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Abstract—Most of the existing federated multi-armed bandits
(FMAB) designs are based on the presumption that clients will
implement the specified design to collaborate with the server. In
reality, however, it may not be possible to modify the clients’
existing protocols. To address this challenge, this work focuses
on clients who always maximize their individual cumulative
rewards, and introduces a novel idea of “reward teaching”, where
the server guides the clients towards global optimality through
implicit local reward adjustments. Under this framework, the
server faces two tightly coupled tasks of bandit learning and
target teaching, whose combination is non-trivial and challenging.
A phased approach, called Teaching-After-Learning (TAL), is
first designed to encourage and discourage clients’ explorations
separately. General performance analyses of TAL are established
when the clients’ strategies satisfy certain mild requirements. With
novel technical approaches developed to analyze the warm-start
behaviors of bandit algorithms, particularized guarantees of TAL
with clients running UCB or ε-greedy strategies are then obtained.
These results demonstrate that TAL achieves logarithmic regrets
while only incurring logarithmic adjustment costs, which is order-
optimal w.r.t. a natural lower bound. As a further extension, the
Teaching-While-Learning (TWL) algorithm is developed with the
idea of successive arm elimination to break the non-adaptive
phase separation in TAL. Rigorous analyses demonstrate that
when facing clients with UCB1, TWL outperforms TAL in terms
of the dependencies on sub-optimality gaps thanks to its adaptive
design. Experimental results demonstrate the effectiveness and
generality of the proposed algorithms.

I. INTRODUCTION

Federated multi-armed bandits (FMAB) [2]–[7] is a recently
proposed framework that introduces the core principles of
federated learning (FL) [8], [9] into multi-armed bandits (MAB)
[10]–[12]. In particular, FMAB often considers a system of
one global server and multiple heterogeneous local clients with
the goal of having the clients converge to the global optimality.
Since proposed by [2], [3], FMAB has found applications in
cognitive radio, recommender systems, and beyond.

One practical difficulty of realizing FMAB is that the existing
designs have to implement new protocols for both the server
and clients [3], [4], [13]. Specifically, the server and clients
must strictly follow the design collaboratively. In real-world
applications, it is relatively easy to update the server’s protocols
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for FMAB. However, given the typically large number of clients,
it is often not realistic to assume that all of their protocols can
be updated due to infrastructure cost and complicated agent
behaviors.

We first use the example of cognitive radio systems, a
common motivating application for FMAB [3], [14], [15], for
a more concrete illustration. Specifically, the base station (i.e.,
the central server) wants to find a good channel to broadcast
information to mobile devices in its coverage area. However,
different mobile devices, which are modeled as clients in
FMAB, typically have different local channel availabilities
due to their different geographic locations. As aforementioned,
previous designs (e.g., [2], [3]) typically require mobile devices
(i.e., clients) to follow the new FMAB protocols to collaborate
with the base station. However, in reality, mobile devices are
often configured to optimize their individual communication
qualities following their built-in protocols. It is typically hard
and expensive to update all mobile devices to follow the new
FMAB designs, especially since such changes are often needed
for both software and hardware. Moreover, in the recommender
system, another well-accepted application of FMAB [3], [4],
[16]–[18], the online sellers (i.e., clients) often need to select
items (i.e., actions) for promotions on the shopping platform
(i.e., the server). However, these sellers typically follow their
own strategies to optimize profits and often ignore other social
influences, such as environmental effects and health concerns
(e.g., for cigarettes). It is thus unrealistic to assume that the
selfish sellers would strictly perform the previously proposed
FMAB designs.

This work removes this limitation for FMAB by designing
mechanisms only at the server side. Especially, the clients can
still follow the original routines to optimize their individual
performances (as in the aforementioned examples of cognitive
radio and recommender systems) and no change of their
protocols is required. Towards this end, a novel “reward
teaching” approach is proposed: the server implicitly adjusts
the local rewards perceived by the clients to influence their
decision-making indirectly. We note that this idea is practical
for the aforementioned applications. For cognitive radio, it is
widely adopted in standard communication protocols for the
base station to measure rewards (e.g., throughput) and send
designed signals to mobile devices. In recommender systems,
the bonuses received by the sellers are commonly designed
and distributed by the shopping platform.

From a different perspective, this work can also be viewed
as breaking the barrier of naive clients in the previous FMAB
designs, where the clients unconditionally follow the server’s
instructions. Such naive behaviors are often unrealistic, while
a more reasonable scenario (as in this work) is that the clients
take actions to optimize their local performances, which may
not always align with the server’s global objective.
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Note that the seemingly simple idea of reward adjustment
brings considerable challenges for the server strategy. In
particular, the server needs to determine how to adjust rewards
to handle the following two tasks simultaneously: bandit
learning and target teaching. On one hand, the server has to
learn the unknown global model through the clients’ actions,
which are based on local observations and may not align
with the server’s global objective. Thus, reward adjustments
should be carefully placed to have the clients explore with
respect to (w.r.t.) the global information (instead of their
local ones). On the other hand, even if the global model is
learned successfully, the corresponding learning history has a
cumulative effect on guiding the clients towards the learned
target, as all historical (adjusted) rewards are considered by the
client in her future decision-making. As a result, while having
been studied individually (e.g., learning in MAB and teaching
in data-poisoning MAB), the combination of these two tasks
is novel and challenging as they are tightly coupled, which is
detailed in Sec. IV.

The contributions of this work are summarized as follows.
• A reward-teaching framework. A novel idea of reward

teaching is proposed to let the server design reward signals
to guide clients with their own local strategies. This idea is
practically appealing for FMAB systems as existing client
protocols do not have to be modified – only the reward signals
they receive are adjusted. From another perspective, it also
provides a method to handle non-naive FMAB clients.
• Client strategy-agnostic algorithm designs. A phased

approach, coined “Teaching-After-Learning” (TAL), is pro-
posed. It addresses the challenge of teaching in an unknown
environment by separately encouraging and discouraging
explorations in two phases. A more adaptive “Teaching-While-
Learning” (TWL) algorithm is then developed to break the strict
two-phased structure via the idea of successive arm elimination.
It is worth noting that both TAL and TWL are agnostic to the
clients’ local strategies.
• Client strategy-dependent analysis. When the clients’

local strategies satisfy some general properties, theoretical re-
gret and cost guarantees of TAL are established. Particularizing
these properties to UCB1 and ε-greedy [19] strategies at clients
reveals that TAL can achieve a logarithmic regret while only
incurring a logarithmic adjustment cost, which is order-optimal
w.r.t. a natural lower bound. Regarding TWL, its advantage is
rigorously established with clients running UCB1, where TWL
achieves an improved performance dependency on the sub-
optimality gaps than TAL due to its adaptive design. Moreover,
one key ingredient to obtain these results is the novel technical
approaches developed to analyze the warm-start behaviors of
bandit algorithms, which may be of independent merit.
• Experimental results. The performance of the proposed

designs is verified empirically. Especially, their effectiveness
and generality are corroborated with different client strategies
(i.e., UCB1, ε-greedy, Thompson sampling [20], and their
mixtures), where the advantage of TWL is also evidenced.

II. RELATED WORKS

FMAB. FMAB can be viewed as a variant of the general
problem of multi-agent bandits [11], [12], [21]–[23], where

global rewards instead of local ones measure the performance.
Recent studies have investigated its robustness [24], person-
alization [16] and privacy protection [13], and extended the
studies to contextual bandits [5]–[7]. However, almost all of
the previous studies assume the clients follow updated local
protocols, which either require clients to directly follow the
server’s instructions or have them work collaboratively. Instead,
the designs in this work are purely on the server’s side and
no change is needed on the client side, which broadens the
applicability of FMAB.

Reward adjustments in MAB and RL. One line of research
on reward adjustments focuses on the malicious poisoning
attacks [25]–[27]. The most relevant works are under the
“strong attack” model [28]–[31], where the attacker perturbs the
rewards after observing the player’s actions and tricks her into
converging to a pre-selected sub-optimal arm (see Sec. IV).
Other forms of attacks are also studied [32]–[36], including the
“weak attack” model [37]–[39] where attacks are performed
before observing actions. Note that the attackers in all these
works have no desire to explore the environment, while the
reward-teaching server has to actively learn the global model.

Another line is more conceptually related to this work:
performing adjustments for positive purposes, such as reward
shaping [40]–[42]. Especially, in reward shaping, the goal is
to accelerate learning using a newly designed set of rewards;
thus the optimal policy is kept the same. However, for reward
teaching, the goal is to use modified rewards to guide clients
to a different optimal policy (i.e., the optimal global arm).
The recent work by [43] shares a similar idea of “teaching”
the player via certain adjustments in reinforcement learning
(RL); however, the target is still pre-selected. While differences
exist between these previous attempts and this work, they all
demonstrate the potential of “teaching” in MAB and RL.

In addition, the reward-teaching idea shares similarities with
the design of implicit rewards in hierarchical RL [44], [45].
Thus, the designs in this work may contribute to improving
the theoretical understanding of hierarchical RL, which is
currently lacking. In particular, our work may be useful in
demonstrating that client behaviors can be guided via a small
number of modifications on their original rewards.

Incentivized explorations in MAB and RL. Another related
research domain is the incentivized explorations in MAB
and RL. Especially, a principal leverages either strategically
designed signals [46]–[48] or additional compensations [49]–
[51] to motivate the agent to perform certain actions. In
particular, [52] leverages additional bonuses to motivate non-
naive FMAB clients to perform certain explorations. However,
comparing incentivized explorations with this work, we note
that major differences exist: the incentivizing principal’s signals
or compensations are explicit to the agent, who then takes
corresponding actions; however, the reward adjustment used
by the server in this work is implicit to the clients, who
autonomously perform their own local strategies.

