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Abstract—We consider estimation under scenarios where the
signals of interest exhibit change of characteristics over time. In
particular, we consider the continual learning problem where
different tasks, e.g., data with different distributions, arrive
sequentially and the aim is to perform well on the newly arrived
task without performance degradation on the previously seen
tasks. In contrast to the continual learning literature focusing on
the centralized setting, we investigate the problem from a dis-
tributed estimation perspective. We consider the well-established
distributed learning algorithm COCOA, which distributes the
model parameters and the corresponding features over the
network. We provide exact analytical characterization for the
generalization error of COCOA under continual learning for
linear regression in a range of scenarios, where overparameteriza-
tion is of particular interest. These analytical results characterize
how the generalization error depends on the network structure,
the task similarity and the number of tasks, and show how these
dependencies are intertwined. In particular, our results show
that the generalization error can be significantly reduced by
adjusting the network size, where the most favorable network
size depends on task similarity and the number of tasks. We
present numerical results verifying the theoretical analysis and
illustrate the continual learning performance of COCOA with a
digit classification task.

Index Terms—Multi-task networks, networked systems, dis-
tributed estimation, adaptation, overparametrization.

I. INTRODUCTION

When presented with a stream of data, continual learning
[1], [2] is the act of learning from new data while not forgetting
what was learnt previously. New data can, for instance, come
from a related classification task with new fine-grained classes,
or it can have statistical distribution shift compared to the
previously seen data. Each set of data that is presented to
the model is referred to as a task. Continual learning aims to
create models which perform well on all seen tasks without
the need to retrain from scratch when new data comes [1],
[2]. Continual learning has been demonstrated for a large
breadth of tasks with real world data, including image and
gesture classification [3] and wireless system design [4], and
has gained increasing attention during recent years [1]–[3],
[5]–[8].

Continual learning is related to learning under non-
stationary distributions and adaptive filtering, where iterative
optimization methods and a stream of data are used to
continuously adapt signal models to unknown and possibly
changing environments [9]. Various phenomena of interest,
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such as financial time-series and target tracking, often exhibit
structural changes in signal characteristics over time. Hence,
performance under non-stationary distributions has been the
focus in a number of scenarios; including randomly drifting
unknowns in distributed learning [10], switching system dy-
namics [11]–[13].

The central issue in continual learning is forgetting, which
measures the performance degradation on previously learned
tasks as new tasks are learnt by the model [2], [5], [6].
If a model performs worse on the old tasks as new tasks
are trained upon, the model is said to exhibit catastrophic
forgetting [2], [5], [6]. This emphasis on the performance on
old tasks is what distinguishes continual learning apart from
the long line of existing work focusing on estimation with
non-stationary distributions, where the estimator is expected
to track the changing distribution, i.e., learn to perform well
on the new distribution of data, but not necessarily on data
from the previous distributions.

Significant effort has been put into studying continual
learning empirically [14]–[17]. Compared to the breadth of
existing empirical works, theoretical analysis of continual
learning lacks behind. Nevertheless, bounds and explicit char-
acterizations of continual learning performance have been
recently presented for a range of models in order to close the
gap between practice and theory, e.g., focusing on the least-
squares estimator [18], the neural tangent regime [7], [8], and
variants of stochastic gradient descent [5], [8], [18]. Here, we
contribute to this line of work by considering the continual
learning problem from a distributed learning perspective.

In distributed learning, optimization is performed over a
network of computational nodes. It not only supports learning
over large scale models by spreading the computational load
over multiple computational units, such as in edge computing
[19], but also provides an attractive framework for handling
the emerging concerns for data security and privacy [20],
[21]. Distributed learning is particularly attractive for scenarios
where the data is already distributed over a network, e.g., in
sensor networks [22]–[25], or in dictionary learning where
sub-dictionaries are naturally separated over the network [26].

We focus on the successful distributed learning algorithm
COCOA [27]. COCOA was developed from COCOA-v1 [28]
and COCOA+ [29], and has been extended into the fully
decentralized algorithm COLA [30]. In COCOA, nodes may
utilize different local solvers with varying accuracies; allowing
exploration of different communication and computation trade-
offs [27]. Unlike the distributed learning frameworks where
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data samples, such as sensor readings, are distributed over the
network [25]; in COCOA, the unknown model parameters to
be estimated and the corresponding features are distributed
over the network, similar to [31], [32].

Our distributed continual learning framework with COCOA
is closely related to, but nevertheless different from, the
typical framework for multitask learning over networks [33]–
[35]. In particular, in our continual learning setting all nodes
have the same task and this task changes over time for
all nodes; whereas in typical settings for multitask learning
over networks [33]–[35], the individual nodes have different
tasks which do not change over time. Successful examples of
continual learning over networks have been presented [36]–
[38], under a range of constraints including asynchronous
updates [38] and privacy [37]. In contrast to these works
focusing on empirical performance, we focus on providing
analytical performance guarantees for COCOA.

We investigate how well COCOA performs continual learn-
ing for a sequence of tasks where the data comes from a
linear model for each task. We focus on the generalization
error as our main performance metric. The generalization
error measures the output prediction error that the model
makes on all the tasks, using new data unseen during training,
independent and identically distributed (i.i.d.) with the training
data of the respective tasks. See Section II-C for a formal
definition of the generalization error. We present closed form
expressions of the generalization error for a range of scenarios
under isotropic Gaussian regressors. Our main contributions
can be summarized as follows:

• We provide exact analytical expressions for the general-
ization error of COCOA under continual learning for the
overparametrized case, as well as for the scenario with a
single update for each task.

• We show that COCOA can perform continual learning
through both analytical characterization and numerical
illustrations.

• Our analytical results characterize the dependence of the
generalization error on the network structure as well as
the number of tasks and the task similarity.

• We give sufficient conditions for a network structure to
yield zero generalization error and training error for a
large number of tasks under stationary data distributions.

Our work provides analytical characterizations of the gener-
alization error, see, e.g., Theorem 1, Corollary 1, Theorem 2,
Corollary 3 and Corollary 4, that have not been provided in
the previous literature; and complement the numerical studies
of continual learning with COCOA in [39]. Our results extend
the generalization error analysis in the single task setting of
[40] to that of continual learning; and centralized continual
learning setting of [18] to distributed learning. In contrast
to [5] where the focus is on the training error for the case
where the unknown model parameter vector is the same for
all tasks, i.e., only the regressors change over the tasks, our
analysis focuses on the generalization error when the tasks
may possibly have different unknown model parameters.
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Fig. 1: Distributed continual learning with COCOA, using Tc
iterations, for a network of K nodes operating on T tasks.

Our closed form analytical expressions quantify the depen-
dence of the generalization error to the number of samples
per task, the number of nodes in the network, and the number
of unknowns governed by each node as well as similarities
between tasks. Here similarities between tasks are measured
through inner products between model parameter vectors, see
Theorem 1. We analytically quantify how the task similarity
affects whether the error increases or decreases as the number
of tasks increase. These results reveal that the generalization
error can be significantly reduced by adjusting the network
size where the most favorable network size depends on task
similarity and the number of tasks. Furthermore, our numerical
results illustrate that by reducing the number of COCOA
iterations for each task, one may obtain lower generalization
error than if COCOA is run until convergence; further illus-
trating that choosing COCOA parameters that obtain the best
continual learning performance is not straightforward.

The rest of the paper is organized as follows: Section II
presents the problem formulation. Our characterization of the
generalization error is provided in Section III together with
a range of example scenarios. We illustrate our findings with
numerical results in Section IV. Finally, we conclude the paper
in Section VI.

Notation: Let u, q ∈Rd×1 be real-valued vectors. We
denote the Euclidean norm as ∥u∥ =

√
⟨u,u⟩, where

⟨u, q⟩ = u⊺q. We denote the weighted norm and inner
product with ∥u∥Σ =

√
⟨u,u⟩Σ, where ⟨u, q⟩Σ = u⊺Σq for

any symmetric positive semi-definite matrix Σ∈Rd×d. The
Moore-Penrose pseudoinverse and transpose of a matrix A
are denoted by A+ and A⊺, respectively. The p × p identity
matrix is denoted as Ip. The notation u ∼ N (µ,Σ) denotes
that u∈Rd×1 is a Gaussian random vector with the mean
µ∈Rd×1 and the covariance matrix Σ∈Rd×d. For a vector
of unknown parameters w∗ ∈Rp×1, the superscript ∗ is used
to emphasize that this is the true value of the unknown vector.
For products where the lower limit exceeds the upper limit,
we use the convention

∏τ−1
ℓ=τ Mℓ = Ip, where Mℓ ∈Rp×p are

non-zero matrices.

II. PROBLEM STATEMENT

A. Definition of a Task

We consider the continual learning problem of solving T
tasks. The training data for task t, 1 ≤ t ≤ T is denoted
by (yt,At) and consists of the regressor matrix At ∈Rnt×p



and the corresponding vector of outputs yt ∈Rnt×1. The
observations yt come from the following noisy linear model

yt = Atw
∗
t + zt. (1)

where each task has an unknown model parameter vector
w∗

t ∈Rp×1, and zt ∈Rnt×1 denotes the noise. The noise vec-
tors zt’s are independently distributed with zt ∼ N (0, σ2

t Int
),

and they are statistically independent from the regressors. We
focus on the following regressor model:

Assumption 1. The matrices At, t = 1, . . . , T , are sta-
tistically independent and have independently and identically
distributed (i.i.d.) standard Gaussian entries. In particular, if
a⊺ ∈R1×p is a row of At, then a ∼ N (0, Ip).

