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Abstract—Spectrum sensing in cognitive radio necessitates
effective monitoring of wide bandwidths, which requires high-
rate sampling. Traditional spectrum sensing methods employing
high-precision analog-to-digital converters (ADCs) result in in-
creased power consumption and expensive hardware costs. In
this paper, we explore blind spectrum sensing utilizing one-bit
ADCs. We derive a closed-form detector based on Rao’s test and
demonstrate its equivalence with the second-order eigenvalue-
moment-ratio test. Furthermore, a near-exact distribution based
on the moment-based method, and an approximate distribution
in the low signal-to-noise ratio (SNR) regime with the use of the
central limit theorem, are obtained. Theoretical analysis is then
performed and our results show that the performance loss of
the proposed detector is approximately 2 dB (π/2) compared to
detectors employing ∞-bit ADCs when SNR is low. This loss
can be compensated for by using approximately 2.47 (π2/4)
times more samples. In addition, we unveil that the efficiency of
incoherent accumulation in one-bit detection is the square root
of that of coherent accumulation. Simulation results corroborate
the correctness of our theoretical calculations.

Index Terms—One-bit ADC, performance degradation, Rao’s
test, spectrum sensing.

I. INTRODUCTION

Spectrum sensing is a crucial prerequisite for the dynamic
allocation of spectrum resources in cognitive radio (CR)
networks, as it is responsible for finding vacant channels
(a.k.a. spectrum holes) [1]–[5]. In many application scenarios,
the task is to monitor wideband channels, which indicates
that high-speed sampling is involved. However, traditional
spectrum sensing methods that assume perfect quantization
typically require high-precision quantization to achieve opti-
mal performance. Such high-speed and high-precision sam-
pling results in large energy consumption, which may not be
practically feasible.
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To address this problem, an effective method is to decrease
the quantization accuracy, particularly by using only one
bit [6]. One-bit analog-to-digital converters (ADCs) only re-
quire a single comparator to complete the sampling and quan-
tization process, offering advantages such as high sampling
rate, low hardware complexity, and low power consumption
compared to high-precision sampling [7]–[9]. For example, at
a sampling rate of 3.2 GSPS/s, an 8-bit ADC sampling [10]
requires 105 mWatts while the one-bit ADC sampling [11]
consumes only 20 µWatts. Furthermore, the performance loss
of one-bit radar detectors proposed in [12] is only 2 dB
(π/2) at low signal-to-noise ratios (SNRs), which can be
compensated via increasing the number of samples by a factor
π/2. These merits motivate the application of one-bit sampling
techniques to spectrum sensing.

Many one-bit detection problems assume the availability of
prior information, such as noise power, channel parameter
characteristics, and/or signal characteristics [9], [12]–[14].
However, this work focuses on one-bit spectrum sensing in
the absence of prior information, also known as blind spectrum
sensing. In this case, the probability mass function (PMF) of
the one-bit observations is the product of orthant probabilities,
which does not have a closed-form expression [15]–[17].
Therefore, numerical techniques are needed when designing
detectors using standard methods, e.g., generalized likelihood
ratio test (GLRT) [18]. In addition, numerical methods result in
higher computational time and costs, contradicting the original
purpose for simple spectrum sensing [19]. Therefore, a closed-
form detector is desired.

A closed-form one-bit eigenvalue moment ratio (EMR)
detector, inspired by the EMR detector [20], was proposed
in [21]. It was demonstrated that the one-bit EMR is 3 dB
inferior to the ∞−bit EMR. However, performance degrada-
tion of one-bit sampling was proven [22] to be only 2 dB
when the SNR is low. The result has been further corroborated
in one-bit detection by [12], [18], and other one-bit signal
processing problems by [23]–[28]. The increased performance
loss is due to the fact that the one-bit EMR is obtained by
initially stacking the real and imaginary parts of the one-bit
complex observations, followed by computing the EMR of
the corresponding real-valued covariance matrix, neglecting
the circularity property of the unquantized signals.

In this paper, we formulate a detector for one-bit observa-
tions following the rule of Rao’s test and taking into account
the circularity property to enhance performance. The result
turns out to be the second-order EMR of the one-bit complex-
valued sample covariance matrix, rather than the expanded
real-valued covariance matrix as presented in [21].

To verify that the lower bound of 2 dB loss is met,
we analyze the performance degradation by comparing the
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proposed one-bit Rao’s test with its ∞-bit counterpart. To
enable such a comparison, we derive approximate distributions
of the proposed detector under pure noise and low SNRs,
which yield results that can be compared to the asymptotic
distribution derived in [29]. In particular, the null distribution
follows the same χ2 distribution, while the non-null distri-
butions in the low SNRs are all non-central χ2 distributions,
albeit with different non-centrality parameters. By examining
the non-centrality parameters, we can effectively quantify the
performance degradation. In higher SNR scenarios, where the
approximation breaks, a near-exact Beta-approximation using
the moment-based method [3]–[5], [30] is also provided.

The contributions of this paper are as follows:
1) We present a novel detector based on Rao’s test for

blind spectrum sensing utilizing one-bit ADCs. The
proposed detector is formulated in a closed-form man-
ner, eliminating the need for numerical optimization.
Moreover, we demonstrate that the proposed detector
is equivalent to the second-order EMR detector (or
John’s detector [31], [32]) using complex-valued one-
bit observations. Our detector outperforms the one-bit
EMR detector [21], which adopts the expanded real-
valued covariance matrix.

2) We derive near-exact null and non-null distributions of
the proposed detector, enabling the calculation of false
alarm and detection probabilities. Additionally, approx-
imate null and non-null distributions under low SNRs
are obtained, simplifying performance comparison.

3) We prove that the performance loss of the proposed
detector in low SNR environments is approximately 2
dB (π/2) compared to the detector using ∞-bit ADCs,
which is smaller than the 3 dB performance loss reported
in [21]. Moreover, this loss can be compensated for by
increasing the number of samples of our detector by a
factor of approximately 2.47 (π2/4).

4) Upon comparison with the findings in [12], we arrive
at an intriguing conclusion: The efficiency of coherent
accumulation in one-bit detection is the square of that
of non-coherent accumulation.

The structure of this paper is organized as follows. Section II
presents the signal model for one-bit blind spectrum sensing.
In Section III, a detector based on Rao’s test is derived. The
null and non-null distributions of the proposed detector are
analyzed in Section IV. Section V examines the performance
degradation when using one-bit ADCs in comparison to ∞-
bit ADCs. Simulation results are provided in Section VI to
validate the theoretical calculations. Finally, Section VII offers
a summary of the main conclusions.