III. PROBLEM FORMULATION

A. Federated Multi-armed Bandits
Local and global models. Following [2]–[4], a standard

FMAB system of M local models and one global model
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TABLE I
A SUMMARY OF KEY NOTATIONS USED IN THIS WORK.

Notations Explanations
M The number of clients and local models
K The number of available arms

Xk,m(t) The reward of arm k on local model m at time t
Yk(t) The reward of arm k on the global model at time t
µk,m The expected reward of arm k on local model m
νk Th expected reward of arm k on the global model

k∗,m The optimal arm for local model m
k† The optimal arm for the global model

µ∗,m The expected reward of the locally optimal arm k∗,m
on local model m

µ†,m The expected reward of the globally optimal arm k† on
local model m

ν† The expected reward of the globally optimal arm k† on
the global model

X′
πm(t),m

(t) The modified observation for client m’s action πm(t)
at time t

σm(t) The adjustment amount performed on client m’s obser-
vation at time t

Rm(T ) The cumulative global regret caused by client m
RF (T ) The cumulative global regret caused by all clients
Cm(T ) The cumulative cost for adjusting client m’s observations
CF (T ) The cumulative cost for adjusting all clients’ observations
∆k The suboptimality gap of arm k, i.e., ν† − νk,∀k ̸= k†

∆min The minimal suboptimality gap, i.e., mink ̸=k† ∆k

∆max The maximal suboptimality gap, i.e., maxk ̸=k† ∆k

is considered. With the same set of K arms shared by all
the models, at each time step t ∈ [T ], each arm k ∈ [K]
is associated with a local reward Xk,m(t) ∈ [0, 1] for each
local model m ∈ [M ] and a global reward Yk(t) ∈ [0, 1]
for the global model. These rewards of each arm k are all
independently sampled with unknown expectations denoted
as µk,m := E[Xk,m(t)],∀m ∈ [M ] and νk := E[Yk(t)].
In general, the local arm utilities are model-dependent, i.e.,
µk,m ̸= µk,n for all n ̸= m. The optimal local arm for each
local model m is denoted as k∗,m := argmaxk∈[K] µk,m
with µ∗,m := µk∗,m,m, and the optimal global arm as
k† := argmaxk∈[K] νk with ν† := νk† .

As in [2]–[4], we consider the setting where each arm k’s
mean reward on the global model is the average of its mean
rewards on the local models1, i.e.,

νk := E [Yk(t)] =
1

M

∑
m∈[M ]

µk,m.

As a result, a global-local misalignment may occur as the
global optimality may not align with each local optimality, i.e.,
k† ̸= k∗,m for all or part of m ∈ [M ].

Clients and server. In FMAB, there exist M clients and
one server. At time t, each client m ∈ [M ] selects an arm
πm(t) (referred to as “local actions”) and then observes its
local reward Xπm(t),m(t) on local model m. Additionally, each
client m’s action πm(t) would also generate a reward Yπm(t)(t)
from the global model. It would be helpful to interpret the local
and global rewards as the individual-level and system-level
impact of the clients’ actions.

The server in FMAB does not perform any arm-pulling
action herself. Instead, she focuses on guiding the local actions

1Other global-local model relationships can also be considered, e.g., the
weighted sum in [16]. To better convey the key idea of reward teaching, the
exact average, which is simple while representative, is adopted in this work.

to optimize their incurred global rewards. However, the global
rewards are not directly observable by the server and the clients,
which is often a result of practical measurement limitations
[3]. Instead, the server is assumed to be able to observe
the local actions and the corresponding local rewards, i.e.,
{πm(t), Xπm(t),m(t) : m ∈ [M ]}.

To better optimize global performance, previous FMAB
studies require that all clients work collaboratively following
the updated local protocols. On the contrary, this work considers
that clients are fully committed to interacting with their own
local models (i.e., client m with local model m). Then, the
clients would naturally adopt their own MAB policies to maxi-
mize their local rewards. This setting is practically appealing as
in many applications (e.g., the examples of cognitive radio and
recommender systems in Sec. I), the local clients are inherently
configured to perform local policies to optimize their local
performance (e.g., IoT devices maximizing their own data rate
and selfish sellers optimizing their profits). Specifically, at time
t, each client m individually makes an arm-pulling decision
πm(t) based on her own history observed on local model m,
i.e., Hm(t− 1) := {πm(τ), Xπm(τ),m(τ) : 1 ≤ τ ≤ t− 1}.

B. Reward Teaching

As mentioned, each client m would select suitable actions
w.r.t. her own local model, which however may not necessarily
meet the server’s preference due to the global-local model
misalignment. To address this challenge, the following reward-
teaching mechanism is introduced for the server to indirectly
influence the clients’ action selections.

Specifically, after observing {Xπm(t),m(t) : m ∈ [M ]}, the
server can adjust each client m’s local reward Xπm(t),m(t) to
X ′
πm(t),m(t) by an amount of σm(t), i.e.,

X ′
πm(t),m(t) := Xπm(t),m(t) + σm(t),

which is then revealed to the client (instead of Xπm(t),m(t)).
Note that one implicit constraint is that the adjusted rewards
must still be in [0, 1], which is the system limitation.2 If
this constraint is satisfied, the clients are assumed to be
unable to detect the reward adjustments by any means. The
adjusted rewards lead to an adjusted history of H ′

m(t) :=
{πm(τ), X ′

πm(τ),m(τ) : 1 ≤ τ ≤ t} for client m, which ideally
can shape her future actions in favor of the server.

It is worth emphasizing that such reward adjustments
are practical for FMAB applications. In the cognitive radio
example, it is common for the base station to first measure
the communication quality (via pilot signals) and then send
designed feedback to the devices; this is the case in both cellular
and WiFi. Adjusting rewards can be achieved via either sending
modified feedback signals or modifying the allocated resources
(e.g., retransmission bandwidth [53]) to boost or reduce client
performance, which is standard in modern communication
protocols. The devices, on the other hand, are oblivious to such
adjustments thanks to their built-in protocols. In the application
of recommender systems, the shopping platform can implicitly
leverage extra or decreased bonuses to guide the decisions

2In fact, if there is no restriction on the adjustment range, the server is
more powerful and the algorithm design is thus easier.
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of the selfish sellers, e.g., to promote more environmentally
friendly and healthier items.

Fig. 1. The reward-teaching process with client m (among the overall M
clients) and action πm(t) = k.

The reward-teaching process is summarized as the following
steps, which is also illustrated in Fig. 1:
• Each client m chooses πm(t) using history H ′

m(t− 1);
• The server observes {πm(t), Xπm(t),m(t) : m ∈ [M ]};
• The server adjusts Xπm(t),m(t) into X ′

πm(t),m(t) by the
amount of σm(t) for each client m ∈ [M ];

• Each client m observes the adjusted X ′
πm(t),m(t).

C. Learning Objectives
Following previous FMAB studies, the global view by the

server is the focus of our design, which leads to a two-
fold objective. First, the server’s main goal is to maximize
the cumulative global rewards and can be characterized by
minimizing the global regret, defined as

RF (T ) :=
∑

m∈[M ]
Rm(T ),

where Rm(T ) is the regret incurred by client m’s actions w.r.t.
the global model (instead of her local model) defined as

Rm(T ) := Tν† − E
[∑

t∈[T ]
Yπm(t)(t)

]
.

The expectation is w.r.t. both the reward generations and the
client-system interactions.

Second, the server’s adjustments on local rewards are often
costly. For example, in the aforementioned application of cog-
nitive radio, the base station naturally needs to make additional
efforts when modifying the originally allocated resources, e.g.,
infrastructure costs for deviating from the default transmission
bandwidth. This work, thus, further introduces the objective
of cumulative cost, defined as

CF (T ) :=
∑

m∈[M ]
Cm(T ),

where Cm(T ) denotes the overall cost spent on client m and
is further defined as

Cm(T ) := E
[∑

t∈[T ]
|σm(t)|

]
.

The subscripts F in RF (T ) and CF (T ) refer to the global
model (i.e., the federation).

Intuitively, there exists a trade-off between these two
objectives: with more adjustments on rewards, i.e., larger
CF (T ), the server can have a bigger impact on the clients’
decisions, which ideally would decrease the regret RF (T ). It is
thus important to strike a balance between these two objectives,
which is the focus of the remainder of this paper.

D. Client Strategies

To facilitate discussion, we denote client m’s local bandit
policy as Πm. Note that while performing their own policies,
the clients are assumed not to be strategically against the server,
which is reasonable for most of the real-world applications of
FMAB, e.g., autonomous but not fully flexible mobile devices
in cognitive radio [3]. In addition, we denote Nk,m(t) as the
number of pulls by client m on arm k by time t, and N−1

k,m(τ)
refers to the time step t such that Nk,m(t) = τ .

The proposed designs are general and agnostic to clients’
strategies, which will be evident in Sections V and VII. For
the theoretical analysis, general performance bounds are first
provided without specifying the clients’ strategies. This is
accomplished by identifying the properties of client strategies
that lead to the desired theoretical results. More specifically,
client-strategy-dependent bounds are then derived (i.e., clients
with UCB1 or ε-greedy). Finally, experiments with varying
(and even mixing) strategies for clients are reported.

IV. TWO COUPLED TASKS AND DESIGN OBJECTIVES

In this section, two tightly coupled tasks faced by the
reward-teaching server, bandit learning, and target teaching,
are elaborated. A system design objective is also proposed.