Task t corresponds to finding an estimate ŵ so that yt ≈
Atŵ. In particular, for task t, the aim is to minimize the
training error given by the mean-squared-error (MSE)

ℓt(ŵ) =
1

2nt
∥Atŵ − yt∥2 , (2)

where ∥ · ∥ denotes the Euclidean norm. Note that the scaling
of 1

2 is included here for notational convenience later.

B. Continual Learning Problem

We study the continual learning setting, where training data
for the tasks arrive sequentially, and the data for only one task
is available at a given time. In particular, at a given time instant
t, we only have access to (yt,At) for a particular task t but
not the data for the other tasks. The goal is to find an estimate
ŵ that performs well over all tasks 1 ≤ t ≤ T . Hence, we
would like to find a single ŵ such that

Atŵ ≈ yt, ∀ t. (3)

We note that if all the data were available at once, instead of
arriving sequentially, one may find a solution for (3) by solv-
ing the minimization problem minw

1
2N

∑T
t=1 ∥Atw − yt∥2,

where N =
∑T

t=1 nt. Hence, the aim of the continual learning
setting can be seen as to perform as close as possible to this
solution, despite the sequential nature of data arrival. Further
details on this benchmark can be found in Section II-E.

We focus on the scenarios where the task identity, i.e., t,
is not available and it does not need to be inferred; hence we
look for a single ŵ for all tasks. This type of continual setting
is referred as domain-incremental learning; and it is suited to
the scenarios where the structure of the tasks is the same but
the input distribution changes [41].

Precise definitions of the performance metrics for continual
learning are presented in Section II-C. We provide a detailed
description of the distributed iterative algorithm COCOA em-
ployed to find the estimate in Section II-D, see also Fig. 1. An
overview of some of the important variables of the problem
formulation is provided in Table I.

C. Performance Metrics

Let ŵτ denote an estimate obtained by training on a dataset
Dτ = {yt, At}τt=1 where 1 ≤ τ ≤ T . Note that the subscript
τ of the estimate ŵτ indicates that the data up to and including
task τ has been used to create the estimate.

TABLE I: Overview of Important Variables.
w∗

t true value of the unknown parameter for task t
(yt,At) training data for task t
Dt {yt′ , At′}tt′=1

ŵt parameter estimate found using Dt

ŵ
(i)
t

parameter estimate found by COCOA using Dt

and i iterations for task t
ŵ

(i)
t,[k] partition of ŵ(i)

t at node k of the network

To characterize how well an estimate achieves continual
learning, we consider forgetting from two different perspec-
tives: training error and generalization error.

1) Training Error: Forgetting in terms of training error
measures the output error that an estimate makes on the
training data of the tasks previously seen. It is defined as [5]

fτ (ŵτ ) =
1

τ

τ∑
t=1

ℓt (ŵτ ) =
1

τ

τ∑
t=1

1

2nt
∥Atŵτ − yt∥2 . (4)

Hence, fτ (ŵτ ) is the average MSE over the training data used
to create the estimate ŵτ , i.e., from the tasks t = 1, . . . , τ .

We define the expected training error of ŵτ over the
distribution of the training data Dτ as

Fτ (ŵτ ) = E
Dτ

[fτ (ŵτ )] (5)

=
1

τ

τ∑
t=1

1

2nt
E
Dτ

î
∥Atŵτ − yt∥2

ó
. (6)

Since ŵτ depends on data up to and including task τ , the
expectation in (6) is over Dτ = {yt, At}τt=1 and not merely
over only the latest task (yτ , Aτ ).

2) Generalization Error: The generalization error mea-
sures the performance on data unseen during training. Let
yt,new = a⊺

t,neww
∗
t + zt,new, be a new unseen sample for

task t, i.i.d. with the samples of training data of that task,
i.e., at,new ∼ N (0, Ip) and zt,new ∼ N (0, σ2

t ). Consider the
estimate ŵτ . The generalization error associated with ŵτ over
tasks t = 1, . . . , T , is defined as

gT (ŵτ ) =
1

T

T∑
t=1

E
yt,new,at,new

î(
a⊺
t,newŵτ − yt,new

)2ó (7)

=
1

T

T∑
t=1

E
at,new,zt,new

î(
a⊺
t,new (ŵτ −w∗

t )− zt,new
)2ó (8)

=
1

T

T∑
t=1

(ŵτ −w∗
t )

⊺ E
at,new

[
at,newa

⊺
t,new

]
(ŵτ −w∗

t )

+ E
zt,new

[
z2t,new

] (9)

=
1

T

T∑
t=1

∥ŵτ −w∗
t ∥2 + σ2

t . (10)

Forgetting is typically defined only on the tasks whose data is
used for constructing the estimate [2], [5], see for instance the
summation in (4) which runs up to τ . On the other hand, here
we have chosen to define the generalization error in (10) as
the performance over all tasks 1 ≤ t ≤ T instead of only up
to the last seen task τ . In addition to measuring the forgetting



Algorithm 1: COCOA for task t

1 Input: Training data
(
yt,At = [At,[1], . . . , At,[K]]

)
,

previous estimate ŵ
(Tc)
t−1 , number of iterations Tc for

COCOA to run per task.
2 Initialize: ŵ(0)

t = ŵ
(Tc)
t−1 ,

3 v
(0)
t,[k] = KAt,[k]ŵ

(0)
t,[k], k = 1, . . . , K.

4 for i = 1, . . . , Tc do
5 v̄

(i)
t = 1

K

∑K
k=1 v

(i−1)
t,[k]

6 for k∈{1, 2, . . . , K} do
7 ∆ŵ

(i)
t,[k] =

1
KA+

t,[k]

Ä
yt − v̄

(i)
t

ä
8 ŵ

(i)
t,[k] = ŵ

(i−1)
t,[k] +∆ŵ

(i)
t,[k]

9 v
(i)
t,[k] = v̄

(i)
t +KAt,[k]∆ŵ

(i)
t,[k]

10 Output: ŵ
(Tc)
t

in terms of generalization on the tasks seen, this definition
allows us to keep track of how well the estimate performs for
unseen tasks and leads to interesting conclusions in terms of
effect of task similarity, see Remark 2.

We define the expected generalization error over the distri-
bution of the training data Dτ as

GT (ŵτ ) = E
Dτ

[gT (ŵτ )] (11)

=
1

T

T∑
t=1

E
Dτ

î
∥ŵτ −w∗

t ∥2
ó
+ σ2

t . (12)

Our main results in Theorem 1 provide an analytical charac-
terization of GT (·) when the estimate ŵτ is obtained using
the distributed algorithm COCOA.

D. Distributed Continual Learning with COCOA

1) Overview: Consider task t with data (yt,At). We mini-
mize the MSE in (2) in a distributed and iterative fashion using
the algorithm COCOA [27], see Figure 1 and Algorithm 1.
For task t, the regressor matrix At and the initial estimate
for the unknown vector is distributed over K nodes. Then, Tc
iterations of COCOA are used to update the parameter estimate
iteratively in order to minimize (2). When a new task comes,
the old parameter estimate is used as the initialization and
the procedure is repeated. The below presentation of COCOA
includes references to the line numbers in Algorithm 1.

2) Distribution over nodes: We now describe how the data
is distributed over the network. The regressor matrix At

is distributed over a network of K nodes by column-wise
partitions such that each node governs an exclusive set of
columns of At. The partitioning of At is given by

At =
[
At,[1] · · · At,[K]

]
. (13)

We have At,[k] ∈Rnt×pk , ∀t, hence the number of columns
in the kth submatrix of At is pk ∈N, ∀t.

Let us denote the model parameter estimate obtained after
training on the data of task t with i iterations of COCOA by

ŵ
(i)
t ∈Rp×1. The column-wise partitioning of At corresponds

to a row-wise partitioning in ŵ
(i)
t over the nodes as follows

ŵ
(i)
t =


ŵ

(i)
t,[1]

...

ŵ
(i)
t,[K]

 , (14)

where ŵ
(i)
t,[k] ∈Rpk×1 is the unknown model parameter parti-

tion at node k.
3) Learning over tasks: Let us have task t − 1. We run

COCOA for Tc iterations to obtain the estimate ŵ
(Tc)
t−1 . When

data for task t comes, i.e., (yt,At), the algorithm is initialized
with the estimate learnt with the data of the previous task, i.e.,

ŵ
(0)
t = ŵ

(Tc)
t−1 , (15)

see line 2. For the first task, i.e. t = 1, we use ŵ
(0)
1 = ŵ

(Tc)
0 =

0 as initialization. In COCOA, an auxiliary variable vt keeps
track of the contribution of each node to the current estimate
of the observations yt. Partitions of vt are initialized as

v
(0)
t,[k] = KAt,[k]ŵ

(0)
t,[k], ∀k, (16)

see line 3. After Tc iterations of COCOA for task t, ŵ(Tc)
t is

outputted as the estimate of the parameter vector, see line 10.
4) COCOA iterations: For each iteration (i), a central

unit shares the network’s aggregated current estimate of the
observations yt, denoted by v̄

(i)
t ∈Rnt×1 (line 5). Each node

then computes its local updates ∆ŵ
(i)
t,[k] ∈Rpk×1 (line 7),

updates its estimate of the parameter partition ŵ
(i)
t,[k] (line 8)

and the local estimate of y, i.e., v(i)
t,[k] ∈Rnt×1 (line 9).

