
1

Federated Inference with Reliable Uncertainty
Quantification over Wireless Channels via

Conformal Prediction
Meiyi Zhu, Matteo Zecchin Student Member, IEEE, Sangwoo Park Member, IEEE, Caili Guo Senior Member,

IEEE, Chunyan Feng Senior Member, IEEE, Osvaldo Simeone Fellow, IEEE

Abstract—In this paper, we consider a wireless federated
inference scenario in which devices and a server share a pre-
trained machine learning model. The devices communicate sta-
tistical information about their local data to the server over
a common wireless channel, aiming to enhance the quality of
the inference decision at the server. Recent work has introduced
federated conformal prediction (CP), which leverages devices-to-
server communication to improve the reliability of the server’s
decision. With federated CP, devices communicate to the server
information about the loss accrued by the shared pre-trained
model on the local data, and the server leverages this information
to calibrate a decision interval, or set, so that it is guaranteed to
contain the correct answer with a pre-defined target reliability
level. Previous work assumed noise-free communication, whereby
devices can communicate a single real number to the server. In
this paper, we study for the first time federated CP in a wireless
setting. We introduce a novel protocol, termed wireless federated
conformal prediction (WFCP), which builds on type-based multiple
access (TBMA) and on a novel quantile correction strategy.
WFCP is proved to provide formal reliability guarantees in terms
of coverage of the predicted set produced by the server. Using
numerical results, we demonstrate the significant advantages
of WFCP against digital implementations of existing federated
CP schemes, especially in regimes with limited communication
resources and/or large number of devices.

Index Terms—Conformal prediction, federated inference, wire-
less communications, type-based multiple access.

I. INTRODUCTION

Federation is a data processing paradigm whereby dis-
tributed devices with local, possibly private, data sets collab-
orate for the purpose of carrying out a shared information
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Fig. 1. Illustration of the wireless reliable federated inference problem under
study: A pre-trained machine learning model p(y|x) is available at devices
and a server. The server wishes to make a reliable prediction on a test input
x, which is not available at the devices. Following the CP framework, the
prediction takes the form of a subset Γ(x) of the label space Y . The goal is
to ensure that the predicted set Γ(x) contains the true label with probability
no smaller than a target reliability level 1 − α (see (2)). To this end, each
device k communicates information about the local data set Dk to the server
over a noisy shared channel. This information is then used at the server not to
update the model p(y|x) but rather to calibrate the prediction Γ(x), ensuring
the reliability condition (2).

processing task without the direct exchange of the local
data sets. The main exemplar of federated data processing
is federated learning, which addresses the task of training a
machine learning model. Federated learning has been widely
studied in recent years, with research activities ranging from
theoretical analyses [1], [2] to the design of communication
protocols [3], [4] and to testbeds [5], [6]. This paper focuses
on a different federated data processing task, namely federated
inference, with the goal of leveraging collaboration across
devices to ensure reliable decision-making.

A. Federated Reliable Inference

As illustrated in Fig. 1, we study a federated inference
setting in which devices and a server share a pre-trained
machine learning model. The model may have been obtained
through a previous phase of federated learning, or it may have
been downloaded from a repository of existing models trained
in any other arbitrary manner. The server wishes to make an
inference on a new input using the model. Devices have access
to data, previously not used for training, and can communicate
to the server over wireless channels. The devices do not have
access to the new input.
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Federated inference has applications in fields as diverse
as distributed healthcare platforms [7], Internet-of-Things
systems [8], and autonomous vehicle networks [9]. As an
example, consider a personal healthcare application in which
wearable devices collect information about the respective
users, while sharing the same pre-trained model. A server in
the cloud may wish to draw some conclusions about input
data uploaded by another user. Despite not having access to
the new input, devices can convey information to the server
so as to enhance the quality of inference at the server.

For this setting, recent work has introduced federated con-
formal prediction (CP). In CP, decisions are in the form of an
interval or set, of possible output values that is guaranteed to
contain the correct answer with a pre-defined target reliability
level. Federated CP leverages devices-to-server communica-
tion to support reliable decision-making at the server [10].
Specifically, devices communicate to the server information
about the performance accrued by the shared pre-trained model
on the local data.

Intuitively, this information provides a yardstick with which
the server can gauge the plausibility of each value of the output
variable for the given input. For instance, if the model obtains
a loss no larger than some value ℓ on 90% of the data points
at the devices, then the server may safely exclude from the
predicted interval/set all output values to which the model
assigns a loss larger than ℓ, as long as it wishes to guarantee
a 90% reliability level. In other words, the server leverages
information received from the devices to calibrate its decision
interval/set.

Previous work [10] assumed noise-free communication,
whereby devices can communicate a single real number to
the server. Specifically, reference [10] proposed a quantile-
of-quantile (QQ) scheme, referred to as FedCP-QQ, whereby
each device computes and communicates a pre-determined
quantile of the local losses. In this paper, we study for the
first time federated CP in a wireless setting.

B. Wireless Federated Conformal Prediction

Even with a perfect transmission of local quantiles, the
performance of FedCP-QQ is inherently limited. In fact, for
a target reliability level of, say, 90%, ideally, the server
would need to know the 90-percentile of the losses obtained
by the pre-trained model across all devices. However, the
quantile-of-quantiles targeted by FedCP-QQ provides a gen-
erally inaccurate estimate of the overall quantile, particularly
when the number of devices is large. Furthermore, a direct
implementation of FedCP-QQ [10] on a wireless channel
would require the transmission of quantized local quantiles,
requiring a bandwidth that increases proportionally to the
number of available devices.

In this paper, we introduce a novel protocol, termed wire-
less federated conformal prediction (WFCP), which addresses
these shortcomings by building on type-based multiple access
(TBMA) [11], [12] and on a novel quantile correction scheme.
TBMA is a multiple access scheme that aims at recovering
aggregated statistics, rather than individual messages. In par-
ticular, it can be used to support the estimate of the histogram
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Fig. 2. TBMA enables the estimate of the global histogram of discrete
scalar data available across all devices. To this end, orthogonal codewords
are assigned to each histogram bin. All devices transmit simultaneously their
individual local histograms over a shared wireless channel by allocating to
each codeword a power proportional to the corresponding bin probability. This
way, the server can obtain a noisy estimate of the global histogram thanks to
the superposition of the signals received for each orthogonal codeword.

of data available across the devices at the server. To explain
it, assume that each device has scalar, quantized, data with
a given, generally different, histogram. As illustrated in Fig.
2, the goal of the server is to estimate the average histogram
across all devices, i.e., the histogram of the data available at all
devices, without having to separately estimate the histograms
of all devices.

To accomplish this objective, in TBMA, each histogram
bin is assigned an orthogonal codeword. Devices divide their
transmission energy across a number of orthogonal codewords
in such a way that more energy is allocated to codewords
corresponding to histogram bins with a larger number of data
points. Allowing for all devices to transmit simultaneously,
by collecting the energy received in each bin, the server
can estimate the global histogram thanks to the superposition
property of wireless communications.

By adopting TBMA as the communication protocol, the
proposed WFCP scheme allows the server to estimate the
histogram of the losses accrued by the pre-trained model
across all the devices. This estimate is then used to estimate the
desired global quantile. Importantly, the bandwidth required by
TBMA scales only with the resolution of the quantization, i.e.,
with the number of bins, and not with the number of devices.

The main technical challenge in the design of WFCP is how
to ensure reliability – that is, the condition that the predicted
interval/set at the server contains the true output with the
desired reliability level. This challenge arises from the fact that
the estimate of the global histogram of the losses, and hence of
its quantile, is inherently noisy (see Fig. 2). WFCP addresses
this problem by proposing a novel quantile correction method
that is proved to guarantee reliability.

C. Related Work

We now provide a brief review of related work by focusing
first on federated CP protocols and then on TBMA.

Federated CP. Prior to the introduction of the FedCP-QQ
scheme [10] reviewed in Sec. I-A, reference [13] initially ap-
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plied CP in federated settings, aiming to provide distribution-
free, set-valued predictions with reliability guarantees. In [13],
each device calculates a quantile of its local losses, and the
server aggregates these quantiles from all devices to form an
average. However, applying CP with the averaged quantile
does not guarantee reliability. To address these limitations,
FedCP-QQ [10] was proposed whereby a QQ estimator is
used in lieu of an average of quantiles, re-establishing formal
reliability guarantees for federated CP.

