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Abstract

This paper considers the robust phase retrieval problem, which can be cast as a nonsmooth
and nonconvex optimization problem. We propose a new inexact proximal linear algorithm with
the subproblem being solved inexactly. Our contributions are two adaptive stopping criteria for
the subproblem. The convergence behavior of the proposed methods is analyzed. Through
experiments on both synthetic and real datasets, we demonstrate that our methods are much
more efficient than existing methods, such as the original proximal linear algorithm and the
subgradient method.

Keywords— Robust Phase Retrieval, Nonconvex and Nonsmooth Optimization, Proximal Linear Al-
gorithm, Complexity, Sharpness.

1 Introduction

Phase retrieval aims to recover a signal from intensity-based or magnitude-based measurements. It finds
various applications in different fields, including X-ray crystallography [1], optics [2], array and high-power
coherent diffractive imaging [3], astronomy [4] and microscopy [5]. Mathematically, phase retrieval tries to
find the true signal vectors x⋆ or −x⋆ in Rn from a set of magnitude measurements:

bi = (a⊤i x⋆)
2, for i = 1, 2, . . . ,m, (1)

where ai ∈ Rn and bi ≥ 0, i = 1, 2, . . . ,m. Directly solving the equations leads to an NP-hard problem [6],
and nonconvex algorithms based on different designs of objective functions have been well studied in the
literature, including Wirtinger flow [7], truncated Wirtinger flow [8], truncated amplitude flow [9], reshaped
Wirtinger flow [10], etc.

In this paper, we focus on the robust phase retrieval (RPR) problem [11], which considers the case where
bi contains noise due to measurement errors of equipment. That is,

bi =

{
(a⊤i x⋆)

2, i ∈ I1,
ξi, i ∈ I2,

(2)

in which I1
⋃
I2 = {1, 2 . . . ,m}, I1 ∩ I2 = ∅, and ξi denotes a random noise. [11] proposed to formulate RPR

as the following optimization problem:

min
x∈Rn

F (x) :=
1

m

m∑
i=1

∣∣(a⊤i x)2 − bi
∣∣ . (3)
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It is demonstrated in [11] that using (3) for RPR possesses better recoverability compared to the median
truncated Wirtinger flow algorithm [12] based on the ℓ2-loss.

Solving (3) is challenging because it is a nonconvex and nonsmooth optimization problem. In [13], the
authors proposed the subgradient method to solve it. This method requires geometrically decaying step size,
and it is unclear how to schedule this kind of step size in practice. [11] proposed to use the proximal linear
(PL) algorithm to solve (3). For ease of presentation, we rewrite (3) as

min
x∈Rn

F (x) = h(c(x)) =
1

m

∥∥|Ax|2 − b
∥∥
1
, (4)

where Ax = [⟨a1, x⟩, . . . , ⟨am, x⟩]⊤, b = [b1, . . . , bm]⊤, h(z) := 1
m∥z∥1, and c(x) := |Ax|2 − b is a smooth map

in which | · |2 is element-wise square. One typical iteration of the PL algorithm is

xk+1 ≈ argmin
x∈Rn

Ft(x;x
k), (5)

where t > 0 is the step size,
F (z; y) := h(c(y) +∇c(y)(z − y)), (6)

Ft(z; y) := F (z; y) +
1

2t
∥z − y∥22, (7)

∇c denotes the Jacobian of c, and “≈” means that the subproblem is solved inexactly. The subproblem
(5) is convex and can be solved by various methods such as the proximal operator graph splitting (POGS)
algorithm used in [11]. The PL method has drawn lots of attention recently. It has been studied by [14–16]
and applied to solving many important applications such as RPR [11], robust matrix recovery [17, 18], and
sparse spectral clustering [19]. The subproblem (5) is usually solved inexactly for practical concerns. As
pointed out in [11], the PL implemented in [11] is much slower than the median truncated Wirtinger flow
method. We found that this is mainly due to their stopping criterion for solving the subproblem (5), which
unnecessarily solves (5) to very high accuracy in the early stage of the algorithm. Moreover, we found that
the POGS algorithm used in [11] is ineffective in solving the subproblem (5). In this paper, we propose
adaptive stopping criteria for inexactly solving (5) with the fast iterative shrinkage-thresholding algorithm
(FISTA) [20–22]. We found that our new inexact PL (IPL) with the adaptive stopping criteria greatly
outperforms existing implementations of PL methods [11] for solving RPR (4).

Our Contributions. In this paper, we propose two new adaptive stopping criteria for inexactly solving
(5). The first one ensures that (5) is solved to a relatively low accuracy:

(LACC) Ft(x
k+1;xk)− min

x∈Rn
Ft(x;x

k)

≤ ρl
(
Ft(x

k;xk)− Ft(x
k+1;xk)

)
, ρl > 0,

(8)

and the second one ensures that (5) is solved to a relatively high accuracy:

(HACC) Ft(x
k+1;xk)− min

x∈Rn
Ft(x;x

k)

≤ ρh
2t

∥xk+1 − xk∥22, 0 < ρh < 1/4.
(9)

Here, ρl and ρh are given constants. Similar to the proximal bundle method [23] for nonsmooth convex
problems, (LACC) and (HACC) are designed to ensure the sufficient decrease of the objective function
for the nonsmooth and nonconvex RPR problem. Note that both (LACC) and (HACC) are only used
theoretically because minx∈Rn Ft(x;x

k) is not available. Later we will propose more practical stopping
criteria that can guarantee (LACC) and (HACC). The connections of our approach to existing work are
listed below.

(a) Our (LACC) condition coincides with the inexact stopping criterion proposed in [24–26] for the prox-
imal gradient method. In these papers, the authors focus on a different optimization problem

min
x∈Rn

f0(x) := f1(x) + f2(x),
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in which f1 is a smooth function, and f2 is a proper, convex, and lower semi-continuous function. One
typical iteration of their algorithms can be written as

yk+1 ≈ min
x∈Rn

f0k(x) = f1(x
k) + (x− xk)

⊤∇f1(x
k)

+ f2(x) +
1

2
(x− xk)⊤Hk(x− xk), (10a)

xk+1 = xk + λk(y
k+1 − xk), (10b)

where Hk ∈ Rn×n is a positive semi-definite matrix and λk ∈ [0, 1] is a step size. The stopping criterion
for inexactly solving (10a) proposed in [24–26] is

f0k(y
k+1)− f̃0k ≤ η

(
f0k(x

k)− f̃0k

)
, (11)

where f̃0k = minx∈Rn f0k(x) and η ∈ (0, 1). We note that this is the same as our (LACC). Therefore,
our (LACC) is essentially an extension of (11) from the proximal gradient method to the proximal
linear method.

(b) To the best of our knowledge, our (HACC) criterion is new and serves as a good alternative to (LACC).
From our numerical experiments, we found that (HACC) works comparably with (LACC), and we
believe that it can be useful for other applications.

(c) We analyze the overall complexity and the local convergence of our IPL algorithm for solving RPR
under the sharpness condition. To the best of our knowledge, this is the first time such results have
been obtained under the sharpness condition.

(d) We propose to solve (5) inexactly using FISTA [20–22], which uses easily verifiable stopping conditions
that can guarantee (LACC) and (HACC). Through extensive numerical experiments, we demonstrate
that our IPL with the new stopping criteria significantly outperforms existing algorithms for solving
RPR.

Organization. The rest of this paper is organized as follows. In Section 2, we propose the main frame-
work of our inexact proximal linear algorithm with two new adaptive stopping criteria for the subproblem.
We establish its iteration complexity for obtaining an ϵ-stationary point and its local convergence under the
sharpness condition. Connections with some existing methods are also discussed. In Section 3, we discuss
how to adapt the FISTA to solve the subproblem inexactly. We also establish the overall complexity of
FISTA – the total number of iterations of the FISTA – in order to obtain an ϵ-optimal solution under the
sharpness condition. In Section 4, we show the numerical results on both synthetic and real datasets to
demonstrate the advantage of the proposed methods over some existing methods. The proofs for all the
theorems and lemmas are given in Section 5. Finally, we include some concluding remarks in Section 6.

