
ar
X

iv
:2

40
2.

18
01

8v
1

 [
cs

.L
G

]
 2

8
Fe

b
20

24
1

Communication Efficient ConFederated Learning:

An Event-Triggered SAGA Approach
Bin Wang, Jun Fang, Hongbin Li, Fellow, IEEE, Yonina C. Eldar, Fellow, IEEE

Abstract—Federated learning (FL) is a machine learning
paradigm that targets model training without gathering the
local data dispersed over various data sources. Standard FL,
which employs a single server, can only support a limited
number of users, leading to degraded learning capability. In
this work, we consider a multi-server FL framework, referred
to as Confederated Learning (CFL), in order to accommodate
a larger number of users. A CFL system is composed of
multiple networked edge servers, with each server connected to
an individual set of users. Decentralized collaboration among
servers is leveraged to harness all users’ data for model training.
Due to the potentially massive number of users involved, it
is crucial to reduce the communication overhead of the CFL
system. We propose a stochastic gradient method for distributed
learning in the CFL framework. The proposed method incorpo-
rates a conditionally-triggered user selection (CTUS) mechanism
as the central component to effectively reduce communication
overhead. Relying on a delicately designed triggering condition,
the CTUS mechanism allows each server to select only a small
number of users to upload their gradients, without significantly
jeopardizing the convergence performance of the algorithm. Our
theoretical analysis reveals that the proposed algorithm enjoys a
linear convergence rate. Simulation results show that it achieves
substantial improvement over state-of-the-art algorithms in terms
of communication efficiency.

I. INTRODUCTION

The tremendous advancement of machine learning (ML) has

rendered it a driving force for various research fields and in-

dustrial applications. However, the traditional ML framework

follows a centralized fashion which assembles the training data

to a central computing unit (CPU) where model training is

performed. Such an approach might be problematic when data

is confidential or when transferring the training data to the

CPU is unrealistic. With a growing interest in data privacy,

regulations like GDPR (General Data Protection Regulation)

and ADPPA (American Data Privacy and Protection Act) have

imposed restrictions on sharing privacy-sensitive data among

Part of this work was accepted by ICASSP 2024. This paper has been
accepted by IEEE Transactions on Signal Processing.

Bin Wang and Jun Fang are with the National Key Laboratory of Wireless
Communications, University of Electronic Science and Technology of China,
Chengdu 611731, China, Email: JunFang@uestc.edu.cn

Hongbin Li is with the Department of Electrical and Computer Engineering,
Stevens Institute of Technology, Hoboken, NJ 07030, USA, E-mail: Hong-
bin.Li@stevens.edu

Yonina C. Eldar is with the Faculty of Mathematics and Computer
Science, Weizmann Institute of Science, Rehovot 7610001, Israel, E-mail:
yonina.eldar@weizmann.ac.il

The work of J. Fang was supported in part by the Sichuan Science and
Technology Program under Grant 2023ZYD0146, and in part by the National
Key Laboratory of Wireless Communications Foundation. The work of H.
Li was supported in part by the National Science Foundation under Grants
ECCS-1923739, ECCS-2212940, and CCF-2316865.

different clients or platforms. As such, breaking the data-

privacy barrier is an urgent and meaningful task.

Federated Learning (FL) [1], [2] is an emerging machine

learning paradigm that enables model training without trans-

ferring local data to the CPU. FL has drawn significant

attention from both academia and industry, especially for

privacy-sensitive and data-intensive applications. A standard

FL system consists of a server and a set of devices/users.

In general, FL addresses privacy protection by adopting a

compute-then-aggregate (CTA) approach. More precisely, in

each iteration the server first broadcasts the global model

vector to the users. Each user then computes a local gradient

using its own data, and uploads its local gradient to the server.

At the end of each iteration, the server performs one step of

gradient descent (using the aggregated gradient) to obtain an

updated global model vector. This process cycles until model

training is accomplished. Typically, the training process takes a

large number of iterations to converge. Thus FL may consume

a substantial amount of communication resources. Therefore,

it is important to reduce the communication overhead to an

affordable level. To this end, various methods were developed

along different research lines, including methods which aim

at improving the convergence speed [3]–[15], methods that

reduce the amount of transmission by selecting only a subset

of users for uploading their gradients [16]–[24], methods

that sparsify or quantize the local gradients [25]–[34], or

combinations of these techniques.

Besides the excessively high communication cost, another

restriction of FL is that conventional FL systems employ only

a single server. Due to the limited communication capacity,

the number of users that can be served by a single server

is limited. To involve more devices for model training, an

alternative framework to the standard single-server FL is a

decentralized FL system [15], [35]–[43]. A decentralized FL

system is composed of a number of nodes or agents which

are able to perform computation and communication. Each

node carries its own training data. Different nodes form a

decentralized network in which only neighboring nodes can

either bidirectionally or directionally [44]–[46] communicate

with each other. In decentralized FL, the training process

follows a similar CTA mode as in the standard system, except

that the local gradient or local model vector is exchanged

among neighboring nodes. Despite its scalability, decentralized

FL is confined to D2D (device-to-device) type networks which

requires D2D communications that may not be easily achieved

in cellular systems.

Recently, a new FL framework termed Confederated Learn-

ing (CFL) was proposed in [47] to overcome the drawbacks

http://arxiv.org/abs/2402.18018v1

2

of existing FL systems. A CFL system consists of multiple

servers, in which each server is connected with an individual

set of users as in the conventional FL framework. Decen-

tralized collaboration among servers is leveraged to make

full use of the data dispersed over different users. CFL can

be considered as a hybrid of standard and decentralized FL

systems. In particular, CFL degenerates to standard FL when

there is only a single server. Although there exist a plethora

of algorithms/convergence analyses for standard FL, the exten-

sion of these results to CFL is not straightforward since the

latter framework involves decentralized collaboration among

servers. On the other hand, CFL becomes a decentralized FL

system when there is no user, namely, when each server itself

carries the training data. In this case, each server’s data are

readily accessible to this server without any communication

cost. This is in sharp contrast to the CFL framework whose

communication cost mainly comes from collecting training in-

formation by each server from its associated users. Therefore,

existing gradient tracking-based decentralized optimization

methods [40], [41], [44]–[46], when applied to CFL, lead to an

unsatisfactory communication efficiency. In [47], a stochastic

ADMM algorithm with random user selection is developed for

CFL. However, the ADMM-based method is proved to possess

only a sub-linear convergence rate, and its performance relies

heavily on man-crafted parameters that can be hard to tune in

real-world applications.

In this paper, we propose a gradient-based method for

communication-efficient CFL. The proposed algorithm is

based on the framework of GT-SAGA (gradient tracking with

stochastic average gradient) [40]. To reduce the amount of

data transmission between servers and users, a conditionally-

triggered user selection (CTUS) mechanism is developed.

CTUS sets a computationally verifiable selection criterion

at the user side such that only those users whose VR-

SGs (variance-reduced stochastic gradients) are sufficiently

informative report their VR-SGs to their associated servers.

At the server side, the aggregated gradient is obtained by

integrating the uploaded VR-SGs as well as the stale VR-

SGs corresponding to those unreported users. The CTUS

mechanism shares a similar spirit with the even-triggering-

based methods proposed for standard FL or traditional decen-

tralized optimization methods [22]–[24], [34], [43], [48]–[53].

Nevertheless, the selection criterion developed in this paper is

very different from existing methods. Specifically, for multi-

server systems, the variables from neighboring servers should

be taken into account in the design of the selection criterion.

Simulation results show that the proposed CTUS mechanism

helps preclude most of those non-informative user uploads,

thereby striking a higher communication efficiency than state-

of-the-art algorithms.

The rest of this paper is organized as follows. In Section

II, we introduce the confederated learning problem along

with some assumptions on the objective function as well as

the server network. Then, in Section III, we provide a brief

overview of the classic gradient tracking (GT) method as well

as the GT-SAGA method that can be adapted to solve the CFL

problem. The proposed method is presented in Section IV,

with the convergence analysis given in Section V. The proof of

Fig. 1. The CFL framework with multiple servers.

the main theoretical result, namely, Theorem 1, is provided in

Section VI. In section VII, we also provide theoretical analysis

to justify that the proposed CTUS can save user uploads under

mild conditions. Simulations results are presented in Section

VIII, followed by concluding remarks in Section IX.

II. PROBLEM FORMULATION

A. CFL Framework

We consider a confederated learning (CFL) framework

consisting of N networked edge servers. Figure 1 depicts

a schematic of CFL. The connective relation of these edge

servers is described by an undirected connected graph G =
{V,E}, where V (resp. E) denotes the set of servers (resp.

edges). The ith edge server serves Pi users. Each user is only

allowed to communicate with its associated server. In addition

to communicating with its own users, each server can com-

municate with its neighboring servers. With the confederated

network, we aim to solve the following CFL problem:

min
x∈Rd

f(x) , 1
N

∑N
i=1 fi(x), (1)

where x ∈ R
d is the model vector to be learned, fi(x) =

∑Pi

j=1 fij(x), fij(x) =
∑Sij

t=1 fij,t(x) is the loss function

held by user uij , fij,t(x) is the loss function corresponding

to the tth training sample at user uij , and Sij is the number

of training samples at user uij . Here user uij refers to the jth

user served by the ith server. It is also noteworthy that fij,t
may corresponds to a mini-batch of training samples instead

of a single sample.

The communication bottleneck of CFL lies in the user-to-

server (U2S) communications. Existing methods are designed

either for standard single-server FL or for decentralized FL.

Standard FL methods cannot be straightforwardly extended to

the CFL, while decentralized FL methods neglect the U2S

communications in their algorithmic development. Focusing

on problem (1), we aim to develop a communication-efficient

method which seeks to reduce the U2S communication over-

head.

B. Function and Server-Network Assumptions

We assume that f (resp. ∇f) is µ-strongly convex (resp. L-

Lipschitz continuous) while both f , fi, fij and fij,t are con-

tinuously differentiable with their gradients being L-Lipschitz

3

continuous. The definitions of µ-strongly convexity and L-

Lipschitz continuity are given below.

Definition 1. (Strongly convexity) A function f : Rd → R ∪
{+∞} is said to be µ-strongly convex if

f(y) ≥ f(x) + 〈∇f(x),y − x〉+ µ
2 ‖y − x‖22, ∀x,y. (2)

Definition 2. (Lipschitz continuity) The gradient of f : Rd →
R ∪ {+∞} is said to be L-Lipschitz continuous if

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2, ∀x,y. (3)

Recall that the servers form a bidirectionally connected

graph G = {V,E}. Denote W ∈ R
N×N
+ as the mixing

matrix associated with the graph G. It is assumed that W is

symmetric, primitive and doubly stochastic. In particular, wii′

which is the (i, i′)th element of W equals to 0 (resp. nonzero)

if server i and i′ are unconnected (resp. connected). For such

a W , its largest singular value is 1 (with multiplicity equals

to 1), with its corresponding singular vector being 1√
N
1N .

The second largest singular value of W , denoted as σ, is thus

equal to ‖W − 1
N 1N1

T
N‖2 and is smaller than 1. Notably, W

can be conveniently obtained as W = I − L
τ , where L is the

Laplacian matrix of G and τ > 1
2λmax(L) is a scaling factor.