Federated CP has been further generalized to address set-
tings with statistical heterogeneity across the data available at
the devices. In [14], the authors proposed an approach that
ensures that the set predictor is well calibrated with respect
to a specific mixture of distributions of the devices’ local
data. To reduce the communication overhead, they proposed
to apply distributed quantile estimation methods [15], [16] to
acquire an approximate quantile. Due to the imperfect estimate
of the quantile, reliability guarantees are only proved under
additional assumptions on the quality of the estimation error.
In parallel, reference [17] studied a related setting with label
distribution shifts among devices by generalizing the weighted
quantile computation scheme proposed in [18] for centralized
CP. In particular, by noting that a quantile can be obtained
as the minimizer of the pinball loss [17], the authors applied
a gradient-based approach to jointly estimate a quantile from
distributed devices. Accordingly, unlike the setting studied in
this paper and in previous work, which assumes one-shot,
or embarrassingly parallel, protocols, the scheme in [17] is
iterative, requiring multiple communication rounds.

All existing federated CP techniques do not consider the
influence of noise on the communication channel. This paper
aims to address this knowledge gap by investigating the
problem of wireless federated CP and by focusing on the
impact of channel noise on quantile estimation and, in turn,
on model calibration. Unlike [14], [17], as in [10], we target
formal reliability guarantees without additional assumptions
on the quality of the quantile estimates. Furthermore, as in
reference [10], we focus on statistically homogeneous data
across devices.

TBMA. The pioneering papers [11], [12] introduced TBMA,
whereby orthogonal codewords are assigned to different mea-
surement values across multiple devices and a variant of the
maximum likelihood estimator is devised to accomplish single
parameter estimation. In reference [19], TBMA was applied to
estimate multiple correlated parameters in a multi-cell set-up
by leveraging in-cell orthogonal TBMA and inter-cell non-
orthogonal frequency reuse strategy under centralized and
decentralized decoding settings. Furthermore, papers [20], [21]
developed a non-orthogonal variant of TBMA for multi-valued
event detection in random access scenarios. Based on the
assumption of sparse user activity, Bayesian approximate mes-
sage passing estimators were designed for a single-cell [20]
and a multi-cell fog-radio access network [21] respectively.
Reference [22] proposed an end-to-end design of TBMA
protocols, whereby the information bottleneck principle is
adopted as the criterion to jointly optimize the codebook and
neural network-based estimator under unknown source and
channel statistics. None of these papers provide any insights

into the key problem of using TBMA for reliable quantile
estimation.

D. Contributions and Organization

In this paper, we introduce WFCP, the first wireless protocol
for the implementation of federated CP. At the core of the
approach is the integration of TBMA for the estimation of
the global histogram of data across all devices and of a novel
mechanism to ensure formal reliability guarantees by properly
compensating for the errors caused by wireless channels on
the TBMA outputs. The main contributions of this paper are
summarized as follows.

• We first review conventional centralized CP, which as-
sumes that all data is available at the server [23]. Then,
we introduce a digital communication framework in order
to apply the state-of-the-art federated CP scheme, FedCP-
QQ [10], to wireless systems, which will serve as a
baseline scheme for WFCP. To this end, we assume that
all the devices orthogonally share the available channel
uses via time-division multiple access (TDMA), and that
the server can detect and discard the received erroneous
local quantile to implement the QQ estimator over the
correctly received quantiles.

• We propose WFCP, a novel protocol based on TBMA
that hinges on a carefully selected quantile threshold that
accounts for the presence of channel noise.

• We provide a rigorous analysis of the reliability perfor-
mance of WFCP, proving that it can achieve any target
reliability level. The analysis also provides guidelines on
the choice of important design parameters such as the
number of quantization levels.

• Simulation results demonstrate the advantage of the
proposed WFCP scheme over existing strategies, espe-
cially in the presence of limited communication resources
and/or large number of devices.

The remainder of this paper is organized as follows. In
Sec. II, we describe the setting and define the problem. Sec.
III presents the general framework of conventional CP, and
introduces a quantized version for future reference. Sec. IV
reviews the FedCP-QQ scheme [10], which operates in an
ideal noise-free scenario, and describes a digital wireless
implementation of FedCP-QQ. In Sec. V, we propose the
WFCP scheme, also providing design guidelines and proof
of reliability. Sec. VI evaluates the performance of WFCP
as compared to benchmarks via experiments, validating the
effectiveness of WFCP. Sec. VII summarizes this paper and
points to directions for future work.

II. SETTING AND PROBLEM DEFINITION

A. Setting

We consider a wireless federated inference scenario in
which a set of K devices and a central server communicate
over a multiple access channel. A pre-trained machine learning
model is available at both server and devices side. This model
may have been previously trained using federated learning
[24]. As in [10], we focus on the problem of reliable collabo-
rative, or federated, inference using a fixed model along with
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communication between devices and server. In this setting,
communication is not used to optimize the machine learning
model, as in federated learning, but rather to ensure a higher
level of reliability for an inference decision produced by the
server on a new input available only at the server. As we will
detail, thanks to communication, devices can help the server
calibrate its decision, enhancing the server’s estimate of the
corresponding uncertainty.

To elaborate, we focus on a classification problem with
C classes, which are labelled by elements in set Y =
{1, 2, . . . , C}. Given any input x ∈ X , the predictive model
produces a conditional probability distribution p(y|x) over the
labels y ∈ Y . Probability p(y|x) is typically interpreted as
a measure of the confidence that the model has in label y
being the correct one. Conventionally, a decision y∗ is obtained
by selecting the label on which the model has maximum
confidence, i.e.,

y∗ = argmax
y∈Y

p(y|x). (1)

The corresponding confidence level p(y∗|x) produced by the
model should ideally provide an indication of the true accuracy
of the decision y∗. However, it is well known that machine
learning models tend to be overconfident [25]–[27], and hence
systems using the decision y∗ produced by the model cannot
trust the confidence level p(y∗|x) to provide a reliable measure
of the reliability of the decision.

In this paper, we are interested in producing decisions that
provide trustworthy measures of uncertainty. To this end, fol-
lowing the CP framework [23], our goal is to ensure that, based
on a generally unreliable model p(y|x) and on communication
with the devices, the server outputs set-valued decisions for
any new input x with formal reliability guarantees.

To explain, we define a mapping from an input x to a subset
of the label space as Γ(x) ⊆ Y . Given a new input x available
only at the server, as well as the model output distribution
{p(y|x)}y∈Y , along with information received from the de-
vices, the server aims at producing a set-valued decision Γ(x)
with reliability guarantees. For a target reliability level 1−α,
with α ∈ [0, 1], a set decision is said to be reliable if the set
contains the true label y with probability at least 1 − α, i.e.,
if the inequality

Pr(y ∈ Γ(x)) ≥ 1− α (2)

holds. The probability in (2) is evaluated with respect to the
randomness of data generation and communications, as we
discuss in the next subsections.

Before detailing the role of communications, we observe
that the reliability requirement (2) can be trivially met by
choosing as a set decision the set of all possible labels, i.e.,
Γ(x) = Y , irrespective of the input x. This set predictor, while
reliable, would be completely uninformative. It is hence also
important to evaluate the performance of the set decision on
the basis of the average size of its prediction. This is known
as the inefficiency of the predictor, which is defined as

E [|Γ(x)|] , (3)

where | · | represents the cardinality of the argument set. The
expectation in (3) is evaluated with respect to the randomness
of both data and communications, as in (2).

B. Data Model

As mentioned in the previous subsection, we assume that
the model p(y|x) is pre-trained using an arbitrary training
technique and an arbitrary data set. Accordingly, we do not
concern ourselves with the training data and with the training
process in this paper. That said, the CP procedure requires
a data set – distinct from training data – that is used to
calibrate model p(y|x) so as to obtain a reliable set-valued
prediction in the sense of condition (2) for some input x. In
conventional CP, such data set, known as calibration data set,
is directly available at the decision-maker holding the model
and the input x. In this paper, as in [10], we assume that,
instead, calibration data sets are only present at the devices.
By communicating information about such data to the server,
the devices can facilitate the implementation of CP-based
mechanisms to produce reliable estimates Γ(x) that satisfy
the inequality (2) for a desired reliability level 1−α. We will
explain how CP works in the next section.

