)C−1

N g(φ)

∣∣∣∣ a.s.−→0.
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Denote φ̂ ∈ argmaxφ∈[pU,pD]
Re2{gH(φ)C−1

N z0}
gH(φ)C−1

N g(φ)
. Together with

φ̂{RN ,z0} ∈ argmaxφ∈[pU,pD]
Re2{gH(φ)R−1

N z0}
gH(φ)R−1

N g(φ)
, the following

inequalities hold true:

Re2{gH(φ̂{RN ,z0})R
−1
N z0}

gH(φ̂{RN ,z0})R
−1
N g(φ̂{RN ,z0})

≥ Re2{gH(φ̂)R−1
N z0}

gH(φ̂)R−1
N g(φ̂)

(55)

and

Re2{gH(φ̂)C−1
N z0}

gH(φ̂)C−1
N g(φ̂)

≥
Re2{gH(φ̂{RN ,z0})C

−1
N z0}

gH(φ̂SCM)C−1
N g(φ̂{RN ,z0})

. (56)

We also have∣∣∣∣∣ Re2{gH(φ̂{RN ,z0})R
−1
N z0}

gH(φ̂{RN ,z0})R
−1
N g(φ̂{RN ,z0})

− 1

1− c
Re2{gH(φ̂{RN ,z0})C

−1
N z0}

gH(φ̂{RN ,z0})C
−1
N g(φ̂{RN ,z0})

∣∣∣∣∣
≤ max
φ∈Rl

∣∣∣∣Re2{gH(φ)R−1
N z0}

gH(φ)R−1
N g(φ)

− 1

1− c
Re2{gH(φ)C−1

N z0}
gH(φ)C−1

N g(φ)

∣∣∣∣
a.s.−→ 0, (57)∣∣∣∣∣Re2{gH(φ̂)R−1

N z0}
gH(φ̂)R−1

N g(φ̂)
− 1

1− c
Re2{gH(φ̂)C−1

N z0}
gH(φ̂)C−1

N g(φ̂)

∣∣∣∣∣
≤ max
φ∈Rl

∣∣∣∣Re2{gH(φ)R−1
N z0}

gH(φ)R−1
N g(φ)

− 1

1− c
Re2{gH(φ)C−1

N z0}
gH(φ)C−1

N g(φ)

∣∣∣∣
a.s.−→ 0, (58)

Using (57) and (58) in (55), it follows that for all large N ,
almost surely,

Re2{gH(φ̂)C−1
N z0}

gH(φ̂)C−1
N g(φ̂)

≤
Re2{gH(φ̂{RN ,z0})C

−1
N z0}

gH(φ̂{RN ,z0})C
−1
N g(φ̂{RN ,z0})

.

(59)

Thus (56) and (59) together ensure that∣∣∣∣∣ Re2{gH(φ̂{RN ,z0})C
−1
N z0}

gH(φ̂{RN ,z0})C
−1
N g(φ̂{RN ,z0})

− Re2{gH(φ̂)C−1
N z0}

gH(φ̂)C−1
N g(φ̂)

∣∣∣∣∣ a.s.−→ 0 .

To complete the proof, we now present the derivations of
(53) and (54). Since

RN =
1

K

K∑
k=1

zkz
H
k = C

1/2
N

(
1

K

K∑
k=1

qkq
H
k

)
C

1/2
N ,

we rewrite 1
N gH(φ)R−1

N g(φ) as

1

N
gH(φ)R−1

N g(φ)

=
1

N
gH(φ)C−1

N g(φ)g̃H(φ)

(
1

K

K∑
k=1

qkq
H
k

)−1

g̃(φ) (60)

where g̃(φ) =
g(φ)C

−1/2
N√

g(φ)C−1
N g(φ)

.