In order to minimize (2), the node k’s update in line 7 is
computed by solving the following local subproblem [27]

min
∆ŵ

(i)

t,[k]

1

2Knt

∥∥∥v̄(i)
t − yt

∥∥∥2 + σ′

2nt

∥∥∥At,[k]∆ŵ
(i)
t,[k]

∥∥∥2
+

1

nt

Ä
v̄
(i)
t − yt

ä⊺
At,[k]∆ŵ

(i)
t,[k].

(17)

This is a convex problem in ∆ŵ
(i)
t,[k]. Setting its derivative with

respect to ∆ŵ
(i)
t,[k] to zero, one arrives at the following

σ′A⊺
t,[k]At,[k]∆ŵ

(i)
t,[k] = A⊺

t,[k]

Ä
yt − v̄

(i)
t

ä
. (18)

The expression in line 7 is the minimum ℓ2-norm solution
to (18) where (·)+ in line 7 denotes the Moore-Penrose
pseudoinverse.

In [27], COCOA is presented with the hyperparameters
σ′ and φ̄, referred to as the subproblem and aggregation
parameters, respectively. We have set σ′ = φ̄K, and let
φ̄∈ (0, 1], as these are considered safe choices [30]. As a
result, the specific value of φ̄ washes out to give the explicit
expressions in Algorithm 1.

E. A benchmark: Offline and centralized solution

We compare the performance of the COCOA solution with
the following offline and centralized version of the problem. In
particular, consider the setting where one has access to all the
tasks’ training data at once, hence one minimizes MSE over all



that data simultaneously, i.e., minw
1

2N

∑T
t=1 ∥Atw − yt∥2 ,

where N =
∑T

t=1 nt. The minimum ℓ2-norm solution, i.e.,
the standard least-squares solution, is then given by,

ŵLS =

A1

...
AT


+  y1

...
yT .

 . (19)

We refer to ŵLS as the offline and centralized solution, and
we use it to compare the performance of COCOA with.

III. GENERALIZATION ERROR

In this section, we present closed form expressions for the
generalization error of the estimates produced by Algorithm 1
in the continual learning setting for a range of scenarios.

A. Preliminaries

We begin by presenting Lemma 1, which describes the
estimate ŵ

(1)
t , i.e., the estimate found by Algorithm 1 after

the first iteration when initialized with the parameter estimate
from the previous task, i.e., ŵ(Tc)

t−1 . Note that Lemma 1 and
also some other intermediate results, such as Lemma 5, do
not rely on Assumption 1. Hence, for the sake of clarity, we
refer to Assumption 1 in our results explicitly whenever it is
needed.

Lemma 1. The solution ŵ
(1)
t after first iteration of Algo-

rithm 1 is given by the following expression,

ŵ
(1)
t = Ptŵ

(Tc)
t−1 + Ātyt, (20)

where
Pt = Ip − ĀtAt ∈Rp×p, (21)

Āt =
1

K

A+
t,[1]

...
A+

t,[K]

 ∈Rp×nt . (22)

Furthermore, for any u∈Rp×1,

ŵ
(1)
t − u =Pt

Ä
ŵ

(Tc)
t−1 −u

ä
+ ĀtAt(w

∗
t −u) + Ātzt. (23)

Proof: This result has been partially presented in [39,
Sec. 3], [40, Sec. IV]. Due to slightly different assumptions
therein, we present the proof in Appendix B for the sake of
completeness.

The recursion in (23) is used to present closed form
expressions of the generalization error in Theorem 1, and
asymptotic analyses of the generalization and training error in
Section III-E. The following result gives a sufficient condition
for which the algorithm converges in the first iteration.

Lemma 2. If the partitions At,[k] ∈Rnt×pk have full row
rank, i.e., Rank(At,[k]) = nt, then Algorithm 1 converges in
the first iteration to the solution given by (20) i.e.,

ŵ
(Tc)
t = ŵ

(1)
t , Tc ≥ 1. (24)

Proof: This result is proven in [39, Lemma 1]. Note that
the first half of [39, Lemma 1], i.e., the result here, does not
require the stationarity condition [39, Assumption 1].

We use one of the following assumptions in most of our
analytical development:

Assumption 2. pk > nt + 1, ∀t, k.

Assumption 3. Tc = 1.
We explicitly refer to these assumptions in our results as
appropriate.

Recall that for a given task t, all nodes have the same
number of data samples nt but possibly different number of
model parameters. Assumption 2 corresponds to the case of
overparameterized local models, i.e., at each node k there
is a large number of model parameters pk compared to the
number of data samples nt. Many modern learning models
operate in the overparameterized regime [42], and massively
overparametrized models have been very successful, see for
instance [42, Table 1]. A number of works have focused
on the overparametrized setting under distributed learning,
investigating theoretical guarantees for communication effi-
ciency [43]–[45], convergence [46], [47] and generalization
error [40]. In addition to the empirical success of large over-
parametrized models [42, Table 1], analytical characterization
of the generalization error of overparametrized linear models
has also been the focus of many recent works, including the
centralized scenario, e.g. [48]–[50], and distributed scenario
without continual learning [40]. In this article, we contribute to
these lines of work by focusing on a distributed and continual
learning setting.

Assumption 3 corresponds to the setting that only one
update to the parameter estimate is performed for a given
task, i.e., there is one round of communication between the
nodes. Our work here can be interpreted as the generalization
of the centralized continual learning scenario in [18], which
also performs a one step update, to the distributed case. See
Section III-D for further discussions. In distributed learning,
the scenarios with one round of communication, is referred
to as the one-shot setting [51]–[53]. In practice, this type
of setting may be used when the cost of communication is
too high; or when the computational memory load and the
related energy constraints make it difficult for the nodes to
perform multiple updates; or when the data comes in real-
time and it cannot be stored for the subsequent updates due to
memory constraints. Distributed one-shot settings have been
the main focus of a number of works, such as [52]–[55].
For some scenarios, one-shot solutions have been shown to
outperform or match standard solutions, including the mixture
weight method, which uses one-shot communication and less
resources overall while achieving a performance on the level
of the standard gradient-based approach with multiple rounds
of communication [56]; approaches based on averaging, which
use one-shot communication but achieve the best possible error
rate decay achievable by a centralized algorithm [57]; and one-
shot averaging with stochastic gradient, which can achieve
the optimal asymptotic convergence rate [58]. In a similar
manner, running COCOA with Tc = 1 can in some scenarios
provide better generalization performance compared to having
a relatively high Tc, see the discussion for high number of



tasks in Section IV-D.

Remark 1. If Assumption 1 and Assumption 2 hold, then
the partitions At,[k] are full row-rank with probability 1,
hence (24) holds with probability 1. As a result, the expected
generalization error GT (ŵ

(Tc)
t ) given by Algorithm 1 with

Tc = 1 is the same for all Tc ≥ 1.

The results presented in this paper are often functions of
the problem dimensions. In particular, the dimensions of the
local partitions At,[k] ∈Rnt×pk , i.e., the number of samples
per task nt, and the number of model parameters per node
pk. Thus we introduce the following notation for the nodes
k = 1, . . . , K, and the tasks t = 1, . . . , T ,

rt,k =
min(nt, pk)

pk
, (25)

γt,k=


min(nt, pk)

max(nt, pk)−min(nt, pk)−1
, pk /∈ [nt ± 1] (26a)

+∞, otherwise. (26b)

where the notation [nt±1] represents the range [nt−1, nt+1].
Note that the infinity, i.e., ∞, is a short-hand notation for
indeterminate/infinite values in the expressions.

B. Generalization Error

We now present our main result:

Theorem 1. Let Assumption 1 hold, and the noise vectors
be independently distributed as zj ∼ N (0, σ2

j Inj
), and

independent of the regressors. Let Assumption 2 or 3 hold.
Then, over the distribution of ŵ

(Tc)
t as a function of the

training data Dt = {(yj ,Aj)}tj=1, we have the expected
generalization error in (12) as,

GT (ŵ
(Tc)
t ) =

1

T

T∑
i=1

∥w∗
i ∥2H{t}

1
+ ϕ
Ä
ŵ

(Tc)
t ,w∗

i

ä
+ σ2

i (27)

where w∗
i denote the model unknowns in (1), and where

ϕ
Ä
ŵ

(Tc)
t ,w∗

i

ä
=

t∑
τ=1

Å
∥w∗

τ−w∗
i ∥2R{t}

τ
+σ2

τ

∑K
k=1γτ,khτ+1,k

K2

+ 2

τ−1∑
j=0

〈
w∗

τ −w∗
i ,w

∗
j −w∗

i

〉
Q

{t}
τ,j

ã
,

(28)

with γt,k defined as in (26), and where w∗
0 = 0,

H
{t}
1 = diag{h1,kIpk

}Kk=1 (29)

R{t}
τ =diag


hτ+1,krτ,k+

∑K
i=1
i ̸=k

hτ+1,iγτ,i

K2
Ipk


K

k=1

, (30)

Q
{t}
τ,j = diag

{
rj,k
K

τ−1∏
ℓ=j+1

(
1− rℓ,k

K

)
(31)

×
hτ+1,krτ,k(K−1)−∑K

i=1
i̸=k

hτ+1,iγτ,i

K2
Ipk

}K

k=1

, (32)

for τ = 1, . . . , t, and where rt,k is defined as in (25), with
r0,k = K, and where

hτ,k=
hτ+1,k

(
K2+rτ,k(1−2K)

)
+

∑K
i=1
i ̸=k

hτ+1,iγτ,i

K2
, (33)

for τ = 1, . . . , t, and where ht+1,k = 1, k = 1, . . . , K.