We assume that there are a total of N calibration data
points, denoted as D = {(xi, yi)}Ni=1, which are equally
split across all K devices. Accordingly, each device k stores
Nd = N/K calibration data points, denoted as Dk =
{(xi,k, yi,k)}Nd

i=1. The union of all disjoint sets of data points
Dk across all K devices recovers the overall calibration data
set, i.e., D = D1 ∪ · · · ∪DK . Following the standard machine
learning model, all calibration data points in data set D are
assumed to be generated i.i.d. from some unknown distribution
p∗(x, y). The generalization to the case of data heterogeneity
and different data set sizes is discussed in Sec. VII.

Furthermore, we denote a generic test data point as (x, y),
which is also generated from distribution p∗(x, y), indepen-
dently from the calibration data. As explained, the input
x of the test pair is known only to the server, while the
corresponding label y is unknown and must be predicted by
the server.

C. Communication Model

In prior work on federated inference via CP [10], [13], [14],
[17], the communication channels between devices and server
were assumed to be ideal. In contrast, in this work, we study
the more challenging scenario in which devices are connected
to the server via noisy channels. Accordingly, we will refer to
this problem as wireless reliable federated inference.

Specifically, the K devices communicate with the server
over a shared fading multiple access channel using T channel
uses, or symbol periods. As we will detail below, we consider
two types of protocols, namely orthogonal-access systems in
which each device uses distinct subsets of channel uses, and
non-orthogonal protocols in which devices are simultaneously
active on all channel uses.

We assume an average per-symbol power constraint P for
each device k. Accordingly, denoting the per-symbol power



5

of the channel noise as N0, we define the signal-to-noise ratio
(SNR) as

SNR =
P

N0
. (4)

1) Orthogonal Multiple Access: Time-division multiple ac-
cess (TDMA) is a conventional orthogonal multiple access
scheme that assigns distinct subsets of the T channel uses to
the K devices. In this paper, we focus on equal allocations
whereby all devices are assigned ⌊T/K⌋ channel uses. Ac-
cordingly, in symbol period t assigned to device k, the received
signal at the central server can be expressed as

vt = hkuk,t + zt, (5)

where hk is the fading coefficient for device k, uk,t is the
symbol transmitted by device k at time t, and zt ∼ N (0, N0)
is the channel noise. We focus on a real-valued channel model,
corresponding for instance to the in-phase or quadrature com-
ponent of a passband channel. The fading channels hk are
assumed to be independent random variables across user index
k, and they are constant within the T channel uses. We assume
perfect channel state information (CSI) is available to both the
devices and the server, and thus, without loss of generality, we
constrain the channel coefficients hk to be non-negative.

2) Non-Orthogonal Multiple Access: As we will discuss
in Sec. V, the proposed scheme relies on TBMA, which is a
form of non-orthogonal multiple access protocol. In general,
in non-orthogonal protocols, a subset Ka ⊆ {1, . . . ,K} of
the K devices transmit concurrently in each symbol period t.
Accordingly, the signal received at the server in period t can
be written as

vt =
∑
k∈Ka

hkuk,t + zt, (6)

with the same definition given above for orthogonal protocols.

III. BACKGROUND ON CONFORMAL PREDICTION

In this section, we provide a brief primer on CP in order
to set the necessary background required by benchmarks
and proposed schemes for the problem of wireless reliable
federated inference described in the previous section. The
presentation also includes discussions about the impact of
quantization on the performance of CP, which is not covered
in standard references on CP. Unlike the federated setting of
interest in this work, conventional CP applies to a centralized
scenario with a server holding all the available calibration data,
which will be assumed throughout this section.

A. Validation-Based Conformal Prediction

We focus on a practical variant of CP, known as split,
inductive, or validation-based CP, that operates on a pre-
trained model p(y|x) [23], [28], [29]. Given a new input x,
the goal of CP is to produce a set predictor Γ(x) ∈ Y with
the property of satisfying the reliability condition (2) for some
pre-determined target reliability level 1 − α. To this end, the
server is given access not only to the model p(y|x) and to a test
input x, but also to a calibration data set D = {(xi, yi)}Ni=1

consisting of N data points. As in the previous section, the N

calibration data points and the test data pair (x, y) are assumed
to be i.i.d. according to an unknown distribution p∗(x, y).
The probability in (2) is evaluated with respect to the joint
distribution of calibration and test data.

In the centralized setting under study here, the server builds
the set predictor Γ(x) using the test input x, the calibration
data, and the model p(y|x). Note that the true label y is not
known at the server, since it is the subject of the inference
process.

To this end, we introduce the nonconformity (NC) score
function

s(x, y) = 1− p(y|x). (7)

The NC score is a measure of the loss of the model p(y|x)
on the data point (x, y). In fact, a large value indicates that
the model assigns a low probability to example (x, y). Other
NC scores are also possible [30]–[33], and the methodology
developed in this paper applies more broadly to any scores, as
long as they are non-negative and upper bounded, i.e.,

0 ≤ s(x, y) ≤ 1. (8)

Note that the upper bound is set to 1 without loss of generality
since one can always re-scale a bounded NC score to fit in
the range (8).

CP includes in the predicted set Γ(x) all labels y ∈ Y with
a NC score smaller than a given threshold sα, i.e.,

Γα(x) = {y ∈ Y : s(x, y) ≤ sα} . (9)

As we discuss next, the threshold sα is determined based on
the target reliability level 1 − α in the reliability constraint
(2). Dependence on parameter α is accordingly added in the
subscript of the set predictor Γα(x).

B. Evaluation of the Threshold

To evaluate the threshold sα, the server computes the NC
scores (7) for all the N calibration data points, obtaining the
collection S ≜ {s(xi, yi)}Ni=1 of NC scores. Note that multiple
data points may have the same NC score, which is accordingly
counted multiple times. Then, the server sets the threshold sα
to be approximately equal to the ⌈(1− α)N⌉-th smallest NC
score in the set S (counting possible repetitions). Intuitively,
as the reliability level 1 − α increases, so does the threshold
sα, ensuring that the predicted set (9) includes a larger number
of labels.

To formalize the operation of CP, let us introduce a function
that, given a set S, produces the ⌈(1−α)(N +1)⌉-th smallest
value in the set. Note that the smallest value is evaluated
with respect to a set with cardinality N + 1, and not N , as
required by CP (see, e.g., [29]). For any given collection of
real numbers S = {s1, ..., sN} with possible repetitions, we
denote as s(1) ≤ s(2) . . . ≤ s(N) the sorted values in ascending
order. Ties are broken arbitrarily. Then, the desired function
is defined as

Q1−α (S) ≜

{
s(⌈(1−α)(N+1)⌉) if α ≥ 1/(N + 1),

1 otherwise,
(10)

where ⌈·⌉ denotes the ceiling operation. Accordingly, function
Q1−α (S) returns the ⌈(1 − α)(N + 1)⌉-th smallest value in
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the set as long as ⌈(1−α)(N +1)⌉ ≤ N , or equivalently α ≥
1/(N + 1); while returning the maximum value 1 otherwise.

The value Q1−α (S) can also be interpreted as the (1 −
α)(N + 1)/N -quantile of the empirical distribution of the
entries of set S. In fact, the (1−α)(N +1)/N -quantile of the
empirical distribution is, by definition, the smallest number in
the set S that is at least as large as a fraction (1−α)(N+1)/N
of the elements in S.

With function Q1−α(·), the CP set predictor (9) can be
succinctly expressed as

Γα(x) =
{
y ∈ Y : s(x, y) ≤ sCP

α ≜ Q1−α (S)
}
. (11)

As mentioned, it can be proved that the prediction set Γα(x)
in (11) satisfies the reliability condition (2), irrespective of the
accuracy of the underlying model p(y|x) and of the ground-
truth distribution p∗(x, y) of the data [23], [34].

C. Quantized Conformal Prediction

As discussed in the previous section, in this paper, we are
concerned with decentralized settings in which calibration data
is not available at the server. In such a setting, communication
between devices holding the calibration data and the server
is limited by the available transmission resources. As a step
in the direction of accounting for limitations arising from
finite communication capacity, in this subsection, we discuss
a centralized CP setting in which NC scores used to evaluate
the threshold sCP

α in (11) are constrained to take a discrete
finite set of values.