Bandit learning. One major distinction between learning
in FMAB and in classical MAB [10], [54] is the server can
only gather information through clients’ local actions. Previous
FMAB studies tackled this challenge by implementing new
protocols for clients to naively follow [2]–[4], [13]. In contrast,
in this work, such information collection can only be indirectly
guided via carefully designed rewards.

Target teaching. To understand teaching, a special case
is first considered where the optimal arm k† is known by
the server. Then, the goal is to assign adjustments to have
the clients pull the pre-specified arm k† as much as possible,
which is mathematically the same as the data-poisoning MAB
problem [26], [28], [29], [55], where adjustments are phrased as
“attacks”. In such scenarios, the server can achieve Rm(T ) =
O(log(T )) and Cm(T ) = O(log(T )) for each m ∈ [M ] by
adjusting rewards from all arms except arm k† to 0’s [30]. The
underlying philosophy is to “discourage explorations” with the
adjusted reward 0’s.

Combination leads to a tight coupling. While both tasks
have been separately investigated (to some extent), the reward-
teaching server faces a combination of them. On one hand,
even if the server can perfectly learn the global model, she
still needs to teach it to the clients. On the other hand, to
teach correctly, sufficient information must be learned by the
server. The resulted tight coupling is the main challenge of
the design. Specifically, the learning attempt has a cumulative
effect on teaching, which in return relies on the learned target.
Technically, the main resultant difficulty is the analysis of the
“warm-start” behaviors of bandit algorithms, which is elaborated
in Sec. VI.

Design objective. For the cost, with a known target arm,
[30], [31] prove lower bounds that with UCB1 and ε-greedy
clients (defined in Sec. VI), it is necessary to spend a
cost Cm(T ) = Ω(log(T )) to obtain a regret Rm(T ) =
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O(log(T )). Thus, with M independent FMAB clients, a cost
of CF (T ) = Ω(M log(T )) is required to obtain a regret
of RF (T ) = O(M log(T )) while knowing arm k†, which
naturally holds for the more stringent case of not knowing the
target k†. For the regret, UCB1 and ε-greedy clients can be
shown to be conservative [30] as each client m would pull
each arm at least Ω(log(T )) times regardless of the rewards;
thus Rm(T ) = Ω(log(T )) and RF (T ) = Ω(M log(T )).

With these results, the following system design goal is
established, which is order-wise tight w.r.t. both criteria:

Goal: Design algorithms to achieve both
RF (T ) = O(M log(T )) and CF (T ) = O(M log(T )).

To verify that this goal is non-trivial, two intuitive base-
line policies, NG and NA, are discussed as follows, whose
limitations are further illustrated experimentally in Sec. VIII.
• “Naively-Guess” (NG). The server may randomly initialize
one arm k′ as the target to adopt the aforementioned approach
from [30]. However, the regret would be RNG

F (T ) = Ω(MT )
if k′ ̸= k†, although achieving CNG

F (T ) = O(M log(T )).
• “Naively-Align” (NA). Another natural idea is to have
the server align X ′

πm(t),m(t) with Yπm(t)(t) via σm(t) =

Yπm(t)(t) − Xπm(t),m(t).3 While achieving RNA
F (T ) =

O(M log(T )), adjustments would be needed nearly all the
time steps, i.e., CNA

F (T ) = Ω(MT ).
Remark 1. A refined lower bound beyond Ω(M log(T )) can be
instructive, especially for determining the optimal dependencies
on parameters other than M and T . However, such lower
bounds are also challenging, even with a known target [30],
[31]; thus it is left as an open question for future works.

V. TAL: ALGORITHM DESIGN

To address the coupled tasks of bandit learning and target
teaching, one idea is to first learn the server’s target and then
teach the clients to converge to it, which leads to the pro-
posed “Teaching-After-Learning” (TAL) algorithm (presented
in Alg. 1). Specifically, TAL starts with the learning phase
where the goal is to identify the optimal global arm. Then,
in the teaching phase, the server guides the clients toward
the learned global optimality. Note that although there is a
separation of phases, the teaching phase must handle clients
that accumulate observations from the learning phase (i.e.,
“warm-start” clients), whose effect will be more evident in the
analysis.

In the learning phase, TAL uniformly adjusts each client m’s
observed rewards to γ1, i.e., σm(t)← γ1−Xπm(t),m(t), where
γ1 ∈ [0, 1] is a to-be-specified input parameter. Intuitively, this
uniform reward adjustment encourages sufficient (or ideally,
uniform) explorations among all arms, since their rewards
are all at the same value γ1. If clients are indeed sufficiently
exploring, the server can collect enough information on each
arm to identify her optimal arm k†.

This identification is designed to proceed in epochs indexed
by counter ψ to ensure statistical independence. If at time

3Yπm(t)(t) is assumed to be observable here for the baseline, which is not
the case in our design.

t, each client m has pulled each arm k at least F (ψ) :=∑
τ∈[ψ] f(τ) times, where f(ψ) := 1

M ·2
2ψ+3 log(2KT 2), the

server updates upper and lower confidence bounds (UCB and
LCB) for each arm k ∈ [K] using its rewards collected between
its F (ψ − 1) + 1 and F (ψ) pulls (i.e., overall f(ψ) pulls) by
each client as follows:

UCBk(ψ),LCBk(ψ) :=
1

M

∑
m∈[M ]

µ̂k,m(ψ)±CB(ψ), (1)

where

µ̂k,m(ψ) :=
∑F (ψ)

τ=F (ψ−1)+1
Xk,m(N−1

k,m(τ))/f(ψ),

CB(ψ) :=
√
log(2KT 2)/(2Mf(ψ)) = 2−ψ−2.

Note that with the estimation of µk,m from local samples, the
first term in Eqn. (1) is essentially an estimation ν̂k(ψ) of νk.
The confidence bound CB(ψ) is specifically designed such
that LCB(ψ) ≤ νk ≤ UCB(ψ) holds for each arm k and each
epoch ψ in the learning phase with high probability.

The learning phase ends in epoch ψ if the confidence
interval of one arm k‡ dominates that of all other arms, i.e.,
LCBk‡(ψ) ≥ UCBk(ψ),∀k ̸= k‡, which is recognized as the
optimal arm. Otherwise, a new epoch ψ + 1 begins. With the
designed confidence bound, this identification is guaranteed to
be correct with high probability.

With the identified arm k‡, the server utilizes the following
adjustments to guide the clients in the teaching phase:

σm(t)←

{
γ2 −Xπm(t),m(t) if πm(t) ̸= k‡

0 if πm(t) = k‡
, (2)

where γ2 is another to-be-specified input parameter and
typically should be small. In other words, if the client does
not pull arm k‡, her reward is adjusted to a small value γ2 to
discourage explorations; otherwise, the original reward of arm
k‡ is kept unchanged to save adjustments.

From Alg. 1, it can be observed that TAL is a pure server
protocol and agnostic to the clients’ local strategies – the only
interaction with the clients is the adjusted rewards.

Algorithm 1 TAL
Input: Parameter γ1, γ2 ∈ [0, 1]; Time Horizon T
1: Initialize: F ← 1 (i.e., the learning phase); ψ ← 1; k‡ ← 0
2: for t ≤ T do
3: Observe {πm(t), Xπm(t),m(t) : m ∈ [M ]}
4: if F = 1 & Nk,m(t) ≥ F (ψ),∀m ∈ [M ], k ∈ [K] then
5: Update {UCBk(ψ),LCBk(ψ) : k ∈ [K]} as Eqn. (1)
6: if ∃j ∈ [K],LCBj(ψ) ≥ UCBk(ψ), ∀k ̸= j then
7: Set k‡ ← j; F ← 2 (i.e., the teaching phase)
8: else Set ψ ← ψ + 1
9: end if

10: end if
11: if F = 1 then σm(t)← γ1 −Xπm(t),m(t), ∀m ∈ [M ]
12: else if F = 2 then Set σm(t) as Eqn. (2), ∀m ∈ [M ]
13: end if
14: Set X ′

πm(t),m(t)← Xπm(t),m(t) + σm(t),∀m ∈ [M ]
15: Reveal X ′

πm(t),m(t) to each client m ∈ [M ]
16: end for
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VI. TAL: THEORETICAL ANALYSIS

In this section, we first provide a general analysis of
TAL (Theorem 5) under some abstract characterizations of
clients’ strategies (i.e., sufficient-exploring and warm-starting
in Definitions 1 and 3, respectively). Then, we consider clients
with UCB1 or ε-greedy in the following two subsections,
respectively. In particular, the adopted abstract characterizations
are particularized (Lemmas 6, 7, 9 and 10), and then specific
performance guarantees are obtained (Theorems 8 and 11),
which show that TAL achieves the design goals in Section IV
with these clients. Detailed proofs are deferred to Appendix A.

Some useful notations are introduced as follows: ∆k :=
ν† − νk,∀k ̸= k†, ∆min = ∆k† := mink ̸=k† ∆k, ∆max :=
maxk∈[K] ∆k, and µ†,m := µk†,m. Moreover, δk,m(γ) :=
E[|γ−Xk,m(t)|] and ψmax := ⌈log2(1/∆min)⌉. Also, without
loss of generality, it is assumed that K,M ≪ T .

We first define sufficiently exploring algorithms for the
learning phase in TAL, which states that a bandit algorithm
would sufficiently explore when facing uniform rewards.

Definition 1 (Sufficiently Exploring Algorithms). Consider
a K-armed bandit environment where rewards from arms in
a set I ⊆ [K] are always a fixed constant γ ∈ [0, 1]. In this
environment, a bandit algorithm Π is said to be (I, γ, η, η)-
sufficiently exploring if it would pull each arm in the set I
at least η(τ ; γ, I) and at most η(τ ; γ, I) times when total τ
pulls have been performed on set I.