Notation

Throughout this paper, we use boldface uppercase letters for
matrices, boldface lowercase letters for column vectors, and
light face lowercase letters for scalar quantities. The notation
A ∈ Rp×q (Cp×q) indicates that A is a p× q real (complex)
matrix. The operator || · || represents the Frobenius norm
when its argument is a matrix, and the ℓ2 norm when its
argument is a vector. The trace of A is tr(A). The superscripts

(·)−1, (·)T , and (·)H represent matrix inverse, transpose, and
Hermitian transpose operations. The operator E[a] denotes the
expected value and ∼ means “distributed as.” The central
and non-central Chi-squared distributions are denoted by χ2

k

and χ2
k(δ

2), respectively, where k is the number of degrees-
of-freedom (DOFs) and δ2 is the non-centrality parameter.
Finally, the operators Re(·) and Im(·) extract the real and
imaginary parts of their arguments, ı is the imaginary unit,
and sign(·) takes the sign of its argument.

II. SIGNAL MODEL

Consider a multiple-input multiple-output CR network
where there are p single-antenna primary users (PUs) and m
receiving antennas in the secondary user (SU). The input of the
one-bit ADCs, x(t), t = 1, · · · , n, under H0 (signal absence)
and H1 (signal presence) are given by

H0 : x(t) = w(t),
H1 : x(t) = Hs(t) +w(t),

(1)

where H ∈ Cm×p represents the unknown and deterministic
channel coefficient during the sensing period. The signal
vector s(t) = [s1(t), · · · , sp(t)]T and the noise vector w(t) =

[w1(t), · · · , wm(t)]
T follow i.i.d. zero mean circular symmet-

ric complex Gaussian (ZMCSCG) distributions with unknown
covariance matrices Rs and Rw = diag(σw1

, · · · , σwm
),

respectively. Moreover, the noise is assumed to be independent
of the signal. Clearly, x(t) follows the ZMCSCG distribution,
which is determined by the population covariance matrix
(PCM), defined as Rx = E

[
x(t)xH(t)

]
. Under both hypothe-

ses, the PCM is

H0 : Rx = Rw,
H1 : Rx = HRsH

H +Rw.
(2)

Before proceeding, we define

x̃(t) =
[
Re(x(t))T Im(x(t))T

]T
. (3)

Under the circularity assumption, the PCM of x̃(t) is given
by [33]:

Rx̃ = E
[
x̃(t)x̃T (t)

]
=

1

2

[
Re(Rx) −Im(Rx)
Im(Rx) Re(Rx)

]
∈ S, (4)

where S ⊂ R2m×2m is a set of positive definite matrices of
the following form: [

S1 −S2

S2 S1

]
. (5)

Here, S1 ∈ Rm×m is symmetric and S2 ∈ Rm×m is
skew-symmetric. On the other hand, considering the diagonal
structure of Rx under H0, the signal detection problem in (1)
can be rewritten as

H0 : Rx = diag(σw1
, · · · , σwm

),Rx̃ ∈ S,
H1 : Rx ̸= diag(σw1 , · · · , σwm),Rx̃ ∈ S. (6)

After one-bit quantization, the output y(t) is given by

y(t) = Q (x(t)) = sign(Re(x(t))) + ısign(Im(x(t))), (7)
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where Q(·) represents the one-bit quantization operator. Under
each hypothesis, y(t) becomes

H0 : y(t) = Q(w(t)),
H1 : y(t) = Q(Hs(t) +w(t)).

(8)

The PMF of y(t) is given by the orthant probabilities, which
are determined only by the coherence matrix [34] of x̃(t)
[15]. For circular signals, the coherence matrix of x̃(t) can
be expressed as

P = diag(Rx̃)
− 1

2Rx̃diag(Rx̃)
− 1

2

=

[
Re(Px) −Im(Px)
Im(Px) Re(Px)

]
∈ S ∩ T, (9)

where Px = diag(Rx)
− 1

2Rxdiag(Rx)
− 1

2 is the coherence
matrix of x(t), and T ⊂ R2m×2m is the set of matrices whose
diagonal elements are all one. Noticing that diag(Im(Px)) =
0, there are a total of m2 − m unknown parameters in P,
which are collected in the vector θ ∈ R(m2−m)×1:

θ = [ρ1,2, · · · , ρm−1,m, ρ1,2+m, · · · , ρm−1,2m]T , (10)

where ρij is the (i, j)th element of P. Therefore, the signal
detection problem is now

H0 : θ = 0,P ∈ S ∩ T,
H1 : θ ̸= 0,P ∈ S ∩ T. (11)

III. DERIVATION OF RAO’S TEST

To simplify the computation of the orthant probabilities,
we first arrange the real and imaginary components of the
observations as

Ỹ = [ỹ(1), · · · , ỹ(n)], (12)

where
ỹ(t) =

[
Re(yT (t)) Im(yT (t))

]T
. (13)

It is straightforward to show that there are 22m possible values
of ỹ, ỹκ (κ = 0, 1, · · · , 22m − 1), where ỹ is the sample
population of ỹ(t). Next, we define the sets of x̃, which is
the sample population of x̃(t), corresponding to each ỹκ(κ =
0, 1, · · · , 22m − 1):

Xκ = {x̃ ∈ R2m | diag(ỹκ)x̃ > 0}, (14)

Therefore, the probability that ỹ(t) = ỹκ is

Pr{ỹ(t) = ỹκ} = Pr{x̃ ∈ Xκ} =∫
Xκ

1

(2π)m |P| 12
e−

1
2 x̃

TP−1x̃dx̃. (15)

Defining ζκ = diag(ỹκ)x̃, we have

Pr{ỹ(t) = ỹκ}

=

∫ ∞

0

· · ·
∫ ∞

0

1

(2π)m |P| 12
e−

1
2 ζ

T
κ (Sκ)−1ζκdζ1 · · · dζ2m

=

∫ ∞

0

· · ·
∫ ∞

0

1

(2π)m |P| 12
e−

1
2 x̃

T (Sκ)−1x̃dx̃, (16)

where
Sκ = diag(ỹκ)Pdiag(ỹκ). (17)

Since |Sκ| = |P|, Pr{ỹ(t) = ỹκ} can be rewritten as

Pr{ỹ(t) = ỹκ} = ϕ[Sκ], (18)

where

ϕ[Σ] =

∫ ∞

0

· · ·
∫ ∞

0

1

(2π)m |Σ| 12
e−

1
2x

TΣ−1xdx (19)

is the central orthant probability.
Therefore, the likelihood of Ỹ is

p(Ỹ;θ) =

n∏
t=1

p(ỹ(t);θ) =

n∏
t=1

ϕ[S(t)], (20)

where p(ỹ(t);θ) is the PMF of ỹ(t) and

S(t) = diag(ỹ(t))Pdiag(ỹ(t)). (21)

Hence, the log-likelihood function can be expressed as

L(Ỹ;θ) =

n∑
t=1

log (ϕ[S(t)]) . (22)