2 IPL and Its Convergence Analysis

In this section, we introduce our IPL algorithm for solving the RPR (4) with the inexact stopping criteria
(LACC) and (HACC) for the subproblem (5) and analyze its convergence. We will discuss the FISTA for
solving (5) that guarantees (LACC) and (HACC) in the next section.

We first follow [15] to introduce some notation. Let

St(y) := argmin
x∈Rn

Ft(x; y),

ε(x; y) := Ft(x; y)− Ft(St(y); y),

where Ft(z; y) is defined in (7). We will also use the notation

L =
2

m
∥A∥22 =

2

m

∥∥∥∥∥
m∑
i=1

aia
⊤
i

∥∥∥∥∥
2

.

A Meta Algorithm of our IPL is summarized in Algorithm 1. We again emphasize that Algorithm 1 cannot
be implemented because minx∈Rn Ft(x;x

k) is not available, and we will discuss practical versions of it in
the next section.
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Algorithm 1 IPL – A Meta Algorithm

Input: Initial point x0, step size t = 1/L, parameters ρl > 0 and ρh ∈ (0, 1/4)
for k = 0, 1, . . . , do
Obtain xk+1 by inexactly solving (5) with one of the following stopping criteria:

Option 1: (LACC), i.e., (8)
Option 2: (HACC), i.e., (9)

end for

2.1 Convergence under General Settings

In this subsection, we analyze the convergence rate of IPL (Algorithm 1) for obtaining an ϵ-stationary point
of (4) under the general settings when the sharpness condition may not hold. We use the definition of
ϵ-stationary point as introduced in [15].

Definition 1. We call x̃ an ϵ-stationary point of (4) if the following inequality holds:

∥Gt(x̃)∥2 ≤ ϵ, (12)

where Gt(x) is the proximal gradient which is defined as:

Gt(x) = t−1 (x− St(x)) . (13)

Our convergence rate result of Algorithm 1 is given in Theorem 1, and the proof is given in Section 5.

Theorem 1. Denote F ⋆ = infx∈Rn F (x). For Algorithm 1 with t = 1/L, the following conclusion holds.

(a) When (LACC) holds with ρl > 0 for any k ∈ N, we can find an ϵ-stationary point in⌊
2(1 + ρl)(F (x0)− F ⋆)

tϵ2

⌋
iterations for any ϵ > 0.

(b) When (HACC) holds with 0 < ρh < 1/4 for any k ∈ N, we can find an ϵ-stationary point in⌊
2(1−√

ρh)
2(F (x0)− F ⋆)

(1− 2
√
ρh)tϵ2

⌋
iterations for any ϵ > 0.

Theorem 1 shows that IPL finds an ϵ-stationary point in O(1/ϵ2) main iterations with the adaptive IPL
stopping conditions. Moreover, Theorem 1 achieves the best known convergence rate for PL in [15]. We
should point out that we use two adaptive stopping criteria for the subproblem, but [15] requires solving
the subproblem (5) exactly (see their Proposition 3) or using their pre-determined subproblem accuracy
conditions (see their Theorem 5.2).

2.2 Local Convergence under Sharpness Assumption

In this subsection, we analyze the local convergence of IPL (Algorithm 1) to the global optimal solution
under the sharpness condition.

Assumption 1 (Sharpness). There exists a constant λs > 0 such that the following inequality holds for any
x ∈ Rn:

F (x)− F (x⋆) ≥ λs∆(x), (14)

where ∆(x) := min{∥x− x⋆∥2, ∥x+ x⋆∥2}.
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[11] proved that the sharpness condition (Assumption 1) is satisfied by the RPR (4) with high probability
under certain mild conditions.

Another assumption is about the closeness between the initial point and the optimal solution, which can
be guaranteed by the modified spectral initialization (see Algorithm 3 in [11]) with high probability under
some mild conditions.

Assumption 2. Under Assumption 1, we assume that the initial point x0 in Algorithm 1 satisfies the
following inequalities.

(a) If (LACC) is chosen in Algorithm 1, then we assume x0 satisfies

F (x0)− F (x⋆) ≤ λ2
s/(2L). (15)

(b) If (HACC) is chosen in Algorithm 1, then we assume x0 satisfies

∆(x0) ≤ λs(1− 4ρh)

2(1− 3ρh)L
. (16)

We now define the ϵ-optimal solution to RPR (4).

Definition 2. We call x̄ an ϵ-optimal solution to RPR (4), if ∆(x̄) ≤ ϵ.

Now we are ready to show in Theorem 2 that, in terms of main iteration number, (LACC) leads to local
linear convergence and (HACC) leads to local quadratic convergence.

Theorem 2. Let t = 1
L and suppose that Assumption 1 holds. For the sequence {xk}∞k=0 generated by

Algorithm 1, we have the following conclusions.

(a) (Low Accuracy) When (15) holds and (8) holds with ρl > 0 for any k ∈ N, we have

∆(xk) ≤ F (x0)− F (x⋆)

λs

(
1 + 4ρl
2 + 4ρl

)k

, ∀k ∈ N.

(b) (High Accuracy) When (16) holds and (9) holds with 0 < ρh < 1/4 for any k ∈ N, we have

∆(xk) ≤ λs(1− 4ρh)

L(1− 3ρh)
ζ2

k

, ∀k ∈ N,

where ζ := L∆(x0)(1−3ρh)
λs(1−4ρh)

.

Theorem 2 shows that, with a good initialization, using (LACC) finds an ϵ-optimal solution to (4) within
O(log 1

ϵ ) iterations, which is a linear rate, and using (HACC) finds an ϵ-optimal solution to (4) within
O(log log 1

ϵ ) iterations, which is a quadratic rate.

2.3 Related Work

There are two closely related works that need to be discussed here. [11] studied the PL algorithm for solving
RPR (4), and established its local quadratic convergence under the sharpness condition. But their theoretical
analysis requires the subproblem (5) to be solved exactly. In practice, [11] proposed to use POGS [27], which
is a variant of the alternating direction method of multipliers (ADMM), to solve (5) inexactly. However,
they did not provide any convergence analysis for the algorithm when the subproblem (5) is solved inexactly
by POGS. [15] also considered solving (4) for obtaining an ϵ-stationary point as defined in Definition 1.1

Indeed, several algorithms were proposed and analyzed in [15]. In particular, a practical algorithm proposed
by [15] uses FISTA [20–22] to inexactly solve

1The authors of [15] actually considered solving a more general problem minx g(x) + h(c(x)). Here, for simplicity,
we assume that g = 0 and this does not affect the discussion.
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min
λ∈Rm

ϕk,ν(λ) =
t

2
∥xk/t−∇c(xk)⊤λ∥22

− λ⊤(c(xk)−∇c(xk)xk) + (hν)
⋆(λ),

which is the dual problem of a smoothed version of (5). Here (hν)
⋆(·) is the Fenchel conjugate of hν , and

hν is the Moreau envelope of h, which is defined as

hν(λ) = inf
λ′∈Rm

h(λ′) +
1

2ν
∥λ′ − λ∥22.

[15] proposed to terminate the FISTA when dist(0; ∂ϕk,ν(λ
k+1)) ≤ 1

Lh(k+1)2 , and then update xk by xk+1 =

xk − t∇c(xk)⊤λk+1. The authors established the overall complexity of this algorithm for suitably chosen
parameters t and ν. Compared to [15], we use adaptive stopping criteria and provide a better convergence
rate based on Assumption 1.

3 FISTA for Solving the Subproblem Inexactly

In this section, we propose to use the FISTA to inexactly solve (5) with more practical stopping criteria that
guarantee (LACC) and (HACC). Therefore, the convergence results (Theorems 1 and 2) in Section 2 still
apply here.