Next, we note that g̃H(φ)
(

1
K

∑K
k=1 qkq

H
k

)−1

g̃(φ) is a ro-
tation invariant scalar, hence we have

g̃H(φ)

(
1

K

K∑
k=1

qkq
H
k

)−1

g̃(φ) =
1

N
1HNΛ−11N

where Λ = diag(λ1, . . . , λN ) is a diagonal matrix with diago-
nal entries λ1, . . . , λN equal to the eigenvalues of 1

K

∑K
k=1 qkq

H
k

[37]. Denote the empirical eigenvalue distribution of 1
K

∑K
k=1 qkq

H
k

as f(λ) = 1
N

∑N
i=1 δ(λ − λi) where δ(λ) is the Dirac delta

function. According to the Marčenko-Pastur law [26], as N,K →
∞, with cN = N/K → c ∈ (0, 1], f(λ) converges almost
surely to a non-random limiting eigenvalue distribution

ρ(λ) =
1

2πc

√
(λ+ − λ)(λ− λ−)

λ
, λ ∈ [λ−, λ+] (61)

where λ± = (1±
√
c)2. As a consequence [37]∣∣∣∣ 1

N
1HNΛ−11N −

∫
ρ(λ)/λdλ

∣∣∣∣ a.s.−→ 0,

and, equivalently,

max
φ∈Rl

∣∣∣∣∣∣g̃H(φ)

(
1

K

K∑
k=1

qkq
H
k

)−1

g̃(φ)−
∫
ρ(λ)/λdλ

∣∣∣∣∣∣ a.s.−→ 0.

(62)

Since
∫
ρ(λ)/λ dλ = 1

1−c , combining (60) and (62), the con-
vergence (53) follows.

As for (54), it should hold under both hypotheses. Under
H0, with z0 = n0, define ñ0 = C

−1/2
N n0. Then we have

1

N
Re2{gH(φ)R−1

N z0}

=
1

N
gH(φ)C−1

N g(φ)Re2

g̃H(φ)

(
1

K

K∑
k=1

qkq
H
k

)−1

ñ0

 .

Again, since 1
K

∑K
k=1 qkq

H
k is rotation invariant, we have

max
φ∈Rl

∣∣∣∣ 1

N
Re2{gH(φ)R−1

N z0}

− 1

2N
gH(φ)C−1

N g(φ)

(∫
ρ(λ)/λdλ

)2
∣∣∣∣∣ a.s.−→ 0.

Thus,

max
φ∈Rl

∣∣∣∣ 1

N
Re2{gH(φ)R−1

N z0}

− 1

(1− c)2

1

2N
gH(φ)C−1

N g(φ)

∣∣∣∣ a.s.−→ 0. (63)

Since also

max
φ∈Rl

∣∣∣∣ 1

N
Re2{gH(φ)C−1

N z0}−
1

2N
gH(φ)C−1

N g(φ)

∣∣∣∣ a.s.−→0,

(64)

combining (63) and (64), we obtain the convergence (54) when
z0 = n0.

Under H1, with z0 = sg(φ) + n0, we have

gH(φ)R−1
N z0 = sgH(φ)R−1

N g(φ) + gH(φ)R−1
N n0.

Relating to (53) and (63), we obtain

max
φ∈Rl

∣∣∣∣ 1

N
Re2{gH(φ)R−1

N z0}

− 2s2 + 1

2N(1− c)2
gH(φ)C−1

N g(φ)

∣∣∣∣ a.s.−→ 0. (65)
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max
φ∈Rl

∣∣∣∣ 1

N
Re2{gH(φ)R−1

N z0}−
2s2 + 1

2N(1− c)2
gH(φ)C−1

N g(φ)

∣∣∣∣ a.s.−→0.

(66)

Similarly,

max
φ∈Rl

∣∣∣∣ 1

N
Re2{gH(φ)C−1

N z0}−
2s2 + 1

2N
gH(φ)C−1

N g(φ)

∣∣∣∣ a.s.−→ 0,

which together with (66) further yields (54).
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