Once we have derived the log-likelihood, the statistic of
Rao’s test is computed as

TR =

(
∂L(Ỹ;θ)

∂θ

∣∣∣∣∣
θ=θ0

)T

F−1(θ0)

(
∂L(Ỹ;θ)

∂θ

∣∣∣∣∣
θ=θ0

)
,

(23)
where θ0 = 0 ∈ R(m2−m)×1 corresponds to the parameters
under H0 and F (θ) is the Fisher information matrix (FIM),
which is defined as

F(θ) = E

[
∂L(Ỹ;θ)

∂θ

∂L(Ỹ;θ)

∂θT

]
. (24)

The result of (23) is provided by the following theorem.
Theorem 1: The Rao’s test corresponding to the hypothesis

testing problem (11) is given by

TR =
n

2

m∑
i,j=1
i<j

|r̂ij |2 , (25)

where r̂ij is the (i, j) element of the sample covariance matrix
(SCM):

R̂ =
1

n

n∑
t=1

y(t)yH(t). (26)

Proof: See Appendix A.
Hence, the detection algorithm based on Rao’s test is

TR
H1

≷
H0

γR, (27)

where γR represents the threshold.
Moreover, recall that the second-order EMR detector is

TEMR =

1
m

∥∥∥R̂∥∥∥2(
1
m tr

(
R̂
))2 H1

≷
H0

γEMR. (28)

Utilizing the fact that the diagonal elements of R̂ are 2, we
have

TEMR =
1

mn
TR + 1. (29)
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This implies that the Rao’s test is equivalent to the EMR test
employing the complex-valued SCM, which contrasts with the
result in [21] that is formulated based on the expanded real-
valued SCM.

IV. DISTRIBUTIONS OF PROPOSED TEST

In this section, the asymptotic distributions of TR under H0

and H1 are derived. Since TR is bounded on [0, nm(m− 1)],
we can choose a Beta distribution to approximate its dis-
tribution, after a proper normalization. The approximation
is conducted by first computing the first- and second-order
moments of the detector and then matching them with that of
the Beta distribution to determine the parameters.

A. Distribution under H0

To project the detector to the interval of [0, 1], we define a
new statistic

T ′
R =

1

nm(m− 1)
TR, (30)

Under H0, the first and second-order moments of T ′
R are given

in the following theorem.
Theorem 2: Under H0, T ′

R has mean

µ0 =
1

n
, (31)

and variance

σ2
0 =

2(n− 1)

m(m− 1)n3
. (32)

Proof: See Appendix B.
The cumulative distribution function (CDF) of Beta distri-

bution is

F (x;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
B(x;α, β), (33)

where the incomplete Beta function is

B(x;α, β) =

∫ x

0

zα−1(1− z)β−1dz, (34)

and Γ(x) =
∫ +∞
0

tx−1e−t dt(x > 0) is the Gamma function.
In addition, the mean and variance of a Beta function can be
calculated as

µ =
α

α+ β
, σ2 =

αβ

(α+ β)2(α+ β + 1)
. (35)

Matching (35) with (31) and (32), we obtain the approxi-
mated null distribution of T ′

R:

Pr{T ′
R < γ} ≈ Γ(α0 + β0)

Γ(α0)Γ(β0)
B(γ;α0, β0), (36)

where

α0 =
nm(m− 1)− 2

2n
, (37)

β0 =
(n− 1)[nm(m− 1)− 2]

2n
. (38)

B. Distribution under H1

Under H1, the mean and variance of T ′
R are given by the

following theorem.
Theorem 3: Under H1, the mean of T ′

R is

µ1 =
1

2m(m− 1)

m∑
i,j=1
i<j

gij , (39)

and the variance of T ′
R is

σ2
1 =

1

4m2(m− 1)2

m∑
i,j,k,l=1
i<j,k<l

(fijkl − gijkl) , (40)

where gij , fijkl, and gijkl are defined in Appendix C.
Proof: See Appendix C.

Similar to H0, the CDF of T ′
R under H1 can be approximated

by a Beta distribution as

Pr{T ′
R < γ} ≈ Γ(α1 + β1)

Γ(α1)Γ(β1)
B(γ;α1, β1), (41)

where

α1 =
µ1(µ1 − µ2

1 − σ2
1)

σ2
1

, (42)

β1 =
(1− µ1)(µ1 − µ2

1 − σ2
1)

σ2
1

. (43)

V. ANALYSIS OF PERFORMANCE DEGRADATION

In this section, we investigate the degradation in detection
performance when using one-bit ADCs in comparison to ∞-
bit ADCs. Note that the ∞-bit EMR belongs to the category
of sphericity tests, which consider both the independence be-
tween the random variables and the equality of their variances.
However, due to the loss of amplitude information in the one-
bit context, it becomes impossible to compare the variances.
Thus, we choose to compare our result with the locally most
powerful invariant test (LMPIT) for independence in [32].
In fact, when the SNR is low, the diagonal entries of the
covariance matrix tend to be close to each other, resulting in
the sphericity test delivering performance nearly identical to
that of the independence test, as demonstrated by simulations
in [35].

A. ∞-bit Case

The detection problem for ∞-bit ADCs is (6). The LMPIT
for this problem is [32]

TL =
n

2
tr
((

Rxdiag(Rx)
−1 − Im

)2)H1

≷
H0

γL, (44)

and its asymptotic distribution has been analyzed [29]:

TL ∼
{
χ2
k, under H0,

χ2
k(δ

2
∞), under H1,

(45)

where k = m2 −m and δ2∞ = ntr[(Px − Im)2] = 2n∥θ∥2.
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B. One-bit Case

In Section IV, we exploit the Beta distribution to ap-
proximate the distribution of TR. However, it is difficult to
use it to compare with the ∞−bit detectors to analyze the
performance degradation. Therefore, we choose to derive a
new approximate distribution of TR in the low-SNR regime in
terms of non-central χ2 distribution. First, we rewrite TR as

TR = ∥r̃sc∥2 , (46)

where r̃sc =
√

n
2 r̃. Here, we remind the reader that r̃ =[

Re(r̂)T , Im(r̂)T
]T

, and

r̂ = [r̂1,2, r̂1,3, r̂2,3, · · · , r̂1,m, · · · , r̂m−1,m]T . (47)

The asymptotic distribution of r̃sc is presented next.
Theorem 4: In the low-SNR regime where θ is of order

O(n− 1
2 ), the random vector r̃sc asymptotically follows a multi-

dimensional real Gaussian distribution with mean

E[r̃sc] =
2
√
2n

π
θ +O(n− 1

2 ), (48)

and covariance matrix

Rr̃sc = Im2−m +O(n− 1
2 ). (49)

Proof: See Appendices D and E.
Using the above results, it is easy to conclude that

TR ∼
{
χ2
k, under H0,

χ2
k(δ

2
1), under H1,

(50)

where

δ21 =
8n

π2
∥θ∥2 =

4

π2
δ2∞. (51)

Therefore, we can deduce that the performance degradation
in the low SNR is approximately 10 log10(

√
δ2∞/δ21) ≈ 2 dB.