III. OVERVIEW OF GT AND GT-SAGA

Our proposed algorithm is based on the gradient tracking

(GT) framework [54]. In this section, we begin with a brief

introduction of GT and then introduce the GT-SAGA algo-

rithm [40] which is a practical variant of GT. GT-SAGA is

designed for solving decentralized optimization problems. We

will discuss how to adapt GT-SAGA to solve the CFL problem

(1) in Section III-C.

A. Gradient Tracking

GT [54] is designed for solving decentralized optimization

problems of the following form:

min
x∈Rd

F (x) , 1
N

∑N
i=1 fi(x), (4)

where fi(x) =
∑Pi

t=1 fi,t(x;Di,t) is the local loss function

held by node i and fi,t(x) is the loss function associated

with the tth training samples stored at node i. GT is usually

compactly written as

GT : xk+1
i =

∑N
i′=1 wii′x

k
i′ − αyk

i , 1 ≤ i ≤ N, (5)

yk+1
i =

∑N
i′=1 wii′y

k
i′ +∇fi(x

k+1
i)−∇fi(x

k
i), 1 ≤ i ≤ N.

(6)

Note that GT is designed for a D2D network in which

each node carries its own training data and each node can

communicate with its neighboring nodes. In GT, each node

holds two variables, xi and yi. After the (k + 1)th iteration,

each node exchanges (xk+1
i ,yk+1

i) with its neighboring nodes.

The core idea behind GT is the combination of decentral-

ized gradient descent (DGD) and dynamic average consensus

(DAC). To see this, omitting the DAC step, i.e., (6), and

assuming that yk
i = ∇fi(x

k
i), then GT degenerates to the

standard DGD algorithm, in which α is the stepsize. However,

it is well known that the exact convergence of DGD can not

be guaranteed unless a decreasing stepsize is employed. The

problem is that a decreasing stepsize can only offer a sublinear

convergence rate even if fi is strongly convex. In GT, the

DAC mechanism is incorporated to remedy this drawback of

DGD. DAC is an efficient tool to track the average of time-

varying signals. Formally, suppose each node i measures a

time-varying signal rki at time k and consider the problem of

tracking its average r̄k = 1
N

∑N
i=1 r

k
i at each node. The DAC

mechanism, which is mathematically stated as

dk+1
i =

∑N
i′=1 wii′d

k
i′ + rk+1

i − rki , ∀i, (7)

converges to r̄k+1 provided that limk→∞ |rk+1
i − rki | = 0.

In GT, we intend to track the average of the local gradients
1
N

∑N
i=1 ∇fi(x

k
i) instead of using only the local gradient

∇fi(x
k
i) at every node. This generates the DAC step (6).

If the local variables tend to arrive at a consensus state, i.e.

xk
i → x, which also means that ∇fi(x

k+1
i)−∇fi(x

k
i) → 0,

then (6) ensures that yki → 1
N

∑N
i=1 ∇fi(x) and thus (5)

degenerates to a gradient descent step applied to the whole

objective function F . As such, GT is guaranteed to converge

to the global optimum with a linear convergence rate, under

the strongly convexity assumption.

B. Gradient Tracking with Variance Reduction

In machine learning applications, each user may hold a large

number of training samples and thus it is neither practical nor

efficient to compute the full local gradient ∇fi(x
k+1
i). An

alternative solution is to compute a stochastic approximation

of ∇fi(x
k+1
i). However, directly employing the stochastic

gradient introduces a non-vanishing variance and would con-

sequently undermine the exact convergence of GT. To alleviate

this problem, GT-SAGA [40], summarized in Algorithm 1, was

proposed to incorporate a variance-reduced stochastic gradient

(VR-SG) gk+1
i to replace ∇fi(x

k+1
i). The VR-SG is an unbi-

ased estimate of ∇fi(x
k+1
i) in the sense that Etk+1

i
{gk+1

i } =

∇fi(x
k+1
i). More importantly, the variance of gk+1

i which is

mathematically stated as Etk+1

i
{‖gk+1

i −∇fi(x
k+1
i)‖22} tends

to 0 if the algorithm converges. Thanks to the VR technique,

GT-SAGA is guaranteed to converge to the global optimum

while still maintaining a linear convergence rate.

In addition to GT-SAGA, there also exist other variance

reduction-based gradient tracking methods, e.g. [40], [41],

[44]–[46]. Among them, Push-SAGA/AB-SAGA [44], [45]

and Push-SVRG/AB-SVRG [46] are designed for directed

networks, GT-SVRG [40] and GT-SARAH [41] are based on

double-loop variance reduction techniques that periodically de-

mand all users to upload their local gradients to their respective

servers. Such a requirement poses practical challenges in the

FL setting.

C. Adapting GT-SAGA for CFL

Now we discuss how to modify GT-SAGA to make it

applicable for solving (1). Adjusting GT-SAGA to solve (1)

can be realized by treating node i in Algorithm 1 as server i.
In the CFL setting, despite the fact that the training data are

4

Algorithm 1 GT-SAGA

Input: N , {Pi}, W , α, {x0
i ,y

0
i ,φ

0
i,t = 0}i=N,t=Pi

i=1,t=1 .

while not converge do

For each node parallel do

1. Node i computes xk+1
i =

∑N
i′=1 wii′x

k
i′ − αyk

i ;

2. Node i uniformly generates a random integer tk+1
i ,

1 ≤ tk+1
i ≤ Pi, and then computes the VR-SG via

gk+1
i =Pi · (∇fi,tk+1

i
(xk+1

i)−∇fi,tk+1

i
(φk

i,tk+1

i

))+
∑Pi

t=1 ∇fi,t(φ
k
i,t), (8)

Set ∇fi,tk+1

i
(φk+1

i,tk+1

i

) = ∇fi,tk+1

i
(xk+1

i) and also set

∇fi,t(φ
k+1
i,t) = ∇fi,t(φ

k
i,t), ∀t 6= tk+1

i ;

3. Node i computes yk+1
i =

∑N
i′=1 wii′y

k
i′+g

k+1
i −gki

and then broadcasts (xk+1
i ,yk+1

i) to its neighboring nodes;

End For

End while and Output xk+1;

stored at users, we can randomly select a user and let the user

randomly pick a mini-batch set of training samples to compute

the local gradient. The local gradient is then uploaded to the

server to compute the VR-SG gk+1
i . Mathematically, this can

be written as

gk+1
i =S̃i · (∇fij,tk+1

ij
(xk+1

i)−∇fij,tk+1

ij
(φk

ij,tk+1

ij

))+

∑Pi

j=1

∑Sij

t=1 ∇fij,t(φ
k
ij,t), (9)

where S̃i ,
∑Pi

j=1 Sij . It is easy to verify that gk+1
i is

an unbiased estimate of ∇fi(x
k+1
i) if both j and tk+1

ij are

uniformly selected, provided that each user holds the same

number of mini-batches. When the number of mini-batches

varies across different users, an unbiased gk+1
i can be obtained

by assigning an appropriate selection probability for each user.

It is also possible to select more than one user to participate

in the training. Under the assumption that each user holds

the same number of data samples, in Algorithm 2, gk+1
i is

obtained by selecting |N̄ k+1
i | users, where N̄ k+1

i is the index

set of the selected users (by server i) in the (k+1)th iteration.

The random user selection in Algorithm 2 provides a conve-

nient way to reduce the user-to-server uplink communication

overhead. Its random nature ensures the unbiasness of gk+1
i .

Thus the linear convergence rate of Algorithm 2 can be

obtained by using the theoretical results in [40]. Despite the

elegant linear convergence rate of Algorithm 2, it is unclear

how to determine the optimal number of users that are selected

to upload their gradients. Although a small number of selected

users results in a low per-iteration communication overhead,

the required number of iterations could be large since this

leads to a large variance in gk+1
i . Under such a fundamental

tradeoff, reducing the user sampling rate does not necessarily

lead to improved communication efficiency. Another drawback

of random user selection is that the selection is not based on

the importance of each local gradient. Thus the uploaded local

gradients may not be those most informative ones. This often

leads to a degraded convergence speed.

Algorithm 2 GT-SAGA for Confederated Learning

Input: N , {Pi}, W , α, {x0
i ,y

0
i ,φ

0
ij,t, g

0
i,sum =

0}i=N,j=Pi,t=Sij

i=1,j=1,t=1 .

while not converge do

For each edge server parallel do

1. Server i computes xk+1
i =

∑N
i=1 wii′x

k
i′ − αyki

and then broadcasts xk+1
i to its associated users as well as

neighboring servers;

2. Server i randomly selects a fixed number of users,

whose index set is denoted as N̄ k+1
i ;

3. If j ∈ N̄ k+1
i , user uij uniformly generates a random

integer tk+1
ij , 1 ≤ tk+1

ij ≤ Sij , and then computes

g̃k+1
ij = ∇fij,tk+1

ij
(xk+1

i)−∇fij,tk+1

ij
(φk

ij,tk+1

ij

), (10)

User uij uploads g̃k+1
ij to the server. Set φk+1

ij,tk+1

ij

= xk+1
i

and also set φk+1
ij,t = φk

ij,t, ∀t 6= tk+1
ij .

4. Server i computes yk+1
i =

∑N
i′=1 wii′y

k
i′ + g

k+1
i −

gki , where

gk+1
i = S̃i

|N̄k+1

i
|
∑

j∈N̄k+1

i
g̃k+1
ij + gki,sum,

gki,sum ,
∑Pi

j=1

∑Sij

t=1 ∇fij,t(φ
k
ij,t) (11)

5. Server i broadcasts yk+1
i to its neighboring servers

and then updates

gk+1
i,sum = gki,sum +

∑Pi

j=1

∑

j∈N̄k+1

i
g̃k+1
ij (12)

End For;

End while and Output xk+1;

IV. PROPOSED ALGORITHM

Although the GT-SAGA can be adapted to solve the CFL

problem, it usually does not achieve optimal communica-

tion efficiency due to the intrinsic limitations of random

user selection. In this section, we propose a communication-

efficient algorithm whose major innovation is the so called

conditionally-triggered user selection (CTUS). The proposed

algorithm meticulously selects a small number of users for

gradient uploading at each iteration and maintains a fast linear

convergence rate, thus leading to a higher communication

efficiency.

A. Summary of Algorithm

The proposed algorithm, abbreviated as CFL-SAGA

(Confederated Learning with SAGA), is summarized in Algo-

rithm 3. In Algorithm 3, Step 1 and Step 5 are similar to those

in standard GT. In Step 2, the quantity ‖∑N
i′=1 wii′x

k+1
i′ −

xk+1
i ‖22 is computed and then sent to server i’s users. This

quantity is used by each user to determine whether or not to

upload its gradient. Step 3.1 computes a local VR-SG gk+1
ij to

provide an unbiased approximation of ∇fij(x
k+1
i). The core

innovation of Algorithm 3 is Step 3.2, namely, the CTUS step.

This step states that, for each user uij , the gradient innovation

vector ∆
k+1
ij = gk+1

ij − gkij should be uploaded to server i

5

only when the triggering condition (17) is satisfied. At Step

4, the aggregated gradient gk+1
i is obtained by summing the

newly uploaded user gradient gk+1
ij , j /∈ N k+1

i as well as the

stale user gradient gkij , j ∈ N k+1
i . It should be noted that, for

server i, it does not need to store every individual gkij . Instead,

only the sum of all gkijs needs to be stored.