To this end, we adopt a uniform scalar quantizer in
which the range [0, 1] of possible values for the NC
score, by assumption (8), is divided into M equal intervals
[S0, S1], (S1, S2], . . . (SM−1, SM ] with S0 = 0 and SM = 1.
Given an input NC score s ∈ [0, 1], the quantized output
q(s) equals the upper value Sm of the interval (Sm−1, Sm]
containing score s. Accordingly, the quantization function is
defined as

q (s) ≜

{
S1 s ∈ [S0, S1],

Sm s ∈ (Sm−1, Sm] for m = 2, . . . ,M.
(12)

It is also possible to include a non-linear monotonically
increasing transformation of the NC scores prior to the ap-
plication of (12) as in conventional companding.

Suppose now that the server has access to the set of
quantized NC scores Sq ≜ {q(s(xi, yi))}Ni=1. Following the
CP procedure, we define the set predictor as

Γq
α(x) = {y ∈ Y : q(s(x, y)) ≤ sq−CP

α ≜ Q1−α(Sq)}, (13)

that is, as the set of labels y ∈ Y whose quantized NC scores
q(s(x, y)) are no larger than the ⌈(1−α)(N +1)⌉-th smallest
NC score, Q1−α(Sq), in the calibration set.

Since any function of the input-output pair (x, y) is a valid
NC score, so is the quantized value q(s(x, y)). Therefore, the
quantized predicted set Γq

α(x) satisfies the reliability condition
(2). However, one should generally expect that, due to infor-
mation loss caused by quantization, the size of the predicted
set Γq

α(x) is generally larger than that of the predicted set
Γα(x) obtained from the original NC score function s(x, y).

D. Quantized Conformal Prediction via Empirical Quantiles

In this subsection, we make the observation that the thresh-
old sq−CP

α = Q1−α(Sq) used in the set predictor (13) can
be expressed in terms of the empirical distribution of the
quantized NC scores in set Sq . More precisely, it can be eval-
uated, approximately, as the (1−α)-quantile of the empirical
distribution. This fact will be instrumental in the design of the
proposed federated inference protocol in Sec. V.

To elaborate, let us define as pm ∈ [0, 1] the fraction of
quantized NC scores equal to Sm in the set of quantized NC
scores Sq , i.e.,

pm =
1

N

N∑
i=1

1{mi = m}, (14)

where mi is the index of the quantized i-th NC score, i.e.,
Smi = q(s(xi, yi)). We collect all M fractions into the vector

p = [p1, . . . , pM ]T, (15)

which satisfies the equality
∑M

m=1 pm = 1. As we have
discussed, CP relies on the evaluation of the ⌈(1−α)(N+1)⌉-
th smallest element in the set Sq , i.e., Q1−α(Sq). To evaluate
this quantity, we modify the empirical distribution of the
quantized NC scores by adding a fictitious (N + 1)-th NC
score equal to the maximum value. This yields the empirical
distribution vector

p+ =
N

N + 1
p+

[
0, . . . ,

1

N + 1

]T
. (16)

With this definition, the ⌈(1 − α)(N + 1)⌉-th smallest
element in set Sq can be obtained as the quantization level
Smα(p+), where the index mα(p

+) is obtained by evaluating
the (1− α)-quantile of the empirical distribution p+, i.e.,

mα(p
+)

=min
{
m ∈ {1, . . . ,M} : p+1 + · · ·+ p+m ≥ 1− α

}
.

(17)

IV. DIGITAL WIRELESS FEDERATED CONFORMAL
PREDICTION

While the conventional CP scheme reviewed in the previous
section assumes that predictive model and calibration data are
both present at the server, in the wireless reliable federated
inference setting as explained in Sec. II, calibration data are
only available at the devices. In this section, we first review
the FedCP-QQ scheme proposed in [10], which addresses this
problem by assuming noiseless links from devices to server
that can support the noiseless transmission of a single real
number from each device. Then, as a benchmark, we describe
a direct digital wireless implementation of FedCP-QQ that
accounts for the presence of noisy channels between devices
and server.

A. Federated Conformal Prediction with Noiseless Communi-
cations

The FedCP-QQ scheme introduced in [10] is based on
the quantile-of-quantiles (QQ) operation. Accordingly, as we
detail next, it sets two probabilities αd and αs to identify target
quantiles to be computed at devices and server, respectively.
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Each device k has access to the local NC scores Sk =
{s(xi,k, yi,k)}Nd

i=1. Based on this collection of NC scores, it
computes the (1−αd)(Nd+1)/Nd-quantile Q1−αd

(Sk). This
real positive number is then communicated noiselessly to the
server.

The server collects all the quantiles Q1:K
1−αd

=
{Q1−αd

(S1) , . . . , Q1−αd
(SK)} from the K devices,

and it evaluates the (1 − αd)(K + 1)/K-quantile of the K
quantiles, i.e.,

sQQ
α ≜ Q1−αs

(Q1:K
1−αd

). (18)

The set predictor of the FedCP-QQ scheme is constructed
using the obtained threshold as

ΓQQ
αd,αs

(x) =
{
y ∈ Y : s(x, y) ≤ sQQ

α

}
. (19)

The pair of miscoverage levels (αd, αs) must be selected
in order to satisfy the coverage condition (2). To this end,
reference [10] proved the following result.

Theorem 1 (Theorem 3.2 [10]). For any (αd, αs) ∈ [1/(Nd+
1), 1) × [1/(K + 1), 1), the coverage of the set predictor
Γαd,αs

(x) is lower bounded as

Pr
(
y ∈ ΓQQ

αd,αs
(x)
)

≥ 1− 1

N + 1

K∑
j=k

(
K

j

)
Nd∑

I1,j=n

n−1∑
Ic1,j=0

(
Nd
i1

)
· · ·
(
Nd
im

)(
N

i1+···+iK

) ≜ Mαd,αs

(20)
with n = ⌈(Nd + 1)(1 − αd)⌉; k = ⌈(K + 1)(1 − αs)⌉;
I1,j = {i1, . . . , ij}; Ic1,j = {ij+1, . . . , iK}; and the operation∑N

I1,j=n stands for the cascade of summations that takes into
account for all elements in I1,j starting from n up to N , i.e.,∑N

I1,j=n =
∑N

i1=n

∑N
i2=n · · ·

∑N
ij=n.

With this result, one can find a pair of miscoverage levels
(αd, αs) that minimizes the lower bound Mαd,αs

while satis-
fying the target coverage rate 1−α. The optimization objective
can be formulated as

(α∗
d, α

∗
s) ∈ arg min

αd,αs

{Mαd,αs : Mαd,αs ≥ 1− α} . (21)

If the solution of (21) is not unique, it is suggested to find the
pairs with the largest value α∗

d and then choose among those
the pair with the largest value α∗

s . Efficient ways to address
this problem are discussed in [10], which also covers the more
general case in which devices have different data set sizes.

B. Digital Transmission Benchmark

In this subsection, we propose a digital implementation of
the FedCP-QQ scheme, which we refer to as Digital FedCP-
QQ or DQQ for short. A direct implementation of the FedCP-
QQ scheme requires every device k to quantize its local
quantile Q1−αd

(Sk) in (18) before transmission in order to
meet the capacity constraints on the shared noisy channel to
the receiver. To this end, the device k applies the function
q(·) defined in (12) to quantize the local quantile into one
of M levels. Then, each device uses conventional digital
communications to convey the quantized quantile to the server.

Specifically, to transmit the quantized local quantiles from
K devices on the shared channel, we adopt a TDMA protocol

whereby, as discussed in Sec. II-C, the K devices are assigned
⌊T/K⌋ channel uses each. Accordingly, the probability of
error for each device k with fading coefficient hk can be
closely approximated by the outage probability as [35], [36]

ϵ = Pr

(
1

2
log
(
1 + SNRh2

k

)
≤ logM

⌊T/K⌋

)
, (22)

where the probability is computed with respect to the distri-
bution of the fading channel power h2

k.
Accordingly, with probability ϵ, the transmission is unsuc-

cessful. Assuming that the server can detect errors, the QQ
estimator (18) can be applied on the subset of quantiles that
are received correctly. Note that the bound in (20) should now
be evaluated by including only the correctly received quantiles
from the devices. Furthermore, the probability αs is chosen
based on the number of devices whose messages are received
without error.