Alternatively, this performance loss can be compensated by
increasing the sample support by about δ2∞/δ21 = π2/4 ≈ 2.47
times.

Remark 1: It is worth noting that in [12], the 2 dB loss
requires only π/2 ≈ 1.57 times more samples to compensate.
When compared with the results in this paper, it becomes
evident that the efficiency of non-coherent accumulation is the
square root of that of coherent accumulation.

VI. NUMERICAL RESULTS

In this section, Monte Carlo experiments are conducted.
Firstly, we compare the proposed one-bit Rao’s test with the
one-bit EMR [21]. Subsequently, we assess the accuracy of
the detector distribution that we have derived under different
SNRs. Finally, we verify our theoretical analysis by demon-
strating that the performance degradation is as low as 2 dB.

We conduct 105 Monte Carlo trials for all experiments. Dur-
ing each trial, we randomly generated the channel coefficient
H through zero-mean circularly symmetric complex Gaussian
distribution, normalized its column vectors, and fixed it for
each experiment. The SNR is defined as:

SNR = 10 log10

(
σ̄2
s

σ̄2
w

)
. (52)

where σ̄2
s = tr(Rs)/p and σ̄2

w = tr(Rw)/m.
In addition, we evaluate the accuracy of the approximate

distribution by utilizing the Cramér-von Mises goodness-of-fit
criterion, which is defined as

ϵ =
1

K

K∑
i=1

∣∣∣F (ξi)− F̂ (ξi)
∣∣∣2 , (53)

where K is the number of thresholds sampled, ξi is the i
th threshold value, and F (ξi) and F̂ (ξi) are empirical and
approximate CDFs, respectively.

A. Detection Performance

Here, we assess the performance of the proposed detection
method by comparing it to the one-bit EMR detector [21]
through receiver operating characteristic (ROC) curves. Recall
that the expression of the one-bit EMR [21]:

TO = 1 +
1

m

2m∑
i,j=1
i<j

|r̃ij |2 , (54)

where r̃ij represents the (i, j) element of the expanded sample
covariance matrix

R̂ỹ =
1

n

n∑
t=1

ỹ(t)ỹ(t)T . (55)

As illustrated in Fig. 1, the performance of our detector
surpasses that of the one-bit EMR detector. The reason for
this improvement is that EMR does not take into account
the circular property of the received signal. More specifically,
r̃i,i+m(i = 1, · · · ,m) is incorporated into the one-bit EMR
detection statistic, whereas the population value corresponding
to these elements is actually 0 due to the circularity of
the received signal. This introduces excessive DoFs, which
consequently leads to performance degradation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pfa

P
d

One-bit EMR
One-bit Rao

Fig. 1. Empirical ROCs for m = 8, p = 5, n = 1000, and SNR= −7dB.
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B. Null Distribution
We first examine the accuracy of the null distribution of

the proposed detector. Its approximate distributions include
(36) and (50). The simulation results are plotted in Fig. 2.
We set m = 8, p = 5 and n = 16, 32 and 64. It is worth
noting that T ′

R is used in in (30), which belongs to the interval
of [0, 1]. Simultaneously, the result in (50) is normalized by
setting γ′ = γ/[mn(m − 1)]. Fig. 2 demonstrates that both
the chi-square and beta distributions are capable of fitting the
empirical null distribution effectively. This conclusion is sub-
stantiated by the approximate error in Table I. Furthermore, we
see that the Beta distribution exhibits a closer approximation
to the empirical distribution compared to the χ2 distribution.
An intuitive explanation for this observation is that both the
Beta distributions and detection statistics are confined within
a specific interval while the χ2 distribution is not bounded.

0 0.02 0.04 0.06 0.08
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

P
fa

Simulated
Beta approximation

χ2 approximation

n=64

n=32

n=16

Fig. 2. Probability of false alarm versus threshold for m = 8, p = 5 and
n = 16, 32, and 64.

TABLE I
ERRORS OF NULL DISTRIBUTION APPROXIMATIONS.

m = 8, p = 5

Approximation n = 16 n = 32 n = 64

Eq. (36) 5.44× 10−6 8.03× 10−7 1.23× 10−7

Eq. (50) 2.09× 10−5 1.88× 10−6 3.38× 10−7

C. Non-null Distribution
In this section, we investigate the accuracy of the approx-

imate distribution of the proposed detector, which includes
(41) and (50). The parameters are assigned as m = 8, p = 5,
n = 64, 128, 256 and SNR = −5dB, 5dB, with the results
displayed in Fig. 3. Fig. 3(a) demonstrates that, in the low
SNR regime, both approximations effectively fit the empirical
distributions. In contrast, Fig. 3(b) indicates that, in the high
SNR regime, the distribution in (41) maintains a good fit to the
empirical distributions, whereas the distribution in (41) does
not exhibit a satisfactory accuracy. The asymptotic errors, as
presented in Table II, support these observations.
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Fig. 3. Probability of detection versus threshold for m = 8, p = 5 and
n = 64, 128, and 256.

The reason for these differences in accuracy is that the Beta
distribution in (41) is obtained via the method of moments
without imposing restrictions on the SNR regime. Conversely,
the non-central χ2 distribution in (50) is derived under the as-
sumption of a low SNR regime, which explains its diminished
accuracy in the high SNR context.

D. Performance Degradation

In this section, we analyze the performance gap between the
proposed one-bit detector and ∞-bit detectors. We maintain a
fixed false alarm probability of Pfa = 0.01 and examine how
the detection probabilities vary with SNR. The parameters are
set at m = 8, p = 5 and n = 2000, with the results displayed
in Fig. 4. It can be observed that in the low SNR case and with
the same number of samples, the performance degradation of
our proposed detector is less than that of the one-bit EMR.
Furthermore, the performance degradation of our detector
compared to LMPIT and ∞-bit EMR is approximately 2dB,
which is consistent with the conclusion we have derived in
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TABLE II
ERRORS OF NON-NULL DISTRIBUTION APPROXIMATIONS AT DIFFERENT SNRS.