Proof: See Appendix C.
Theorem 1 provides closed form expressions for the general-

ization error for a stream of incoming tasks as a function of the
noise levels σ2

i , the number of samples per task ni, the number
of nodes in the network, K, and the number of unknowns
governed by each node, pk, as well as similarities between
tasks through ∥w∗

τ −w∗
i ∥2 and

〈
w∗

τ −w∗
i ,w

∗
j −w∗

i

〉
.

Remark 2. For generality, we have used ŵ
(Tc)
t where the

estimate is trained on the first t tasks, rather than ŵ
(Tc)
T which

is trained on all the T tasks. As a result, the cross-terms ∥w∗
τ−

w∗
i ∥2 and

〈
w∗

τ −w∗
i ,w

∗
j −w∗

i

〉
, i.e., the direct effect of task

similarity, are only present for τ ≤ t and j < τ .

Remark 3. If pk∈ [nt ± 1], then the local sub-problems in
the nodes become ill-conditioned with high-probability and the
generalization error of COCOA diverges. See [40] for detailed
discussions.

Theorem 1 shows that the network structure can have a large
effect on the generalization error. This effect goes beyond what
has been described in Remark 3. For instance, whether the
error increases with the increasing number of tasks depends
on the number of nodes in the network. The task similarity also
heavily influences whether the error increases or decreases as
the number of tasks increases. We further discuss these effects
in Section IV-B.
C. Special Case of Equal Dimensions

We now consider the special case where the problem
dimensions are the same for all tasks and at all nodes:

Corollary 1. Consider the setting of Theorem 1 in the special
case that all tasks have the same number of samples, i.e.,
nt = n, ∀t, and all nodes have the same number of unknowns,
and pk = p

K , ∀k. With r = rt,k and γ = γt,k as in (25) –
(26), we then have

GT

Ä
ŵ

(Tc)
t

ä
=

1

T

T∑
i=1

[
∥w∗

i ∥2ht + σ2
i

+

t∑
τ=1

Å
∥w∗

τ −w∗
i ∥2

r+(K−1)γ

K2
ht−τ+σ2

τ

γ

K
ht−τ

+ 2ht−τ (r − γ)
K − 1

K2

r

K

τ−1∑
j=1

(
1− r

K

)τ−j−1

×
〈
w∗

τ −w∗
i ,w

∗
j −w∗

i

〉
− 2

K−1

K2

(
1− r

K

)τ−1

(r − γ)ht−τ ⟨w∗
τ −w∗

i ,w
∗
i ⟩
ã]
,

(34)

with

h =
K2 + (1− 2K)r + (K − 1)γ

K2
(35)



We use Corollary 1 to provide comparisons with the cen-
tralized case (Section III-D) and to discuss the effect of task
similarity (Section III-E and Section III-F).

D. Comparisons with the centralized continual learning

Here we compare the results in Corollary 1 with the
expressions for the centralized continual learning setting of
[18] in the overparametrized case, i.e. p > n + 1. With only
one node, i.e., K = 1 and pk = p, the same noise level over
all tasks, i.e., σ2

t = σ2, focusing on the solution obtained
after seeing the last task, i.e., t = T , and Tc = 1, then our
scenario reduces to the setting of [18]. In this setting, COCOA
finds the convergence point of the stochastic gradient descent
(SGD), i.e., the smallest-norm of the change of parameters as
in [18, Eqn.4]. In particular, for this setting, COCOA finds the
solution of the optimization problem minŵt

∥ŵt − ŵt−1∥2
s.t. Atŵt = yt, where ŵt−1 is the solution found for task
t−1. Note that due to overparameterization, there are multiple
solutions that satisfy Atŵt = yt. Hence, COCOA finds the
solution that creates the minimum change in the parameter
estimate while satisfying Atŵt = yt for the new task t. As
expected, the generalization error in Corollary 1 for K = 1
matches that of [18, Theorem 4.1], i.e.,

(1− r)T

T

T∑
i=1

∥w∗
i ∥2 +

1

T

T∑
τ=1

r(1− r)T−τ
T∑

i=1

∥w∗
τ −w∗

i ∥2

+
pσ2

p− n− 1
(1− (1− r)T ), (36)

where we have presented GT (ŵ
(Tc)
T ) − σ2 to match the

definition of the generalization error in [18]. (Note that r in
[18] corresponds to 1− r according to our notation.)

E. Task Similarity – Single Model Parameter

The generalization performance depends heavily on the
similarity between tasks. We now investigate the generalization
error for the limiting case of task similarity where there is one
single model parameter for all tasks, i.e. w∗

t = w∗ ∀t.
Theorem 2. Consider the setting of Theorem 1. If w∗

t = w∗

and σ2
t = σ2 ∀t, then

GT

Ä
ŵ

(Tc)
T

ä
=∥w∗∥2

H
{T}
1

+σ2K
2+

∑T
τ=1

∑K
k=1γτ,khτ+1,k

K2
. (37)

Furthermore, if ∥w∗∥2 <∞ and for t = 1, . . . , T ,

nt < pmin − K−1
2K−1pmax − 1, (38)

or

nt > pmax + K−1
2K−1pmin + 1, (39)

where pmin = mink=1,...,K pk, pmax = maxk=1,...,K pk, then

lim
T→∞

∥w∗∥2
H

{T}
1

= 0. (40)

Proof: See Appendix D.

Corollary 2. Consider the setting of Theorem 2 with σ2 = 0.
Then, if (38) or (39) is satisfied, the generalization error is
zero in the limit of infinitely many tasks.

Proof: The result follows from Theorem 2 with σ2 = 0.

Remark 4. Let σ2 = 0. If nt ≥ 1 and T → ∞, then the
algorithm effectively processes an infinite number of samples,
i.e., nt × T → ∞. Since the tasks have the same unknown
parameter vector w∗ ∈Rp×1 with p <∞, one may expect that
the generalization error should be zero unless the condition
pk /∈ [nt−1, nt+1] is violated, see Remark 3. Nevertheless,
Eqn. (38)-(39) suggest stricter conditions on the problem
dimensions may be needed. Example 1 illustrates this.

Example 1. We now illustrate Remark 4. In particular, we
illustrate that Eqn. (38)-(39) provides non-trivial conditions
for zero generalization error. Consider the equal dimensions
scenario in Corollary 1 with σ2

t = 0, and w∗
t = w∗, ∀t. Let

nt = 15, p = 40 and K = 2. Then γ = 15/4 = 3.75, hence
pk /∈ [nt−1, nt+1] is satisfied but not (38) or (39). Since h
of (35) is h = 1.375, evaluating (34) for t = T shows that
hT and hence the generalization error GT (ŵ

(Tc)
T ) diverges for

T → ∞.
The next example illustrates that by only changing the net-

work structure, one may have zero error instead of GT → ∞:

Example 2. Consider Example 1 with K = 10. Then h =

0.846 in (35), hence hT → 0 and GT (ŵ
(Tc)
T ) → 0 as T → ∞.

We also consider the limiting case of the training error:

Lemma 3. Consider the setting of Theorem 2 and σ2 = 0. If
(38) or (39) holds ∀t, and with the independence of At with
the error ŵ

(Tc)
T −w∗ in the steady-state [59, Ch. 16], then

lim
T→∞

FT (ŵ
(Tc)
T ) ≈ 0. (41)

Proof: See Appendix E.
To summarize, Corollary 2 and Lemma 3 together show that

if the local systems at the nodes are sufficiently away from a
square system (with conditions stricter than the ones in Re-
mark 3), and the tasks are similar, then both the generalization
error and the training error can be made zero over all tasks.

F. Task Similarity – Decomposition of Error

We now investigate task similarity further by taking a closer
look at different terms in the error expression. We start with
the following intermediate result:
Corollary 3. Consider the setting of Corollary 1. Assume
that

σ2
i = σ2, (42)

∥w∗
i ∥2 = E1, (43)

∥w∗
τ −w∗

i ∥2 = E21i̸=τ , (44)
⟨w∗

τ −w∗
i ,−w∗

i ⟩ = E31i̸=τ , (45)〈
w∗

τ −w∗
i ,w

∗
j −w∗

i

〉
= E41j ̸=i ̸=τ ̸=j , (46)

where i, τ, j = 1, . . . , T , and 1c(·) = 1 if c(·) is true, and 0
otherwise. Then, the expected generalization error for t = T
in (34) can be rewritten as

GT

Ä
ŵ

(Tc)
T

ä
= ψ0σ

2 + ψ1E1 + ψ2E2 + ψ3E3 + ψ4E4, (47)



where

ψ0 = 1 +
γ

K

1− hT

1− h
, (48)

ψ1 = hT , (49)

ψ2 =
r + (K − 1)γ

K2

T − 1

T

1− hT

1− h
, (50)

ψ3 = 2
(K − 1)(r − γ)

K2

T − 1

T

hT − bT

h− b
, (51)

ψ4 = 2
(K − 1)(r − γ)

K2

T − 2

T

Å
1− hT

1− h
− bT − hT

b− h

ã
, (52)

for h ̸= 1 and b ̸= h, where h is defined in (35) and b = 1− r
K .