While the resulting set predictor satisfies the reliability
condition (2) by Theorem 1, the impact of lost quantiles due to
channel errors is that of reducing the number of active devices,
and hence the amount of calibration data effectively accessible
by the server. This, in turn, generally increases the average
predicted set size (3).

V. WIRELESS FEDERATED CONFORMAL PREDICTION

In this section, we introduce the proposed Wireless Fed-
erated Conformal Prediction (WFCP) scheme. WFCP im-
plements a novel combination of TBMA and over-the-air
computing to communicate the empirical distribution of the
quantized NC scores from the active devices to the server. Via
over-the-air computing, thanks to the superposition property
of the multiple access channel (6), the server obtains a noisy
and unbiased estimate of the empirical distribution of the NC
scores across the active devices. Based on this estimate, the
server computes an estimate of a global empirical quantile,
which is judiciously selected to ensure the coverage property
(2).

Unlike the existing FedCP-QQ scheme reviewed in the
previous section, WFCP does not require devices to compute
their local quantiles. This local computation, implemented
by FedCP-QQ to reduce bandwidth requirements, generally
results in a performance loss, since the QQ estimator (18)
used by FedCP-QQ cannot recover the global quantile required
to implement CP on the overall calibration data set stored
across the active devices as reviewed in Sec. III. This result
could only be achieved by communicating separately all the
quantized NC scores from the active devices to the server.
However, for a given transmission reliability level (22), this
transmission would require a number T of channel uses that
scale linearly with the number of calibration data points across
the active devices.

To mitigate this loss, WFCP enables a direct estimate of
the global quantile at the server without imposing bandwidth
requirements that scale linearly with the number of active
devices. Rather, the communication requirements of WFCP
are only dictated by the precision with which the NC scores
are represented for transmission to the server.
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In the following, we first detail the transmission protocol
based on TBMA adopted by WFCP. Then, we describe the set
predictor implemented by WFCP on the basis of the received
baseband signal. As it will be detailed, the main challenge in
ensuring the reliability condition (2) is the determination of
a suitable correction for the quantile estimated based on the
noisy received signals. Finally, we provide some discussion
on the trade-offs involved in the design choices, and we prove
that condition (2) is guaranteed by WFCP.

A. TBMA-Based Communication Protocol

Let us fix a subset Ka ⊆ {1, . . . ,K} comprising Ka = |Ka|
devices that are active in the given T symbols. As we will
detail later in this subsection, this subset depends on the
channel gains {hk}Kk=1. In WFCP, unlike FedCP-QQ, the
active devices do not first compute the empirical quantiles
of their respective local NC scores. Rather, each active device
quantizes separately each of the Nd local NC scores using
the uniform quantizer (12) with M levels. We denote as
mi,k ∈ {1, . . . ,M} the index of the quantization value
produced for the i-th NC score at device k ∈ Ka, s(xi,k, yi,k),
i.e.,

Smi,k
= q(s(xi,k, yi,k)). (23)

Furthermore, in a manner that mirrors the presentation in Sec.
III-D, we introduce an M -dimensional probability vector that
collects the quantized NC scores at device k ∈ Ka as

pk = [p1,k, . . . , pM,k]
T, (24)

where the probability

pm,k =
1

Nd

Nd∑
i=1

1{mi,k = m} (25)

corresponds to the fraction of NC scores associated to quan-
tization level m at device k ∈ Ka, such that the equality∑M

m=1 pm,k = 1 holds.
As an intermediate goal, WFCP obtains an unbiased esti-

mate of the subsampled global empirical distribution

p̃ =
1

Ka

∑
k∈Ka

pk (26)

of the quantized NC scores, which is the histogram of the
quantized NC scores from the active devices in set Ka.
The subsampled histogram p̃ equals the global empirical
distribution p in (15) when all the devices are active, i.e.,
Ka = K. To this end, we first note that we have the equality

pm =
1

Ka

∑
k∈Ka

pm,k, (27)

and hence the fraction pm of NC scores in the m-th quanti-
zation bin is equal to the corresponding fractions pm,k across
the active devices k ∈ Ka. Once such an estimate is available,
WFCP can apply the procedure discussed in Sec. III-D in order
to mimic the operation of centralized quantized CP. As we will
see, this requires a judicious adjustment of the threshold used
in evaluating the predicted set (13).

To obtain an estimate of distribution p̃, WFCP leverages
TBMA and over-the-air computing. With TBMA, the devices
share a codebook C = [c1, . . . , cM ] ∈ RM×M of M orthog-
onal codewords, where each codeword cm ∈ RM×1 consists
of M real symbols. The number M of channel uses should
not be larger than the available number T of symbols. We
will discuss the choice of the number of quantization points
in Sec. V-E. Assuming that each codeword is normalized to
satisfy the energy constraint ∥cm∥2 = 1, by the orthogonality
of the codewords, we have the equality CTC = IM×M . Each
codeword cm is assigned to the m-th quantization level Sm

for m ∈ {1, . . . ,M}.
Accordingly, each active device k ∈ Ka transmits a su-

perposition of the codewords cmi,k
that correspond to the

Nd quantized NC score Smi,k
for i = 1, ..., Nd. We use the

simplified notation ci,k = cmi,k
. To express the transmitted

signal mathematically, let us denote as ei,k ∈ BM×1 the one-
hot vector with all zero entries except for a single 1 at the
mi,k-th position. The scaled superposition of the codewords
transmitted by the device k ∈ Ka can then be written as

uk = γk

Nd∑
i=1

ci,k = γkC

Nd∑
i=1

ei,k = γkNdCpk, (28)

where γk > 0 is a power control gain at device k, and we
recall that pk in (24) is the empirical probability vector of the
quantized NC scores at device k.

All the active devices transmit simultaneously on the shared
fading channel (6). Accordingly, by (6), thanks to the super-
position property of the multiple access channel, the received
signal at the server is given by

v =
∑
k∈Ka

hkuk + z = CNd

∑
k∈Ka

hkγkpk + z, (29)

where z ∈ RM×1 ∼ N (0, N0I) is an i.i.d. Gaussian noise
vector with zero mean and variance N0, and v ∈ RT×1

collects all received signals within the T channel uses.

B. Estimate of the Subsampled Global Empirical Distribution

The server wishes to extract an estimate of the subsampled
global empirical distribution p̃ of the quantized NC scores
in (26) from the received signal (29). To this end, matched
filtering is applied by left-multiplying the received signal by
matrix CT, yielding

w = CTv = Nd

∑
k∈Ka

hkγkpk +CTz. (30)

From (30), the server obtains a weighted sum of the local
empirical distribution vectors from the active devices in Ka.

In order to facilitate the recovery of a noisy version of the
empirical distribution vector p̃ from (30), we implement a
standard truncated power inversion scheme [37]. Accordingly,
we fix a minimum channel power h2

min such that all users with
channel gain power smaller than h2

min do not transmit. In this
way, the active devices in Ka are selected as all devices k
with channel power h2

k ≥ h2
min. For each device k ∈ Ka, we
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set the power control coefficients as positive γk = γ/hk for
some scaling factor γ. Overall, we have

γk =

{
0 if h2

k < h2
min,

γ/hk if h2
k ≥ h2

min.
(31)

The scaling parameters γ must satisfy the average per-
symbol transmit power constraint P . This constraint results
in the inequalities

∥uk∥2 =
γ2

h2
k

N2
d ∥pk∥2 ≤ MP, for k ∈ Ka, (32)

We can rewrite (32) as

γ ≤
√
MPhk

Nd ∥pk∥
=

√
MPhk

Nd2−H2(pk)
, for k ∈ Ka (33)

where H2(pk) is the 2-Rényi entropy [38]

H2(pk) = − log2

(
M∑

m=1

p2m,k

)
(34)

of the empirical probability vector pk. Inequality (33) reflects
the fact that a more concentrated empirical distribution, with
a smaller 2-Rényi entropy, yields a stricter restriction on the
choice of the transmit power. Given that, in general, no prior
information is available on the distribution of the NC scores,
we set the power scaling factor γ by considering the worst-
case situation, yielding the choice

γ =

√
MPhmin

Nd
. (35)

With (31) and (35) in (30), the matched filtered received
signal is given by

w =
√
MPhmin

∑
k∈Ka

pk +CTz =
√
MPhminKap̃+CTz,

(36)
which is indeed a scaled and noisy version of the empirical
probability distribution of the Na = KaNd NC scores from
the active devices in Ka.