SNR = −5 dB, m = 8, p = 5 SNR = 5 dB, m = 8, p = 5

Approximation n = 64 n = 128 n = 256 n = 64 n = 128 n = 256

Eq. (41) 8.62× 10−7 7.57× 10−7 1.52× 10−7 1.65× 10−6 5.43× 10−7 7.99× 10−7

Eq. (50) 1.63× 10−6 2.41× 10−6 2.54× 10−6 5.95× 10−4 1.40× 10−3 2.20× 10−3

Section V. On the other hand, Fig. 4 also indicates that the
curve of the proposed detector with samples 2.47n fits the
curves of LMPIT and EMR well, which aligns closely with
our theoretical prediction.
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∞-EMR,2dB shift
One-bit EMR
One-bit Rao
One-bit Rao, 2.47n

Fig. 4. Probability of detection versus SNR for Pfa = 10−2, m = 8, p = 5
and n = 2000.

VII. CONCLUSION

In this paper, a closed-form detector based on Rao’s test
for blind spectrum sensing utilizing one-bit observations is
devised. We derive its null and non-null distributions using
the method of moments, allowing us to calculate its false
alarm and detection probabilities. Furthermore, the perfor-
mance degradation of the proposed detector in comparison to
the LMPIT detector using ∞-bit observations is examined.
Through our analysis, we determine that the performance
degradation is reduced from 3 dB to 2 dB in the case of
low SNR. To compensate for this performance degradation,
the sampling number of one-bit observations can be increased
by approximately 2.47 times. Additionally, we find that the
effectiveness of non-coherent detection is the square root of
coherent detection.

As a future work, this approach can be generalized to one-bit
sampling with time-varying thresholds in order to incorporate
the diagonal elements of the covariance matrix, which could
further enhance the detection performance.
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APPENDIX A
PROOF OF THEOREM 1

To obtain TR, we first need to compute the partial derivative
of the log-likelihood function with respect to the unknown
parameters at θ = θ0 = 0.

Using (22), it is easy to show that

L(Ỹ;θ = 0) =

n∑
t=1

log (ϕ[I2m]) =

n∑
t=1

log

((
1

2

)2m
)

= −2mn log (2) . (56)

Similarly, for 1 ≤ i < j ≤ m, we have

L(Ỹ;θ = θi,j) =

n∑
t=1

log (ϕ[Sij(t)]ϕ[Si′j′(t)]ϕ[I2m−4])

=

n∑
t=1

log(f1(i, j, t))− (2m− 4)n log (2) ,

(57)

and

L(Ỹ;θ = θi′,j) =

n∑
t=1

log (ϕ[Si′j(t)]ϕ[Sij′(t)]ϕ[I2m−4])

=

n∑
t=1

log(f2(i, j, t))− (2m− 4)n log (2) ,

(58)

where {i′ , j′} = {i, j} +m, θa,b is obtained by zeroing out
the elements of θ except ρab, Ia is the a× a identity matrix,
and

Sab(t) =

[
1 ỹa(t)ỹb(t)ρab

ỹa(t)ỹb(t)ρab 1

]
. (59)

Moreover, f1 (i, j, t) and f2 (i, j, t) are

f1 (i, j, t) = ϕ[Sij(t)]ϕ[Si′j′(t)]

=

(
1

4
+

1

2π
arcsin[ỹi(t)ỹj(t)ρij ]

)
×
(
1

4
+

1

2π
arcsin[ỹi′(t)ỹj′(t)ρi′j′ ]

)
=

(
1

4
+

1

2π
ỹi(t)ỹj(t) arcsin ρij

)
×
(
1

4
+

1

2π
ỹi′(t)ỹj′(t) arcsin ρij

)
, (60)
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and

f2 (i, j, t) = ϕ[Si′j(t)]ϕ[Sij′(t)]

=

(
1

4
+

1

2π
arcsin[ỹi′(t)ỹj(t)ρi′j ]

)
×
(
1

4
+

1

2π
arcsin[ỹi(t)ỹj′(t)ρij′ ]

)
=

(
1

4
+

1

2π
ỹi′(t)ỹj(t) arcsin ρi′j

)
×
(
1

4
+

1

2π
ỹi(t)ỹj′(t) arcsin(−ρi′j)

)
, (61)

where we have used that each ϕ[Sab(t)] is the integral in the
positive quadrant of a zero-mean bi-dimensional Gaussian with
covariance matrix Sab(t) [36].

Using the definition of partial derivative, it is easy to show
that

∂L(Ỹ;θ)

∂ρij

∣∣∣∣∣
θ=0

= lim
ρij→0

L(Ỹ;θ = θi,j)− L(Ỹ;θ = 0)

ρij

=
2

π

n∑
t=1

(ỹi(t)ỹj(t) + ỹi′(t)ỹj′(t))

=
2n

π
Re(r̂ij), (62)

and

∂L(Ỹ;θ)

∂ρi′j

∣∣∣∣∣
θ=0

= lim
ρi′j→0

L(Ỹ;θ = θi′,j)− L(Ỹ;θ = 0)

ρi′j

=
2

π

n∑
t=1

(ỹi′(t)ỹj(t)− ỹi(t)ỹj′(t))

=
2n

π
Im(r̂ij), (63)

where r̂ij is the (i, j) element of the SCM defined in (26),
and we have used L’Hôpital’s rule. Defining the vector r̂ ∈
C

m2−m
2 ×1 as

r̂ = [r̂1,2, r̂1,3, r̂2,3, · · · , r̂1,m, · · · , r̂m−1,m]T , (64)

we combine (62) and (63) as

∂L(Ỹ;θ)

∂θ

∣∣∣∣∣
θ=θ0

=
2n

π
r̃, (65)

where r̃ =
[
Re(r̂)T , Im(r̂)T

]T
.

Plugging (65) into (24), the FIM can be rewritten as

F(θ0) =
4n2

π2
E[r̃r̃T ]. (66)

Under H0, the PMF of Ỹ is

p(Ỹ;θ = θ0) =

(
1

2

)2mn

, (67)

allowing the computation of the expected values in (66). The
expected value of the real parts is

E[Re(r̂ij)Re(r̂kl)] = E

[
1

n

n∑
t=1

(ỹi(t)ỹj(t) + ỹi′(t)ỹj′(t))

× 1

n

n∑
t=1

(ỹk(t)ỹl(t) + ỹk′(t)ỹl′(t))

]
=

2

n
δikδjl, (68)

and the expected value of the imaginary parts is

E[Im(r̂ij)Im(r̂kl)] = E

[
1

n

n∑
t=1

(ỹi′(t)ỹj(t)− ỹi(t)ỹj′(t))

× 1

n

n∑
t=1

(ỹk′(t)ỹl(t)− ỹk(t)ỹl′(t))

]
=

2

n
δikδjl, (69)

while the expected value of product between real and imagi-
nary parts is

E[Re(r̂ij)Im(r̂kl)] = E

[
1

n

n∑
t=1

(ỹi(t)ỹj(t) + ỹi′(t)ỹj′(t))

× 1

n

n∑
t=1

(ỹk′(t)ỹl(t)− ỹk(t)ỹl′(t))

]
= 0, (70)

where 1 ≤ i < j ≤ m and 1 ≤ k < l ≤ m and δab is the
Kronecker delta function. Thus, we have

E[r̃r̃T ] =
2

n
Im2−m, (71)

and (66) becomes

F(θ0) =
8n

π2
Im2−m. (72)

Finally, by substituting (65) and (72) into (23), the proof is
completed.