B. Rationale Behind The CTUS Mechanism

Next, we discuss the rationale behind the CTUS mechanism.

Without loss of generality, we assume that ρ = 1. For the right

hand side of the triggering condition (17), we deduce that
∑N

i′=1 wii′x
k+1
i′ − xk+1

i

=
∑N

i′=1 wii′x
k
i′ −

∑N
i′=1 wii′ (x

k
i′ − xk+1

i′)− xk+1
i

(a)
=αyk

i −
∑N

i′=1 wii′ (x
k
i′ − xk+1

i′)

=αyk
i − αyk+1

i −∑N
i′=1 wii′ (x

k
i′ − xk+1

i′)
︸ ︷︷ ︸

[(13)-1]

+αyk+1
i (13)

where (a) is due to Step 1 in Algorithm 3. Note that [(13)-1]

is the difference between xk+2
i and xk+1

i , more precisely,

xk+2
i =

∑N
i′=1 wii′x

k+1
i′ − αyk+1

i

=
∑N

i′=1 wii′x
k
i′ − αyki

︸ ︷︷ ︸

=xk+1

i

+[(13)-1]. (14)

Suppose the proposed algorithm converges to the true

solution x∗ as k → ∞. The DAC mechanism ensures

that yk+1
i converges to 1

N

∑N
i=1 g

k+1
i , which converges to

1
N

∑N
i=1 ∇fi(x

∗) = 0 as k → ∞. As such, αyk+1
i in (13) can

be rewritten as α(yk+1
i − y∗i), where y∗i = 0 is the optimal

yi. Substituting this and (14) into (13) yields

∑N
i′=1 wii′x

k+1
i′ − xk+1

i = xk+2
i − xk+1

i
︸ ︷︷ ︸

innovation of xi

+α
(
yk+1
i − y∗i

)

︸ ︷︷ ︸

optimality gap of yi

.

Clearly, both the innovation of xi and the optimality gap of

yi should converge to 0 as the algorithm converges. From

this perspective, the quantity ‖∑N
i′=1 wii′x

k+1
i′ − xk+1

i ‖2
approximately measures how much progress can be made in

the (k + 1)th iteration. Therefore

‖∆k+1
ij ‖2 > ‖∑N

i′=1 wii′x
k+1
i′ − xk+1

i ‖2, (15)

indicates that ∆k+1
ij can make a significant contribution to the

updates of xk+2
i and yk+1

i . For this case, Step 3.2 suggests

∆
k+1
ij should be uploaded to the server. Otherwise, ∆

k+1
ij

needs not to be uploaded since it may not be sufficiently

informative for the update of the variables.

C. Discussions

The reuse of the stale user gradient is crucial to ensure the

fast convergence speed of the proposed algorithm. Thanks to

the CTUS mechanism, reusing the stale user gradient only

leads to a controllable error. Hence gk+1
i in (18) can be a

close approximation of the aggregated gradient. Moreover,

in distributed optimization, the user gradient usually changes

slowly, especially in the high-precision regime. Therefore it is

Algorithm 3 Proposed Algorithm: Confederated Learning

with Stochastic Average Gradient (CFL-SAGA)

Input: N , {Pi}, W , α, {x0
i ,y

0
i ,φ

0
ij,t = 0}i=N,j=Pi,t=Sij

i=1,j=1,t=1 .

while not converge do

For each edge server parallel do

1. Server i computes xk+1
i =

∑N
i′=1 wii′x

k
i′−αyki and

then broadcasts xk+1
i to its associated users as well as its

neighboring servers;

2. Server i computes ‖∑N
i′=1 wii′x

k+1
i′ − xk+1

i ‖22 and

then broadcasts this quantity to its associated users;

For each user parallel do

3.1. In user uij , uniformly generate a random integer

tk+1
ij , 1 ≤ tk+1

ij ≤ Sij , and then compute

gk+1
ij =Sij · (∇fij,tk+1

ij
(xk+1

i)−∇fij,tk+1

ij
(φk

ij,tk+1

ij

))+

∑Sij

t=1 ∇fij,t(φ
k
ij,t). (16)

Set φk+1

ij,tk+1

ij

= xk+1
i and also set φk+1

ij,t = φk
ij,t, ∀t 6= tk+1

ij .

3.2. Let ∆k+1
ij = gk+1

ij − gkij . Uploading ∆
k+1
ij if

‖∆k+1
ij ‖22 > ρ‖∑N

i′=1 wii′x
k+1
i′ − xk+1

i ‖22. (17)

Let the users which satisfy (17) upload ∆
k+1
ij and denote

N k+1
i as the index set of users that does not satisfy (17);

End For

4. Server i computes

gk+1
i =

∑

j∈Nk+1

i
gkij +

∑

j /∈Nk+1

i
(gkij +∆

k+1
ij). (18)

5. Server i computes yk+1
i =

∑N
i′=1 wii′y

k
i′ + g

k+1
i −

gki and then broadcasts yk+1
i to its neighboring servers.

End For;

End while and Output xk+1;

reasonable to reuse the stale user gradient for many iterations.

Since only a small number of users are required to upload

their gradients, the proposed algorithm is expected to achieve a

high communication efficiency. Nevertheless, reusing the stale

user gradient in gk+1
i breaks the unbiasedness of gk+1

i , which

brings difficulties in proving the convergence of the algorithm.

The proposed CTUS mechanism is different from the event-

triggering-based schemes developed for standard FL [22]–[24],

[34]. A distinctive feature of the triggering condition for our

proposed method is that it involves variables of neighboring

servers in order to quantify whether the local gradient is

informative enough for uploading. As discussed in Section

IV-B, the metric employed in (17) provides an estimate of

the gap between the current solution and the optimal point.

Intuitively, a user should upload its local gradient only if the

local gradient is sufficiently informative compared to the op-

timality gap. Since the optimality gap for the CFL framework

needs to account for the discrepancy between model vectors

of different servers, the event-triggering techniques developed

for standard federated learning systems [22]–[24], [34] are no

longer applicable.

6

The proposed CTUS is also significantly different from the

triggering techniques designed for multi-agent decentralized

networks [43], [48]–[52]. In multi-agent decentralized sys-

tems, the purpose of employing event-triggering is to deter-

mine whether an agent should exchange its local variables with

its neighboring agents. In contrast, for our proposed algorithm,

communication between neighboring servers is always as-

sumed in every iteration, and the event-triggering mechanism

is mainly used to prune users that are deemed unnecessary

to upload their gradients to their respective servers. Hence,

both the purpose and the criterion of our proposed CTUS are

different from those of existing event-triggering methods.

V. CONVERGENCE RESULTS

In this subsection, we aim to prove the linear conver-

gence rate of the proposed algorithm. Before proceeding to

the main result, we first introduce several notations. Define

x , [x1; · · · ;xN] (resp. y , [y1; · · · ;yN]) as the vertical

stack of xis (resp. yis). Let x̄ , 1
N (1T

N ⊗ Id)x (resp.

ȳ , 1
N (1T

N ⊗ Id)y) be the average of xis (resp. yis). Also

define W̄ , W ⊗ Id and W̄∞ , W∞ ⊗ Id, where

W∞ =
1N1

T
N

I and ⊗ represents the Kronecker product.

The convergence result for Algorithm 3 is summarized in the

following theorem.

Theorem 1. Let x∗ denote the optimal solution to the CFL

problem (1). Assume that the objective function (resp. server

network) satisfies the assumptions made in Section II-B. Define

ψ
k =

[
E{Xk};E{X̄k};E{Dk−1};E{Y k}

]
(19)

where Xk , ‖xk − W̄∞xk‖22, X̄k , ‖x̄k − x∗‖22, Y k ,
‖yk − W̄∞yk‖22,

Dk ,
∑N

i=1

∑Pi

j=1

∑Sij

tk
ij
=1

‖x∗ − φk
ij,tk

ij
‖22, (20)

with xk+1, yk+1, and {φk
ij,t}i,j,t generated by Algorithm 3.

If the stepsize α is chosen to be sufficiently small, we have

ψk+1 ≤ (1 − µα
4 + 2c2α

2

N)
︸ ︷︷ ︸

,γ

·ψk (21)

where c2 , 8L2(1 + Pi · Sij
2
)N , Sij = maxi,j{Sij} and

Pi = maxi{Pi} are constants, N is the number of servers, Pi

is the number of users associated with server i and L is the

Lipschitz constant.

In Theorem 1, the metric to characterize the convergence

behavior of the proposed algorithm is ψ
k
. In ψ

k
, Xk (resp.

Y k) is the consensus gap measuring the distance between the

server-side local variable xi (resp. yi) and the average of

the local variables, i.e., x̄k (resp. ȳk). When Xk = 0 (resp.

Y k = 0), it means that consensus among servers is achieved.

The metric X̄k measures the distance between x̄k and the

optimal point x∗. Clearly, each local variable xi converges

to the optimal point x∗ when both consensuses are achieved

and X̄k = 0. The metric Dk measures the distance between

φk
ij,tk

ij
∈ R

d, which is the local variable corresponding to

the tkij th training sample at user uij , and the optimal point

x∗. Therefore Dk = 0 indicates that all the user-side local

variables also converge to the optimal point. To conclude,

the metric ψk characterizes the convergence behavior of the

proposed algorithm from different perspectives, say, consensus

achieving as well as optimality reaching. As such, ψk = 0
implies that the proposed algorithm has already arrived at the

optimal point.

The inequality (21) indicates a linear convergence rate of

Algorithm 3, provided that the rate γ < 1. This is always

achievable if we set α to be sufficiently close to 0 because the

second-order polynomial 2c2α
2

N decreases faster than the first-

order polynomial µα
4 . Our theoretical result can be considered

as a generalization of the result in [40]. Such an extension,

however, is highly nontrivial as the CTUS mechanism breaks

the unbiasness of the server-side local gradient.

VI. PROOF OF THEOREM 1

In appendices, we proved four different inequalities. Com-

bining those inequalities yields the following vector-form

inequality:

ψk+1 ≤ Tψk, (22)

where ψk+1 is defined in (19), and

T =








1+σ2

2 0 0 2α2

1−σ2

b2 b1 b3 0
2Pi 2PiN (1− 1

Sij
) 0

a1 a2 a4 a3








(23)

Before introducing the notations in (23), first notice that the 4
inequalities in (22), from top to bottom order, are respectively

proved in Lemma 5 (see (62)), Lemma 7 (see (76), Appendix

D), Lemma 8 (see (89), Appendix E) and Lemma 9 (see (91),

Appendix F).