C. Set Predictor

Following the steps presented in the previous subsection, the
server recovers the scaled and noisy version w of the empirical
distribution p̃ of the Na calibration NC scores from the active
devices in Ka. In the ideal case of no fading and noiseless
channels, i.e., with hk = 1 for k = 1, . . . ,K and N0 = 0,
without power inversion, the server would have access to the
empirical distribution p of all the NC scores, and the quantized
CP procedure in Sec. III-D could be directly applied to obtain
a reliable set predictor.

To address the availability of an estimate of vector p̃, the
proposed WFCP preprocesses the scaled and noisy version of
the subsampled global empirical distribution (36), and then it
computes the (1−αc)(Na+1)/Na-quantile of the distribution
at a corrected unreliability level αc < α, accounting for the
presence of channel noise. We will demonstrate that, with
a specific choice of the corrected unreliability level αc, the
proposed approach preserves the coverage property (2), with
probability now taken also over the channel noise.

First, in order to facilitate the estimate of the subsampled
global empirical distribution of the quantized NC scores in
(26) from the estimate (36), the server carries out two steps: (i)
it rescales the vector (36) by Na/(

√
MPhminKa(Na+1)); and

(ii) it adds 1/(Na +1) to the last entry of the received signal
vector. Step (ii) amounts to the same operation carried out in
(16) within the centralized quantized CP scheme reviewed in
Sec. III-D.

This preprocessing yields the M × 1 vector

r =
Na√

MPhminKa(Na + 1)
w+

[
0, . . . ,

1

Na + 1

]T
= p̃++z̃,

(37)
where p̃+ is the empirical distribution vector of the aggregated
NC scores from the Ka devices as well as an additional
NC score at the maximum quantization level SM , which is
equivalent to p+ in (16) when all the devices are active, i.e.,
Ka = K, in the case of favorable channel condition; and
z̃ ≜ Na/(

√
MPhminKa(Na + 1))CTz ∼ N (0, σ2I) is the

effective noise vector with power

σ2 =
N2

a

MPh2
minK

2
a(Na + 1)2

N0

=
N2

d

Mh2
minSNR(Na + 1)2

≈ 1

Mh2
minSNRK2

a

. (38)

Note that for a fixed number Na of NC scores, the effective
noise power is inversely proportional to the square of the
number Ka of active devices. This can be interpreted as a form
of coherent gain due to the use of TBMA [11]. Furthermore,
the threshold h2

min affects the effective noise power (38) both
directly and through Ka via the power control strategy (31).

Then, WFCP computes the index mαc(r) corresponding to
the (1− αc)-“quantile” of the noisy distribution r. Note that,
since the vector r is not normalized, and its entries may be
even negative, the index mαc

(r) does not correspond to a true
quantile in general. To proceed, we define the set

Mαc
(r) =

{
m ∈ {1, . . . ,M} : r1 + · · ·+ rm ≥ 1− αc

}
=
{
m ∈ {1, . . . ,M} : p+1 + · · ·+ p+m

≥ 1− αc − (z̃1 + · · ·+ z̃m)
}
. (39)

Noting that there may be no value m ∈ {1, . . . ,M} that
satisfies the inequality in (39), we define the index mαc

(r)
as

mαc(r) =

{
M if Mαc

(r) = ∅,
minMαc

(r) otherwise.
(40)

In the presence of ideal communications, i.e., with hk = 1 for
all devices k and with σ2 = 0, the index mαc(r) corresponds
to the index in (17) computed by the centralized quantized CP
with αc = α.

The index (40) is used to define the WFCP set predictor

ΓWFCP
αc

(x|r) = {y ∈ Y : q(s(x, y)) ≤ sWFCP
α ≜ Smαc (r)

}.
(41)

Setting αc = α, the WFCP predicted set (41) coincides
with the quantized CP predictor (13) in the presence of ideal
communications.
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D. Reliability Analysis

WFCP satisfies the following reliability guarantee.

Theorem 2. Select the corrected unreliability level as

αc = α− σ2M

4α
. (42)

Then, for each channel realization, the WFCP set predictor
(41) satisfies the reliability guarantee

Pr
(
y ∈ ΓWFCP

αc
(x|r)

)
≥ 1− α, (43)

where the average is taken with respect to the joint distribution
of calibration and test data, as well as over the channel noise.

Proof: The proof is detailed in Appendix A.
Theorem 2 determines a correction for the threshold level

αc < α in the presence of non-zero Gaussian-noise with
effective noise power σ2, in order to ensure the satisfaction
of the reliability constraint (2). The correction term σ2M/4α
increases with the effective channel noise power σ2 and with
the number M of quantization levels.

Plugging in the definition (38) of the effective noise power,
the correction term can be expressed as

σ2M

4α
=

N2
d

4αh2
minSNR(Na + 1)2

≈ 1

4αh2
minSNRK2

a

, (44)

which is inversely proportional to the square of the number
Ka of active devices and to the number T of channel uses
available for transmission. The dependence on K is partic-
ularly noteworthy: While conventional protocols like DQQ
require communication resources in terms of channel uses T
and/or SNR, which become increasingly more stringent as K
increases, WFCP can benefit from the presence of multiple
devices. In particular, as K grows, the correction term in (44)
decreases as 1/K2, allowing WFCP to set a target reliability
level 1−αc that becomes increasingly close to the true target
1− α.

E. Optimization of the Number of Quantization Levels

The number of quantization levels, M , causes an increase
in the number of channel uses necessary for the server to
recover vector r in (37). On the flip side, in the case of ideal
communications, a larger value of M generally yields a more
informative set predictor thanks to the higher resolution of the
NC scores.

As explained in Sec. II-C, the system has access to T chan-
nel uses for transmission from devices to server. A possible
choice of the number of quantization levels would be to set
M = T which results in high resolution of the NC scores and
low effective noise power as indicated in (38). As we argue
next, however, this may not necessarily be the optimal design
since M also influences the correction term in (42).

With M < T , a repetition coding strategy stipulates that the
devices repeat their transmission R ≜ ⌊T/M⌋ times where R
is the repetition rate. The remaining T − ⌊T/M⌋M samples,
if any, are not used. With this approach, the effective SNR,
upon averaging the matched filter outputs (36), equals

SNRrep = R · SNR = ⌊T/M⌋SNR. (45)

By replacing the SNR in (38) with (45) obtained through
repetition coding, the resulting effective noise power is

σ2
rep =

N2
d

Mh2
minSNRrep(Na + 1)2

≈ 1

Th2
minSNRK2

a

, (46)

which is approximately independent of the number M of
quantization levels. Furthermore, the corresponding correction
term in (44) can be accordingly approximated as

σ2
repM

4α
≈ M

4αTh2
minSNRK2

a

, (47)

which increases with M .
Overall, the choice of the number M of quantization levels

entails a tension between improving the resolution of the CP
set predictor, which would require increasing the value of M ,
and reducing the correction term in (47) for a less conservative
correction, which calls for a decrease in the value of M .

VI. EXPERIMENTAL SETTINGS AND RESULTS

In this section, we provide insights into the performance
of the proposed WFCP via numerical results. We use as a
benchmark the digital wireless implementation of FedCP-QQ
[10], abbreviated as DQQ, reviewed in Section IV-B.

A. Setting

Following the experimental setting in reference [39], we
use the CIFAR-10 data set, a standard benchmark for image
classification involving 60000 images classified using C = 10
labels. We use N tr = 50000 data pairs for training the predic-
tive model, while sampling N = 400 points for calibration and
another N te = 400 for testing from the remaining 10000 data
pairs. In the federated inference setup under study, each device
holds N/K calibration data points, while only the server has
access to the N te test data points on which it wishes to generate
reliable predictions.