APPENDIX B
PROOF OF THEOREM 2

Since the observations at different times are independent
and ỹa(t) can only be +1 or −1, we have

E

[
n∏

t=1

2m∏
a=1

(ỹa(t))
ηat

]
=

n∏
t=1

E

[
2m∏
a=1

(ỹa(t))
mod(ηat,2)

]
, (73)

where ηat ∈ N and mod(η, 2) represents dividing η by 2 and
obtaining the remainder. Based on the PMF of Ỹ, under H0 in
(67), we can easily get that the elements of Ỹ are independent
of each other and

Pr{ỹa(t) = 1} = Pr{ỹa(t) = −1} =
1

2
(74)
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Therefore, under H0, E
[∏n

t=1

∏2m
a=1(ỹa(t))

ηat

]
can be cal-

culated as

E

[
n∏

t=1

2m∏
a=1

(ỹa(t))
ηat

]
=

n∏
t=1

2m∏
a=1

E
[
(ỹa(t))

mod(ηat,2)
]

=

{
1, all ηat are even,
0, otherwise,

(75)

Define zij(t) = yi(t)y
∗
j (t). Using (75), we have

E[zij(t1)z∗ij(t2)] = 4δt1t2 , (76)

and

E[zij(t1)z∗ij(t2)zkl(t3)z∗kl(t4)]
= 16δt1t2δt3t4 + 16δikδjlδt1t4δt2t3(1− δt1t2δt3t4), (77)

where 1 ≤ i < j ≤ m, 1 ≤ k < l ≤ m, 1 ≤ t1, t2, t3, t4 ≤ n.
Hence, under H0, the mean of T ′

R is

µ0 =
1

2m(m− 1)

m∑
i,j=1
i<j

E
[
|r̂ij |2

]

=
1

2m(m− 1)

m∑
i,j=1
i<j

E

[
1

n2

n∑
t1,t2=1

zij(t1)z
∗
ij(t2)

]

=
1

n
, (78)

and its variance can be written as

σ2
0 =

1

4m2(m− 1)2

 m∑
i,j,k,l=1
i<j,k<l

E
[
|r̂ij |2|r̂kl|2

]− µ2
0. (79)

To compute (79), we need to obtain

E
[
|r̂ij |2|r̂kl|2

]
= E

[
1

n4

n∑
t1,t2,t3,t4=1

zij(t1)z
∗
ij(t2)zkl(t3)z

∗
kl(t4)

]

=
1

n4

n∑
t1,t2,t3,t4=1

E
[
zij(t1)z

∗
ij(t2)zkl(t3)z

∗
kl(t4)

]
=

1

n4
[16n2 + 16(n2 − n)δikδjl]. (80)

Substituting (78) and (80) into (79) yields

σ2
0 =

1

4m2(m− 1)2n4

m∑
i,j,k,l=1
i<j,k<l

[16n2 + 16(n2 − n)δikδjl]−
1

n2

=
2(n− 1)

m(m− 1)n3
(81)

This completes the proof of Theorem 2.

APPENDIX C
PROOF OF THEOREM 3

Under H1, by combining the closed-form solution of the
second and third-order center orthant probabilities in [36] and
(20), we have the following expected values:

hab = E[ỹa(t)ỹb(t)] =
2

π
arcsin ρab, (82)

and

habcd = E[ỹa(t)ỹb(t)ỹc(t)ỹd(t)]
= 16Pabcd − 1− (hab + hac + had + hbc + hbd + hcd),

(83)

where 1 ≤ a ̸= b ̸= c ̸= d ≤ 2m, and

Pabcd = Pr{x̃a(t) > 0, x̃b(t) > 0, x̃c(t) > 0, x̃d(t) > 0}.
(84)

The probability Pabcd, which is the integral in the posi-
tive orthant of a 4-dimensional Gaussian distribution can be
computed using the results in [16]. Since ρij = ρi′j′ and
ρi′j = −ρij′ , where 1 ≤ i < j ≤ m, we have

hi′j′ = hij , hij′ = −hi′j (85)

Using (73), (82), (83), and (85), we can obtain the expected
value of zij(t):

E [zij(t)] = 2(hij + ıhi′j), (86)

and those of cross-products:

E [zij(t)zkl(t)]

=



4hii′jj′ , i = k, j = l,
2[hii′jl′ + hii′j′l + ı(hii′jl − hii′j′l′)], i = k, j ̸= l,
4(hkj + ıhk′j), i = l,
4(hil + ıhi′l), j = k,
2[hjj′ik′ + hjj′i′k + ı(hjj′i′k′ − hjj′ik)], j = l, i ̸= k,
υ1(i, j, k, l)− υ2(i, j, k, l)
+ı[υ3(i, j, k, l) + υ4(i, j, k, l)], i ̸= j ̸= k ̸= l,

(87)

and

E [zij(t)z
∗
kl(t)]

=



4, i = k, j = l,
4(hlj + ıhl′j), i = k, j ̸= l,
2[hii′jk′ + hii′j′k + ı(hii′jk − hii′j′k′)], i = l,
2[hjj′il′ + hjj′i′l + ı(hjj′i′l′ − hjj′il)], j = k,
4(hik + ıhi′k), j = l, i ̸= k,
υ1(i, j, k, l) + υ2(i, j, k, l)
+ı[υ3(i, j, k, l)− υ4(i, j, k, l)], i ̸= j ̸= k ̸= l,

(88)

where 1 ≤ i < j ≤ m, 1 ≤ k < l ≤ m, 1 ≤ t ≤ n,

υ1(i, j, k, l) = hijkl + hijk′l′ + hi′j′kl + hi′j′k′l′ , (89a)
υ2(i, j, k, l) = hi′jk′l − hi′jkl′ − hij′k′l + hij′kl′ , (89b)
υ3(i, j, k, l) = hi′jkl + hi′jk′l′ − hij′kl − hij′k′l′ , (89c)
υ4(i, j, k, l) = hijk′l − hijkl′ + hi′j′k′l − hi′j′kl′ . (89d)
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Therefore, the mean of T ′
R under H1 is

µ1 =
1

2m(m− 1)

m∑
i,j=1
i<j

E
[
|r̂ij |2

]

=
1

2m(m− 1)

m∑
i,j=1
i<j

E

 1

n2

n∑
t=1

zij(t)z
∗
ij(t)

+
1

n2

n∑
t1,t2=1
t1 ̸=t2

zij(t1)z
∗
ij(t2)