For simplicity, we let t = 1/L throughout this section and rewrite (5) as follows.

min
z∈Rn

Hk(z) =
1

2t
∥z∥22 + ∥Bkz − dk∥1, (17)

where we denote z = x − xk, Bk = 2
mdiag(Axk)A, and dk = 1

m

(
b− (Axk)2

)
. As a result, (LACC) and

(HACC) can be rewritten respectively as

Hk(zk)− min
z∈Rn

Hk(z) ≤ ρl (Hk(0)−Hk(zk)) , ρl ≥ 0, (18)

and
Hk(zk)− min

z∈Rn
Hk(z) ≤

ρh
2t

∥zk∥22, 0 ≤ ρh < 1/4. (19)

In IPL, we set xk+1 = xk + zk, where zk satisfies either (18) or (19). The dual problem of (17) is

max
λ∈Rm,∥λ∥∞≤1

Dk(λ) = − t

2

∥∥B⊤
k λ
∥∥2
2
− λ⊤dk. (20)

From weak duality, we know that

Dk(λ) ≤ Hk(z),∀z ∈ Rn, and ∥λ∥∞ ≤ 1. (21)

Therefore, Dk(λ) can serve as a lower bound for minz Hk(z), and we can obtain verifiable stopping criteria
that are sufficient conditions for (18) and (19). This leads to our inexact FISTA for solving (17), which is
summarized in Algorithm 2. Here we define zk(λ) = −tB⊤

k λ.

Remark 1. Here we remark on the step size tkj in (22). It can be chosen as
(
tL2

k

)−1
for some Lk ≥ ∥Bk∥2

or chosen by the Armijo backtracking line search. More specifically, suppose that we have an initial step size
tk(−1) > 0. Given the step size tk(j−1), j ≥ 0, denote

λj+1
b,ts

= argmin
λ∈Rm,∥λ∥∞≤1

γj
2ts

∥λ− λj+1
c ∥22

+ (λ− λj+1
c )⊤

(
tBkB

⊤
k λj+1

c + dk
)
,
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Algorithm 2 FISTA for Solving (20)

Input: λ0 ∈ Rm satisfying ∥λ0∥∞ ≤ 1. λ0
a = λ0

b = λ0
c = λ0, γ0 = 1, ρl > 0 and ρh ∈ (0, 1/4).

for j = 0, 1, 2 . . . do

λj+1
c = (1− γj)λ

j
a + γjλ

j
b,

λj+1
b = argmin

∥λ∥∞≤1

γj
2tkj

∥λ− λj+1
c ∥22+

(λ− λj+1
c )⊤

(
tBkB

⊤
k λ

j+1
c + dk

)
, tkj > 0, (22)

λj+1
a = (1− γj)λ

j
a + γjλ

j+1
b ,

γj+1 = 2/
(
1 +

√
1 + 4/γ2j

)
,

Terminate if one of the following stopping criteria is satisfied:

(LACC-FISTA) Hk(zk(λ
j+1
a ))−Dk(λ

j+1
a )) ≤

ρl(Hk(0)−Hk(zk(λ
j+1
a ))), (23)

(HACC-FISTA) Hk(zk(λ
j+1
a ))−Dk(λ

j+1
a )) ≤

ρh
2t

∥zk(λj+1
a )∥22. (24)

end for
Output: λk = λj+1

a , zk = −tB⊤
k λk, x

k+1 = xk + zk.

and
λj+1
a,ts = (1− γj)λ

j
a + γjλ

j+1
b,ts

tkj can be selected as

tkj =max{ts|ts = 2−stk(j−1), s ∈ N,
1

2ts
∥λj+1

a,ts − λj+1
c ∥22 ≥ t

2
∥B⊤

k λj+1
a,ts −B⊤

k λj+1
c ∥22}.

We now discuss the overall complexity of the IPL (Algorithm 1) with the subproblem (5) solved inexactly
by FISTA (Algorithm 2). For ease of presentation, we denote this algorithm as IPL+FISTA. We assume that
IPL is terminated after Kϵ iterations, when an ϵ-optimal solution is found, i.e., ∆(xKϵ) ≤ ϵ,∆(xKϵ−1) > ϵ.
We use Jk, k ≥ 0 to denote the number of iterations of FISTA when it is called in the k-th iteration (getting
xk+1 from xk) of IPL. The overall complexity of IPL+FISTA for obtaining an ϵ-optimal solution is thus

given by J(ϵ) =
∑Kϵ−1

k=0 Jk, which equals the times that we call (22). Now we are ready to give the overall
complexity of IPL+FISTA in Theorem 3.

Theorem 3. Let t = 1/L, tkj =
(
t∥Bk∥22

)−1
and suppose that Assumption 1 holds.

(a) (Low Accuracy) For the overall complexity of Algorithm 1, when using Algorithm 2 with option (23)
with ρl > 0, for any x0 ∈ Rn that satisfies ∆(x0) ≤ E1, we have

J(ϵ) ≤ E2/ϵ,∀ϵ > 0. (25)

Here E1, E2 are positive constants that only depend on {ai}mi=1, {bi}mi=1, x⋆, λs, L and ρl, and they will
be specified later in the proof.
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(b) (High Accuracy) For the overall complexity of Algorithm 1, when using Algorithm 2 with option (24)
with ρh ∈ (0, 1/4), there exist positive constants E3, E4, and {ϵi}∞i=1 with ϵi > ϵi+1,∀i ∈ N+ and
limi→∞ ϵi = 0 such that if ∆(x0) ≤ E3, then

J(ϵi) ≤ E4/ϵi,∀i ∈ N+. (26)

Here E3, E4 only depend on {ai}mi=1, {bi}mi=1, x⋆, λs, L and ρh, {ϵi}∞i=1 depends on {∆(xi)}∞i=1 and they
will be specified later in the proof. Note that (26) implies that the worst-case overall complexity might
be higher than O(1/ϵ) – see the explanation below for more details.

Theorem 3 shows that under the (LACC-FISTA) stopping criterion, we need O(1/ϵ) iterations to find an
ϵ-optimal solution, and under the (HACC-FISTA) stopping criterion, we have the same rate with regard to a
countable positive sequence that decreases to zero. Theorem 3 provides better theoretical rates compared to
O(1/ϵ3) in [15]. Moreover, the results in Theorem 3 are about the convergence to ϵ-optimal solution, while
the results in [15] are for convergence to ϵ-stationary point. Our results require the sharpness condition,
which was not assumed in [15].

For (b) in Theorem 3, we can only find a countable sequence of diminishing ϵi’s to show the O(1/ϵi) rate.
We cannot show the O(1/ϵ) rate for any fixed ϵ > 0. This is because of the local quadratic convergence under
(HACC) shown in (b) of Theorem 3. For instance, if our initial point x0 satisfies ∆(x0) = 2ϵ > ϵ, under the
(HACC), the quadratic convergence result in Theorem 3 (b) implies that ∆(x1) ≤ Cϵ2 < ϵ for some constant
C > 0 when ϵ is sufficiently small. Therefore, IPL finds an ϵ-optimal stationary point with only one main
iteration. However, Lemma 15 (b) indicates that J(ϵ) = J0 = O(1/ϵ2). Therefore, it is possible that the
overall complexity becomes O(1/ϵ2), which is higher than O(1/ϵ).

4 Numerical Experiments

In this section, we conduct numerical experiments to compare our IPL method with existing methods for
solving the RPR problem (4). Readers can find the code and datasets to replicate the experiments in this
section via https://github.com/zhengzhongpku/IPL-code-share. The algorithms that we test include
the following ones.

(i) PL: The original proximal linear algorithm proposed by [11] where the subproblem (5) is solved by
POGS [27]. POGS terminates when both the primal residual and the dual residual are small enough.
In their code, the authors [11] implemented a two-stage trick that uses a relatively larger tolerance in
early iterations and a smaller tolerance in later iterations to terminate the POGS. In our comparison,
we use all the default parameters set by the authors in their code2.