If K = 1 and r = 1, then h = b = 0, and ψ0-ψ2 are given by
(48)-(50), and ψ3 = ψ4 = 0.
Proof: The result follows from Corollary 1 with algebraic
manipulations.

In order to systematically study the task similarity, we
introduce the following model for the task parameters:

Task Model 1. Let 0 ≤ pS ≤ p. The unknown vectors w∗
t

share the first pS entries,

w∗
t =

ï
w̄∗

w̄∗
t

ò
, (53)

where w̄∗ ∈RpS×1 is the same for all tasks, and
w̄∗

t ∈R(p−pS)×1 is specific to each task t. Here, w̄∗, and
w̄∗

1 , . . . , w̄
∗
T , are zero-mean and statistically independent.

Hence, E
W

[(w̄∗
i )

⊺w̄∗
τ ] = 0, i ̸= τ, where W denotes the

joint probability distribution function of the parameters, i.e.,
(w̄∗, w̄∗

1 , . . . , w̄
∗
T ) ∼ W . The covariance matrices of w̄∗ and

w̄∗
t are given by σ2

w IpS
and σ2

wIp−pS
, respectively. Hence, the

variable pS , which specifies the number of shared unknowns
between the tasks and controls the relative power of the shared
component w̄∗, is providing a measure of the task similarity
for a fixed p. We have

E
W

î
∥w∗

i ∥2
ó
= Ew (54)

E
W

î
∥w∗

τ −w∗
i ∥2
ó
= 2

p−pS
p

Ew, i ̸= τ , (55)

E
W

[⟨w∗
τ−w∗

i ,−w∗
i ⟩] =

p−pS
p

Ew, i ̸= τ , (56)

E
W

[〈
w∗

τ−w∗
i ,w

∗
j−w∗

i

〉]
=
p−pS
p

Ew, j ̸= i ̸= τ ̸= j, (57)

where Ew = pσ2
w.

Corollary 4. Under the setting of Corollary 1, the expected
value of the generalization error under Task Model 1, i.e.,
E
W
[GT

Ä
ŵ

(Tc)
T

ä
], is given by

ψ0σ
2 +

Å
ψ1 +

p− pS
p

(2ψ2 + ψ3 + ψ4)

ã
Ew. (58)

Proof: The result follows by taking the expectation of both
sides of (34) with respect to W , which results in an expression
in the form of (47) where E1 – E4 in (43) – (46) are substituted
with the values in (54) – (57).

We now illustrate the performance under Task Model 1 for
different K and T values. For a COCOA solution ŵ obtained
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Fig. 2: The expected error ḠK̄

T versus T under Task Model 1,
with p = 32, pS = 24, nt = 64, Tc = 1, and Ew = 1.

with K = K̄ nodes, we denote the error as

ḠK̄
T = E

W

î
GT

Ä
ŵ

(Tc)
T

äó
, (59)

with the convention ḠK̄
∞=limT→∞ E

W

î
GT

Ä
ŵ

(Tc)
T

äó
. We have

ḠK̄
∞ =

Å
1 +

γ

K

1

1− h

ã
σ2 +

2r

K

1

1− h

Å
p− pS
p

Ew

ã
, (60)

under |h| < 1. The condition |h| < 1 is satisfied for a wide
range of p, nt, K combinations, e.g., under the conditions in
(38) and (39). One such scenario is presented in Example 3.
Considering ḠK̄

∞−σ2, we observe that both the noise level (σ2)
and the average power of the non-shared part of task unknown
vectors (((p− pS)/p)×Ew) is scaled with a coefficient in the
form of α/(K(1− h)) where α = γ and α = 2r for the noise
and signal components, respectively.

The following example illustrates that in the under-
parametrized case, COCOA can provide lower error than the
online centralized continual learning solution for large T .

Example 3. Consider the setting of Corollary 4 with nt = 2p,
p ≥ 2, Tc = 1. Under Task Model 1, we have

Ḡ1
∞ =

Å
1+

p

p− 1

ã
σ2 +

Å
2
p− pS
p

Ew

ã
, (61)

Ḡp
∞=

Å
1+

p

4p− 3

1

p− 1

ã
σ2+

2p

4p− 3

Å
2
p− pS
p

Ew

ã
, (62)

which have been obtained by inserting the values of r, γ and h
determined by nt, p and K used here. The expressions Ḡ1

∞ in
(61) and Ḡp

∞ in (62) give the expected generalization error
under Task Model 1 for the centralized continual learning
setting K = 1 and the distributed setting with K = p,
respectively. Comparing the error in (62), i.e., for K = p,
and the error in (61), i.e., for K = 1, we observe that the
error is lower in the distributed setting of K = p than in the
centralized setting of K = 1, regardless of the value of pS .
We also note that when there is no noise, i.e., σ2 = 0, the
error under K = p converges to ≈ p−pS

p Ew when T → ∞,
which is the average power of the non-shared part of the task
parameters. Hence, COCOA finds the shared part of the task
unknowns despite its iterative and distributed nature.

In Fig. 2 and Fig. 3, we present ḠK̄
T versus T under Task

Model 1 for p = 32, pS = 24, for the underparametrized and
overparametrized scenarios, respectively. The curve with the



10
0

10
1

10
2

T

0.5

1.0

1.5

2.0
Ḡ
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Fig. 3: The expected error ḠK̄

T versus T under Task Model 1,
with p = 32, pS = 24, nt = 1, and Ew = 1.

legend “LS” plots the error of the least-squares (LS) bench-
mark presented in Section II-E and is obtained numerically,
whereas the other curves are plotted using Corollary 4. We
note that the high error values for the LS solution around
T = 32 in Fig. 3 is due to the ill-conditioning of the system
for Tnt ≈ p, similar to the scenarios in Remark 3. Fig. 2
illustrates that the COCOA solutions can achieve error values
that are close to that of the LS solution for large T and large
K; and can even obtain error values lower than the LS solution
for small T under low SNR (Fig. 2b). In Fig. 3, we observe
that the error values of COCOA are close to those of the LS
solution for small and moderate T (1 ⪅ T ⪅ 10) for most K.
Fig. 3 illustrates that the error of COCOA for large T (T ⪆ 16)
can decrease or increase with increasing T depending on the
noise level and K, although the lowest error values for the LS
solution across different T are obtained with the large value
of T ≈ 100.

IV. NUMERICAL RESULTS

We now present numerical results in order to to illustrate the
continual learning performance of COCOA and the analytical
results of Section III.

We include an experiment with real-world data in Sec-
tion IV-F whose details are explained therein. In the rest
of the experiments, we use the following setting: For each
experiment, we generate a set of task unknowns w∗

t , ∀t. In
order to control the task similarity, we use the variable pS ,
as in (53), where the unknown vectors w∗

t share the first
pS entries, where w̄∗ ∈RpS×1 is the same for all w∗

t , and
w̄∗

t ∈R(p−pS)×1 is independently generated for each t. We
draw w̄∗ and w̄∗

t from the standard Gaussian distribution,
and normalize the drawn vectors such that ∥w̄∗∥2 = pS

p and
∥w̄∗

t ∥2 = p−pS

p . Hence, ∥w∗
t ∥2 = 1.

The entries of the regressors matrices At are generated
i.i.d. from N (0, 1), hence Assumption 1 is fulfilled. The noise
vectors zt are independently drawn from N (0, σ2

t Int), where
σ2
t may vary over different experiments. The observations yt

are generated as in (1), i.e., yt = Atw
∗
t+zt. We have pk = p

K ,
∀k. With ŵ

(0)
0 = 0, we run Algorithm 1 for t = 1, . . . , T

to obtain the estimate ŵ
(Tc)
T , trained over all tasks. We then

compute the generalization error as gT (ŵ
(Tc)
T ) in (10), and

create an average over 100 i.i.d. sets of training data to report
the empirical value of GT (ŵ

(Tc)
t ).
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Fig. 4: The generalization error versus the number of nodes,
for different number of tasks (marker: analytical, line: simu-
lations). Here, p = 1024, pS = 768.

A. Verification of Theorem 1 and Effect of Network Size

In Fig. 4 we plot the generalization error GT (ŵ
(Tc)
T ) versus

the number of nodes in the network K, for different numbers
of tasks T . The x-axis shows the number of nodes K and is
sampled at {20, 21, 22, . . . }. For both figures, p = 1024,
pS = 768 and σ2

t = 0.01. In Fig. 4a, nt = 2048 and Tc = 1,
thus Assumption 3 is fulfilled, i.e., Tc = 1. In Fig. 4b, nt = 32
and Tc = 100, thus Assumption 2 is fulfilled for K < 32, i.e.,
pk > nt + 1, ∀t, k.

We plot the average generalization error obtained via sim-
ulations (lines), together with the analytically evaluated ex-
pected generalization error by Theorem 1 (markers). We ob-
serve that analytical and empirical results match both in Fig. 4a
and 4b, i.e., either under Assumption 2 or Assumption 3.

We observe that the number of nodes K has a non-trivial
effect on the generalization error. For instance, in Fig. 4a, the
error first decreases (for T ≥ 2) as the number of nodes K
increases, and then increases to approach 1

T

∑T
t=1 ∥wt∥2 +

σ2
t = 2, which is the generalization error of the zero-

estimator ŵ = 0. The behaviour with K is closely related
to the task similarity, which is discussed in Section IV-B. The
generalization error in Fig. 4b increases gradually with K up
to K = 16, where the error starts to increase rapidly due to
local ill-conditioning for pk ≈ nt, see Remark 3.