We now define the notations in (23). Let Sij , mini,j{Sij},

Sij , maxi,j{Sij} and Pi , maxi{Pi}. σ < 1 is the second

largest singular value of the mixing matrix W and α is the

stepsize parameter in Algorithm 3. Also, {bi}3i=1 and {ai}4i=1

in T are defined as

b1 =1− µα+ 2c2α
2

N , b2 = 2αL2+4αρ(1+σ2)Pi
2
+2µα2L2+2µα2c1

µN ,

b3 =2α2c3
N , (24)

a1 = 25L2(1+σ2)+4(1+σ2)c1+3(1+σ2)(2c1σ
2+c2b̄+2c3PiN)

1−σ2 ,

a2 =
NL2(1+σ2)+4(1+σ2)c2+3(1+σ2)(c2(2+

2c2

L2)+2c3PiN)

1−σ2 ,

a3 = 1+σ2

2 + 24α2L2(1+σ2)
1−σ2 + 6α2c1(1+σ2)

1−σ2 ,

a4 = 4(1+σ2)c3
1−σ2 +

3(1+σ2)(b3c2+c3(1−Sij
−1

))
1−σ2 (25)

in which ci, 1 ≤ i ≤ 3, is a constant number (see (67)), and

b̄ in a1 is defined as

b̄ = 4α2L2+4α2ρ(1+σ2)Pi
2
+2α2c1

N . (26)

From (22), proving linear convergence rate of Algorithm

3 is equivalent to proving ρ(T) < 1. According to Lemma

4 provided in Appendix A, if we can find a positive vector

ψ ∈ R
4 such that Tψ ≤ γψ holds with γ < 1, then we

7

have ρ(T) < 1. To do this, set γ = 1− µα
4 + 2c2α

2

N and from

now on we are going to find a positive vector ψ such that

Tψ ≤ γψ. Recall that the parameters are chosen such that γ
is guaranteed to be smaller than 1.

A. Finding ψ

Using elementary algebra, it is easy to deduce that Tψ ≤
γψ is equivalent to the following set of inequalities:

µα
4 − α2

(
2c2
N − 2

1−σ2

[ψ]4
[ψ]1

)

︸ ︷︷ ︸

[(27)-1]

≤ 1−σ2

2 , (27)

2α2c3
N · [ψ]3 ≤ 3

4µ · [ψ]2 − b2
α · [ψ]1

︸ ︷︷ ︸

[(28)-1]

, (28)

2Pi[ψ]1 + 2PiN [ψ]2 ≤
(
1− µα

4 + 2c2α
2

N − (1− 1
Sij

)
)

︸ ︷︷ ︸

[(29)-1]

[ψ]3,

(29)

a1 · [ψ]1 + a2 · [ψ]2 + a4 · [ψ]3 ≤ (1− µα
4 + 2c2α

2

N − a3)
︸ ︷︷ ︸

[(30)-1]

[ψ]4,

(30)

where we used the definition of γ , 1− µα
4 + 2c2α

2

N and that

of T . In the above, [ψ]i represents the ith element of ψ. Since

T is positive and ψ should be positive, we need to first ensure

the positiveness of [(29)-1] and [(30)-1].

1) Ensuring positiveness of [(29)-1]: It is easy to see that

[(29)-1] > 0 is equivalent to µα
4 − 2c2α

2

N < 1
Sij

. Set αthresh,3

such that
µαthresh,3

4 = 1
Sij

. It is easy to verify that µα
4 − 2c2α

2

N <
1

Sij
can always be guaranteed if α ∈ (0, αthresh,3).

2) Ensuring positiveness of [(30)-1]: According to the

definition of a3, we have

[(30)-1] = 1−σ2

2 − µα
4 + 2c2α

2

N − 24α2L2(1+σ2)
1−σ2 − 6α2c1(1+σ2)

1−σ2

= 1−σ2

2 − µα
4 + α2

(
2c2
N − 24L2(1+σ2)

1−σ2 − 6c1(1+σ2)
1−σ2

)

︸ ︷︷ ︸

<0

, (31)

where < 0 can be verified by checking the definitions of c1
and c2. Since 0 < σ < 1, we know that 1−σ2

2 > 0. Set

αthresh,4 such that [(30) − 1] = 0 when α = αthresh,4. Hence

[(30)-1] > 0 can be ensured if α ∈ (0, αthresh,4).
Suppose 0 < α < min{αthres,3, αthres,4}. Then we have

[(29)-1] > 0 and [(30)-1] > 0. Next, we discuss how to

determine [ψ]i, 1 ≤ i ≤ 4.

3) Determining [ψ]1 and [ψ]2: To begin with, let [ψ]1 be

an arbitrary positive value. With [ψ]1 fixed, we can find a

sufficiently large [ψ]2 such that [(28)-1] is positive. This is

because

b2
α = 2L2+4ρ(1+σ2)Pi

2
+2µαL2+2µαc1

µN (32)

is upper bounded (since α is upper bounded).

4) Determining [ψ]3: With [ψ]2 and [ψ]1 fixed, we can

always choose a sufficiently large [ψ]3 such that (29) holds.

Now since [ψ]1, [ψ]1 and [ψ]3 are fixed, (28) is guaranteed

if α ∈ (0, αthresh,2), where αthresh,2 satisfies

2α2
thresh,2c3
N · [ψ]3 + b2

αthresh,2
· [ψ]1 = 3

4µ · [ψ]2. (33)

Note that b2
α is a polynomial of α (see (32)), which means

that b2
α decreases as α decreases.

5) Determining [ψ]4: With [ψ]1, [ψ]2 and [ψ]3 fixed as

well as 0 < α < mini=2,3,4{αthres,i} (which means that

[(30) − 1] > 0), there always exists a sufficiently large [ψ]4
such that (30) holds. Given a fixed [ψ]1 and [ψ]4, (27) can

be guaranteed by choosing a sufficiently small α, no matter

[(27)− 1] is positive or negative. The feasible range of α for

achieving this is denoted as (0, αthres,4).
Based on the above discussion, there exists ψ > 0 such

that Tψ ≤ γψ, provided that α < mini=1,2,3,4{αthres,i}. As

such, the spectral radius of T , ρ(T), is no larger than γ =

1− µα
4 + 2c2α

2

N . Combining this with (22) yields

ψk+1 ≤ Tψk ≤ ρ(T) ·ψk ≤ (1− µα
4 + 2c2α

2

N) ·ψk (34)

where the second inequality is obtained by realizing that ρ(T)
is the largest absolute eigenvalue and Tψk is non-negative.

Clearly, (34) is the desired result.

VII. A FURTHER ANALYSIS OF CTUS

In this section, we provide a rigorous analysis to show that

the proposed CTUS mechanism can prune user uploads. This

is equivalent to showing that for a proper choice of ρ, the

triggering condition (17) dose not hold for a number of users.

Notice that the quantities on both sides of (17) are random

variables. Therefore if the following inequality holds

E{‖∆k+1
ij ‖22} < E{ρ‖∑N

i′=1 wii′x
k+1
i′ − xk+1

i ‖22}, (35)

then we can safely claim that

P

{

‖∆k+1
ij ‖22 < ρ‖∑N

i′=1 wii′x
k+1
i′ − xk+1

i ‖22
}

6= 0, (36)

where P{·} denotes the probability of an event, and the

expectation in (35) is taken w.r.t. all the random variables

appeared up to the k + 1th iteration. If (36) holds true, it

means that user uij has a nonzero probability not to upload

its local gradient. To show (35) (for some ρ), we consider an

averaged version of (35), that is,

1∑
N
i=1

Pi
· E{∑N

i=1

∑Pi

j=1 ‖∆k+1
ij ‖22}

≤ 1∑
N
i=1

Pi
· E

{
∑N

i=1 ρPi‖
∑N

i′=1 wii′x
k+1
i′ − xk+1

i ‖22
}

,

(37)

where the average is taken for all users. Clearly, if (37) holds

true, then there must exist users which satisfy (35). To facilitate

the analysis, we suppose the sequence generated by Algorithm

3 has reached to a point that is close to the optimal solution,

in which case we have the following result.

Proposition 1. Let x∗ denote the optimal solution to the CFL

problem (1). Suppose we have Dk+1 ≈ Dk and

‖W̄∞x
k+1 − x̃∗‖22 ≤ C1‖xk+1 − W̄∞x

k+1‖22, (38)

‖W̄xk+1 − W̄∞x
k+1‖22 ≤ C2‖xk+1 − W̄xk+1‖22, (39)

where x̃∗ , [x∗; · · · ;x∗] is a vertical stack of N x∗s, and

C1 (resp. C2) is a positive constant. Then we have

1∑
N
i=1

Pi
· E{∑N

i=1

∑Pi

j=1 ‖∆k+1
ij ‖22}

8

Fig. 2. Topology of the server network

.E

{
C3

N

∑N
i=1 ‖

∑N
i′=1 wii′x

k+1
i′ − xk+1

i ‖22
}

, (40)

where C3 , 16(1+C1)(1+C2)SijL̄PiN∑
N
i=1

Pi
, and L̄ is a constant

defined in (58).

Proof. See Appendix B.

From (40) we know that (37) holds when ρ is set to a

sufficiently large value. Note that the assumptions made in

the above proposition are reasonable. To see this, first recall

that (21) indicates E{Dk+1} ≤ γ ·E{Dk}. Since γ is usually

close to 1, we can safely assume that Dk+1 ≈ Dk. Condition

(38) holds valid when xk+1 is sufficiently close to the optimal

point. Condition (39) can be justified as follows. Recall that

the left hand side of (39) can be bounded by

‖W̄xk+1 − W̄∞x
k+1‖22

(a)
= ‖W̄ (xk+1 − W̄∞x

k+1)‖22
(b)

≤ ‖xk+1 − W̄∞x
k+1‖22 (41)

where (a) is because W̄W̄∞ = W̄∞, and (b) is because

‖W̄ ‖2 = 1. Recall that the right hand side of (39) is the

discrepancy between each local variable and the average of its

neighboring variables. While the right hand side of (41) is the

discrepancy between each local variable and the average of all

local variables. These two quantities should be close provided

that consensus is nearly achieved. Combining (41) and

‖xk+1 − W̄∞x
k+1‖22 ≈ ‖xk+1 − W̄xk+1‖22, (42)

we can safely assume that (39) holds.

VIII. SIMULATION RESULTS

In this section, we provide simulation results to demon-

strate the superiority of the proposed CFL-SAGA algorithm

over GT-SAGA and other competing algorithms. We compare

the performance of respective algorithms over different user

sampling rates as well as different server topologies. We first

introduce the experimental settings.

A. Experimental Settings

We consider a CFL system consisting of N = 20 servers

and 400 users. Each server is assigned to Pi = 20 users.

To investigate the performance of respective algorithms over

different server topologies, we consider three types of server

networks. The first one is a random graph depicted in Fig. 2.

The second one is the ring graph (cycle graph), and the last

one is a fully connected graph. Since the structures of the ring

graph and the fully connected graph are self-evident by their

names, we do not draw their topologies for sake of simplicity.

Clearly, the fully connected graph has the best connectivity,

while the ring graph has the poorest connectivity.

We adopt the ℓ2-regularized logistic regression problem as

our test problem:

min
x∈Rd

f(x) , 1
N

∑N
i=1

∑Pi

j=1 fij(x), (43)

where fij(x) =
∑Sij

t=1 fij,t(x),

fij,t(x) =
∑

t′∈Tij,t

(
κ
2‖x‖22 − yij,t′ · log

(
(1 + e−ω

T

ij,t′
x)−1

)
−

(1− yij,t′) · log
(
1− (1 + e−ω

T
ij,t′

x)−1
))

(44)

in which κ is set to 0.05, {ωij,t′ ∈ R
d, yij,t′ ∈ {0, 1}} is

the t′th training sample stored at user uij , and Tij,t is the

index set of the data samples in the tth mini-batch training set.