=

1

2m(m− 1)

m∑
i,j=1
i<j

gij , (90)

where

gij =
4

n2

[
n+An,2

(
h2
ij + h2

i′j

)]
. (91)

Here, An,m = n!
m! defines the number of permutations. In

addition, the variance can be computed as

σ2
1 =

1

4m2(m− 1)2

 m∑
i,j,k,l=1
i<j,k<l

E
[
|r̂ij |2|r̂kl|2

]

−
m∑

i,j,k,l=1
i<j,k<l

E
[
|r̂ij |2

]
E
[
|r̂kl|2

] . (92)

When δt1t2 + δt3t4 ≥ 1, or t1 ̸= t2 ̸= t3 ̸= t4, using (73), we
have

E[zij(t1)z∗ij(t2)zkl(t3)z∗kl(t4)]
= E[zij(t1)z∗ij(t2)]E[zkl(t3)z∗kl(t4)]. (93)

Then, the first term in (92) can be computed as:

E
[
|r̂ij |2|r̂kl|2

]
=

1

n4
E

[
n∑

t1,t2,t3,t4=1

zij(t1)z
∗
ij(t2)zkl(t3)z

∗
kl(t4)

]
= E

[
|r̂ij |2

]
E
[
|r̂kl|2

]
+

1

n4

n∑
t1,t2,t3,t4=1
(t1,t2,t3,t4)∈T

E
[
zij(t1)z

∗
ij(t2)zkl(t3)z

∗
kl(t4)

]

− 1

n4

n∑
t1,t2,t3,t4=1
(t1,t2,t3,t4)∈T

E
[
zij(t1)z

∗
ij(t2)

]
E [zkl(t3)z

∗
kl(t4)] ,

(94)

where

T = {(a, b, c, d)|δab+δcd = 0, δac+δad+δbc+δbd ≥ 1}. (95)

Taking into account (86), (87), and (88), it can be shown
that

E
[
|r̂ij |2|r̂kl|2

]
= E

[
|r̂ij |2

]
E
[
|r̂kl|2

]
+ fijkl − gijkl, (96)

where

gijkl =
32(n− 1)(2n− 3)

n3
(h2

ij + h2
i′j)(h

2
kl + h2

k′l). (97)

and

fijkl =



τ1(i, j), i = k, j = l,
τ2(i, j, l), i = k, j ̸= l,
τ2(i, j, k), i = l,
τ2(j, i, l), j = k,
τ2(j, i, k), j = l, i ̸= k,
τ3(j, i, k, l), i ̸= j ̸= k ̸= l,

(98)

with

τ1(i, j) =
16

n4
An,2

[
1 + h2

ii′jj′
]

+
32

n4
An,3

[
(h2

ij + h2
i′j) + hii′jj′(h

2
ij − h2

i′j)
]
, (99)

τ2(i, j, k) =
4

n4
An,2[4(h

2
jk + h2

jk′) + (hii′jk′ + hii′j′k)
2

+ (hii′jk − hii′j′k′)2]

+
16

n4
An,3[(hii′jk − hii′j′k′)(hikhi′j + hijhi′k)

+ (hii′jk′ + hii′j′k)(hikhij − hi′jhi′k)

+ 2hjk(hikhij + hi′jhi′k)

+ 2hjk′(hikhi′j − hijhi′k)], (100)

and

τ3(i, j, k, l) =
2

n4
An,2

4∑
t=1

υ2
t (i, j, k, l) (101)

+
16

n4
An,3 [υ1(i, j, k, l)hijhkl

+ υ2(i, j, k, l)hi′jhk′l

+ υ3(i, j, k, l)hklhi′j

+ υ4(i, j, k, l)hijhk′l] . (102)

Hence, the variance of T ′
R under H1 is

σ2
1 =

1

4m2(m− 1)2

m∑
i,j,k,l=1
i<j,k<l

(fijkl − gijkl) , (103)

which completes the proof of Theorem 3.

APPENDIX D
MEAN AND COVARIANCE MATRIX OF r̃SC

We derive the mean and covariance matrix of r̃sc and leave
the proof of Gaussianity in Appendix E.

For convenience, we define a random vector r with the
subscript sc to mean scaling as follows:

rsc =

√
n

2
r (104)

Then, r̃sc can be rewritten as r̃sc =
[
Re(r̂sc)

T , Im(r̂sc)
T
]T

,
where

r̂sc=[(r̂1,2)sc, (r̂1,3)sc, (r̂2,3)sc,· · ·, (r̂1,m)sc,· · ·, (r̂m−1,m)sc]
T
.

(105)
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Since θ is assumed of order O(n− 1
2 ), we can apply a

Taylor’s approximation to p(ỹ(t);θ) around θ0 = 0, allowing
us to write

p(ỹ(t);θ) = p(ỹ(t);θ0) + θT ∂p(ỹ(t))

∂θ

∣∣∣∣
θ=θ0

+O(n−1)

=
1

22m
+

1

22m−1π

m∑
i,j=1
i<j

Re(zij(t))ρij

+
1

22m−1π

m∑
i,j=1
i<j

Im(zij(t))ρi′j +O(n−1).

(106)

where the elements of ∂p(ỹ(t))
∂θ

∣∣∣
θ=θ0

are obtained similarly
to (62) and (63). Since ρi′j′ = ρij , ρij′ = −ρi′j and
diag(Im(Px)) = 0, p(ỹ(t);θ) can be rewritten as

p(ỹ(t);θ) =
1

22m
+

1

22m−1π

2m∑
i,j=1
i<j

ỹi(t)ỹj(t)ρij +O(n−1).

(107)
From this PMF, it is easy to obtain

p(ỹa(t), ỹb(t);θ) =
1

4
+

1

2π
ỹa(t)ỹb(t)ρab +O(n−1), (108)

and

p(ỹa(t),ỹb(t), ỹc(t), ỹd(t);θ)

=
1

16
+

1

8π
ỹa(t)ỹb(t)ρab +

1

8π
ỹa(t)ỹc(t)ρac

+
1

8π
ỹa(t)ỹd(t)ρad +

1

8π
ỹb(t)ỹc(t)ρbc

+
1

8π
ỹb(t)ỹd(t)ρbd +

1

8π
ỹc(t)ỹd(t)ρcd

+O(n−1), (109)

where 1 ≤ a ̸= b ̸= c ̸= d ≤ 2m. As a consequence, we have

E[ỹa(t)ỹb(t)] =
∑

ỹe(t)=±1
e=a,b

ỹa(t)ỹb(t)p(ỹa(t), ỹb(t);θ)

=
2

π
ρab +O(n−1), (110)

and

E[ỹa(t)ỹb(t)ỹc(t)ỹd(t)]

=
∑

ỹe(t)=±1
e=a,b,c,d

ỹa(t)ỹb(t)ỹc(t)ỹd(t)p(ỹa(t), ỹb(t), ỹc(t), ỹd(t);θ)