We now compare generalization performance of COCOA
with the performance of the offline and centralized solution
ŵLS in (19). The error associated with ŵLS in (19) for
T = 1, 2, 4, 8, 16, is given by ≈ {0.02, 0.18, 0.22, 0.25, 0.25}
for Fig. 4a and ≈ {0.98, 0.97, 0.94, 0.90, 0.87} for Fig. 4b.
We observe that in some but not all scenarios, by tuning the
number of nodes K for a given number of tasks T , one may
obtain close or even lower values of expected generalization
error with COCOA in comparison to the offline and centralized
solution ŵLS. For instance, in Fig. 4b for T = 16 and K = 2
the COCOA error is 0.81, which is lower than 0.87 for ŵLS.

We observe that the error behaviour with the number of
tasks T depends on the number of nodes K, and is affected
by the tasks’ similarities, which is investigated in Section IV-B.
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simulations). Here, nt = 2048, p = 1024, σ2

t = 0.01, Tc = 1.

B. Generalization Error and Task Similarity

In Fig. 5, we plot the generalization error versus the number
of nodes K for different levels of similarity, i.e., number
of shared parameters pS . Here, nt = 2048, p = 1024,
σ2
t = 0.01, T = 16, and Tc = 1, thus Assumption 3 is

fulfilled. We again observe a match between the analytical
and simulated error curves as we vary pS and K. This
figure quantifies the possible large impact of task similarity
on the generalization performance; and the dependence of
this impact on the network size K. Compared to having no
shared parameters between the tasks (pS = 0), more similarity
(larger pS) decreases the generalization error. In particular, for
pS = 1024, i.e. the parameter vector is the same for all tasks,
the error for K = 4 is close to the noise floor of σ2

t = 0.01.
For large K, the increase in the error with increasing K is
consistent with the fact that with too many nodes, the number
of possibly incompatible local estimates becomes too high,
hence more rounds of communications may be needed to reach
compatibility between these large number of local estimates.

We plot the generalization error versus the number of shared
parameters pS with varying numbers of tasks T for K = 4
and K = 16 in Fig. 6a and Fig. 6b, respectively. These plots
quantify how for dissimilar tasks, i.e., small pS , the error
increases with the number of tasks T , and for similar tasks, i.e.,
large pS , the error decreases as the number of tasks increases.
This is consistent with the fact that it may be possible to
obtain good estimates with a model with a single parameter
vector if the tasks are sufficiently similar; and that with a
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(ŵ

(i
)

t
)

pS

0

16

32

48

64

(b)
Fig. 8: The generalization error (a) and training error (b) for
the estimate ŵ
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larger T , the effective number of observations seen by COCOA
increases, which then can be used to estimate this single
parameter vector. Comparing Fig. 6a and Fig. 6b, we observe
that the network size K affects the range of pS on which the
curves cross, i.e., for which pS a larger number of tasks T is
beneficial. For a large number of nodes K (Fig. 6b), continual
learning with T > 1 with tasks that are even dissimilar, i.e.
small ps, can provide relatively good performance compared
to the case with T = 1.

C. Learning Curves

In Fig. 7 and 8, we study the evolution of the generalization
error and the training error as the the model is repeatedly
trained on the tasks t = 1, . . . , T . In particular, we plot
gT (ŵ

(i)
t ) and ft(ŵ

(i)
t ), see (10) and (4), respectively. The

estimate ŵ
(Tc)
T does not necessarily converge after training

on all tasks once, hence we repeat the tasks after all T
tasks have been trained upon. The resulting task sequence is
t′ = 1, . . . , T, 1, . . . , T, . . . , where t′ corresponds to the task
index on the x-axes in Fig. 7 and 8. For each task index t′, we
plot the error over the Tc iterations of COCOA, hence there
are Tc points in between every integer task index.

In Fig. 7, Tc = 100, σ2
t = 0.01, T = 16, nt = 32,

p = 1024, K = 2. Hence, pk = 512 > nt = 32, and
Assumption 2 is fulfilled and Lemma 2 holds, i.e., COCOA



converges in the first iteration. Accordingly, in Fig. 7, the
generalization and training error are constant over the COCOA
iterations between each integer task index. Furthermore, these
plots provide insights into the interplay between the level of
task similarity and the number of tasks. We observe that if
the similarity is relatively low, e.g., for pS = 0, 256, 512,
then the generalization error in Fig. 7a increases for each
task trained upon. On the other hand, the training error in
Fig. 7b decreases as the task index increases after T = 16,
i.e., after all tasks have been trained on once. This effect is
consistent with overfitting to training data under the locally
overparameterized setting of pk = 512 > nt = 32, i.e., the
model becomes good at predicting the seen samples of data,
while generalizing poorly.

In Fig. 8, we repeat the experiment of Fig. 7, but nt = 128
and p = 64. As K = 2, we have pk < 128, hence Lemma 2
does not hold, and we observe a learning transient for each
seen task, i.e., the error curves between each integer task index.
After training on all T = 16 tasks, both the generalization
and training errors fluctuate around fixed mean values, and
the mean generalization error for a given pS improves as pS
increases.

D. Effect of the Number of Iterations Tc
In Fig. 9, we plot the generalization error versus the number

of samples per task nt for different number of tasks T , for both
Tc = 1 and Tc = 100 iterations per task. Here, σ2

t = 0.01,
K = 32, p = 1024, pS = 512.

Since pk = p
K = 32, for nt < 32 the curves for Tc = 1

and Tc = 100 are on top of each other due to the convergence
of COCOA in the first iteration i = 1, see Remark 1. As nt
increases toward nt = 32, there is a large peak in the error for
pk ≈ nt, since the local problems are now at the interpolation
threshold, hence ill-conditioned, see Remark 3.

For nt ≥ 32, the error decreases again with increasing nt,
and the curves for Tc = 1 and Tc = 100 exhibit different
behaviour. Here, the behaviour is different between the pairs
of curves for different number of tasks T . In particular, if
T = 1, then the error is lower with high Tc, and if there are
many tasks, i.e., if T = 16, the relation is flipped and the
error is higher with higher Tc. Hence, if there are many tasks
with not enough task similarity, it may be beneficial in terms
of generalization error to run COCOA for a smaller number
of iterations, i.e., apply early stopping, for each task.

E. Effect of Feature Correlation

We now investigate the effect of feature correlation. The
covariance matrices of the regressors are symmetric Toeplitz
matrices where the first row is given by [ε0, ε1, . . . ε(p−1)]
where 0 ≤ ε ≤ 1. Hence, increasing values of ε results in
higher values of correlation between features. We consider the
setting in Fig. 4 with T = 8. The resulting plots are provided in
Fig. 10. In general, lower error values are obtained for higher
values of correlation although exceptions to this trend exist,
e.g., Fig. 10a for ε = 0.5, 0.95 and small K. Similar to Fig. 4b,
the error in Fig. 10b rapidly increases with K = 16 where we
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get closer to the case of pk ≈ nt; highlighting the importance
of Remark 3 also under correlated regressors.

F. Continual Learning on MNIST with COCOA

We now study the continual learning performance of
COCOA using the MNIST dataset [60]. This dataset consists
of images of the handwritten digits with labels from “0” to
“9”. We consider the following domain incremental learning
setting [41, Figure 1, Table 2], [61]: We split the data into tasks
by separating the samples into the following T = 5 tasks (“0”,
“1”), (“2”, “3”), (“4”, “5”), (“6”, “7”), (“8”, “9”), i.e., each of
the T = 5 tasks consists of samples of one even digit and one
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Fig. 11: The test prediction error rate for the odd/even MNIST
classification task when trained with quadratic loss, versus the
number of repetitions of Algorithm 1. Here, K = 2, p =
3 · 103, nt = 100, and Tc = 1.
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Fig. 12: The test prediction error rate for the odd/even MNIST
classification task when trained with logistic loss, versus the
number of repetitions of Algorithm 1. Here, K = 2, p =
3 · 103, nt = 100, and Tc = 1.

odd digit. Hence, the continual learning task is to determine
whether a given digit is even or odd when trained on sets of
distinct pairs of even and odd digits.

We convert the 28 × 28 pixel images, with pixel values
on [0, 255], to 784 × 1 vectors xj ∈R784×1, with the values
divided by 255 such that entries of xj lie on [0, 1]. Using
random features [62] the vectors xj are transformed to
regressors as aj = [cos (ζT

1 xj), · · · , cos (ζT
p xj)]

⊺ ∈Rp×1,
where ζℓ ∈R784×1 are i.i.d. random vectors with
ζℓ ∼ N (0, 0.04I784). We use COCOA to train a model
ŵ

(Tc)
odd,t ∈Rp×1 on the odd digits, and one model ŵ(Tc)

even,t ∈Rp×1

on the even digits in a continual learning setting. We apply the
one-v.s.-rest classification strategy [63] to create predictions
of the labels. We report the prediction error rate for each task
using test sets of 2000 samples unseen during training. We
use two different cost functions for training, the quadratic loss
of (2), and the logistic loss ℓ(ŵ) =

∑n
j=1 ln

Ä
1 + e−yja

⊺
j ŵ
ä

,
where yj ∈{−1, 1} is the label that corresponds to aj .