Clearly, fij,t is strongly convex and its gradient is Lipschitz

continuous. In our experiments, both the data vector ωij,t′ ∈
R

200 and the label yij,t′ ∈ {0, 1} are randomly generated.

Each user is assumed to hold 50 training samples and each

mini-batch training set consists of 5 training samples. As such,

the total number of training samples is 20000.

To evaluate the performance of respective algorithms, we

adopt the optimality gap opgk to measure the distance between

the current solution and the optimal solution. The optimality

gap opgk is defined as opgk , ‖xk−W̄∞x
∗‖2√

N
, where xk ,

[xk
1 ; · · · ;xk

N], W̄∞x∗ , [x∗; · · · ;x∗], and x∗ is the optimal

solution obtained by solving (43) in a centralized manner.

B. Experimental Results

First, we examine the performance of the proposed CFL-

SAGA under different choices of the triggering parameter ρ
as well as different server topologies. Fig. 3 (a) plots the

optimality gap of CFL-SAGA vs. the number of iterations for

the random network. The triggering parameter ρ varies from 0
to 50. Clearly, ρ = 0 corresponds to the case of full-uploads,

that is, all users are required to upload their VR-SGs in each

iteration. In general, we see that the convergence speed of

CFL-SAGA becomes slower as ρ increases. This is expected

since a larger ρ leads to a smaller number of user uploads,

resulting in a larger approximate error in the aggregated

gradient. Fig. 3 (b) and (c) plot the optimality gap of CFL-

SAGA vs. the number of iterations for the ring graph and

the fully connected graph, respectively. For these two server

networks, the convergence behavior of CFL-SAGA is similar

as that in Fig. 3 (a). Not surprisingly, the algorithm exhibits

a faster convergence speed over a more well-connected server

network. Fig. 3 (d) plots the optimality gap of CFL-SAGA vs.

the communication overhead for the random network. In par-

ticular, the communication overhead is measured by the total

number of VR-SGs that are uploaded to servers. It is observed

that to reach the same accuracy, the required number of user

uploads decreases as ρ increases. Nevertheless, our empirical

results suggest that the highest communication efficiency is

9

0 200 400 600 800 1000

Number of iterations

10
-8

10
-6

10
-4

10
-2

10
0

O
p
ti
m

a
lit

y
 g

a
p

CFL-SAGA (=0)

CFL-SAGA (=10)

CFL-SAGA (=20)

CFL-SAGA (=30)

CFL-SAGA (=40)

CFL-SAGA (=50)

(a) Random graph.

0 500 1000 1500 2000

Number of iterations

10
-8

10
-6

10
-4

10
-2

10
0

O
p
ti
m

a
lit

y
 g

a
p

CFL-SAGA (=0)

CFL-SAGA (=10)

CFL-SAGA (=20)

CFL-SAGA (=30)

CFL-SAGA (=40)

CFL-SAGA (=50)

(b) Ring graph.

0 100 200 300 400

Number of iterations

10
-8

10
-6

10
-4

10
-2

10
0

O
p
ti
m

a
lit

y
 g

a
p

CFL-SAGA (=0)

CFL-SAGA (=10)

CFL-SAGA (=20)

CFL-SAGA (=30)

CFL-SAGA (=40)

CFL-SAGA (=50)

(c) Fully connected graph.

0 2000 4000 6000 8000 10000 12000

Communication overhead

10
-8

10
-6

10
-4

10
-2

10
0

O
p
ti
m

a
lit

y
 g

a
p

CFL-SAGA (=0)

CFL-SAGA (=10)

CFL-SAGA (=20)

CFL-SAGA (=30)

CFL-SAGA (=40)

CFL-SAGA (=50)

(d) Random graph.

0 0.5 1 1.5 2 2.5

Communication overhead 10
4

10
-8

10
-6

10
-4

10
-2

10
0

O
p
ti
m

a
lit

y
 g

a
p

CFL-SAGA (=0)

CFL-SAGA (=10)

CFL-SAGA (=20)

CFL-SAGA (=30)

CFL-SAGA (=40)

CFL-SAGA (=50)

(e) Ring graph.

2000 4000 6000 8000 10000 12000 14000

Communication overhead

10
-8

10
-6

10
-4

10
-2

10
0

O
p
ti
m

a
lit

y
 g

a
p

CFL-SAGA (=0)

CFL-SAGA (=10)

CFL-SAGA (=20)

CFL-SAGA (=30)

CFL-SAGA (=40)

CFL-SAGA (=50)

(f) Fully connected graph.

Fig. 3. Results on ℓ2-regularized logistic regression. First row: Optimality gap vs. number of iterations on different server networks; Second row: Optimality
gap vs. communication overhead on different server networks

achieved when ρ = 50, and a larger value of ρ beyond 50
does not yield further improvement on the communication

efficiency. It is also noticed that the CFL-SAGA exhibits a

significant advantage in terms of communication efficiency as

compared to the full-upload case (ρ = 0). The reason is that,

in distributed optimization, the user gradient usually changes

slowly, especially in the high-precision regime. Hence using

the stale gradient to generate the aggregated gradient often

leads to a very small approximation error. As a result, even

with a very small number of user uploads, the algorithm can

still maintain a fast convergence speed.

Next, we compare the performance of the proposed CFL-

SAGA with that of GT-SAGA, namely, Algorithm 2. As

shown in Fig. 3, taking ρ = 10 is sufficient to yield fast

convergence as well as high communication efficiency. We

thus fix ρ = 10 for CFL-SAGA. Fig. 4 (a), (b) and (c) plot

the optimality gap of respective algorithms vs. the number

of iterations for different networks. In Fig. 4 (a), SR is an

abbreviation for ‘sampling rate’. For instance, SR = 0.15
corresponds to the case that 0.15× 20 = 3 users are selected

by each server in each iteration. To make a full comparison,

the sampling rate of GT-SAGA is tuned from 0.05 to 0.45.

Clearly, the convergence speed of GT-SAGA becomes faster as

the sampling rate increases. It is observed that for the random

graph and the fully connected graph, the proposed CFL-SAGA

is faster than GT-SAGA that uses a sampling rate as large as

0.45. As for the communication overhead shown in Fig. 4 (d),
(e) and (f), we can see that the proposed CFL-SAGA exhibits

higher communication efficiency than GT-SAGA by orders of

magnitude. This advantage of CFL-SAGA is mainly due to

the fact that the proposed algorithm has the ability of up-

loading those most informative gradients via the conditionally

triggered user selection mechanism, thus reducing the number

of uploads substantially without sacrificing the convergence

speed of the proposed algorithm. In fact, the averaged number

of user uploads per-iteration for our proposed algorithm is

even smaller than that of GT-SAGA with a sampling rate of

SR = 0.05.

To examine the computational complexity, we plot in Fig.

5 the average runtime of respective algorithms vs. the number

of iterations. We can see that GT-SAGA has a lower per-

iteration computational complexity than the CFL-SAGA. This

is because for CFL-SAGA, at each iteration each user is

required to compute its local stochastic gradient, whether or

not this local gradient is uploaded. As a comparison, the

GT-SAGA only requires those selected users to compute its

stochastic gradient. Note that the computational cost caused

by the proposed CTUS mechanism is usually negligible since

the CTUS only involves very simple calculations at each user

with a complexity scaling linearly with the dimension of the

model variable x.

At last, we compare the proposed CFL-SAGA with some

other state-of-the-art methods, namely, CFL-ADMM [47], GT-

SVRG [40] and GT-SARAH [41]. Note that CFL-ADMM

randomly selects users to upload their local variables to their

respective servers. The user sampling rate of CFL-ADMM is

chosen as 0.3 in our experiments, and 0.15 for GT-SVRG and

GT-SARAG. Recall that both GT-SVRG and GT-SARAH are

double-loop based methods. Take GT-SVRG as an example,

this algorithms has an outer loop that aims to periodically

update the anchor gradient vector, a step very similar to the

sum of gk+1
ij . While the inner iteration is very similar to

10

0 200 400 600 800 1000

Number of iterations

10
-8

10
-6

10
-4

10
-2

10
0

O
p
ti
m

a
lit

y
 g

a
p

CFL-SAGA (=10)

GT-SAGA (SR=0.05)

GT-SAGA (SR=0.15)

GT-SAGA (SR=0.25)

GT-SAGA (SR=0.35)

GT-SAGA (SR=0.45)

(a) Random graph.

0 500 1000 1500 2000

Number of iterations

10
-8

10
-6

10
-4

10
-2

10
0

O
p
ti
m

a
lit

y
 g

a
p

CFL-SAGA (=10)

GT-SAGA (SR=0.05)

GT-SAGA (SR=0.15)

GT-SAGA (SR=0.25)

GT-SAGA (SR=0.35)

GT-SAGA (SR=0.45)

(b) Ring graph.

0 500 1000 1500 2000

Number of iterations

10
-8

10
-6

10
-4

10
-2

10
0

O
p
ti
m

a
lit

y
 g

a
p

CFL-SAGA (=10)

GT-SAGA (SR=0.05)

GT-SAGA (SR=0.15)

GT-SAGA (SR=0.25)

GT-SAGA (SR=0.35)

GT-SAGA (SR=0.45)

(c) Fully connected graph.

0 2 4 6 8 10 12

Communication overhead 10
4

10
-8

10
-6

10
-4

10
-2

10
0

O
p
ti
m

a
lit

y
 g

a
p

CFL-SAGA (=10)

GT-SAGA (SR=0.05)

GT-SAGA (SR=0.15)

GT-SAGA (SR=0.25)

GT-SAGA (SR=0.35)

GT-SAGA (SR=0.45)

(d) Random graph.

0 0.5 1 1.5 2 2.5

Communication overhead 10
5

10
-8

10
-6

10
-4

10
-2

10
0

O
p
ti
m

a
lit

y
 g

a
p

CFL-SAGA (=10)

GT-SAGA (SR=0.05)

GT-SAGA (SR=0.15)

GT-SAGA (SR=0.25)

GT-SAGA (SR=0.35)

GT-SAGA (SR=0.45)

(e) Ring graph.

0 2 4 6 8 10 12

Communication overhead 10
4

10
-8

10
-6

10
-4

10
-2

10
0

O
p
ti
m

a
lit

y
 g

a
p

CFL-SAGA (=10)

GT-SAGA (SR=0.05)

GT-SAGA (SR=0.15)

GT-SAGA (SR=0.25)

GT-SAGA (SR=0.35)

GT-SAGA (SR=0.45)

(f) Fully connected graph.

Fig. 4. Comparisons on ℓ2-regularized logistic regression. First row: Optimality gap vs. number of iterations on different server networks; Second row:
Optimality gap vs. communication overhead on different server networks. SR is short for ‘Sampling rate’.