If local strategies are sufficiently exploring as in Definition 1,
enough information can be collected in the learning phase to
identify the global optimal arm, as stated in the following
lemma, where η−1(N ; γ, [K]) denotes the value τ such that
η(τ ; γ, [K]) = N .

Lemma 2 (Learning Phase in TAL). If Πm is
([K], γ1, ηm, ηm)-sufficiently exploring for all m ∈ [M ], with
probability (w.p.) at least 1 − 1/T , the learning phase ends
with k‡ = k† by time step T1, and the regret and cost in the
learning phase of TAL are bounded, respectively, as

RTAL
F,1 (T ) ≤

∑
m∈[M ]

∑
k ̸=k†

∆k · ηm (T1; γ1, [K]) ;

CTAL
F,1 (T ) ≤

∑
m∈[M ]

∑
k∈[K]

δk,m(γ1) · ηm (T1; γ1, [K]) ,

where T1 ≤ maxm∈[M ]{η−1
m

(F (ψmax); γ1, [K])}.

Note that the time step T1 bounded via the sufficiently
exploring lower bound (i.e., η) ensures sufficient information
collection, while the corresponding upper bound (i.e., η)
guarantees performance, i.e., regret and adjustment cost.

Then, for the teaching phase, since the cumulative obser-
vations from the learning phase are inherited to the client
strategies, we can view the clients as “warm-started”. The
following notion of warm-start pulls is introduced, which
measures the warm-start behavior of an algorithm.

Definition 3 (Warm-start Pulls). In a K-armed bandit en-
vironment B, if a reward sequence H = {Hk : k ∈ [K]}
is input to a bandit algorithm Π, where Hk is a reward
sequence for arm k, warm-start pulls on arm k is defined
as ιk(T ;H,B,Π) := EΠ[

∑
t∈[T ] 1{π(t) = k}|H,B], which

represents the expected pulls performed by Π on each arm k
during T steps in environment B with prior input H .

Using this notion of warm-start pulls, the following guarantee
on the teaching phase is established.

Lemma 4 (Teaching Phase in TAL). If the event in Lemma 2
occurs, the regret and cost in the teaching phase of TAL are
bounded, respectively, as

RTAL
F,2 (T ) ≤

∑
m∈[M ]

max
Hm∈Hm

∑
k ̸=k†

∆k · ιk(T ;Hm,Bm,Πm);

CTAL
F,2 (T ) ≤

∑
m∈[M ]

max
Hm∈Hm

∑
k ̸=k†

δk,m(γ2) · ιk(T ;Hm,Bm,Πm),

where Bm denotes an environment with constant rewards as
γ2 for arm k ̸= k† and stochastic rewards with expectation
µ†,m for arm k†. The set Hm is defined with each element
of it as a reward sequence Hm = {Hk,m : k ∈ [K]} where
Hk,m ∈ {{γ1}τ : τ ∈ [η

m
(T1; γ1, [K]), ηm(T1; γ1, [K])]}.

Note that Bm characterizes the environment of client m
in the teaching phase while Hm represents the cumulative
observation inherited from the learning phase.

Finally, the overall performance guarantee can be obtained
by combining the regrets from two phases.

Theorem 5 (Overall Performance of TAL). Under the assump-
tion in Lemma 2, with RTAL

F,1 (T ), C
TAL
F,1 (T ) defined in Lemma 2

and RTAL
F,2 (T ), C

TAL
F,2 (T ) in Lemma 4, the regret and cost of

TAL are bounded, respectively, as

RTAL
F (T ) ≤ RTAL

F,1 (T ) +RTAL
F,2 (T ) +O(M);

CTAL
F (T ) ≤ CTAL

F,1 (T ) + CTAL
F,2 (T ) +O(M).

The key difficulty behind this analysis resides in leveraging
the quantities in Definitions 1 and 3. In particular, how
to specify η, η and ι is non-trivial, which is one of the
main technical challenges in proving Thm. 5. Furthermore,
Thm. 5 implies that the desired logarithmic regret and cost
can be achieved by TAL when RTAL

F,1 (T ), R
TAL
F,2 (T ), C

TAL
F,1 (T )

and CTAL
F,2 (T ) are all bounded in logarithmic orders. The

analyses of these terms are further determined by the sufficiently
exploring property and the warm-start pulls of the specific
clients’ strategies as stated in Lemmas 2 and 4.

In the following, to particularize the general guarantee in
Thm. 5, we analyze several well-known bandit algorithms as
clients’ strategies (i.e., UCB and ε-greedy).

A. UCB Clients

The popular UCB-type algorithms are first considered. In
particular, we analyze the celebrated UCB1 algorithm [19]
while noting that the analysis generalizes to other UCB variants
[56], [57]. Especially, at time t, the UCB1 algorithm for client
m chooses arm as follows:

πm(t) = argmax
k∈[K]

{
µ̂′
k,m(t− 1) +

√
2 log(t)/Nk,m(t− 1)

}
,

which considers both the perceived sample mean

µ̂′
k,m(t) :=

∑
τ∈[Nk,m(t)]

X ′
k,m(N−1

k,m(τ))/Nk,m(t)
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and the associated confidence bound.
First, the sufficiently exploring assumption in Lemma 2 is

verified for UCB1 in Lemma 6. This is intuitive as with constant
rewards, the sample means are the same while additional pulls
decrease the confidence bound in UCB1.

Lemma 6. For any γ ∈ [0, 1] and set I ⊆ [K], UCB1 is
(I, γ, η, η)-sufficiently exploring with η(τ ; γ, I) = ⌊τ/|I|⌋ and
η(τ ; γ, I) = ⌈τ/|I|⌉.

Then, the performance of TAL in the learning phase
(in Lemma 2) can be bounded by recognizing T1 =
O(K log(T )/(M∆2

min)), which further specifies the reward
sequence set Hm in Lemma 4 and leads to the following lemma
on the warm-start pulls of UCB1.

Lemma 7. If γ1 ≥ µ†,m > γ2 and Πm is UCB1, for all
k ̸= k†, it holds that maxHm∈Hm

{ιk(T ;Hm,Bm,Πm)} =

O
(

(γ1−γ2)T1

K(µ†,m−γ2) +
log(T )

(µ†,m−γ2)2

)
.

Proving this lemma is non-trivial and may be of independent
interest in understanding the warm-start behavior of UCB1.
Essentially, the result can be interpreted as first offsetting the
“warm-start” history (the first term) and then converging to arm
k† (the second term) in an environment Bm, whose rewards
for arm k ̸= k† are constant γ2’s and rewards for arm k† have
an expectation µ†,m (see Lemma 4).

It is noted that Lemma 7 requires γ1 ≥ µ†,m, which
maintains the optimism for the estimation of arm k† on each
local model m. The other requirement µ†,m > γ2 is intuitive
as otherwise, the local client m would not converge to arm k†.
Since there is no prior information about µ†,m, a feasible and
sufficient solution is to set γ1 = 1 while γ2 = 0, which leads
to the following theorem.

Theorem 8 (TAL with UCB1 clients). For TAL with γ1 = 1
and γ2 = 0, if all clients run UCB1 locally and µ†,m ̸= 0 for
all m ∈ [M ], it holds that

RTAL
F (T ) = O

( ∑
m∈[M ]

∑
k ̸=k†

[
∆k log(T )

µ†,mM∆2
min

+
∆k log(T )

µ2
†,m

])
;

CTAL
F (T ) = O

( ∑
m∈[M ]

∑
k∈[K]

(1− µk,m) log(T )

M∆2
min

+
∑

m∈[M ]

∑
k ̸=k†

[
µk,m log(T )

µ†,mM∆2
min

+
µk,m log(T )

µ2
†,m

])
.

We note that with a focus on the dependencies on M and T ,
the regret and cost are both of order O(M log(T )); thus TAL
is order-optimal w.r.t. both criteria stated in Sec. IV, i.e., the
general design goal is achieved. Moreover, the regret bound
shows two dominating terms, which are from Lemma 7, i.e.,
the teaching phase. In fact, there is another non-dominating
(thus hidden) term from Lemma 2 for the learning phase; see
more details in Appendix A-B. A similar three-part form is
shared by the cost. In particular, the first term is from the
learning phase (thus the sum is over all arms k ∈ [K] and each
term scales with 1− µk,m), and the last two terms are from
the teaching phase (thus the sum is over sub-optimal global
arms k ̸= k† and scales with µk,m).

B. ε-greedy Clients

The analysis is further extended to the clients running the
ε-greedy algorithm [58], another well-known bandit strategy.
Especially, the ε-greedy algorithm for client m is as follows:

πm(t)←

{
argmaxk∈[K] µ̂

′
k,m(t− 1) w.p. 1− εm(t)

a random arm in [K] w.p. εm(t)
,

where the exploration probability εm(t) ∈ [0, 1] is taken as
εm(t) = O(K/t), following [19].

First, the following lemma states that ε-greedy is sufficiently
exploring, which is intuitive as the constant rewards lead to
the same sample mean for different arms.

Lemma 9. For any γ ∈ [0, 1], if ties among arms are broken
uniformly at random, with probability at least 1 − 1/T , ε-
greedy is ([K], γ, η, η)-uniformly exploring with η(τ ; γ, [K])
and η(τ ; γ, [K]) = O(τ/K ± log(KT )).

Due to the randomness in ε-greedy, it is complicated to
analyze its warm-start pulls in general. Instead, the following
lemma focuses on γ1 = γ2 = 0. Under this setting, the sample
means are all kept as zero in the learning phase. Thus, once a
non-zero reward is collected in the teaching phase, that arm
will immediately have the highest sample mean.