= O(n−1). (111)

When some or all of the indexes {a, b, c, d} are identical,
E[ỹa(t)ỹb(t)ỹc(t)ỹd(t)] can be simplified by (73). Thus, we

can show

E[Re
(
(r̂ij)sc

)
] =

√
n

2
E[Re(r̂ij)]

=

√
n

2
E

[
1

n

n∑
t=1

(ỹi(t)ỹj(t) + ỹi′(t)ỹj′(t))

]

=

√
n

2

[
2

π
ρij +

2

π
ρi′j′ +O(n−1)

]
=

2
√
2n

π
ρij +O(n− 1

2 ), (112)

and

E[Im
(
(r̂ij)sc

)
] =

√
n

2
E[Im(r̂ij)]

=

√
n

2
E

[
1

n

n∑
t=1

(ỹi′(t)ỹj(t)− ỹi(t)ỹj′(t))

]

=

√
n

2

[
2

π
ρi′j −

2

π
ρij′ +O(n−1)

]
=

2
√
2n

π
ρi′j +O(n− 1

2 ), (113)

and the expected value of r̃ becomes

E[r̃sc] =
2
√
2n

π
θ +O(n− 1

2 ). (114)

Since the observations at different times are independent,
for t1 ̸= t2, we have

E[ỹa(t1)ỹb(t1)ỹc(t2)ỹd(t2)] = E[ỹa(t1)ỹb(t1)]E[ỹc(t2)ỹd(t2)].
(115)

To proceed, we need to compute

E[Re ((r̂ij)sc)Re ((r̂kl)sc)]− E[Re ((r̂ij)sc)]E[Re ((r̂kl)sc)]

=
n

2
E[Re(r̂ij)Re(r̂kl)]−

n

2
E[Re(r̂ij)]E[Re(r̂kl)]

=
1

2n
E

[
n∑

t1,t2=1

Re(zij(t1))Re(zkl(t2))

]

− 1

2n
E

[
n∑

t1=1

Re(zij(t1))

]
E

[
n∑

t2=1

Re(zkl(t2))

]

=
1

2n

n∑
t=1

E [Re(zij(t))Re(zkl(t))]

− 1

2n

n∑
t=1

E [Re(zij(t))]E [Re(zkl(t))]

=



1− 8
π2 ρ

2
ij +O(n−1), i = k, j = l,

2
πρjl − 8

π2 ρijρil +O(n−1), i = k, j ̸= l,
2
πρjk − 8

π2 ρijρki +O(n−1), i = l,
2
πρil − 8

π2 ρijρjl +O(n−1), j = k,
2
πρik − 8

π2 ρijρkj +O(n−1), j = l, i ̸= k,
− 8

π2 ρijρkl +O(n−1), i ̸= j ̸= k ̸= l.
(116)
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Since θ is of order O(n− 1
2 ), the result of (116) can be

rewritten as

E[Re ((r̂ij)sc)Re ((r̂kl)sc)]− E[Re ((r̂ij)sc)]E[Re ((r̂kl)sc)]

=

{
1 +O(n−1), i = k, j = l,

O(n− 1
2 ), otherwise,

(117)

where 1 ≤ i < j ≤ m and 1 ≤ k < l ≤ m. Similarly, we
have

E[Re ((r̂ij)sc) Im ((r̂kl)sc)]− E[Re ((r̂ij)sc)]E[Im ((r̂kl)sc)]

= O(n− 1
2 ), (118)

and

E[Im ((r̂ij)sc) Im ((r̂kl)sc)]− E[Im ((r̂ij)sc)]E[Im ((r̂kl)sc)]

=

{
1 +O(n−1), i = k, j = l,

O(n− 1
2 ), otherwise,

(119)

Hence, the covariance matrix of r̃sc for low SNR is

Rr̃sc = Im2−m +O(n− 1
2 ). (120)

APPENDIX E
PROOF OF GAUSSIANITY OF r̃SC

We prove that r̃sc asymptotically follows a Gaussian dis-
tribution, which completes the proof of Theorem 4. For this
proof, we need the following lemma, which is a multivariate
version of the central limit theorem [37].

Lemma 1: Let s =
∑n

t=1 bt, where b1, . . . ,bn ∈ Rd are
mutually independent random vectors with zero mean. Then,
as n → ∞, s is asymptotically Gaussian distributed with zero
mean and covariance matrix C if

lim
n→∞

n∑
t=1

E
[∥∥∥C−1/2bt

∥∥∥3] = 0. (121)

To use Lemma 1, we first define a new set of variables

z̃t =

√
1

2n
[Re(zt)

T , Im(zt)
T ]T , (122)

where 1 ≤ i ≤ n, and

zt = [z1,2(t), z1,3(t), · · · , zm−1,m(t)]T . (123)

We also define
bt = z̃t − E[z̃t]. (124)

Using (86), we have

E[z̃t] =
(

8

nπ2

) 1
2

arcsinθ, (125)

where arcsin applying to its argument in an element-wise
manner. We also define

s =

n∑
t=1

bt, (126)

as in the previous lemma, which allows us to write r̃sc in
Theorem 4 as

r̃sc = s+ E[r̃sc], (127)

where the mean of r̃sc is given by

E[r̃sc] =

n∑
t=1

E[z̃t] =
(
8n

π2

) 1
2

arcsinθ. (128)

In addition, C is equal to Rr̃sc which is the covariance matrix
of r̃sc.

Since translation does not change the distribution type of
the variables, we only need to prove that s is asymptotically
Gaussian distributed to complete the proof of Theorem 4.

Using the Cauchy-Schwarz inequality, we have

E
[∥∥∥C−1/2bt

∥∥∥3] ≤ ∥∥∥C−1/2
∥∥∥3 E [∥bt∥3

]
, (129)

and since
∥∥C−1/2

∥∥3 is bounded, a sufficient condition for
(121) is

lim
n→∞

n∑
t=1

E
[
∥bt∥3

]
= 0. (130)

Noticing that

max ∥bt∥2 ≤ max 2
(
∥z̃t∥2 + ∥E[z̃t]∥2

)
= max 2

(
m(m− 1)

n
+

8

nπ2
∥arcsinθ∥2

)
=

2m(m− 1)

n
+

16

nπ2
max
θ

∥arcsinθ∥2

=
6m(m− 1)

n
, (131)

we have

lim
n→∞

n∑
t=1

E
[
∥bt∥3

]
≤ lim

n→∞

n∑
t=1

max
[
∥bt∥3

]
= lim

n→∞

n∑
t=1

[(
max ∥bt∥2

) 3
2

]
≤ [6m(m− 1)]

3
2 lim
n→∞

n− 1
2

= 0. (132)

This completes the proof.
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