(ii) Subgradient method. The subgradient method with geometrically decaying step sizes was proposed
by [13], and they used this algorithm to solve the RPR (4). One typical iteration of this algorithm is

xk+1 = xk − λ0q
kξk/∥ξk∥2, k ≥ 0, (27)

in which λ0 > 0, q ∈ (0, 1) are hyper-parameters and ξk = 1
n

∑m
i=1 2a

⊤
i x

ksign((a⊤i x
k)2 − bi).

(iii) IPL-FISTA-Low, IPL-FISTA-High: our IPL+FISTA algorithm with stopping criteria (LACC-
FISTA) and (HACC-FISTA) in Algorithm 2, respectively, and we also used the Armijo backtracking
line search discussed in Remark 1.

The initial point for all the tested algorithms is generated by the spectral initialization given in Algorithm 3
in [11]. All the code is run on a server with Intel Xeon E5-2650v4 (2.2GHz). Each task is limited to a single
core – no multi-threading is used.

2The code of [11] can be downloaded from https://web.stanford.edu/~jduchi/projects/

phase-retrieval-code.tgz

8

https://github.com/zhengzhongpku/IPL-code-share
https://web.stanford.edu/~jduchi/projects/phase-retrieval-code.tgz
https://web.stanford.edu/~jduchi/projects/phase-retrieval-code.tgz


Figure 1: The comparison of success rates and CPU time on synthetic datasets with pfail = 0.05
and n = 500.

4.1 Synthetic Data

We generate synthetic data following the same manner as [11]. Specifically, ai’s are drawn randomly from
the normal distribution N (0, In). The entries of x⋆ ∈ {−1, 1}n are drawn randomly from discrete Bernoulli
distribution. We denote pfail = |I2|/m, where I2 is generated by random sampling without replacement from
{1, 2, . . . ,m}. ξi’s for these samples in (2) are independently drawn from Cauchy distribution, which means
that

bi = ξi = M̃ tan
(π
2
Ui

)
, Ui ∼ U(0, 1),∀ i ∈ I2,

where M̃ is the sample median of {(a⊤i x⋆)
2}mi=1. For a given threshold ϵ > 0, we call an algorithm successful

if it returns an x such that the relative error

∆(x)/∥x⋆∥2 ≤ ϵ. (28)

For each combination of n, k = m/n and pfail, we randomly generate 50 instances according to the above
procedure, and we report the success rate of the algorithm among the 50 instances. For IPL-FISTA-Low
and IPL-FISTA-High, we set ρl = ρh = 0.24. For the subgradient method, we set q = 0.998 which is one of
the suggested choices of q in [13]. Moreover, [13] did not specify how to choose λ0, and we set λ0 = 0.1∥x0∥2
as we found that this choice gave good performance. Since we found that in most cases, the relative error
given by PL is in the level of [10−5, 10−3], we set ϵ = 10−3 in (28) for PL. In our comparison, we first run PL
using the default settings of the code provided by the authors of [11]. If the returned x satisfies (28) with
ϵ = 10−3, then we claim that PL is successful, and we terminate IPL and Subgradient method once they
found an iterate with a smaller objective value than the one given by PL. If the iterate returned by PL does
not satisfy (28) with ϵ = 10−3, then we claim that PL failed, and we then terminate IPL and Subgradient
method when F (xk) − F (x⋆) ≤ 10−7. The CPU time is only reported for the successful cases for PL. The
cost of computing the spectral norm ∥A∥2 to obtain L is included in the total CPU time of PL and IPL.

The simulation results corresponding to pfail = 0.05 and pfail = 0.15 are shown in Figures 1 and 2, where
the x-axis corresponds to different values of m since n = 500 is fixed. From both Figures 1 and 2, we can
see that the four algorithms have similar success rates, but the total CPU time of IPL-FISTA-Low and
IPL-FISTA-High that includes the cost of computing the spectral norm ∥A∥2 is significantly less than that
of others.

4.2 Image Recovery

In this section, we compare the four candidate algorithms on images in a similar manner as [11]. In particular,
suppose we have an RGB image array X⋆ ∈ Rn1×n2×3, we construct the signal as x⋆ = [vec(X⋆); 0] ∈ Rn,
in which n = min{2s | s ∈ N, 2s ≥ 3n1n2}. Let Hn ∈ 1√

n
{−1, 1}n×n be the Hadamard matrix and

Sj ∈ diag({−1, 1}n), j = 1, 2, . . . , k is a random diagonal matrix, and its diagonal elements are independently

9



Figure 2: The comparison of success rates and CPU time on synthetic datasets with pfail = 0.15
and n = 500.

Figure 3: A real RNA nanoparticles image.

distributed as discrete uniform distribution. We then let A =
√
m√
k
[HnS1;HnS2 . . . HnSk] and we know L = 2

in this case. The advantage of such a mapping is that it mimics the fast Fourier transform, and calculating
Ay is only of time complexity O(m logm). We first examine the numerical comparisons on a real RNA
nanoparticles image3 as shown in Figure 3, and we follow the code of [11] for the experiments on a sub-image
with n = 218. We also take pfail ∈ {0.05, 0.1, 0.15, 0.2}, k ∈ {3, 6} and set the noise in the same way as
the synthetic datasets. For each combination of dataset parameters, we run 50 replicates by generating 50
different A and test all the candidate algorithms. We use the same way as the synthetic datasets to define
success. For IPL, ρl = ρh = 0.24. For the Subgradient method, λ0 = 0.1∥x0∥2, q = 0.998. For a replicate, if
PL succeeds, the CPU time is the time needed to reach (28).

Table 1 reports the median CPU time (in seconds) of the candidate algorithms for pfail = 0.1 and
m/n = 6 based on two tolerances ϵ = 10−1 and ϵ = 10−7. We only show the results for this combination
of pfail and m/n because other choices give similar results. It is noted from Table 1 that PL can only
reach a relative error that takes value in [10−2, 10−1], and IPL-FISTA is much more efficient than PL and

3https://visualsonline.cancer.gov/details.cfm?imageid=11167
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Table 1: The comparison of the median CPU time in seconds for RNA image recovery.
ϵ = 0.1 ϵ = 10−7

PL 3166.93 NA

Subgradient 88.14 659.64

IPL-FISTA-Low 6.01 218.14

IPL-FISTA-High 48.56 175.60

Table 2: The comparison of the median CPU time in hours with the interquartile range (IQR) in
the parentheses for multiple image recovery tasks.

RNA (n = 222) Hubble4 (n = 222)

PL > 10 > 10

Subgradient 4.39 (0.24) 4.72 (0.27)

IPL-FISTA-Low 1.65 (0.41) 2.07 (0.14)

IPL-FISTA-High 1.30 (0.08) 1.26 (0.06)

James Web5 (n = 221) Penn State6 (n = 222)

PL > 10 > 10

Subgradient 1.86 (0.14) 4.84 (0.66)

IPL-FISTA-Low 0.90 (0.21) 2.23 (0.16)

IPL-FISTA-High 0.56 (0.09) 1.41 (0.21)

Subgradient methods.
Additional experimental results are reported in Table 2 for comparing CPU time for the four candidate

algorithms. We provide four images with n being at most 222. The experiments use the same m/n and
pfail, and the CPU time based on ten replications is reported in the form of “median (Interquartile Range)”.
Subgradient method, IPL-FISTA-Low and IPL-FISTA-High are terminated with tolerance ϵ = 10−7. We
can see that PL cannot terminate within 10 hours, and IPL-FISTA still enjoys the best efficiency.

5 Proofs

5.1 Proof of Theorem 1

Before proceeding, we first present some lemmas.