Lemma 10. If Πm is ε-greedy and µ†,m > γ1 =
γ2 = 0, with probability at least 1 − 1/T , it
holds that maxHm∈Hm{

∑
k ̸=k† ιk,m(T ;Hm,Bm,Πm)} =

O(K log(KT )/µ2
†,m).

Combining these results with Thm. 5, the following perfor-
mance guarantees can be obtained.

Theorem 11 (TAL with ε-greedy clients). For TAL with γ1 =
γ2 = 0, if clients run ε-greedy and break ties uniformly at
random, and µ†,m ̸= 0,∀m ∈ [M ], it holds that

RTAL
F (T ) = O

(
K∆max log(T )

∆2
min

+
∑

m∈[M ]

K∆max log(T )

µ2
†,m

)
,

CTAL
F (T ) = O

( ∑
m∈[M ]

[
Kµ∗,m log(T )

M∆2
min

+
Kµ∗,m log(T )

µ2
†,m

])
.

The two parts in regret and cost are from the learning and
teaching phases, respectively. It can be observed that TAL with
ε-greedy clients also achieves the goal illustrated in Section IV.
Moreover, compared with Theorem 8, dependencies on ∆max

and µ∗,m (instead of ∆k and µk,m) can be observed, which
is a worst-case consideration to capture the random actions
generated from the ε-greedy policy.

C. Discussions: Thompson Sampling and Beyond

Another popular bandit strategy is Thompson sampling (TS)
[20]. Experiment results in Sec. VIII verify the performance of
TAL with TS clients; however, the theoretical analysis remains
open. In particular, unlike the sufficiently exploring UCB and ε-
greedy, [59] indicates that when facing two arms with constant
reward 1’s, the pulls by TS can be arbitrarily imbalanced.
Instead, balanced pulls can be achieved with reward 0’s for
these two arms. This phenomenon motivates using γ1 = 0
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to encourage TS explorations in the learning phase, whose
effectiveness is verified empirically but not analytically. On the
other hand, the complicated warm-start behavior of TS also
requires further investigation.

Furthermore, in Secs. VI-A and VI-B, the hyper-parameter
γ1 is set to different values (i.e., 1 for UCB clients and 0
for ε-greedy clients). These choices are made to facilitate the
corresponding “warm-start” analyses required in Definition 3
(i.e., to maintain the optimism of estimations in UCB and
to avoid complicated analyses due to the randomness in ε-
greedy). However, the capabilities of TAL extend beyond
these theoretically sound options. Especially, experiments in
Sec. VIII show that various other choices (e.g., γ1 = 0 for
UCB clients and γ1 = 1 for ε-greedy clients) can also lead to
reasonable performances. Thus, it would be an interesting future
direction to investigate whether a unified hyper-parameter γ1
in TAL is sufficient for certain classes of client strategies (e.g.,
UCB and ε-greedy). The main difficulty along this direction is
still to analyze the “warm-start” behaviors, which are largely
determined by the specific strategy.

Moreover, Thm. 5 has established conditions on clients’
strategies to obtain performance guarantees of TAL, i.e.,
sufficiently exploring and low sub-optimal warm-start pulls.
An interesting direction is to verify the client-strategy-agnostic
nature of TAL in an even broad sense, e.g., with any no-
regret client strategy. Experimental results are provided later
to enlighten future works on this open problem.

VII. TWL: A MORE ADAPTIVE EXTENSION

A. Algorithm Design

To further optimize the performance, a more adaptive
“Teaching-While-Learning” (TWL) algorithm (presented in
Alg. 2) is proposed, which breaks the non-adaptive phased
structure of TAL by leveraging a different idea of successive
arm elimination [60], [61]. In TWL, the server maintains a set
Υ of active arms (on the global model), which is initialized as
[K]. If |Υ| > 1, the following update is performed after each
active arm k ∈ Υ has been pulled at least F (ψ) times by each
client:

Υ← {j ∈ Υ : UCBj(ψ) ≥ LCBk(ψ),∀k ∈ Υ},

where UCBk(ψ) and LCBk(ψ) are defined in Eqn. (1) and ψ
is the epoch counter as in TAL. In this process, the arms that
do not satisfy the requirement are eliminated (i.e., marked as
inactive). Then, based on the set Υ, the following adjustment
is performed for client m:

σm(t)←


γ2 −Xπm(t),m(t) if πm(t) /∈ Υ

γ1 −Xπm(t),m(t) if πm(t) ∈ Υ and |Υ| > 1

0 if πm(t) ∈ Υ and |Υ| = 1

,

where γ1, γ2 ∈ [0, 1] are to-be-specified input parameters.
In other words, the local rewards of all inactive arms are

adjusted to γ2 (typically small) to discourage explorations. For
an active arm, when there are other active arms (i.e., |Υ| > 1),
the server uniformly adjusts its rewards to γ1 to encourage
explorations. When an arm is the only active one (which is
arm k† with high probability), its original rewards are kept to

save server adjustments, which is sufficient as all other arms
are inactive with a small perceived reward γ2.

TWL is more refined than TAL as it only encourages
explorations on the active arms (instead of all arms), which is
important in two aspects. First, only necessary arm-dependent
explorations are encouraged. Second, fewer cumulative rewards
on the sub-optimal arms also alleviate the server’s burden of
teaching clients to converge to the optimal arm.

Algorithm 2 TWL
Input: Parameter γ1, γ2 ∈ [0, 1]; Time Horizon T
1: Initialize: active arm set Υ← [K]; iteration counter ψ ← 1
2: for t ≤ T do
3: Observe {πm(t), Xπm(t),m(t) : m ∈ [M ]}
4: if |Υ| > 1 and Nk,m(t) ≥ F (ψ), ∀k ∈ Υ,m ∈ [M ] then
5: Update {UCBk(ψ),LCBk(ψ) : k ∈ Υ} as in Eqn. (1)
6: Update Υ← {j ∈ Υ : UCBj(ψ) ≥ LCBk(ψ), ∀k ∈ Υ}
7: Set ψ ← ψ + 1
8: end if
9: ∀m ∈ [M ], set

σm(t)←


γ2 −Xπm(t),m(t) if πm(t) /∈ Υ

γ1 −Xπm(t),m(t) if πm(t) ∈ Υ and |Υ| > 1

0 if πm(t) ∈ Υ and |Υ| = 1

,

10: Set X ′
πm(t),m(t)← Xπm(t),m(t) + σm(t)

11: Reveal X ′
πm(t),m(t) to each client m ∈ [M ]

12: end for

B. Theoretical Analysis

The general performance of TWL can be similarly analyzed
as that of TAL in Sec. VI. The following result establishes the
performance guarantee for UCB1 clients.

Theorem 12 (TWL with UCB1 clients). For TWL with γ1 = 1
and γ2 = 0, if all clients run UCB1 locally and µ†,m ̸= 0 for
all m ̸= [M ], it holds that

RTWL
F (T ) = O

( ∑
m∈[M ]

∑
k ̸=k†

[
log(T )

µ†,mM∆k
+

∆k log(T )

µ2
†,m

])
,

CTWL
F (T ) = O

( ∑
m∈[M ]

∑
k∈[K]

(1− µk,m) log(T )

M∆2
k

+
∑

m∈[M ]

∑
k ̸=k†

[
µk,m log(T )

µ†,mM∆2
k

+
µk,m log(T )

µ2
†,m

])
.

The above guarantees can be interpreted in similar ways
as those of TAL in Thm. 8, i.e., one part from learning the
global optimal arm and the other part from guiding agents
towards it. More importantly, it is noted that with UCB1 clients,
TWL strictly outperforms TAL w.r.t. both criteria since the
dependency on the minimum gap ∆min is replaced by arm-
dependent gaps ∆k ≥ ∆min, which comes precisely from its
adaptive design.

Remark 2. For ε-greedy clients, with γ1 = γ2 = 0, the same
performance guarantee as Thm. 11 can be established for TWL
because the active and non-active arms are not distinctly treated
under this specification, which degrades TWL to TAL. However,
experimental results show that better empirical performance is
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(a) UCB1: regrets. (b) UCB1: costs. (c) ε-greedy: regrets. (d) ε-greedy: costs.

(e) TS: regrets. (f) TS: costs. (g) Mixed: regrets. (h) Mixed: costs.

(i) UCB1: random insts. (j) ε-greedy: random insts. (k) TS: random insts. (l) Mixed: random insts.

Fig. 2. Experimental results on synthetic datasets with clients running UCB1, ε-greedy, TS, and mixed strategies. Evaluations of (a–h) are under a fixed
5-clients-5-arms instance, where the curves represent the empirically averaged values and the shadowed areas represent the upper and lower 80% confidence
intervals. Evaluations of (i–l) are with 100 randomly generated 5-clients-5-arms instances, where each dot reports the performance (in a log-log scale) under
one instance and plots of a few algorithms are omitted for a better presentation here. The mixed strategies are two UCB1, two ε-greedy, and one TS. All time
horizons are T = 50000.

achieved with γ1 = 1 and γ2 = 0, whose theoretical analyses
are left open for future works.

Remark 3. While TWL improves the regret of TAL regarding
the dependency on ∆k, it is unclear whether its dependencies
on parameters other than M and T are tight. One the one hand,
as mentioned in Remark 1, a refined lower bound would be
instructive in evaluating such tightness. On the other hand, it
is equally worth exploring whether a refined upper bound can
be obtained, which is left for further investigations.

VIII. EXPERIMENTAL RESULTS

In this section, the proposed algorithms are empirically
evaluated against two baselines, NG and NA from Sec. IV, to
demonstrate their superiority and generality.