With p = 3000, nt = 100 , K = 2, Tc = 1, the T =
5 tasks, and 100 training repetitions over the task sequence
t = 1, . . . , T , we plot the prediction error rate per task versus
the training iteration index in Fig. 11 for the quadratic loss
and Fig. 12 for the logistic loss. Here, task 0 corresponds to
(“0”,“1”), task 1 to (“2”, “3”), etc. Although some of the tasks
(e.g. Task 0: “0” v.s.“1”) are giving significantly lower error
rate than others (e.g. Task 4: “8” v.s.“9”), COCOA is able to
perform significantly better than the random chance of 0.5 for
all tasks when trained with the quadratic loss or the logistic
loss.

V. DISCUSSIONS

Our results show that generalization performance heavily
depends on the number of nodes K. Hence, one would want
to optimize the performance of COCOA by adjusting K, but
this may not be possible in all applications. In these cases,
avoiding the undesirable conditions mentioned in Remark 3
and (38) – (39) by assigning different number of parameters
to each node, using a subset of available nodes or adjusting
the model size can be beneficial. Regularization can also be
utilized to prevent the high-error values at the interpolation
threshold at the cost of slow convergence rate [40, Fig. 8].

Our analytical characterizations focus either on the over-
parametrized local models (Assumption 2) or the one-shot
setting (Assumption 3). On the other hand, an important
trade-off within distributed learning is the one between the
number of communication rounds and the amount of local
computations. The COCOA framework is flexible in terms
of this trade-off as it allows local solvers to be run to an
arbitrary level of accuracy. Extending our analysis to explore
the consequences of this flexibility for continual learning is a
promising research direction.

VI. CONCLUSIONS

We have focused on continual learning with the distributed
optimization algorithm COCOA and provided analytical ex-
pressions for the generalization error for a range of scenarios.
These results revealed that under continual learning, the net-
work structure may significantly affect the generalization error
in a manner that goes beyond what has been reported with only
one task in distributed learning [40] and centralized continual
learning [18]. We have quantified how the most favorable
network structure for good generalization performance, such
as the number of nodes in the network, depends on the task
similarity as well as the number of tasks.

Characterizing the continual learning performance under
general regressor models including correlation between fea-
tures, different communications schemes for COCOA and
also for other distributed learning algorithms are considered
important directions for future work.

APPENDIX

A. Preliminaries

The following lemma collects some properties of Gaussian
random matrices that are used throughout the derivations:

Lemma 4. If At = [At,[1], · · · ,At,[K]], and At,[k] ∈Rnt×pk ,
with pk /∈ [nt−1, nt+1], and pk, nt ≥ 1 k = 1, . . . , K, are
all standard Gaussian random matrices, then

E
At,[k]

î
A⊺

t,[k]At,[k]

ó
= ntIpk

, (63)

E
At,[k]

î
A+

t,[k]At,[k]

ó
= rt,kIpk

, (64)

E
At,[k]

[Ä
At,[k]A

⊺
t,[k]

ä+]
=
γt,k
nt

Int
, (65)

E
At,[i]At,[k]

[
A⊺

t,[i]

Ä
At,[k]A

⊺
t,[k]

ä+
At,[i]

]
= γt,kIpi

, (66)

with rt,k = min(nt,pk)
pk

, γt,k = min(nt,pk)
max(nt,pk)−min(nt,pk)−1 , and

i ̸= k. Additionally, if H = diag{hkIpk
}Kk=1 ∈Rp×p is a

diagonal matrix with arbitrary hk ∈R, k = 1, . . . , K, then
the following also hold,

E
At

[
HĀtAt

]
= diag

ß
hkrt,k
K

Ipk

™K
k=1

, (67)

E
At

[HPt] = diag
{
hk

(
1− rt,k

K

)
Ipk

}K
k=1

, (68)

E
At

[
Ā⊺

tHĀt

]
=

1

K2

K∑
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hkγt,k
nt

Int
, (69)



E
At

[
A⊺

tĀ
⊺
tHĀtAt

]
=diag


hkrt,k+

∑K
i=1
i ̸=k

hiγt,i

K2
Ipk


K

k=1

, (70)

E
At

[P ⊺
t HPt]

=diag


hk(K

2+rt,k(1−2K))+
∑K

i=1
i ̸=k

hiγt,i

K2
Ipk


K

k=1

.
(71)

Proof: The expression in (63) is a direct consequence of
the fact that At,[k] ∈Rnt×pk are standard Gaussian. For (64)
see [64, Eqn. (58)], and note that for pk < nt, At,[k] is
full column-rank and A+

t,[k]At,[k] = Ipk
. For (65), see [65].

Combining (63) and (65), one obtains (66). We obtain (67) –
(71) from (63) – (66) with algebraic manipulations together
with the definitions of Pt and Āt in Lemma 1. □

The following lemma gives an expression for the average
distance of the COCOA solution ŵ

(Tc)
t to a given vector u

for an arbitrary distribution for Ai. We use a version of this
result specialized to Gaussian case in the proof of Theorem 1.

Lemma 5. Let A1, . . . , At, z1, . . . , zt be uncorrelated and
the noise vectors zτ be zero-mean. If all partitions Aτ,[k],
τ = 1, . . . , t, k = 1, . . . , K, are full row rank or Tc = 1,
then for any fixed u∈Rp×1,

E
Dt

ï∥∥∥ŵ(Tc)
t − u

∥∥∥2ò = ∥u∥2
H

{t}
1

+

t∑
τ=1

ατ , (72)

where
ατ =∥w∗
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τ Ā
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ó
+E

zτ
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〉
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î
A⊺

τ Ā
⊺
τH

{t}
τ+1Pτ

ó,
(73)

where Āτ and Pτ are defined in Lemma 1, H{t}
t+1 = Ip, and

H{t}
τ = EAτ ,...,At

[P ⊺
τ · · ·P ⊺

t Pt · · ·Pτ ], τ = 1, . . . , t, (74)

and where s0 = −u, and

sj = ĀjAj(w
∗
j − u), j = 1, . . . , t− 1. (75)

Proof: See Appendix F.

B. Proof of Lemma 1

From Algorithm 1, v
(0)
t,[k] = KAt,[k]ŵ

(0)
t,[k],

and v̄
(1)
t = 1

K
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k=1 v
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(0)
t +

1

K

A+
t,[1]

...
A+

t,[K]

yt. (76)

Inserting the initialization ŵ
(0)
t = ŵ

(Tc)
t−1 , we obtain (20).

The expression in (23) is obtained by adding and subtracting
ĀtAtu to ŵ

(1)
t − u, and opening up yt = Atw

∗
t + zt and

re-arranging. This concludes the proof.

C. Proof of Theorem 1

The expected generalization error, defined in (12), is

GT (ŵ
(Tc)
t ) =

1

T

T∑
i=1

E
Dt

î
∥ŵ(Tc)

t −w∗
i ∥2
ó
+ σ2

i . (77)

We will show that, with the definitions given in Theorem 1,

E
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i

∥∥∥2ò = ∥w∗
i ∥2H{t}

1
+ ϕ
Ä
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t ,w∗

i

ä
. (78)

Lemma 5 gives this expression up to the expectations over the
distributions of regressors and noise vector, with

ϕ
Ä
ŵ

(Tc)
t ,w∗

i

ä
=

t∑
τ=1

ατ , (79)

where we use u = w∗
i in ατ .

We now continue with deriving the expectations of the
expressions in Lemma 5, in the setting of Theorem 1.

The matrices Pτ = Ip−ĀτAτ , 1 ≤ τ ≤ t, are uncorrelated
and we have H

{t}
1 = E

Dt−1

î
P ⊺

1 · · ·P ⊺
t−1H

{t}
t Pt−1 · · ·P1

ó
,

with H
{t}
t = E

At

[P ⊺
t Pt] = diag{ht,kIpk

}Kk=1, where
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K2 + rt,k(1− 2K) +
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, (80)

by (71). We can repeat this for H
{t}
t−1 =

E
At−1

î
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t−1H
{t}
t Pt−1

ó
= diag{ht−1,kIpk
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. (81)

Repeating until H
{t}
1 = E

A1

î
P ⊺

1 H
{t}
2 P1

ó
gives the desired

expression in (33). By combining this with (72), we obtain
the desired expression for the first term in (78).

We now continue with the second term in (78). With
H

{t}
τ+1 = diag{hτ+1,kIpk

}Kk=1, we apply (70) to write
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and use (69) to write
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Here, zτ ∼ N (0, σ2
τInτ ), hence Ezτ [∥zτ∥2] = nτσ
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τ , and
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Combining (67) and (68), we find that for j ≥ 1,
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and for j = 0,
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Using (67) and (70), we have that
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We now combine (82), (84), (86), (87) and (89), we find
the final form of ατ in (79),

ατ = ∥w∗
τ −w∗

i ∥2R{t}
τ

+ σ2
τ

∑K
k=1 hτ+1,kγτ,k

K2

+ 2
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(90)

with R
{t}
τ and Q

{t}
τ,j defined as in Theorem 1. Note that we set

w∗
0 = 0 and r0,k = K to make the notation more compact.

By inserting this expression for ατ together with the derived
expression for H{t}

1 into (72), we obtain the desired expression
in (78), concluding the proof of Theorem 1.