Lemma 1 (Weak Convexity). (Discussion of Condition C2 in [11]) The following inequalities hold for any
x, y ∈ Rn, and L = 2

m∥A∥22.

|F (x)− F (x; y)| ≤ L

2
∥x− y∥22, (29)

F (x) ≤ Ft(x; y), ∀ t ≤ 1

L
. (30)

Lemma 2 (see, e.g., equation (5.2) in [15]). The following inequality holds for any 0 < t ≤ 1/L and
x, y ∈ Rn.

F (x)− F (y) + ε(y;x) ≥ 1

2t
∥x− St(x)∥22. (31)

The following lemma studies one iteration of our IPL algorithm (as summarized in Algorithm 1).

4https://www.nasa.gov/image-feature/goddard/2017/hubble-hones-in-on-a-hypergiants-home
5https://www.nasa.gov/webbfirstimages
6https://www.britannica.com/topic/Pennsylvania-State-University
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Lemma 3. If 0 < t ≤ 1
L , we have the following inequalities.

(a) When the low accuracy condition (8) is satisfied, we have

F (xk)− F (xk+1) ≥ 1

2(1 + ρl)t
∥xk − St(x

k)∥22. (32)

(b) When the high accuracy condition (9) is satisfied, we have

F (xk)− F (xk+1) ≥
1− 2

√
ρh

2t(1−√
ρh)2

∥xk − St(x
k)∥22. (33)

Proof of Lemma 3. We first prove part (a) of Lemma 3 and then prove part (b) of Lemma 3.
(a). Letting x = xk and y = xk+1 in (31), we have

F (xk)− F (xk+1) ≥ 1

2t
∥xk − St(x

k)∥22 − ε(xk+1;xk)

≥ 1

2t
∥xk − St(x

k)∥22 − ρl(F (xk)− F (xk+1)),

where the second inequality follows from (8) and (30). This proves (32) in Lemma 3(a).
(b). When (9) holds, since Ft(·;xk) is 1

t -strongly convex, we have

ρh
2t

∥xk − xk+1∥22 ≥ ε(xk+1;xk) ≥ 1

2t
∥xk+1 − St(x

k)∥22. (34)

Let u = xk − xk+1, v = xk+1 − St(x
k). From (34) we have

ρh∥u∥22 ≥ ∥v∥22, (35)

and

∥u+ v∥22 − (1−√
ρh)

2∥u∥22
=(2

√
ρh − ρh)∥u∥22 + 2u⊤v + ∥v∥22

≥√
ρh(2−

√
ρh)∥u∥22 − 2∥u∥2∥v∥2 + ∥v∥22

=(
√
ρh∥u∥2 − ∥v∥2) ((2−

√
ρh)∥u∥2 − ∥v∥2)

≥0, (36)

where the first inequality is from the Cauchy-Schwarz inequality, and the second inequality follows from (35)
and the fact that ρh ∈ (0, 1/4). Therefore, from (34) and (36) we have

ε(xk+1;xk) ≤ ρh
2t

∥xk − xk+1∥22

≤ ρh
2t(1−√

ρh)2
∥xk − St(x

k)∥22,

which, together with (31), yields

F (xk)− F (xk+1)

≥ 1

2t
∥xk − St(x

k)∥22 − ε(xk+1;xk)

≥ 1

2t
∥xk − St(x

k)∥22 −
ρh

2t(1−√
ρh)2

∥xk − St(x
k)∥22

=
1− 2

√
ρh

2t(1−√
ρh)2

∥xk − St(x
k)∥22.

This proves (33) in Lemma 3(b).
Therefore, the proof of Lemma 3 is complete.
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Now we are ready to prove Theorem 1.

Proof of Theorem 1. We will prove (a) and (b) together. Both (32) and (33) indicate that {xk} generated
by Algorithm 1 satisfies

F (xk)− F (xk+1) ≥ βt∥Gt(x
k)∥22,

in which β > 0 is a constant that β = 1/(2(1+ ρl)) for LACC and β = (1− 2
√
ρh)/(2(1−

√
ρh)

2) for HACC.
Letting F ⋆ = infx∈Rn F (x), we have

F (x0)− F ⋆ ≥
K0−1∑
k=0

βt∥Gt(x
k)∥22

≥ βtK0 min
0≤k≤K0−1

∥Gt(x
k)∥22.

Then, our IPL (Algorithm 1) finds an ϵ-stationary point to RPR (4) in⌊
F (x0)− F ⋆

βtϵ2

⌋
iterations. Therefore, the proof of both (a) and (b) in Theorem 1 is complete.

5.2 Proof of Theorem 2

To prove Theorem 2, we need the following lemmas.

Lemma 4. (Part of the Proof for Theorem 1 in [11]) Let t = 1/L. For any xk, xk+1 ∈ Rn, we have

F (xk+1)− F (x⋆) +
L

4
∥xk+1 − x⋆∥22

≤ L∥xk − x⋆∥22 + 2ε(xk+1, xk), (37)

which also holds if we replace x⋆ by −x⋆.

Proof of Lemma 4. We have

L

2
∥x⋆ − St(x

k)∥22

≥L

4
∥x⋆ − xk+1∥22 −

L

2
∥St(x

k)− xk+1∥22

≥L

4
∥x⋆ − xk+1∥22 − ε(xk+1;xk). (38)

where the first inequality follows from the Cauchy-Schwarz inequality and the second one is from the convexity
of ∥ · ∥22. We then have

F (xk+1)

≤F (xk+1;xk) +
L

2
∥xk − xk+1∥22

=Ft(St(x
k);xk) + ε(xk+1;xk)

≤F (x⋆;x
k) +

L

2
∥xk − x⋆∥22 −

L

2
∥x⋆ − St(x

k)∥22

+ ε(xk+1;xk)

≤F (x⋆) + L∥xk − x⋆∥22 −
L

2
∥x⋆ − St(x

k)∥22 + ε(xk+1;xk),

where the first and the last inequalities are from (29), and the second inequality is from the strong convexity
of Ft(·;xk). Combining this inequality with (38) yields (37). It is easy to find that all the proofs still hold
if we replace x⋆ with −x⋆. Therefore, the proof of Lemma 4 is complete.
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Lemma 5 (One-step progress). Let t = 1/L and suppose that Assumption 1 holds.

(a) (Low accuracy condition) When (8) is satisfied for some ρl ≥ 0, we have

(1 + 2ρl)
(
F (xk+1)− F (x⋆)

)
(39)

≤2ρl(F (xk)− F (x⋆)) + L(∆(xk))2.

If we also have F (xk)− F (x⋆) ≤ λ2
s/(2L), then we have

(1 + 2ρl)
(
F (xk+1)− F (x⋆)

)
(40)

≤
(
1

2
+ 2ρl

)
(F (xk)− F (x⋆)).

(b) (High accuracy condition) When (9) is satisfied, we have

λs∆(xk+1) ≤ L(1− 3ρh)

(1− 4ρh)
(∆(xk))2. (41)

Proof of Lemma 5. We first prove part (a) of Lemma 5 and then prove part (b) of Lemma 5.
(a). When the low accuracy condition (8) holds, from (30) we have

ε(xk+1;xk) ≤ ρl(Ft(x
k;xk)− Ft(x

k+1;xk))

≤ ρl(F (xk)− F (xk+1)),

which, combining with (37), yields

(1 + 2ρl)
(
F (xk+1)− F (x⋆)

)
+

L

4
∥xk+1 − x⋆∥22

≤2ρl
(
F (xk)− F (x⋆)

)
+ L∥xk − x⋆∥22.

Discarding the term L
4 ∥x

k+1 − x⋆∥22, we get

(1 + 2ρl)
(
F (xk+1)− F (x⋆)

)
≤2ρl

(
F (xk)− F (x⋆)

)
+ L∥xk − x⋆∥22.

Since (37) also holds when x⋆ is replaced by −x⋆, we also have

(1 + 2ρl)
(
F (xk+1)− F (x⋆)

)
≤2ρl

(
F (xk)− F (x⋆)

)
+ L∥xk + x⋆∥22.