A. Synthetic Dataset

First, experimental results with synthetic datasets are reported
in Fig 2. In particular, two sets of experiments are performed:
(1) the first environment is a fixed instance with M = 5 clients
and K = 5 arms, where each client’s local model is specified
(left to right: arm 1 to arm 5) with the following mean rewards:
Client 1–[0.2, 0.9, 0.1, 0.8, 0.6], Client 2–[0.4, 0.1, 0.9, 0.4,
0.8], Client 3–[0.2, 0.2, 0.5, 0.5, 0.9], Client 4–[0.4, 0.3, 0.8,
0.9, 0.4], Client 5–[0.3, 0.5, 0.2, 0.4, 0.8]. The corresponding
global game then has the following mean rewards with a gap
of ∆min = 0.1 (left to right: arm 1 to arm 5): [0.3, 0.4, 0.5,

0.6, 0.7]; (2) the second setting is 100 randomly generated
instances with M = 5 clients and K = 5 arms. Especially, the
mean reward of each local arm for each client is sampled from
a uniform distribution in [0, 1]. The obtained results from these
two sets of environments are reported with different client
strategies in Figs. 2(a)–2(h) and Figs. 2(i)–2(l), respectively,
and discussed in the following. To facilitate presentations, we
denote TAL(γ1, γ2) (resp. TWL(γ1, γ2)) as TAL (resp. TWL)
with specific parameters γ1 and γ2. We note that with the
randomly generated instances in the second environment, the
reported observations are sufficiently general.

UCB1 clients. First, with UCB1 clients, from Figs. 2(a)
and 2(b), it can be observed that the proposed algorithms are
capable of converging while the superiority of TWL over TAL
is verified. However, as claimed in Sec. IV, the baselines are
at two extremes: NG (resp. NA) is almost linear in regret
(resp. cost) although performing well w.r.t. cost (resp. regret).
Fig. 2(i) further demonstrates that TAL and TWL strike a
balance between regret and cost, while the advantage of TWL
is evident again. In particular, their performance scatter plots
from 100 randomly generated instances are concentrated in the
diagonal between the two axes. However, the plots of the two
baselines are near one axis but far from the other.

ε-greedy clients. Figs. 2(c) and 2(d) report that TAL and
TWL can successfully teach ε-greedy clients with a reasonably
low regret and cost at the same time. Somewhat unexpectedly,
TWL(1, 0) has a better performance even over the theoretically
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sound TAL(0, 0) (equivalently, TWL(0, 0)), which warrants
further investigations with ε-greedy clients. Fig. 2(j) verifies
that the above observations hold in general.

TS clients. Although not theoretically studied, Figs. 2(e),
2(f) and 2(k) report the performances of the proposed algo-
rithms with TS clients. While converging, the performance of
TAL(1, 0) and TWL(1, 0) are highly unstable, which verifies
the imbalanced exploration of TS discussed in Sec. VI-C. On
the other hand, TAL(0, 0) has stable and competitive behaviors.

Mixed clients. Beyond one single local strategy, TAL and
TWL are also tested with mixed strategies for clients. Especially,
with two UCB1 clients, two ε-greedy clients, and one TS client,
the results are reported in Figs. 2(g), 2(h) and 2(l). It can be
observed that the proposed designs are capable of effectively
guiding the clients to the global optimal arm in the face of
mixed client strategies while achieving a good balance between
regret and cost. These results further demonstrate the broad
applicability of the designs and their appealing property of
being client-strategy-agnostic.

B. Real-world Dataset

To further complement the observations obtained from
synthetic datasets, the empirical performances of the proposed
designs are further evaluated on the MovieLens dataset [62].
The available users and movies in the dataset are both randomly
divided into 15 groups to form an FMAB environment with
15 clients and 15 arms. The average movie ratings from each
group of users are used to construct their local rewards. Also,
the clients are considered to adopt mixed bandit strategies: 5
clients using each choice of UCB1, ε, and TS, respectively.
From the results reported in Fig. 3, the aforementioned key
observation is further verified that the proposed designs, i.e.,
TAL and TWL, are capable of effectively guiding the clients
towards the global optimal arm with a reasonable amount of
adjustment cost, i.e., balancing between regret and cost. These
results further demonstrate the practicability of the proposed
designs.

(a) Mixed: regrets. (b) Mixed: costs.

Fig. 3. Experimental results on the real-world MovieLens dataset with clients
running mixed strategies. Evaluations (a) and (b) are under a fixed 15-clients-
15-arms instance, which is extracted by grouping users and movies in the
MovieLens dataset. The curves represent the empirically averaged values and
the shadowed areas represent the upper and lower 80% confidence intervals.

IX. CONCLUSIONS

A novel idea of reward teaching was proposed to have
the server guide autonomous clients in an unknown FMAB
environment via reward adjustments, which avoids any changes

to the clients’ protocols and removes the previous requirement
of naive clients in FMAB. Two client-strategy-agnostic algo-
rithms, TAL and TWL, were proposed. The TAL algorithm
was designed with two phases to separately encourage and
discourage explorations. The TWL algorithm further optimized
the performance by breaking the non-adaptive phased structure
into a flexible interleaving scheme. General performance
analysis was established for TAL when the clients’ strategies
satisfy certain requirements. Especially, for the representa-
tive UCB1 and ε-greedy clients, rigorous analyses showed
that TAL strikes a balance between regret and adjustment
cost (logarithmic in both metrics), which is order-optimal
w.r.t. the natural lower bound. Moreover, the analyses also
demonstrated that TWL achieves an improved dependency on
the sub-optimality gap than TAL due to its adaptive design.
Experimental results further demonstrated the effectiveness
and efficiency of the proposed algorithms. Under the reward
teaching framework, many interesting questions were left open
for further investigations, e.g., theoretical analysis on TAL and
TWL with Thompson sampling clients.

APPENDIX A
TAL: PERFORMANCE ANALYSIS

A. General Analysis: Theorem 5
First, the following good event is established to demonstrate

the effectiveness of the proposed confidence bounds.

Lemma 13. Denoting event EF as

EF :=
{
∀ψ ≤ T, ∀k ∈ [K], |ν̂k(ψ)− νk| ≤ 2−ψ−2

}
where ν̂k(ψ) := 1

M

∑M
m=1 µ̂k,m(ψ), it holds that P (EF ) ≥

1− 1/T .

Proof. With Hoeffding’s inequality and the design that

ν̂k(ψ) =
∑M

m=1

∑F (ψ)

τ=F (ψ−1)+1
Xk,m(N−1

k,m(τ))/(Mf(ψ)),

at epoch ψ, for arm k, we have

P
(
|ν̂k(ψ)− νk| > 2−ψ−2

)
≤ 2 exp(−2Mf(ψ)2−2ψ−4)

= 1/(KT 2).

With a union bound over ψ ≤ T and k ∈ [K], the lemma can
be proved.

Lemma 14 (Learning Phase in TAL; Restatement of Lemma 2).
If Πm is ([K], γ1, ηm, ηm)-sufficiently exploring for all m ∈
[M ], with probability (w.p.) at least 1 − 1/T , the learning
phase ends with k‡ = k† by time step T1, and the regret and
cost in the learning phase of TAL are bounded, respectively,
as

RF,1(T ) ≤
∑

m∈[M ]

∑
k ̸=k†

∆k · ηm (T1; γ1, [K]) ;

CF,1(T ) ≤
∑

m∈[M ]

∑
k∈[K]

δk,m(γ1) · ηm (T1; γ1, [K]) ,

where T1 ≤ maxm∈[M ]

{
η−1
m

(F (ψmax); γ1, [K])
}

.

Proof of Lemma 14. With event EF in Lemma 13 happening,
we assume the learning phases end at time step T1 such that

T1 ≥ maxm∈[M ]

{
η−1
m

(F (ψmax); γ1, [K])
}
.
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Since each local algorithm Πm is ([K], γ1, ηm, ηm)-sufficiently
exploring and the rewards on all arms are constant γ1’s, it
holds that Nk,m(T1) ≥ F (ψmax),∀k ∈ [K],∀m ∈ [M ], which
means that epoch ψmax is reached. Thus, the confidence bound
can be bounded as CB(ψmax) ≤ 1

4 · 2
−ψmax ≤ 1

4∆min, which
results in

LCB†(ψmax) = ν̂†(ψmax)− CB(ψmax)

≥ ν† − 2CB(ψmax) ≥ ν† −
∆min

2

≥ νk +
∆min

2
≥ νk + 2CB(ψmax)

≥ ν̂k(ψmax) + CB(ψmax)

= UCBk(ψmax), ∀k ̸= k†.

Thus, the learning phase should already end. Similarly, it can
be obtained that arm k† would not be dominated by any other
arm; thus k‡ = k†. Then, with the observation that

Nk,m(T1) ≤ ηm(T1; γ1, [K]), ∀k ∈ [K],m ∈ [M ],

the lemma can be proved.

Lemma 15 (Teaching Phase in TAL; Restatement of Lemma 4).
If the event in Lemma 14 occurs, the regret and cost in the
teaching phase of TAL are bounded, respectively, as

RF,2(T ) ≤
∑

m∈[M ]

max
Hm∈Hm

∑
k ̸=k†

∆k · ιk(T ;Hm,Bm,Πm);

CF,2(T ) ≤
∑

m∈[M ]

max
Hm∈Hm

∑
k ̸=k†

δk,m(γ2) · ιk(T ;Hm,Bm,Πm),

where Bm denotes an environment with constant rewards as
γ2 for arm k ̸= k† and stochastic rewards with expectation
µ†,m for arm k†. The set Hm is defined with each element
of it as a reward sequence Hm = {Hk,m : k ∈ [K]} where
Hk,m ∈ {{γ1}τ : τ ∈ [η

m
(T1; γ1, [K]), ηm(T1; γ1, [K])]}.