D. Proof of Theorem 2

By inserting w∗
t = w∗ and σ2

t = σ2 into GT (ŵ
(Tc)
T ) in (27)

and simplifying, the desired expression in (37) is obtained.
We now prove (38) and (39). Recall the definition H

{T}
1 =

diag{h1,kIpk
}Kk=1, with

hτ,k=
hτ+1,k

(
K2+rτ,k(1−2K)

)
+
∑K

i=1
i ̸=k

hτ+1,iγτ,i

K2
, (91)

τ = 1, . . . , T , and hT+1,k = 1, k = 1, . . . , K. Note that K2+
rτ,k(1 − 2K) ≥ 0 and γτ,k > 0, hence the fraction here is
non-negative, and

hτ,k ≤ hτ+1,max

K2 − rτ,k(2K − 1) +
∑K

i=1
i ̸=k

γτ,i

K2
, (92)

where hτ,max = maxk hτ,k. Note that this upper bound is
bounded above by replacing rτ,k with rτ,min = mink rτ,k and

γτ,k with γτ,max = maxk γτ,k, hence

hτ,k ≤ hτ+1,max × fτ , (93)

where

fτ =
K2 − (2K − 1)rτ,min + (K − 1)γτ,max

K2
. (94)

We have that

h1,k ≤ h2,maxf1 ≤ · · · ≤ fT · · · f1, (95)

where we have used that hT+1,k = 1.
It follows that if |fτ | < 1, ∀τ , then limT→∞ h1,k = 0, and

hence limT→∞ ∥w∗∥2
H

{T}
1

= 0. We recall that the fraction
fτ is nonnegative and continue by deriving the conditions
for which fτ < 1. We will consider the following two cases
separately:

a) nτ < pk, ∀τ, k: Here, rτ,min = nτ

pmax
and γτ,max =

nτ

pmin −nτ−1 . Inserting these identities into fτ < 1, we obtain

K2 − (2K − 1) nτ

pmax
+ (K − 1) nτ

pmin −nτ−1

K2
< 1. (96)

Simplifying this expression gives the condition in (38). Note
that the bound in (38) is strictly less than pmin , hence the
condition nτ < pk of the setting here is included in this bound.

b) nτ > pk, ∀τ, k: Here, rτ,min = 1 and γτ,max =
pmin

nτ−pmax −1 . Setting fτ < 1, we obtain

K2 − (2K − 1) + (K − 1) pmin

nτ−pmax −1

K2
< 1. (97)

Re-arranging this expression gives the bound in (39). Note that
the bound in (39) is strictly greater than pmax , hence nτ > pk
is fulfilled if the bound holds. This concludes the proof.

E. Proof of Lemma 3

Inserting w∗
t = w∗ and σ2

t = 0 into FT (ŵ
(Tc)
T ) in (6),

FT (ŵ
(Tc)
T ) =

1

T

T∑
i=1

1

2ni
E
DT

ï∥∥∥Ai(ŵ
(Tc)
T −w∗)

∥∥∥2ò . (98)

We apply the submultiplicativity of the ℓ2-norm,

FT (ŵ
(Tc)
T ) ≤ 1

T

T∑
i=1

1

2ni
E
DT

ï
∥Ai∥2

∥∥∥ŵ(Tc)
T −w∗

∥∥∥2ò . (99)

For a large number of tasks T , hence for a large number
of i.i.d. samples, the estimate ŵ

(Tc)
T may be assumed to be

uncorrelated with Ai [59, Ch. 16]. Hence, we approximate

E
DT

ï
∥Ai∥2

∥∥∥ŵ(Tc)
T −w∗

∥∥∥2ò≈E
Ai

î
∥Ai∥2

ó
E
DT

ï∥∥∥ŵ(Tc)
T −w∗

∥∥∥2ò.
(100)

From the proof of Theorem 1, we have (78), which here
becomes

E
DT

ï∥∥∥ŵ(Tc)
T −w∗

∥∥∥2ò = ∥w∗∥2
H

{T}
1

, (101)

where we have used that ϕ
Ä
ŵ

(Tc)
t ,w∗

i

ä
= 0, τ = 1, . . . , T ,

because w∗
τ = w∗ and σ2

τ = 0, see for instance (28).
Now if either the condition in (38) or (39) holds for
t = 1, . . . , T , then we can apply (40) to (101), to ob-

tain limT→∞ E
DT

ï∥∥∥ŵ(Tc)
T −w∗

∥∥∥2ò = 0. Inserting this into



(100), and (100) into (99), we find that the upper bound
in (99) is approximately zero in the limit of T → ∞, i.e.,
limT→∞ FT

Ä
ŵ

(Tc)
T

ä
≈ 0. This concludes the proof.

F. Proof of Lemma 5

We first give the following lemma which gives the expres-
sion for the last step of the recursion.

Lemma 6. Let Tc = 1 or the partitions of the latest task,
task τ , Aτ,[k] be full row rank. Also let the regressors in
Aτ be uncorrelated with the zero-mean noise vector zτ and
the previous tasks. Then, for any fixed u∈Rp×1 and some
symmetric matrix H ∈Rp×p, we have

E
Dτ

ï∥∥∥ŵ(Tc)
τ − u

∥∥∥2
H

ò
= E

Dτ−1

ï∥∥∥ŵ(Tc)
τ−1 − u

∥∥∥2
Hτ

ò
+ ατ , (102)

where Hτ = E
Aτ

[P ⊺
τ HPτ ] and

ατ =∥w∗
τ − u∥2E

Aτ
[A⊺

τ Ā
⊺
τHĀτAτ ] +E

zτ

ï
∥zτ∥2E

Aτ
[Ā⊺

τHĀτ ]

ò
+2

≠
w∗

τ−u, E
Dτ−1

î
ŵ

(Tc)
τ−1−u

ó∑
E

Aτ
[A⊺

τ Ā
⊺
τHPτ ]

. (103)

Proof: See Appendix G.

We will now use (102) on E
Dt

ï∥∥∥ŵ(Tc)
t − u

∥∥∥2ò recursively.

Starting with H = Ip, we write

E
Dt

ï∥∥∥ŵ(Tc)
t − u

∥∥∥2ò = E
Dt−1

[∥∥∥ŵ(Tc)
t−1 − u

∥∥∥2
E
Dt

[P ⊺
t Pt]

]
+ αt

= E
Dt−2

[∥∥∥ŵ(Tc)
t−2 − u

∥∥∥2
E
Dt
[P ⊺

t−1P
⊺
t PtPt−1]

]
+ αt + αt−1 (104)

= · · · = ∥u∥2
H

{t}
1

+
∑t

τ=1ατ , (105)

where H
{t}
1 = E

Dt

[P ⊺
1 · · ·P ⊺

t Pt · · ·P1] and we have used that

we initialize the continual learning procedure with w0 = 0.

Lemma 7. Within the setting of Lemma 5, the following holds,

E
Dτ−1

î
ŵ

(Tc)
τ−1 − u

ó
=

τ−1∑
j=0

Ñ
τ−1∏

ℓ=j+1

Å
E
Aℓ

[Pℓ]

ã
E

Aj ,zj

[sj ]

é
, (106)

where s0 = −u and sj = ĀjAj(w
∗
j − u) + Ājzj , j =

1, . . . , τ − 1.
Proof: See Appendix H.
Inserting the result of Lemma 7 into (103) and combining

with (105), the desired expression for ατ is obtained.

G. Proof of Lemma 6

Using the recursion in (23), and the notation wτ = ŵ
(Tc)
τ

and wτ−1 = ŵ
(Tc)
τ−1 , we can write

∥wτ − u∥2H = ∥Pτ (wτ−1 − u)∥2H +
∥∥ĀτAτ (w

∗
τ − u)

∥∥2
H

+
∥∥Āτzτ

∥∥2
H

+2
〈
ĀτAτ (w

∗
τ − u),Pτ (wτ−1 − u)

〉
H

+2
〈
Pτ (wτ−1−u)+ĀτAτ (w

∗
τ−u), Āτzτ

〉
H

(107)

Since H is fixed, hence independent from the random entities,
the expectation w.r.t. Dτ of the final term is zero, because

zτ is zero-mean and uncorrelated with wτ−1 and Aτ , hence
also with Pτ . For the other terms, the desired expression is
obtained by using the uncorrelatedness between wτ−1 and Aτ ,
and between zτ and Aτ . We here illustrate the derivation of
the first term,

EDτ

î
∥Pτ (wτ−1 − u)∥2H

ó
= EDτ−1

[(wτ−1 − u)⊺ EAτ
[P ⊺

τ HPτ ] (wτ−1 − u)]

= EDτ−1

î
∥wτ−1 − u∥2EAτ [P

⊺
τ HPτ ]

ó
.

The remaining terms are found in a similar fashion.

H. Proof of Lemma 7

Here, we use the notation notation wj = ŵ
(Tc)
j , for j =

0, . . . , τ − 1. Since the recursion in (23) holds for the tasks
1, . . . , t− 1, we have

wτ−1 − u = Pτ−1(wτ−2 − u) + sτ−1 (108)
= Pτ−1(Pτ−2(wτ−3 − u) + sτ−2) + sτ−1 (109)
= Pτ−1 · · ·P1(w0 − u)

+ Pτ−1 · · ·P2s1 + · · ·+ Pτ−1sτ−2 + sτ−1

(110)

=
∑τ−1

j=0

Ä∏τ−1
ℓ=j+1Pℓ

ä
sj , (111)

where s0 = −u. The matrices Aℓ, ℓ = 1, . . . , t − 1 are
all uncorrelated with each other and with zℓ, thus taking the
expectation w.r.t. Dτ−1 gives the desired expression.
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