This proves (39). (40) holds because of Assumption 1. Hence, it proves part (a) of Lemma 5.
(b). When the high accuracy condition (9) holds, we have

2ε(xk+1;xk)

≤ρhL∥xk − xk+1∥22

≤ρhL

(
∥xk+1 − x⋆∥22

4ρh
+

∥xk − x⋆∥22
1− 4ρh

)
,

where the second inequality is from the Cauchy-Schwarz inequality. Combining with (37), we have

F (xk+1)− F (x⋆) ≤
(1− 3ρh)L

1− 4ρh
∥xk − x⋆∥22.

Similarly, replacing x⋆ by −x⋆, we have

F (xk+1)− F (x⋆) ≤
(1− 3ρh)L

1− 4ρh
∥xk + x⋆∥22.

Combining the above two inequalities with Assumption 1 yields (41), which proves part (b) of Lemma 5.
Therefore, the proof of Lemma 5 is complete.
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Now we are ready to give the proof of Theorem 2.

Proof of Theorem 2. (a). We will prove that for any k ∈ N,

F (xk)− F (x⋆) ≤
(
F (x0)− F (x⋆)

)(1 + 4ρl
2 + 4ρl

)k

(42)

by induction, which immediately leads to the conclusion of (a) by Assumption 1. First, (42) clearly holds
for k = 0. Now we assume that it holds for k. For k + 1, since (15) holds, we have

F (xk)− F (x⋆)

≤
(
F (x0)− F (x⋆)

)(1 + 4ρl
2 + 4ρl

)k

≤F (x0)− F (x⋆)

≤λ2
s/(2L).

Using (40) directly proves that (42) holds when k is replaced by k + 1. This proves part (a) of Theorem 2.
(b). Note that (41) is equivalent to

L∆(xk+1)(1− 3ρh)

λs(1− 4ρh)
≤
(
L∆(xk)(1− 3ρh)

λs(1− 4ρh)

)2

. (43)

Since (16) holds, from (43) we know that

L∆(x1)(1− 3ρh)

λs(1− 4ρh)
≤
(
1

2

)2

.

Plug this back into (43) and work recursively, we get

L∆(xk)(1− 3ρh)

λs(1− 4ρh)
≤
(
1

2

)2k

.

Then, ∆(xk) → 0, which together with (43) proves the quadratic convergence in part (b) of Theorem 2.
Therefore, the proof of Theorem 2 is complete.

5.3 Proof of Theorem 3

Throughout this subsection, we assume that the assumptions in Theorem 3 hold. That is, we assume

t = 1/L, tkj =
(
t∥Bk∥22

)−1
in Algorithm 2, and Assumption 1 holds. To prove Theorem 3, we first present

some lemmas.

Lemma 6 (Local Lipschitz Constant of F (x)). It holds that

sup
x,y∈Rn,∆(x)≤r,∆(y)≤r,x ̸=y

|F (x)− F (y)|
∥x− y∥2

≤ L(∥x⋆∥2 + r).

Proof of Lemma 6. Denote u = (x − y)/∥x − y∥2 and v = (x + y)/∥x + y∥2 when x + y ̸= 0. v is set as 0
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when x+ y = 0.

|F (x)− F (y)| /∥x− y∥2

=
1

m∥x− y∥2

∣∣∣∣∣
m∑
i=1

∣∣(a⊤i x)2 − bi
∣∣− m∑

i=1

∣∣(a⊤i y)2 − bi
∣∣∣∣∣∣∣

≤ 1

m∥x− y∥2

m∑
i=1

|(a⊤i x)2 − (a⊤i y)
2|

=
1

m∥x− y∥2

m∑
i=1

|(a⊤i (x− y))(a⊤i (x+ y))|

=∥x+ y∥2
1

m

m∑
i=1

|a⊤i u| · |a⊤i v|.

Recalling that L = 2
m∥A∥22 = 2

m∥
∑m

i=1 aia
⊤
i ∥2 as defined in Algorithm 1 and noticing the fact that when

∆(x) ≤ r and ∆(y) ≤ r, we have ∥x+ y∥2 ≤ 2(∥x⋆∥2 + r), and hence we can claim that

∥x+ y∥2
1

m

m∑
i=1

|a⊤i u| × |a⊤i v|

≤∥x+ y∥2

(
u⊤

(
1

2m

m∑
i=1

aia
⊤
i

)
u+ v⊤

(
1

2m

m∑
i=1

aia
⊤
i

)
v

)
≤L(∥x⋆∥2 + r),

which proves the desired result. Therefore, the proof of Lemma 6 is complete.

Lemma 7. If Assumption 1 holds, then for any r ≥ 0, we have

{x ∈ Rn : ∆(x) ≤ E(r)}
⊆{x ∈ Rn : F (x)− F (x⋆) ≤ r}
⊆{x ∈ Rn : ∆(x) ≤ r/λs},

in which

E(r) =

(√
L2∥x⋆∥22 + 4rL− L∥x⋆∥2

)
/(2L). (44)

This relationship also indicates that E(r) ≤ r/λs.

Proof of Lemma 7. For x ∈ Rn, if ∆(x) ≤ E(r) for some r ≥ 0, without loss of generality, we assume that
∆(x) = ∥x− x⋆∥2. From Lemma 6, we have

F (x)− F (x⋆) ≤ LE(r)(∥x⋆∥2 + E(r)) = r,

which proves the first inclusion. The second inclusion follows immediately from Assumption 1. Therefore,
the proof of Lemma 7 is complete.

Lemma 8 (Bound of ∥Bk∥2). For any r ≥ 0, if supk∈N ∆(xk) ≤ r, then

sup
k∈N

∥Bk∥2 ≤ B(r) :=
2

m
∥A∥2(∥x⋆∥2 + r) max

i=1,2,...,m
∥ai∥2.

Proof of Lemma 8. Since Bk = 2
mdiag(Axk)A, we have ∥Bk∥2 ≤ 2

m∥Axk∥∞∥A∥2 and ∥xk∥2 ≤ ∥x⋆∥2 + r.
The desired result follows by using ∥Axk∥∞ ≤ (∥x⋆∥2+r)maxi=1,2,...,m ∥ai∥2. Therefore, the proof of Lemma
8 is complete.
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Next, we provide Lemmas 9 and 10 to show the convergence rate for solving the subproblem with
Algorithm 2. These results can be used for both conditions for (a) and (b).

Lemma 9 (see [20]). In the j-th iteration of Algorithm 2, we have

max
∥λ∥∞≤1

Dk(λ)−Dk(λ
j
a) ≤

tC∥Bk∥22
(j + 1)2

∥λ0 − λ⋆
k+1∥22

≤ tCm∥Bk∥22
(j + 1)2

,∀j ∈ N,

where λ⋆
k+1 ∈ argmax∥λ∥∞≤1 Dk(λ) and C > 0 is universal constant.

Lemma 10 (Theorem 4 in [28]). For Algorithm 2, there exist universal positive constants C ′, C ′′ such that,
when j ≥ C ′, j ∈ N, it holds

Hk(zk(λ
j
a))−Dk(λ

j
a) ≤

C ′′tm∥Bk∥22
j + 1

. (45)

Proof of Lemma 10. Theorem 4 in [28] indicates that if

(j + 1)2 ≥ max

{
2Ctm∥Bk∥22/t

m∥Bk∥22
,
2Ctm∥Bk∥22∥Bk∥22m

(1/t)ϵ2

}
= max

{
2C,

2Ct2m2∥Bk∥42
ϵ2

}
then we have

Hk(zk(λ
j
a))−Dk(λ

j
a) ≤ ϵ.

Here C is the constant used in Lemma 9. Specifically, by choosing ϵ =
tm∥Bk∥2

2

√
2C

j+1 , we know that if

j ≥ C ′ :=
√
2C − 1 holds, then (45) holds, where C ′′ =

√
2C. Therefore, the proof of Lemma 10 is

complete.

We now define some constants.