0 200 400 600 800 1000

Number of iterations

10
-2

10
-1

10
0

10
1

10
2

R
u
n
ti
m

e
(s

)

CFL-SAGA (=10)

GT-SAGA (SR=0.05)

GT-SAGA (SR=0.15)

GT-SAGA (SR=0.25)

GT-SAGA (SR=0.35)

GT-SAGA (SR=0.45)

Fig. 5. Runtime vs. number of iterations on the random graph

0 200 400 600 800 1000

Number of iterations

10
-8

10
-6

10
-4

10
-2

10
0

O
p
ti
m

a
lit

y
 g

a
p

CFL-SAGA (=10)

CFL-ADMM (SR=0.3)

GT-SVRG (SR=0.15)

GT-SARAH (SR=0.15)

GT-SAGA (SR=0.15)

Fig. 6. Optimality gap vs. number of iterations on the random graph

each iteration of GT-SAGA. For this reason, both GT-SVRG

and GT-SARAH can be adapted to the CFL problem in a

way similar to GT-SAGA, except that they need to perform

a full user upload at the beginning of each outer loop. The

parameters for each algorithm is tuned to achieve the best

communication efficiency performance. Fig. 6 and Fig. 7

0 2 4 6 8 10 12

Communication overhead 10
4

10
-8

10
-6

10
-4

10
-2

10
0

O
p
ti
m

a
lit

y
 g

a
p

CFL-SAGA (=10)

CFL-ADMM (SR=0.3)

GT-SVRG (SR=0.15)

GT-SARAH (SR=0.15)

GT-SAGA (SR=0.15)

Fig. 7. Optimality gap vs. communication overhead on the random graph

respectively plot the optimality gap and the communication

overhead vs. the number of iterations on the random network.

Although the other algorithms achieve either similar or even

faster convergence speed compared to CFL-SAGA, the pro-

posed CFL-SAGA algorithm exhibits a significant advantage

in terms of communication efficiency. This is because the

number of per-iteration user uploads of CFL-SAGA is much

smaller than those in other algorithms.

IX. CONCLUSION

In this paper, we proposed a SAGA-based method

for confederated learning. The proposed method employs

conditionally-triggered user selection (CTUS) to achieve

communication-efficient learning of the model vector. The ma-

jor innovation of the proposed method is the use of the CTUS

mechanism, which determines whether the user should upload

its local VR-SG by measuring its contribution relative to the

progress of the algorithm. Thanks to the CTUS mechanism,

11

the proposed algorithm only requires a very small number

of uploads to maintain fast convergence. Theoretical analysis

indicates that the proposed algorithm enjoys a fast linear

convergence and numerical results demonstrate the superior

communication efficiency of the proposed algorithm over GT-

SAGA.

APPENDIX A

PRELIMINARY RESULTS

First we list some inequalities that will be frequently used

in our analysis.

‖x+ y‖22 ≤ (1 + p−1)‖x‖22 + (1 + p)‖y‖22, ∀p > 0, (45)

‖∑N
i=1 xi‖22 ≤ N

∑N
i=1 ‖xi‖22. (46)

Variance decomposition :

E{‖x− y‖22} = E{‖x− E{x}‖22}+ ‖E{x} − y‖22, ∀y,
(47)

E{‖ 1
N

∑N
i=1(xi − E{xi})‖22} = 1

N2E{‖xi − E{xi}‖22},
with {xi}Ni=1 independent of each other. (48)

Next we present several intermediate results.

Lemma 1 (Lemma 10 in [55]). Suppose f is µ-strongly convex

with its gradient being L-Lipschitz continuous. Then for ∀z ∈
R

d, it holds

‖z − α∇f(z)− z∗‖2 ≤ (1− µα)‖z − z∗‖2 (49)

where z∗ is the minimizer of f and α ≤ 1
L is a constant.

Lemma 2 (Lemma 2 in [56]). Suppose W ∈ R
N×N is

primitive and doubly stochastic, then for ∀z ∈ R
N , we have

‖Wz −W∞z‖2 ≤ σ‖z −W∞z‖2, (50)

where σ is the second largest singular value of W .

Lemma 3 (Lemma 1 in [57]). Let the assumptions made in

Section II-B hold. Then with f(x̄) = 1
N

∑N
i=1 fi(x̄) we have

‖∇̄f(x)−∇f(x̄)‖2 ≤ L√
N
‖x− W̄∞x‖2. (51)

Lemma 4 (Corollary 8.1.29 in [58]). Suppose T ∈ R
n×n is a

nonnegative matrix and γ > 0 is a constant. If there exists a

positive vector ψ ∈ R
n such that Tψ ≤ γψ, then ρ(T) ≤ γ,

where ρ(T) , max{|λi|} is the spectral radius of T .

At last, we mention that Step 1 and 5 in Algorithm 3 can

be compactly written as

xk+1 = W̄xk − αyk,

yk+1 = W̄yk + gk+1 − gk, (52)

where gk , [gk1 ; · · · ; gkN].
The left hand side of (40) is the average of

Etk+1

ij
,tk

ij
{‖∆k+1

ij ‖22}s, while 1
N

∑N
i=1 ‖

∑N
i′=1 wii′x

k+1
i′ −

xk+1
i ‖2 in the right hand side of (40) is the average of

‖∑N
i′=1 wii′x

k+1
i′ − xk+1

i ‖22s. The inequality (40) indicates

that

Etk+1

ij
,tk

ij
{‖∆k+1

ij ‖22} . C3‖
∑N

i′=1 wii′x
k+1
i′ − xk+1

i ‖22 (53)

holds in the average sense. As such, if the value of ρ is set

to be sufficiently large, then (17) will not be triggered for

most of the users. Consequently, the number of uploads can

be significantly reduced.

APPENDIX B

PROOF OF PROPOSITION 1

Without loss of generality, we assume that tk+1
ij 6= tkij .

Recall that ∆k+1
ij in (15) is defined as ∆

k+1
ij = gk+1

ij − gkij .

Combining this with the definition of gk+1
ij we have

∆
k+1
ij = Sij ·

(

∇fij,tk+1

ij

(xk+1
i)−∇fij,tk+1

ij

(φk
ij,tk+1

ij

)
)

+∇fij,tk
ij
(xk

i)− Sij ·
(

∇fij,tk
ij
(xk

i)−∇fij,tk
ij
(φk

ij,tk
ij
)
)

−∇fij,tk
ij
(φk

ij,tk
ij
)

= Sij ·
(

∇fij,tk+1

ij

(xk+1
i)−∇fij,tk+1

ij

(φk
ij,tk+1

ij

)
)

− (Sij − 1) ·
(

∇fij,tk
ij
(xk

i)−∇fij,tk
ij
(φk

ij,tk
ij
)
)

(a)
= Sij ·

(

∇fij,tk+1

ij
(φk+1

ij,tk+1

ij

)−∇fij,tk+1

ij
(φk

ij,tk+1

ij

)
)

− (Sij − 1) ·
(

∇fij,tk
ij
(φk+1

ij,tk
ij

)−∇fij,tk
ij
(φk

ij,tk
ij
)
)

, (54)

where in (a) we have used the fact that φk+1

ij,tk+1

ij

= xk+1
i (resp.

φ
k+1
ij,tk

ij

= φ
k
ij,tkij

= xk
i). Combing (54) with the Lipschitz

continuity of fij,tk
ij

and fij,tk+1

ij
we have

‖∆k+1
ij ‖22 ≤ 2S2

ij · L2
ij,tk+1

ij

·
∥
∥
∥φ

k+1

ij,tk+1

ij

− φk
ij,tk+1

ij

∥
∥
∥

2

2

+ 2S2
ij · L2

ij,tkij
·
∥
∥
∥φ

k+1
ij,tk

ij

− φk
ij,tk

ij

∥
∥
∥

2

2

≤ 4S2
ij · L2

ij,tk+1

ij

·
(∥
∥φk+1

ij,tk+1

ij

− x∗∥∥2
2
+
∥
∥φk

ij,tk+1

ij

− x∗∥∥2
2

)

+ 4S2
ij · L2

ij,tk
ij

·
(∥
∥φk+1

ij,tk
ij

− x∗∥∥2
2
+
∥
∥φk

ij,tk
ij
− x∗∥∥2

2

)

.

(55)

where Lij,t is the Lipschitz constant corresponding to ∇fij,t.
From (55) we can further deduce that

N∑

i=1

Pi∑

j=1

‖∆k+1
ij ‖22 ≤

N∑

i=1

Pi∑

j=1

4S2
ij

(

L2
ij,tk+1

ij

∥
∥φk+1

ij,tk+1

ij

− x∗∥∥2
2
+

L2
ij,tk

ij

∥
∥φ

k+1
ij,tk

ij

− x∗∥∥2
2

)

+
N∑

i=1

Pi∑

j=1

4S2
ij

(

L2
ij,tk+1

ij

∥
∥φ

k
ij,tk+1

ij

− x∗∥∥2
2
+ L2

ij,tk
ij

∥
∥φ

k
ij,tk

ij
− x∗∥∥2

2

)

. (56)

which implies that

Etk+1

ij
,tk

ij

{∑N
i=1

∑Pi

j=1 ‖∆k+1
ij ‖22}

(a)

≤ 2
N∑

i=1

Pi∑

j=1

4S2
ij

Sij∑

t=1

L2
ij,t

Sij

(∥
∥φk+1

ij,t − x∗∥∥2
2
+
∥
∥φk

ij,t − x∗∥∥2
2

)

≤ 2L̄(Dk+1 +Dk) (57)

where

L̄ = max{Lk+1, Lk},
Lk+1 =

(
∑N

i=1

∑Pi

j=1 4S
2
ij

∑Sij

t=1

L2
ij,t

Sij

∥
∥φ

k+1
ij,t − x∗∥∥2

2

)/

12

(
∑N

i=1

∑Pi

j=1

∑Sij

t=1

∥
∥φk+1

ij,t − x∗∥∥2
2

︸ ︷︷ ︸

=Dk+1

)

,

Lk =
(
∑N

i=1

∑Pi

j=1 4S
2
ij

∑Sij

t=1

L2
ij,t

Sij

∥
∥φk

ij,t − x∗∥∥2

2

)/

(
∑N

i=1

∑Pi

j=1

∑Sij

t=1

∥
∥φk

ij,t − x∗∥∥2
2

︸ ︷︷ ︸

Dk

)

. (58)

Taking the full expectation for both sides of (57) yields

E{∑N
i=1

∑Pi

j=1 ‖∆k+1
ij ‖22} ≤ E{2L̄(Dk+1 +Dk)}

≈ E{4L̄Dk+1}
(89)
≤ E

{

4L̄
(

(1− 1
Sij

)Dk + 2PiX
k+1 + 2PiNX̄k+1

)}

(59)

Assuming E{Dk+1} ≈ E{Dk}, the above inequality implies

that

E{4L̄Dk+1} ≤ E

{

8SijL̄Pi

(
Xk+1 +NX̄k+1

)}

= E

{

8SijL̄Pi

(
‖xk+1 − W̄∞x

k+1‖22 + ‖W̄∞x
k+1 − x̃∗‖22

)}

(38)
≤ E

{

8(1 + C1)Sij L̄Pi · ‖xk+1 − W̄∞x
k+1‖22

}

= E

{

8(1 + C1)SijL̄Pi · ‖xk+1 − W̄xk+1 + W̄xk+1−

W̄∞x
k+1‖22

}

≤ E

{

16(1 + C1)Sij L̄Pi

(
‖xk+1 − W̄xk+1‖22

+ ‖W̄xk+1 − W̄∞x
k+1‖22

)}

(39)
≤ E

{

16(1 + C1)(1 + C2)SijL̄Pi
︸ ︷︷ ︸

[(60)−1]

·‖xk+1 − W̄xk+1‖22
}

= E

{

[(60)− 1] ·
N∑

i=1

∥
∥
∑N

i′=1 wii′x
k+1
i′ − xk+1

i

∥
∥
2

2

}

. (60)

Combining (59) and (60) we obtain

E{∑N
i=1

∑Pi

j=1 ‖∆k+1
ij ‖22}

(59)
. E{4L̄Dk+1}

(60)
≤ E

{

[(60)− 1] ·
N∑

i=1

∥
∥
∑N

i′=1 wii′x
k+1
i′ − xk+1

i

∥
∥
2

2

}

. (61)

Multiplying 1∑
N
i=1

Pi
to both sides of (61) yields the desired

result.