Proof of Lemma 15. This lemma can be obtained by realizing
that if the event in Lemma 2 happens, at the beginning of
the teaching phase, i.e., time step T1, client m has observed
constant reward γ1 on each arm k ∈ [K] for at least
η
m
(T1; γ1, [K]) and at most ηm(T1; γ1, [K]) times, which

leads to the definition of Hm.
Starting at time step T1, the local bandit algorithm Πm

can be viewed as interacting with environment Bm with
prior input Hm ∈ Hm. By recognizing that with the re-
ward sequence Hm ∈ Hm, E[Nk,m(T − T1)|Hm,Bm] ≤
E[Nk,m(T )|Hm,Bm] = ιk,m(T ;Hm,Bm,Πm), the lemma
can be proved.

Theorem 16 (Overall Performance of TAL; Restatement
of Theorem 5). Under the assumption in Lemma 14, with
RF,1(T ), CF,1(T ) defined in Lemma 14 and RF,2(T ), CF,2(T )
in Lemma 15, the regret and cost of TAL are bounded,
respectively, as RF (T ) ≤ RF,1(T ) + RF,2(T ) + O(M) and
CF (T ) ≤ CF,1(T ) + CF,2(T ) +O(M).

Proof of Theorem 5. When event EF happens, the regret and
cost can be obtained as the combination of Lemmas 14 and
15. Otherwise, the regret and cost can be bounded linearly by
MT . The lemma can then be proved with the guarantee that
P(EF ) ≥ 1− 1/T as shown in Lemma 14.

B. UCB1 Clients: Theorem 8

Lemma 17 (Restatement of Lemma 6). For any γ ∈ [0, 1] and
set I ⊆ [K], UCB1 is (I, γ, η, η)-sufficiently exploring with
η(τ ; γ, I) = ⌊τ/|I|⌋ and η(τ ; γ, I) = ⌈τ/|I|⌉.

Proof. The UCB1 algorithm is defined in Sec. VI-A and the
subscript m is ignored in the following to denote a general
UCB1 algorithm. To prove the lemma, it is essential to obtain
that if at time step t,

∑
k∈I Nk(t) = τ , then maxk∈I Nk(t)−

mink∈I Nk(t) ≤ 1. If this claim does not hold, there exist
arms k, k′ such that Nk(t) ≥ Nk′(t)+2. Then, at the last time
step that the arm k is pulled, denoted as t′, it holds that

µ′
k(t

′) +

√
2 log(t′)

Nk(t′)

(a)

≤ γ +

√
2 log(t′)

Nk′(t) + 1
≤ γ +

√
2 log(t′)

Nk′(t)

≤ γ +

√
2 log(t′)

Nk′(t′)

(b)
= µ′

k′(t
′) +

√
2 log(t′)

Nk′(t′)
,

where steps (a) and (b) leverages the fact that both arm k and
k′ receive reward γ’s. A contradiction is thus raised as arm k
would not be pulled, and the lemma is proved.

Then, with Lemma 17, we can observe that

T1 ≤ KF (ψmax) = O

(
K log(KT )

M∆2
min

)
. (3)

Lemma 18 (Restatement of Lemma 7). If γ1 ≥
µ†,m > γ2 and Πm is UCB1, for all k ̸=
k†, it holds that maxHm∈Hm

{ιk(T ;Hm,Bm,Πm)} =

O
(

(γ1−γ2)T1

K(µ†,m−γ2) +
log(KT )

(µ†,m−γ2)2

)
.

Proof of Lemma 18. For Hm in the set Hm, it contains τk,m
times reward γ1 on each arm k ∈ [K], where τk,m ∈
[⌊T1/K⌋, ⌈T1/K⌉]. We denote tH =

∑
k∈[K] τk,m ≤ T1 +K

as the length of reward sequence in Hm and

Lk,m :=
(γ1 − γ2)τk,m
4(µ− γ2)2

+
2 log(T + tH)

4(µ− γ2)2

≤ (γ1 − γ2)(T1/K + 1)

4(µ− γ2)2
+

2 log(T + T1 +K)

4(µ− γ2)2
.

It holds that

ιk,m(T ;Hm,Bm,Πm) ≤ Lk,m(T )

+ E

∑
t∈[T ]

1 {πm(t) = k,Nk,m(t− 1) > Lk,m(T )}


= Lk,m(T ) +

∑
t∈[T ]

P (πm(t) = k,Nk,m(t− 1) > Lk,m(T )) .

With UCB1 as Πm, it further holds that

P (πm(t) = k,Nk,m(t− 1) > Lk,m(T ))

≤ P

(
µ̂′
k,m(t− 1) +

√
2 log(t+ tH)

τk,m +Nk,m(t− 1)
≥ µ̂′

†,m(t− 1)+√
2 log(t+ tH)

τ†,m +N†,m(t− 1)
, Nk,m(t− 1) > Lk,m(T )

)
where the last inequality is due to a union bound.



12

Let us separately consider Nk,m(t − 1) = nk,m ∈
[Lk,m(T ), t] and N†,m(t− 1) = nk,m ∈ [t]. It holds that

P

(
µ̂′
†,m(t− 1) +

√
2 log(t+ tH)

τ†,m + n†,m
≤ µ†,m

)

= P

(
τ†,mγ1 +

∑n†,m
τ=1 X

τ
†,m

τ†,m + n†,m
+

√
2 log(t+ tH)

τ†,m + n†,m
≤ µ†,m

)
(a)

≤ P

(
τ†,mµ†,m +

∑n†,m
τ=1 X

τ
†,m

τ†,m + n†,m
+

√
2 log(t+ tH)

τ†,m + n†,m
≤ µ†,m

)
(b)

≤ 1

(t+ tH)4
,

where inequality (a) is an essential step of “optimism” due
to γ1 ≥ µ†,m and inequality (b) holds is from Hoeffding’s
inequality. Also, it can be observed that with nk,m ≥ Lk,m(T ),

µ̂′
k,m(t− 1) +

√
2 log(t+ tH)

τk,m + nk,m

=
τk,m · γ1 + nk,m · γ2

τk,m + nk,m
+

√
2 log(t+ tH)

τk,m + nk,m
≤ µ†,m.

Thus, with a union bound, it holds that

P (πm(t) = k,Nk,m(t− 1) > Lk,m(T ))

≤
∑t

nk,m=Lk,m(T )

∑
n†,m∈[t]

1

(t+ tH)4
≤ 1

t2

It is then indicated that

E [Nk,m(T )] ≤ Lk,m(T ) +
∑T

t=1

1

t2
≤ Lk,m(T ) + 2,

which proves Lemma 18.

Theorem 19 (TAL with UCB1 clients; Restatement of The-
orem 8). For TAL with γ1 = 1 and γ2 = 0, if all clients run
UCB1 locally and µ†,m ̸= 0 for all m ∈ [M ], it holds that

RF (T ) = O

( ∑
m∈[M ]

∑
k ̸=k†

[
∆k log(KT )

µ†,mM∆2
min

+
∆k log(KT )

µ2
†,m

])
;

CF (T ) = O

( ∑
m∈[M ]

∑
k∈[K]

(1− µk,m) log(KT )

M∆2
min

+
∑

m∈[M ]

∑
k ̸=k†

[
µk,m log(KT )

µ†,mM∆2
min

+
µk,m log(KT )

µ2
†,m

])
.

Proof of Theorem 19. From Eqn. (3), it holds that T1 =

O
(
K log(KT )
M∆2

min

)
. With Lemmas 14 and 17, it holds that

RF,1(T ) ≤
∑

m∈[M ]

∑
k ̸=k†

∆k · ηm (T1; γ1, [K])

= O

(∑
m∈[M ]

∑
k ̸=k†

∆k log(KT )

M∆2
min

)
;

CF,1(T ) ≤
∑

m∈[M ]

∑
k∈[K]

δk,m(γ1) · ηm (T1; γ1, [K])

(a)
= O

(∑
m∈[M ]

∑
k∈[K]

(1− µk,m) log(KT )

M∆2
min

)
,

where equation (a) also utilizes that with γ1 = 1, δk,m(γ1) =
1− µk,m.

Then, with Lemmas 15 and 18, it holds that

RF,2(T ) ≤
∑

m∈[M ]

max
Hm∈Hm

∑
k ̸=k†

∆k · ιk(T ;Hm,Bm,Πm)

= O

 ∑
m∈[M ]

∑
k ̸=k†

∆k log(KMT )

µ†,mM∆2
min

+
∆k log(KMT )

µ2
†,m

 ;

CF,2(T ) ≤
∑

m∈[M ]

max
Hm∈Hm

∑
k ̸=k†

δk,m(γ2) · ιk(T ;Hm,Bm,Πm)

(a)
= O

 ∑
m∈[M ]

∑
k ̸=k†

µk,m log(KT )

µ†,mM∆2
min

+
µk,m log(KT )

µ2
†,m

 ,

where equation (a) uses the fact that with γ2 = 0, δk,m(γ2) =
µk,m. The theorem is then proved.

C. ε-greedy Clients: Theorem 11

Lemma 20. For any γ ∈ [0, 1], if ties among arms are broken
uniformly at random, with probability at least 1 − 1/T , ε-
greedy is ([K], γ, η, η)-sufficiently exploring with η(τ ; γ, [K])
and η(τ ; γ, [K]) = O(τ/K ± log(KT )).