E1 = min{E
(
λ2
s/(2L)

)
, E
(
λsM1B

2(λs/(2L))/C
′)},

E2 =
(2 + 4ρl)M1B

2(λs/(2L))L(∥x⋆∥2 + λs/(2L))

λs
,

E3 = min{E0/2, B(E0/2)
√

M2/C ′, E(λ2
s/(2L))},

E4 = 4M2B
2(E0/2)/(3E0),

and {ϵi}∞i=1 = {∆(xi)}∞i=1, where M = λs

2L

(
λs

2L + ∥x⋆∥2
)−1

, M1 = 2C ′′tm(ρl+1)/(λsρl), M2 = 4C ′′t2m(ρh+

1)/(ρhM
2), E0 = λs(1−4ρh)

(1−3ρh)L
and C ′, C ′′ are universal positive constants mentioned in Lemma 10.

We now formally state the sufficiency of (23) and (24) for (8) and (9) in Lemma 11 so that we can use
the linear and quadratic convergence rate for main iterations.

Lemma 11. For Algorithm 2, (23) indicates (8) and (24) indicates (9).

Proof of Lemma 11. Note that zk(λ
j+1
a ) = −tB⊤

k λj+1
a , and xk+1 = xk + zk(λ

j+1
a ). The conclusion immedi-

ately holds because Hk(zk(λ
j+1
a )) = Ft(x

k+1;xk) and

Hk(zk(λ
j+1
a ))−Dk(λ

j+1
a )) ≥ Hk(zk(λ

j+1
a ))− min

z∈Rn
Hk(z)

which is from strong duality. Therefore, the proof of Lemma 11 is complete.
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Based on Lemma 11, we prove some properties induced by conditions of Theorem 3. In particular,
Lemma 12 gives the ones induced by part (a) of Theorem 3, and Lemma 13 gives the ones induced by part
(b) of Theorem 3.

Lemma 12. Assume Assumption 1 and (8) hold for any k ∈ N with some ρl ≥ 0. If ∆(x0) ≤ E1, then for
any k ∈ N, we have

F (xk)− F (x⋆) ≤ λ2
s/(2L) (46)

and
∆(xk) ≤ min{λs/(2L),M1B

2(λs/(2L))/C
′}. (47)

Proof of Lemma 12. Note that E(·) defined in (44) is monotonically increasing. Since ∆(x0) ≤ E1, from
Lemma 7 we have

F (x0)− F (x⋆) ≤ λs min{λs/(2L),M1B
2(λs/(2L))/C

′}.

Therefore, we can apply (40) and it implies that

F (xk)− F (x⋆) ≤ F (x0)− F (x⋆) (48)

≤ λs min{λs/(2L),M1B
2(λs/(2L))/C

′},

which proves (46). From (14), we have

λs∆(xk) ≤ F (xk)− F (x⋆),

which leads to (47). Therefore, the proof of Lemma 12 is complete.

Lemma 13. Assume Assumption 1 and (9) hold for any k ∈ N with some 0 ≤ ρh < 1/4. If ∆(x0) ≤ E3,
then for any k ∈ N, (46) holds, and the following two inequalities hold

∆(xk+1) ≤ 1

2
∆(xk) (49)

∆(xk) ≤ E3. (50)

Proof of Lemma 13. Based on (41), we have

E0∆(xk+1) ≤ ∆2(xk),∀k ≥ 0. (51)

We prove (49) by induction. When k = 0, noticing that ∆(x0) ≤ E0/2, by (51), we have E0∆(x1) ≤
∆(x0)(E0/2), and therefore (49) holds for k = 0. We now assume that (49) holds for k < k0 for k0 ∈ N. We
then have ∆(xk0) ≤ ∆(x0) ≤ E0/2 and using (51), we have E0∆(xk0+1) ≤ ∆(xk0)(E0/2), which implies that
(49) holds for k = k0. This completes the proof for (49), which immediately indicates (50) for any k ≥ 0.
This indicates that ∆(xk) ≤ ∆(x0) ≤ E3 ≤ E(λ2

s/(2L)). By Lemma 7, F (xk) − F (x⋆) ≤ λ2
s/(2L), which

indicates that (46) holds for any k ≥ 0. Therefore, the proof of Lemma 13 is complete.

We can notice that a common property under conditions for (a) or (b) is that (46) holds for any k ≥ 0,
based on which, we give Lemma 14 to show another common property.

Lemma 14. If (46) and Assumption 1 hold, then we have

λs

2L

(
λs

2L
+ ∥x⋆∥2

)−1

∆(xk) ≤ ∥xk − St(x
k)∥2, (52)

1

2
λs∆(xk) ≤ Ft(x

k;xk)− Ft

(
St(x

k);xk
)
. (53)
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Proof of Lemma 14. For fixed k ≥ 0, we define x̃0 = xk and x̃1 = St(x
k). Therefore x̃0 and x̃1 satisfy (8)

(with k replaced by 0 and x replaced by x̃) with ρl = 0. Hence we have λs∆(x̃0) ≤ F (x̃0)−F (x⋆) ≤ λ2
s/(2L)

and

F (x̃0)− F (x̃1)

=F (x̃0)− F (x⋆)−
(
F (x̃1)− F (x⋆)

)
≥F (x̃0)− F (x⋆)−

1

2

(
F (x̃0)− F (x⋆)

)
=
1

2
(F (x̃0)− F (x⋆)) (54)

where the inequality is from (40) with ρl = 0. Moreover, from Assumption 1 we have

λs∆(x̃1) ≤ F (x̃1)− F (x⋆) ≤ (1/2)
(
F (x̃0)− F (x⋆)

)
≤ λ2

s/(2L),

where the second inequality can be obtained by applying (40). Thus, we have max{∆(x̃0),∆(x̃1)} ≤ λs/(2L).
So, based on Lemma 6 and Assumption 1,

λs∆(x̃0) ≤ F (x̃0)− F (x⋆) ≤ 2
(
F (x̃0)− F (x̃1)

)
≤ 2L

(
λs

2L
+ ∥x⋆∥2

)
∥x̃0 − x̃1∥2, (55)

where the second inequality is from (54), and the last inequality is from Lemma 6. (55) implies that

∥x̃0 − x̃1∥2 ≥ λs

2L

(
λs

2L
+ ∥x⋆∥2

)−1

∆(x̃0).

This proves (52). To prove (53), without loss of generality, we assume that ∆(x̃0) = ∥x̃0 − x⋆∥2. Using (29)
and the fact that Ft(x̃

0; x̃0) = F (x̃0) and noticing that x̃1 = St(x̃
0) is the minimizer of Ft(·; x̃0), we have

Ft(x̃
0; x̃0)− Ft(x̃

1; x̃0) ≥ F (x̃0)− Ft(x⋆; x̃
0)

= F (x̃0)− F (x⋆;x
0)− L

2
∆2(x̃0)

≥ F (x̃0)− F (x⋆)− L∆2(x̃0)

≥ λs∆(x̃0)− L∆2(x̃0),

where the second inequality is due to (29), and the last inequality is due to Assumption 1. Using the fact
that ∆(x̃0) ≤ (F (x̃0)− F (x⋆))/λs ≤ λs/(2L) based on Assumption 1, we have

Ft(x̃
0; x̃0)− Ft(x̃

1; x̃0) ≥ (λs − L
λs

2L
)∆(x̃0) =

λs

2
∆(x̃0),

which proves (53). Therefore, the proof of Lemma 14 is complete.

Now, we are ready to give an upper bound for Jk.

Lemma 15. Assume that Assumption 1 holds. For Algorithm 2 under either options (23) with ρl > 0 or
(24) with ρh ∈ (0, 1/4), for any k ∈ N, if (46) holds, the following statements hold.