APPENDIX C

PROVING THE FIRST INEQUALITY IN (22)

The first inequality, i.e., (62), is proved in the following

lemma. For completeness and clarity, we provide a simple

proof of this lemma.

Lemma 5 (Lemma 4 in [40]). Let the assumptions made in

Section II-B hold. Then

Xk+1 ≤ 1+σ2

2 ·Xk + 2α2

1−σ2 · Y k, (62)

Xk+1 ≤ 2σ2 ·Xk + 2α2 · Y k. (63)

Proof. According to the first equality of (52), it holds that

Xk+1 (52)
= ‖W̄xk − αyk − W̄∞(W̄xk − αyk)‖22

(a)

≤ (1 + p)‖W̄xk − W̄∞xk‖22 + (1 + 1
p)α

2‖yk − W̄∞yk‖22
(b)

≤(1 + p)σ2 ·Xk + (1 + 1
p)α

2 · Y k, ∀p > 0, (64)

where (a) is because W̄∞W̄ = W̄∞ as well as (45), and

(b) comes from Lemma 2 (note that W and W̄ shares similar

properties because W̄ , W ⊗ Id). Setting p = 1−σ2

2σ2 (resp.

1) and using σ < 1 leads to (62) (resp. (63)).

APPENDIX D

PROVING THE SECOND INEQUALITY IN (22)

Before starting, we introduce several notations that will be

used later. let Fk = {tk′

ij}i=N,j=Pi,k
′=k

i,j,k′=1 denote the set of

random variables appeared before the (k+1)th iteration. Also

let EFk{·} represent the conditional expectation that is con-

ditioned on Fk. At last, we use rk to refer to {tkij}i=N,j=Pi

i=1,j=1 ,

which is the set of random variables in the kth iteration. The

second inequality in (22) reads as follows

E{X̄k+1} ≤ E{b1 · X̄k + b2 ·Xk + b3 ·Dk−1} (65)

We will prove this inequality in Lemma 7. Before presenting

Lemma 7, we first provide an important intermediate result.

Lemma 6. Suppose the assumptions in Section II-B hold. Let

(xk,yk) be generated by the proposed Algorithm 3. Then

E{‖gk −∇f(xk)‖22} ≤ E{c1Xk + c2X̄
k + c3D

k−1}, (66)

where ∇f(xk) , [∇f1(x
k
1); · · · ;∇fN (xk

N)], gk ,
[gk1 ; · · · ; gkN], gki is defined in Algorithm 3,

c1 , 8L2(1 + Pi · Sij
2
) + 12ρ(1 + σ2)Pi

2
,

c2 , 8L2(1 + Pi · Sij
2
)N, c3 , 4L2Sij , (67)

Pi , maxi{Pi} and Sij = maxi,j{Sij}.

Proof. For notational convenience, denote Gk = ‖gk −
∇f(xk)‖22 and Gk

i = ‖gki − ∇fi(x
k)‖22. Since E{Gk} =

E{∑N
i=1 G

k
i }, we should separately bound each E{Gk

i }. For

this term, we first consider its conditional expectation:

E
Fk−1

rk {Gk
i }

(a)
= E

Fk−1

rk

{∥
∥
∥gki − E

Fk−1

rk {gki +
∑

j∈Nk
i

∆
k
ij}

∥
∥
∥

2

2

}

(46)
≤ 2EFk−1

rk

{

‖gki − E
Fk−1

rk {gki }‖22 +
∥
∥E

Fk−1

rk

{ ∑

j∈Nk
i

∆
k
ij

}∥
∥
2

2

}

(b)

≤ 2EFk−1

rk {‖gki −∇fi(x
∗)‖22 + ‖∑j∈Nk

i
∆

k
ij‖22}, (68)

where (a) follows from

E
Fk−1

rk {gki +
∑

j∈Nk
i
∆

k
ij}

(18)
= E

Fk−1

rk {∑Pi

j=1(g
k−1
ij +∆

k
ij)} = ∇fi(x

k), (69)

13

(b) has invoked (47) for the first term (by treating ∇fi(x
∗)

as y) and Jensen’s inequality for the second term. Regarding

‖∑j∈Nk
i
∆

k
ij‖22 in the last line of (68), we have

E
Fk−1

rk {‖∑j∈Nk
i
∆

k
ij‖22}

(46)
≤ E

Fk−1

rk {|N k
i |

∑

j∈Nk
i
‖∆k

ij‖22}
(a)

≤ |N k
i |2ρ‖xk

i − [W̄]ix
k‖22, (70)

where [W̄]i represents the ith block-row of W̄ , and (a) comes

from Step 3.2 of Algorithm 3. Substituting (70) into (68) yields

E
Fk−1

rk {Gk
i }

≤ E
Fk−1

rk {2‖gki −∇fi(x
∗)‖22}+ 2|N k

i |2ρ‖xk
i − [W̄]ix

k‖22
(47)
= 2|N k

i |2ρ‖xk
i − [W̄]ix

k‖22 + 2EFk−1

rk {‖gki − E
Fk−1

rk {gki)‖22}
︸ ︷︷ ︸

,T2

+ 2 ‖EFk−1

rk {gki } − ∇fi(x
∗)‖22

︸ ︷︷ ︸

,T1

. (71)

We next separately bound T1 and T2. For T1 we have

T1 = ‖EFk−1

rk {gki +
∑

j∈Nk
i
(∆k

ij −∆
k
ij)} − ∇fi(x

∗)‖22
(a)

≤ 2‖∇fi(x
k
i)−∇fi(x

∗)‖22 + 2‖EFk−1

rk {∑j∈Nk
i
∆

k
ij}‖22

(b)

≤ 2L2‖xk
i − x∗‖22 + 2EFk−1

rk {|N k
i |

∑

j∈Nk
i
‖∆k

ij‖22}
(70)
≤ 2L2‖xk

i − x∗‖22 + 2|N k
i |2ρ‖xk

i − [W̄]ix
k‖22, (72)

where (a) has used (69) and (45), (b) has invoked the Lipschitz

continuity of ∇fi and Jensen’s inequality. For T2 it holds that

T2
(18)
= E

Fk−1

rk {‖∑j /∈Nk
i
gkij − E

Fk−1

rk {∑j /∈Nk
i
gkij}‖22}

(48)
= E

Fk−1

rk {∑j /∈Nk
i
‖gkij − E

Fk−1

rk {gkij}‖22},
≤ E

Fk−1

{tkij}
{∑Pi

j=1 ‖gkij − E
Fk−1

tkij
{gkij}‖22}

(a)
=

∑Pi

j=1 E
Fk−1

{tkij}

{∥
∥
∥Sij ·

(

∇fij,tk
ij
(xk

i)−∇fij,tk
ij
(φk−1

ij,tk
ij

)

− E
Fk−1

tk
ij

{
∇fij,tk

ij
(xk

i)−∇fij,tk
ij
(φk−1

ij,tk
ij

)
})

∥
∥
∥

2

2

}

(47)
≤ ∑Pi

j=1 S
2
ij · EFk−1

tk
ij

{

‖∇fij,tk
ij
(xk

i)−∇fij,tk
ij
(φk−1

ij,tk
ij

)‖22
}

=
∑Pi

j=1 Sij

∑Sij

t=1 ‖∇fij,t(x
k
i)−∇fij,t(φ

k−1
ij,t)‖22

(b)

≤
Pi∑

j=1

2L2Sij

Sij∑

t=1

(

‖xk
i − x∗‖22 + ‖x∗ − φk−1

ij,t ‖22
)

, (73)

where (a) used the definition of gkij and the fact that

E
Fk−1

tk
ij

{gkij} = ∇fij(x
k
i) = Sij · EFk−1

tk
ij

{∇fij,tk
ij
(xk

i)}, and

(b) used the Lipschitz continuity of ∇fij,t as well as (46).

Substituting (72) and (73) into (71) yields

E
Fk−1

rk {Gk} = E
Fk−1

rk {∑N
i=1 G

k
i }

≤ ∑N
i=1

(
4L2(1 + PiS

2
ij)‖xk

i − x∗‖22+
Pi∑

j=1

4L2Sij

Sij∑

t=1
‖x∗ − φk−1

ij,t ‖22 + 6|N k
i |2ρ‖xk

i − [W̄]ix
k‖22

)

≤ ∑N
i=1 8L

2(1 + PiS
2
ij)(‖x̄k − x∗‖22 + ‖xk

i − x̄k‖22)

+ 4L2Sij ·Dk−1 + 6Pi
2
ρ‖xk − W̄xk‖22,

(a)

≤ c2X̄
k + c1X

k + c3D
k−1, (74)

where Sij = maxi,j{Sij}, Pi , maxi{Pi}, {ci}3i=1 are

defined in (67), and (a) is because

‖xk − W̄xk‖22 ≤ 2‖xk − W̄∞xk‖22 + 2‖W̄xk − W̄∞xk‖22
Lemma 2

≤ 2(1 + σ2)‖xk − W̄∞xk‖22 = 2(1 + σ2)Xk. (75)

Taking a full expectation for both sides of (74) yields (66).

With the help of Lemma 6, we can proceed to prove (65).

Lemma 7. Suppose the assumptions in Section II-B hold. Let

(xk+1,yk+1) be generated by the proposed Algorithm 3. It

is also assumed that α ≤ 1
L and y0 = g0 = 0. Then the

following inequalities hold:

E{X̄k+1} ≤ E{b1 · X̄k + b2 ·Xk + b3 ·Dk−1} (76)

E{X̄k+1} ≤ E{(2 + 2c1
L2) · X̄k + b̄ ·Xk + b3 ·Dk−1} (77)

where

b1 = 1− µα+ 2c2α
2

N , b2 = 2αL2+4αρ(1+σ2)Pi
2
+2µα2L2+2µα2c1

µN ,

b3 = 2α2c3
N , b̄ = 4α2L2+4α2ρ(1+σ2)Pi

2
+2α2c1

N . (78)

Comment 1. Note that (76) is the second inequality in (22).

While the inequality (77) will be used in Lemma 9.

Proof. Define ḡk , 1
N (1T

N ⊗ Id)gk as the average of gki s.