Proof of Lemma 20. Since the rewards on each arm are all γ
(thus the sample means are all γ) and the ties among arms are
broken uniformly at random, the algorithm would pull each
arm k ∈ [K] with equal probability 1/K. Thus, denoting the
number of pulls on an arbitrary arm k by time τ as Nk(τ),
it holds that Nk(τ) =

∑
t∈[τ ] 1{π(t) = k}. Using Bernstein’s

inequality and P(π(t) = k) = 1/K, we can obtain that

P
(∣∣∣Nk(τ)− τ

K

∣∣∣ ≥ x) ≤ 2 exp

(
− x2

2 τK + 2
3x

)
≤ 1

KT
,

where x := τ
4K + 8

3 log(KT ).
With a union bound over k ∈ [K], we can obtain that

η(τ ; γ, [K]) = 3τ
4K −

8
3 log(KT ) and η(τ ; γ, [K]) = 5τ

4K +
8
3 log(KT ), which concludes the proof.

Using Lemmas 14 and 20, we can obtain that with probability
1− 1/T , the learning phase of TAL ends at T1 such that

T1 ≤ max
m∈[M ]

{
η−1
m

(F (ψmax); γ1, [K])
}

=
4K

3
F (ψmax) +

32K

9
log(KMT )

= O

(
K log(KT )

M∆2
min

+K log(KMT )

)
. (4)

Lemma 21. If Πm is ε-greedy and µ†,m > γ1 =
γ2 = 0, with probability at least 1 − 1/T , it
holds that maxHm∈Hm

{∑
k ̸=k† ιk,m(T ;Hm,Bm,Πm)

}
=

O
(
K log(T )
µ2
†,m

)
.

Proof of Lemma 21. Since γ1 = 0, the reward sequence Hm ∈
Hm are all zeros. Further with γ2 = 0, once a non-zero
reward is received on arm k†, it will immediately have the
highest sample mean. First, if arm k† has been played at least
n′ =

⌈
log(2T )
2µ2

†,m

⌉
times, where Hoeffding’s inequality indicates

that with a probability of at least 1− 1
2T , there is at least one

non-zero reward collected from arm k†.
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Furthermore, when there are no non-zero rewards collected
on arm k†, the arms are pulled with equal probabilities (since
they all have zero as sample means due to γ2 = 0). With
Bernstein’s inequality, it further holds that

P
(∑

t∈[τ ′]
1{πm(t) = k†} −

τ ′

K
≤ n′ − τ ′

K

)
≤ exp

(
−
(
τ ′

K
− n′

)2

/

(
2
τ ′

K
+

2

3

(
τ ′

K
− n′

)))
≤ 1

2T
,

where τ ′ = 4K log(2T )
3µ2

†,m
+ 32K log(T )

9 = O
(
K log(T )
µ2
†,m

)
.

Thus, with at most τ ′ steps, the arm k† would have the
highest sample mean. Afterward, the other arms will only be
pulled during exploration, i.e., with probability ε(t) = O(K/t),
which would only result in O(K log(T )) pulls in expectation.
The lemma is then proved.

Theorem 22 (TAL with ε-greedy clients; Restatement
of Theorem 11). For TAL with γ1 = γ2 = 0, if
clients run ε-greedy and break ties uniformly at random,
and µ†,m ̸= 0,∀m ∈ [M ], it holds that RF (T ) =

O
([

K∆max

∆2
min

+
∑
m∈[M ]

K∆max

µ2
†,m

]
log(KMT )

)
and CF (T ) =

O
(∑

m∈[M ]

[
Kµ∗,m
M∆2

min
+

Kµ∗,m
µ2
†,m

]
log(KMT )

)
.

Proof of Theorem 22. From Eqn. (4), with probability 1−1/T ,
it holds that T1 = O

(
K log(KT )
M∆2

min
+K log(KMT )

)
. Using

η(T1; γ1, [K]) from Lemma 20, it holds that

RF,1(T ) ≤
∑

m∈[M ]

∑
k ̸=k†

∆k · ηm (T1; γ1, [K])

= O

(
K∆max log(KT )

∆2
min

+MK∆max log(KMT )

)
;

CF,1(T ) ≤
∑

m∈[M ]

∑
k∈[K]

δk,m(γ1) · ηm (T1; γ1, [K])

(a)
= O

(
Kµ∗,m log(KT )

∆2
min

+MKµ∗,m log(KMT )

)
,

where step (a) leverages the fact that with γ1 = 0, δk,m(γ1) =
µk,m ≤ µ∗,m.

Furthermore, combining Lemmas 15 and 21, with probability
1− 1/T , it holds that

RF,2(T ) = O

(∑
m∈[M ]

K∆max log(MT )

µ2
†,m

)
;

CF,2(T )
(a)
= O

(∑
m∈[M ]

Kµ∗,m log(MT )

µ2
†,m

)
,

where step (a) leverages the fact that with γ2 = 0, δk,m(γ2) =
µk,m ≤ µ∗,m. Putting these two observations into Theorem 16,
the theorem is then proved.

APPENDIX B
TWL: PERFORMANCE ANALYSIS

Lemma 23 (Arm Elimination in TWL). Denote event EG as

EG ={each arm k ̸= k† is eliminated from the active arm set
Υ in TWL by the end of epoch ψk},

where ψk := ⌈log2(1/∆k)⌉, it holds that P(EG) ≥ 1− 1/T .

Proof of Lemma 23. First, similar to Lemma 13, we can
establish that with probability at least 1− 1/T , it holds that

|ν̂k(ψ)− νk| ≤ CB(ψ) = 2−ψ−2, ∀ψ ≤ T, ∀k ∈ Υψ,

where Υψ denotes the active arm set in epoch ψ. Based on this
event, we can first observe that arm k† would not be eliminated.
Furthermore, at the end of epoch ψk, if arm k ̸= k† is not
eliminated, both arm k† and arm k would be active. However,
we can observe that

LCB†(ψk) = ν̂†(ψk)− CB(ψk) ≥ ν† − 2CB(ψk)

≥ ν† −
∆k

2
≥ νk +

∆k

2
≥ νk + 2CB(ψk)

≥ ν̂k(ψk) + CB(ψk) = UCBk(ψk),

which means arm k should already be eliminated.

Lemma 24 (Active Arms in TWL). If Πm is UCB1, for any
γ1 and γ2, with probability at least 1− 1/T , for all k ̸= k†,
it holds that N1

k,m(T ) :=
∑
t∈[T ] 1{πm(t) = k, k ∈ Υ(t)} =

O
(

log(KT )
M∆2

k

)
, where Υ(t) denotes the active arm set at time

step t and ψ(t) denotes the epoch index at time step t.

Proof of Lemma 24. Using the same procedure in Lemma 17,
with constant reward γ1’s for active arms and constant reward
γ2’s for inactive arms, it can be observed that at the end of
epoch ψ, each client m pulls each active arm k ∈ Υ(ψ) the
same F (ψ) times. As arm k ̸= k† is eliminated from the active
arm set by the end of phase ψk based on event EG introduced in
Lemma 23, it holds that N1

k,m(T ) ≤ F (ψk) = O
(

log(KT )
M∆2

k

)
,

which concludes the proof.

Lemma 25 (Inactive Arms in TWL). If Πm is UCB1,
for any γ1 and γ2 such that γ1 ≥ µ†,m > γ2, with
probability at least 1 − 1/T , for all k ̸= k†, it holds
that N2

k,m(T ) :=
∑
t∈[T ] 1{πm(t) = k, k /∈ Υ(t)} =

O
(

(γ1−γ2)N1
k,m(T )

(µ†,m−γ2) + log(KT )
(µ†,m−γ2)2

)
.

Proof of Lemma 25. This lemma can be established following
the same procedure as Lemma 18.

Theorem 26 (TWL with UCB1 clients; Restatement of
Theorem 12). For TWL with γ1 = 1 and γ2 = 0, if all clients
run UCB1 locally and µ†,m ̸= 0 for all m ̸= [M ], it holds
that

RTWL
F (T ) = O

( ∑
m∈[M ]

∑
k ̸=k†

[
log(T )

µ†,mM∆k
+

∆k log(KT )

µ2
†,m

])
,

CTWL
F (T ) = O

( ∑
m∈[M ]

∑
k∈[K]

(1− µk,m) log(KT )

M∆2
k

+
∑

m∈[M ]

∑
k ̸=k†

[
µk,m log(KT )

µ†,mM∆2
k

+
µk,m log(KT )

µ2
†,m

])
.

Proof of Theorem 26. From Lemma 24, with probability at
least 1 − 1/T , it holds that N1

k,m(T ) = O
(

log(KT )
M∆2

k

)
, thus

we can specify N2
k,m(T ) = O

(
log(KT )
µ†,mM∆2

k
+ log(KT )

µ2
†,m

)
with

Lemma 25. The overall regret and cost can then be bound as

RTWL
F (T ) ≤

∑
m∈[M ]

∑
k ̸=k†

(
N1
k,m(T ) +N2

k,m(T )
)
∆k +

MT

T
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= O

(∑
m∈[M ]

∑
k ̸=k†

log(KT )

µ†,mM∆k
+

∆k log(KT )

µ2
†,m

)
;

CTWL
F,k,1(T ) ≤

∑
m∈[M ]

∑
k∈[K]

N1
k,m(T ) · δk,m(1)

+
∑

m∈[M ]

∑
k ̸=k†

N1
k,m(T ) · δk,m(0) +

MT

T

= O

(∑
m∈[M ]

∑
k∈[K]

(1− µk,m) log(KT )

M∆2
k

+
∑

m∈[M ]

∑
k ̸=k†

[
µk,m log(KT )

µ†,mM∆2
k

+
µk,m log(KT )

µ2
†,m

])
,

which concludes the proof.
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