(a) (Low Accuracy) When using option (23), we have

Jk ≤
⌈
max

{
M1∥Bk∥22
∆(xk)

, C ′
}⌉

− 1. (56)

(b) (High Accuracy) When using option (24), we have

Jk ≤
⌈
max

{
M2∥Bk∥22
∆2(xk)

, C ′
}⌉

− 1. (57)

19



Here, C ′ and C ′′ are the constants in Lemma 10 and M = λs

2L

(
λs

2L + ∥x⋆∥2
)−1

, M1 = 2C ′′tm(ρl + 1)/(λsρl)
and M2 = 4C ′′t2m(ρh + 1)/(ρhM

2).

Proof of Lemma 15 . (a). By choosing

j =

⌈
max

{
C ′,

(
2C ′′tm∥Bk∥22(ρl + 1)

ρlλs∆(xk)

)}⌉
− 1, (58)

we have
C ′′tm∥Bk∥22

j + 2
≤ λsρl∆(xk)/(2 + 2ρl), (59)

which, together with (45), yields that

Hk(zk(λ
j+1
a ))−Dk(λ

j+1
a )

≤λsρl∆(xk)/(2 + 2ρl)

≤ ρl
1 + ρl

(
Hk(0)− min

z∈Rn
Hk(z)

)
, (60)

where the last inequality is from (53). From (60) we have

Hk(zk(λ
j+1
a ))−Dk(λ

j+1
a )

≤ρl

(
−Hk(zk(λ

j+1
a )) +Dk(λ

j+1
a ) +Hk(0)− min

z∈Rn
Hk(z)

)
≤ρl

(
Hk(0)−Hk(zk(λ

j+1
a ))

)
,

where the last inequality is due to (21), and this gives (23). Therefore, (23) should have already been satisfied
when (58) holds. This proves (56) in Lemma 15(a).

(b). By choosing

j =

⌈
max

{
C ′,

(
4C ′′t2m∥Bk∥22(ρh + 1)

M2ρh∆2(xk)

)}⌉
− 1, (61)

we have
C ′′tm∥Bk∥22

j + 2
≤ M2ρh∆

2(xk)/ (4t(1 + ρh)) , (62)

which, together with (45), yields that

Hk(zk(λ
j+1
a ))−Dk(λ

j+1
a )

≤M2ρh∆
2(xk)/ (4t(1 + ρh))

≤ρh∥xk − St(x
k)∥22/ (4t(1 + ρh)) , (63)

where the last inequality is from (52). Denote zk⋆ = argminz∈Rn Hk(z), which indicates that ∥zk⋆∥2 =
∥xk − St(x

k)∥2. We have

1

2t
∥zk(λj+1

a )− zk⋆∥22 ≤ Hk(zk(λ
j+1
a ))−Dk(λ

j+1
a ),

which follows from the fact that Hk(·) is 1
t -strongly convex and (21). From (63), we have ∥zk(λj+1

a )−zk⋆∥22 ≤
ρh/ (2(1 + ρh)) ∥zk⋆∥22. So, by the Cauchy-Schwarz inequality, we have

ρh
2t

∥zk(λj+1
a )∥22 ≥ ρh

4t
∥zk⋆∥22 −

ρh
2t

∥zk(λj+1
a )− zk⋆∥22

≥ ρh∥zk⋆∥22/ (4t(1 + ρh)) .

Together with (63), (24) should have already been satisfied when (61) holds. This proves (57) in Lemma
15(b).

Therefore, the proof of Lemma 15 is complete.
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Next, we are ready to present the proof of Theorem 3.

Proof of Theorem 3. We first prove part (a) of Theorem 3 and then prove part (b) of Theorem 3 in what
follows.

(a). Lemma 8 and (47) indicate that supk∈N ∥Bk∥2 ≤ B(λs/(2L)). Together with (46), (56), (47), we
obtain

Jk ≤ M1B
2(λs/(2L))/∆(xk). (64)

We now prove the desired result. If ϵ ≥ ∆(x0), then J(ϵ) = 0 and (25) holds. If ϵ < ∆(x0), we denote
Kϵ as the smallest index such that ∆(xk) > ϵ,∀k ≤ Kϵ and ∆(xKϵ+1) ≤ ϵ. From Lemma 6 we have

L(∥x⋆∥2 + λs/(2L))∆(xk) (65)

≥F (xk)− F (x⋆)

≥
(
F (xKϵ)− F (x⋆)

)(2 + 4ρl
1 + 4ρl

)Kϵ−k

≥λs∆(xKϵ)

(
2 + 4ρl
1 + 4ρl

)Kϵ−k

≥ϵλs

(
2 + 4ρl
1 + 4ρl

)Kϵ−k

, ∀ 0 ≤ k ≤ Kϵ.

Here we explain how these inequalities were obtained. The first inequality follows from Lemma 6 and (47).
Since (46) holds, (40) holds for any k ∈ N and it implies the second inequality in (65). The third inequality
in (65) follows from Assumption 1 and the last inequality in (65) follows from the fact that ∆(xKϵ) > ϵ.

From (65) we know that ∀ 0 ≤ k ≤ Kϵ, it holds that

∆(xk) ≥ ϵλs

L(∥x⋆∥2 + λs/(2L))

(
2 + 4ρl
1 + 4ρl

)Kϵ−k

. (66)

Therefore, we have

J(ϵ) =

Kϵ∑
k=0

Jk

≤
Kϵ∑
k=0

M1B
2(λs/(2L))/∆(xk)

≤
Kϵ∑
k=0

M1B
2( λs

2L )L(∥x⋆∥2 + λs/(2L))

λsϵ

(
2 + 4ρl
1 + 4ρl

)k−Kϵ

=
E2

ϵ(2 + 4ρ)

Kϵ∑
k=0

(
2 + 4ρl
1 + 4ρl

)k−Kϵ

≤ E2

ϵ
.

where the first inequality follows from (64) and the second inequality follows from (66). This completes the
proof of Theorem 3(a).

(b). Lemma 8 and (50) indicates that supk∈N ∥Bk∥2 ≤ B(E0/2). Together with (46), (49), (57), ,

Jk ≤ M2B
2(E0/2)/∆

2(xk),∀k ≥ 0, (67)

which follows from our choice of E3 ≤ B(E0/2)
√

M2/C ′ such thatM2B
2(E0/2)/∆

2(xk) ≥ M2B
2(E0/2)/∆

2(x0) ≥
C ′. Next, we prove the conclusion. We adopt the same definition of Kϵ as in (a) and pick {ϵi}∞i=1 =
{∆(xi)}∞i=1 so that Kϵi = i− 1. From (51) we have

∆(xi−1) ≥
√

E0ϵi,∀i ∈ N. (68)
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From (49) and (68) we have

∆(xk) ≥ 2i−1−k
√

E0ϵi,∀ 0 ≤ k ≤ i− 1. (69)

Finally, for any i ∈ N, we have

J(ϵi) =

i−1∑
k=0

Jk ≤
i−1∑
k=0

M2B
2(E0/2)

4i−1−kE0ϵi

≤ 4M2B
2(E0/2)

3E0ϵi
=

E4

ϵi
.

Here, the first inequality follows from (67) and (69), and the second inequality follows from the fact that

i−1∑
k=0

1

4i−1−k
≤

i−1∑
k=−∞

1

4i−1−k
=

4

3
.

This completes the proof of Theorem 3(b).
Therefore, the proof of Theorem 3 is complete.

6 Conclusion

In this paper, we proposed a new inexact proximal linear algorithm for solving the robust phase retrieval
problem. Our contribution lies in the two adaptive stopping criteria for the subproblem in the proximal
linear algorithm. We showed that the iteration complexity of our inexact proximal linear algorithm is in
the same order as the exact proximal linear algorithm. Under the sharpness condition, we are able to
prove the local convergence of the proposed method. Moreover, we discussed how to use the FISTA for
solving the subproblem in our inexact proximal linear algorithm, and analyzed the total oracle complexity
for obtaining an ϵ-optimal solution under the sharpness condition. Numerical results demonstrated the
superior performance of the proposed methods over some existing methods.
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