The predictive model adopts the VGG-16 architecture [40]
with minor modifications. Specifically, the last layer is re-
placed by a linear layer with C = 10 output neurons, followed
by a softmax layer that outputs the conditional probability
distribution p(y|x). We train the model using the standard
federated gradient descent protocol [24]. To this end, we divide
the N tr training examples evenly across all devices. Following
federated stochastic gradient descent, the server collects and
averages the local gradients from a subset of the devices that
are evaluated based on the respective local training data to
update the model parameters via stochastic gradient descent.
Specifically, we utilize cross-entropy as the loss function,
while adopting the SGD optimizer with a learning rate of
0.001, momentum of 0.9, and weight decay of 0.0005, over
50 epochs for the update procedure at the server. The final
accuracy of the predictive model reaches 91.8%. As depicted
in Fig. 1, the trained predictive model p(y|x) is deployed at
both devices and server.

Since training is done offline and since our focus is on
the inference phase, we do not account for constraints on the
communication links during training. Training techniques that
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Fig. 3. Empirical coverage and normalized empirical inefficiency of WFCP and naı̈ve WFCP (αc = α) versus the number M of quantization levels with
target unreliability level α = 0.06, h2

min = 1, number T = 60 of channel uses, number K = 30 of devices, and SNR = −10 dB.
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Fig. 4. Empirical coverage and normalized empirical inefficiency of centralized CP, WFCP, and DQQ [10] versus the target unreliability rate α with
h2

min = 0.4, 1, 1.6, number M = 20 of quantization levels, number T = 60 channel uses, number K = 20 of devices, and SNR = 0 dB.

operate on noisy channels, as in [4], [41]–[43], can be di-
rectly accommodated within the proposed federated inference
framework.

For the channel model, we consider Rayleigh fading chan-
nels, in which the channel powers are given as h2

k = 0.5(a2+
b2), with independent variables a, b ∼ N (0, 1).

We adopt as performance measures the empirical coverage
and empirical inefficiency, which are defined respectively as

Empirical coverage =
1

N te

N te∑
i=1

1 (yi ∈ Γ(xi)) (48)

and

Empirical inefficiency =
1

N te

N te∑
i=1

|Γ(xi)| . (49)

We run independent 400 experiments to evaluate the above
criteria, and obtain an average. Each experiment involves
sampling from the 10000 data points not used for training
to obtain N calibration and N te test pairs.

B. On the Choice of the Number of Quantization Levels
We start by focusing on the performance of the proposed

WFCP scheme as a function of the number of quantization

levels, M , for a fixed number T = 60 of channel uses. This
study is meant to substantiate the discussion in Sec. V-E on the
optimal choice of M as a trade-off between a less conservative
correction, requiring a smaller M , and a larger resolution,
calling for a larger M . For reference, we also consider a
naı̈ve implementation of WFCP which simply sets the target
reliability level 1−αc in (39) to the true target 1−α without
considering the impact of channel noise.

Fig. 3 shows empirical coverage and empirical inefficiency
for α = 0.06, h2

min = 1, K = 30 devices, and SNR = −10 dB
as a function of M . As a first observation, confirming Theorem
2, WFCP achieves the target coverage reliability condition (2)
for all quantization levels M . To obtain this goal, applying the
corrected target reliability level 1− αc in (39) is essential. In
fact, as also seen in the figure, the naı̈ve implementation of
WFCP fails to meet the coverage requirements (2) as soon as
M is sufficiently large, in which regime the performance is
more sensitive to the presence of channel noise. For WFCP,
the optimal value of M in terms of inefficiency is observed to
be around M = 20, with smaller values causing a degraded
performance due to an insufficient resolution and larger values
generating an excessively conservative correction in (47).
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min = 1, number M = 20 of quantization levels, number T = 40 of channel uses, and number K = 20 of devices.

C. Comparison between WFCP and DQQ

We now turn to comparing the performance of WFCP and
DQQ (Sec. IV-B). We start by evaluating empirical coverage
and empirical inefficiency as a function of the target unre-
liability levels α in Fig. 4. A larger unreliability level α
corresponds to a smaller quantile threshold for DQQ in (19)
and WFCP in (41), yielding a smaller prediction set. WFCP
consistently approximates the performance of the centralized
CP, while DQQ yields prediction sets that are comparatively
less informative. For example, for α = 0.12, the predicted
set size of DQQ is nearly six times larger than the WFCP
predicted set.

Furthermore, selecting the minimum channel power thresh-
old h2

min entails a trade-off between the number of active
devices, which decreases with h2

min, and effective noise power
(38), which decreases with h2

min. Compared to the threshold
h2

min = 1, a lower threshold, here h2
min = 0.4, results in

increased effective noise power σ2 in (38), while a higher
threshold, here h2

min = 1.6, decreases the number Ka of
active devices as in (31), with both choices yielding a less
informative predicted set.

We further evaluate the performance of WFCP and DQQ

for different number T of channel uses given a fixed number
M = 20 of quantization levels. As seen in Fig. 5, as T
increases, both methods maintain the target (1−α)-coverage,
while offering a decreasing inefficiency. This is because a
larger T weakens the effect of channel noise by reducing the
probability of error ϵ in (22) for DQQ, and by improving
the effective SNR in (45) for WFCP. The proposed WFCP
consistently outperforms DQQ, yielding highly informative
prediction sets, with efficiency improvements being particu-
larly evident in the regime of limited communication resources
with low number T of channel uses. As T grows sufficiently
large, the performance of both schemes approaches that of the
centralized noiseless CP (Sec. III).

The performance gains of WFCP in the presence of limited
communication resources are further explored in Fig. 6, which
evaluates the performance of WFCP and DQQ as a function
of the SNR. As the SNR increases, the effective SNR in
(45) improves along with a decrease in the correction term
in (47), resulting in a more informative predicted set, which
approaches the performance of the centralized CP. In a similar
manner, as the SNR improves, the probability of error ϵ in
(22) for DQQ decreases, thereby generating a smaller-sized
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Fig. 7. Empirical coverage and normalized empirical inefficiency of centralized CP, WFCP, and DQQ [10] versus the number K of devices with Nd = 10
per-device calibration data points, target unreliability level α = 0.1, h2

min = 1, number M = 20 of quantization levels, number T = 60 of channel uses, and
SNR = 0 dB.

predicted set, which approaches the performance of WFCP
for SNR levels around 15 dB.

Fig. 7 evaluates the performance of WFCP and DQQ when
varying the number of devices, K. Note that the number
Nd = 10 of per-device calibration data points is kept fixed,
so that, as K increases, the total number of calibration data
points increases. For DQQ, as the number of devices increases,
the inefficiency tends to increase. In fact, an increase in the
number of devices leads to a higher error probability ϵ in (22),
which causes the average number of correctly received local
quantiles, K(1− ϵ), to decrease.

In stark contrast, WFCP is observed to reduce the average
predicted set size as the number K of devices increases.
Intuitively, this is due to the adoption of the TBMA protocol,
which allows the on-air combination of signals transmitted by
all the devices. At a technical level, this result is aligned with
(47), which shows that the correction term is approximately
independent of the number of calibration data per device and
that it is inversely proportional to the square of the number
of devices, K. Accordingly, as K grows, the corrected target
reliability level 1 − αc approaches the true level 1 − α, and
the performance of WFCP approaches that of centralized CP.

VII. CONCLUSIONS AND OUTLOOKS

This paper has introduced wireless federated conformal
prediction (WFCP), the first protocol for the deployment of
federated inference via CP in shared noisy communication
channels. Like conventional centralized CP and some of the
existing federated extensions of CP for noiseless channels,
WFCP provably provides formal guarantees of reliability, indi-
cating that the predicted set produced at the server contains the
true output with any target probability. WFCP builds on type-
based multiple access (TBMA), a communication protocol that
allows the estimate of a global histogram from distributed
observations with a bandwidth that scales with the resolution
of the histogram and not with the number of devices. The key
technical challenge tackled by this paper is the definition of a
novel quantile correction approach that ensures the reliability
of the set predictor despite the presence of channel noise.

The theoretical analysis of WFCP’s reliability performance
also offers valuable insight into the choice of critical de-
sign parameters, such as the number of quantization levels.
Simulation results further substantiate the advantage of the
proposed WFCP scheme over existing strategies, particularly
under constraints of limited communication resources and/or
large number of devices. All in all, the proposed WFCP
protocol provides a promising framework for implementing
federated CP in wireless communication scenarios, thereby
establishing a robust foundation for future exploration in this
domain.

The proposed WFCP can be directly extended to the
scenario with heterogeneous data distributions and different
sizes of calibration data sets across the devices by leveraging
the results in [14]. To this end, assume that each device k
stores Nk calibration data points sampled from a local data
distribution p∗k(x, y). With a minor modification described
next, WFCP can still guarantee the reliability condition (43)
when the probability is evaluated with respect to the mixture

p∗(x, y) =
∑
k∈Ka

Nk∑
k∈Ka

Nk
p∗k(x, y) (50)

of the local data distributions. This distribution naturally arises
when the test point (x, y) is sampled from the local distribution
of a randomly sampled active device, with device k chosen
with probability proportional to the size Nk of the local data
set [14].

To guarantee such a reliability condition, it is sufficient
to choose the power control parameter γ as in (35) with
maxk∈Ka

Nk in lieu of Nd and to select the threshold in
(41) as the ⌈(1 − αc)(Na + Ka)⌉-th smallest value, instead
of the ⌈(1 − αc)(Na + 1)⌉-th smallest value, among the
Na =

∑
k∈Ka

Nk NC scores. As noted in paper [14], this
scheme requires the condition ⌈(1− αc)(Na +Ka)⌉ ≤ Na.

Another interesting direction for research is to devise a
differentially private implementation of WFCP, potentially
leveraging the idea of channel noise as a masking mechanism
[41].
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APPENDIX

A. Proof of Theorem 1

Given any fixed channel realization {hk}Kk=1 and a cor-
responding h2

min, we assume that a subset Ka of devices
are active. In this section, we denote the Na = KaNd

quantized calibration NC scores from the Ka active devices as
si = q(s(xi, yi)) for i = 1, . . . , Na and quantized NC score
for the true test pair (x, y) as sNa+1 = q(s(x, y)). We also
introduce two sets of Na + 1 NC scores. The first includes
both calibration and test NC scores, i.e.,

S∗ = {si}Na+1
i=1 , (51)

while the second replaces the test NC score sNa+1 with the
maximum NC score value SM , i.e.,

Smax = {si}Na
i=1 ∪ {SM}. (52)

For such a genie-aided set S∗ = {s1, . . . , sNa+1} that has
access to the test NC score, we use the bag notation *S∗+
to refer to a set of numerical values of the NC scores, which
excludes the identity of the data point to which each NC score
is assigned. Furthermore, we write as π(S∗) the indices of the
data points assigned to each element in the bag *S∗+. We use
the same notation for Smax. Based on these definitions, the set
S∗ is unambiguously identified by the bag *S∗+ and by the
assignment π(S∗).

Finally, given the bag *S∗+, we introduce the M ×1 vector
as p(*S∗+), in which each m-th entry represents the fraction
of NC scores in *S∗+ equal to quantization level Sm. With this
definition, the vector p̃+ in (37) can be equivalently defined
as

p̃+ = p(*Smax+), (53)

and hence vector r in (37) as

r = p(*Smax+) + z̃. (54)

In (53) and (54), we have used the fact that histograms do
not depend on the ordering of the defined set. Recall that we
are interested in finding a lower bound on the probability (43),
which can be expressed as the expectation

Pr
(
y ∈ ΓWFCP

αc
(x|r)

)
= ES∗,z̃

[
1(y ∈ ΓWFCP

αc
(x|r))

]
= ES∗,z̃

[
1(sN+1 ≤ Smαc (p(*Smax+)+z̃))

]
≥ ES∗,z̃

[
1(sN+1 ≤ Smαc (p(*S∗+)+z̃))

]
= Ez̃,*S∗+Eπ(S∗)|z̃,*S∗+

[
1(sN+1 ≤ Smαc (p(*S∗+)+z̃))

]
,

(55)

where in the second equality we have used (41) and (54), while
for the third inequality, we have followed a standard trick of
CP (see, e.g., Lemma 1 of [18]). This states that replacing
any single value with the maximum value will never decrease
the respective empirical quantile value. In the last equality, we
have used the law of iterated expectations, which allows us to
apply the expectations in the sequence as explained next.

First step: Bounding Eπ(S∗)|z̃,*S∗+[·]
We begin by studying the inner expectation over the order-

ing π(S∗) after conditioning on the bag *S∗+ and the noise
vector z̃. In the following, we write p∗ = p(*S∗+) to simplify
the notation. Recall that S1, . . . , SM are the M quantization
levels. From exchangeability of the data, we have the equality
(see, e.g., [18])

Pr
[
sN+1 = Si|z̃, *S∗ +

]
= p∗i . (56)

It follows that we have the series of equalities

Eπ(S∗)|z̃,*S∗+
[
1(sN+1 ≤ Smαc (p

∗+z̃))
]

=Pr
[
sN+1 ≤ Smαc (p

∗+z̃)|z̃, *S∗ +
]

=

mαc (p
∗+z̃)∑

i=1

p∗i

≥min

1, 1− αc −
mαc (p

∗+z̃)∑
i=1

z̃i

 , (57)

where the inequality follows from the definition of
mαc(p(*Smax+) + z̃) in (40) and the min{·} operator is
introduced to account for the case mαc

(p∗ + z̃) = M .

Second step: Bounding (Ez̃|*S∗+[·])
We now marginalize over the noise vector z̃ given the bag

*S∗+. Given the bag *S∗+ we have

Ez̃|*S∗+Eπ(S∗)|z̃,*S∗+
[
1
(
y ∈ ΓWFCP

αc
(x|r)

)]
≥ Ez̃|*S∗+

min

1, 1− αc −
mαc (p

∗+z̃)∑
i=1

z̃i




= 1 +
1

2
Ez̃|*S∗+

−αc −
mαc (p

∗+z̃)∑
i=1

z̃i −

∣∣∣∣∣αc +

mαc (p
∗+z̃)∑

i=1

z̃i

∣∣∣∣∣
 ,

(58)

in which we have used the identity min{x, y} = y+x−y−|x−y|
2

to obtain the last equality.
We now note that the index mαc(p

∗ + z̃) depends on
z̃ and that, once conditioned on *S∗+ it depends only on
the realization of the sequence z̃1, . . . , z̃mαc (p

∗+z̃). Therefore
mαc

(p∗+z̃) is a stopping time for the sequence z̃1, z̃2, . . ., and
we are allowed to invoke first Wald’s identity [44] to obtain

Ez̃|*S∗+

mαc (p
∗+z̃)∑

i=1

z̃i

 = Ez̃|*S∗+

[
mαc(p

∗ + z̃)
]
E[z̃1] = 0,

(59)
where the last equality follows from the noise being zero mean.
Furthermore, from Wald’s second identity [44], we have

Ez̃|*S∗+


mαc (p

∗+z̃)∑
i=1

z̃i

2


≤σ2Ez̃|*S∗+ [mαc
(p∗ + z̃)] ≤ σ2M, (60)
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which will be used next. Applying Jensen’s inequality
E[|x|]2 ≤ E[x2], we can further bound (58),

1 +
1

2
Ez̃|*S∗+

−αc −
mαc (p

∗+z̃)∑
i=1

z̃i −

∣∣∣∣∣αc +

mαc (p
∗+z̃)∑

i=1

z̃i

∣∣∣∣∣


≥ 1− αc

2
− 1

2

√√√√Ez̃|*S∗+

[
α2
c + 2αc

mαc (p
∗+z̃)∑

i=1

z̃i +

(mαc (p
∗+z̃)∑

i=1

z̃i

)2]
≥ 1− αc

2
− 1

2

√
α2
c + σ2M. (61)

Accordingly, we have

Ez̃|*S∗+Eπ(S∗)|z̃,*S∗+
[
1
(
y ∈ ΓWFCP

αc
(x|r)

)]
≥ 1− αc

2
− 1

2

√
α2
c + σ2M. (62)

Final step: Bounding (E*S∗+[·])
The final step follows directly from (62), in which the lower

bound does not depend on the bag *S∗+. This gives that

Pr
(
y ∈ ΓWFCP

αc
(x|r)

)
≥ 1− αc

2
− 1

2

√
α2
c + σ2M. (63)

Therefore, to satisfy the target coverage rate 1− α, we set
the corrected unreliability level as

αc = α− σ2M

4α
. (64)
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