Since y0 = g0 = 0, according to (52) it holds that

y1
(52)
= W̄y0 + g1 − g0 ⇒ y1 = g1

⇒ W̄∞y2 (52)
= W̄∞(W̄y1 + g2 − y1) (a)⇒ ȳ2 = ḡ2 (79)

where (a) is because W̄∞y2 = ȳ2, W̄∞W̄ = W̄∞ and

W̄∞g2 = ḡ2. Using deduction we have

ḡk = ȳk, ∀k. (80)

Multiplying
1
T
N⊗Id
N to the first line of (52) yields

x̄k+1 (a)
= x̄k − αȳk

(b)
= x̄k − αḡk (81)

where (a) is because
1
T
N⊗Id
N W̄ =

1
T
N⊗Id
N (W is doubly

stochastic), and (b) is because ḡk = ȳk. Then we have

E
Fk−1

rk {X̄k+1} (81)
= E

Fk−1

rk {‖x̄k − αḡk − x∗‖22}
= E

Fk−1

rk {‖x̄k − α∇f(x̄k) + α∇f(x̄k)− αḡk − x∗‖22}
= ‖x̄k − x∗ − α∇f(x̄k)‖22 + E

Fk−1

rk

{

α2 ‖∇f(x̄k)− ḡk‖22
︸ ︷︷ ︸

[(82)-2]

+ 2α 〈x̄k − x∗ − α∇f(x̄k),∇f(x̄k)− ḡk〉
︸ ︷︷ ︸

[(82)-1]

}

(a)

≤ (1− µα)2X̄k + E
Fk−1

rk {2α[(82)-1] + α2[(82)-2]} (82)

where (a) invoked Lemma 1.

14

1) Bounding [(82)-1] and [(82)-2]: Regarding the term

[(82)-1], we have

E
Fk−1

rk {[(82)-1]}
= E

Fk−1

rk {〈x̄k − x∗ − α∇f(x̄k)
︸ ︷︷ ︸

[(83)-1]

,∇f(x̄k)− ḡk〉}

= E
Fk−1

rk

{

〈[(83)-1],∇f(x̄k)− ∇̄f(xk)〉+

〈[(83)-1], ∇̄f(xk)− (ḡk + 1
N

∑N
i=1

∑

j∈Nk
i
∆

k
ij)〉

+ 〈[(83)-1], 1
N

∑N
i=1

∑

j∈Nk
i
∆

k
ij〉

︸ ︷︷ ︸

[(83)-2]

}

(a)

≤ E
Fk−1

rk {‖[(83)-1]‖2 · ‖∇f(x̄k)− ∇̄f(xk)‖2 + [(83)-2]}
(b)

≤ E
Fk−1

rk {(1− µα)X̄k · ‖∇f(x̄k)− ∇̄f(xk)‖2 + [(83)-2]}
(c)

≤ E
Fk−1

rk

{
p(1−µα)

2 X̄k + (1−µα)
2p ‖∇f(x̄k)− ∇̄f(xk)‖22

+ [(83)-2]
}

(d)

≤ E
Fk−1

rk

{p(1−µα)
2 X̄k + L2

2pNXk + [(83)-2]
}
, ∀p > 0, (83)

where ∇̄f(x) = 1
N (1T

N ⊗ Id)∇f(x) is the average of

∇fi(xi)s, and (a) has invoked the Cauchy-Schwarz inequality

as well as the fact that

E
Fk−1

rk {∇̄f(xk)− (ḡk + 1
N

∑N
i=1

∑

j∈Nk
i
∆

k
ij)} = 0,

(b) used Lemma 1, (c) uses the inequality 〈x,y〉 ≤ p
2‖x‖22 +

1
2p‖y‖22, ∀p > 0, and (d) invoked Lemma 3 as well as 1 −
µα < 1. For [(83)-2] we have

E
Fk−1

rk {[(83)-2]}
(a)

≤ E
Fk−1

rk

{

(1− µα)X̄k‖ 1
N

N∑

i=1

∑

j∈Nk
i

∆
k
ij‖2

}

≤ p(1−µα)
2 X̄k + E

Fk−1

rk

{
(1−µα)

2p ‖ 1
N

∑N
i=1

∑

j∈Nk
i
∆

k
ij‖22

}

(b)

≤ p(1−µα)
2 X̄k + 1

2pN

∑N
i=1 Pi

∑Pi

j=1 ρ‖xk
i − [W̄]ix

k‖22
(75)
≤ p(1−µα)

2 X̄k + ρ(1+σ2)Pi
2

pN Xk, ∀p > 0, (84)

where (a) has invoked the Cauchy-Schwarz inequality as well

as Lemma 1, and (b) used (46) and (70). As for [(82)-2], we

have

E
Fk−1

rk {[(82)-2]}
(45)
≤ 2‖∇f(x̄k)− ∇̄f(xk)‖22 + E

Fk−1

rk {2‖∇̄f(xk)− ḡk‖22}
(a)

≤ 2L2

N Xk + E
Fk−1

rk { 2
N

∑N
i=1 ‖gki −∇fi(x

k)‖22}
= 2L2

N Xk + E
Fk−1

rk { 2
N ‖gk −∇f(xk)‖22} (85)

where (a) comes from the definitions of ∇̄f(xk) and ḡk,

Lemma 3 as well as (46).

2) Combining: Substituting (83), (84) and (85) into (82)

yields

E
Fk−1

rk {‖x̄k+1 − x∗‖22} ≤
(
(1− µα)2 + 2αp(1− µα)

)
X̄k

︸ ︷︷ ︸

[(86)-1]

+
(
αL2

pN + 2αρ(1+σ2)Pi
2

pN + 2α2L2

N

)
Xk

︸ ︷︷ ︸

[(86)-2]

+ E
Fk−1

rk { 2α2

N ‖gk −∇f(xk)‖22}
(74)
≤ [(86)-1] + [(86)-2] + 2α2

N (c1X
k + c2X̄

k + c3D
k−1)

(86)

In (86), respectively setting p = µ
2 and p = 1

2α yields

E
Fk−1

rk {X̄k+1} ≤ b1 · X̄k + b2 ·Xk + b3 ·Dk−1, (87)

E
Fk−1

rk {X̄k+1}
(a)

≤ (2 + 2c2
L2)X̄

k + b̄Xk + b3D
k−1 (88)

where in (a) we used the assumption that α ≤ 1
L , and b2, b3

and b̄ are defined in (78). Taking the full expectation for both

sides of (87) and (88) yields the desired results.

APPENDIX E

PROVING THE THIRD INEQUALITY IN (22)

The third inequality in (22), i.e., (89), is proved in the

following lemma.

Lemma 8. Suppose the assumptions in Section II-B hold. Also

let (xk+1,yk+1) be generated by Algorithm 3. Then

E{Dk} ≤ E
{
(1− 1

Sij
)Dk−1 + 2PiX

k + 2PiN · X̄k
}

(89)

Proof. For Dk we have

E
Fk−1

rk {Dk} = E
Fk−1

{tk
ij
} {

∑N
i=1

∑Pi

j=1

∑Sij

tk
ij
=1

‖x∗ − φk
ij,tk

ij
‖22}

=
N∑

i=1

Pi∑

j=1

Sij∑

t=1

(
(1− 1

Sij
)‖x∗ − φk−1

ij,t ‖22 + 1
Sij

‖x∗ − xk
i ‖22

)

≤ (1− 1
Sij

)Dk−1 + 2Pi

∑N
i=1(‖xk

i − x̄k‖22 + ‖x̄k − x∗‖22)
= (1− 1

Sij
)Dk−1 + 2PiX

k + 2PiN · X̄k (90)

where Sij = maxi,j{Sij} and Pi = maxi{Pi}.

APPENDIX F

PROVING THE FORTH INEQUALITY IN (22)

The forth inequality in (22), i.e., (91), is proved in the

following lemma.

Lemma 9. Suppose the assumptions in Section II-B hold. Let

(xk+1,yk+1) be generated by Algorithm 3. Also assume that

α < 1
4
√
2L

. Then

E{Y k+1} ≤ E
{
a1X

k + a2X̄
k + a3Y

k + a4D
k−1

}
(91)

where

a1 = 25L2(1+σ2)+4(1+σ2)c1+3(1+σ2)(2c1σ
2+c2b̄+2c3PiN)

1−σ2 ,

a2 =
NL2(1+σ2)+4(1+σ2)c2+3(1+σ2)(c2(2+

2c2

L2)+2c3PiN)

1−σ2 ,

a3 = 1+σ2

2 + 24α2L2(1+σ2)
1−σ2 + 6α2c1(1+σ2)

1−σ2 ,

a4 = 4(1+σ2)c3
1−σ2 +

3(1+σ2)(b3c2+c3(1−Sij
−1

))
1−σ2 (92)

Proof. The proof of this lemma is split into three parts. The

first part provides an upper bound of E{Y k+1}. However, the

term Gk+1 , ‖gk+1 − ∇f(xk+1)‖22 contained in this bound

15

needs to be further bounded. After bounding Gk+1 in the

second part, the desired result is proved in the third part.

Part I: According to the second line of (52), we have

Y k+1 (a)
= ‖(W̄ − W̄∞)yk + (I − W̄∞)(gk+1 − gk))‖22

(45)
≤ (1 + p)‖(W̄ − W̄∞)yk‖22
+ (1 + 1

p)‖(I − W̄∞)(gk+1 − gk))‖22
(b)

≤ (1 + p)σ2Y k + (1 + p−1)‖gk+1 − gk‖22
(c)
= 1+σ2

2 Y k + 1+σ2

1−σ2 ‖gk+1 − gk +∇f(xk+1)−∇f(xk+1)

−∇f(xk) +∇f(xk)‖22
(d)

≤ 1+σ2

2 Y k + 3(1+σ2)
1−σ2 (Gk+1 +Gk + L2‖xk+1 − xk‖22)

(93)

where (a) is because of W̄∞W̄ = W̄∞, (b) is because of

Lemma 2 as well as ‖I − W̄∞‖2 = 1, (c) is obtained by

setting p = 1−σ2

2σ2 , and (d) used (46) as well as the Lipschitz

continuity of ∇f . Regarding ‖xk+1 − xk‖22, we have

‖xk+1 − xk‖22
(a)
= ‖(W̄ − I)(xk − W̄∞x

k)− αyk‖22
(b)

≤ 8Xk + 2α2‖yk‖22
(c)
= 8Xk + 2α2‖yk − W̄∞(yk − gk +∇f(xk)−∇f(xk)

+∇f(x∗))‖22
(d)

≤ 8Xk + 2α2(
√
Y k +

√
Gk + L‖xk − (1N ⊗ Id)x∗‖2)2

(e)

≤ 8Xk + 2α2(
√
Y k +

√
Gk + L

√
Xk + L

√
N
√
X̄k)2

(46)
≤ 8Xk + 8α2(Y k +Gk + L2Xk + L2NX̄k) (94)

where (a) is because of (52) and W̄∞W̄ = W̄∞, (b) used

(46) and ‖W̄ − I‖2 ≤ 2 (using triangle inequality with

‖W̄ ‖2 < 1), (c) is because of

W̄∞y
k = (1N ⊗ Id)ȳk

(80)
= (1N ⊗ Id)ḡk = W̄∞g

k (95)

as well as W̄∞∇f(x∗) = 0, (d) used the triangle inequality

and the fact that ‖W̄∞‖2 = 1 as well as the Lipschitz

continuity of ∇f , (e) is due to

‖xk − (1N ⊗ Id)x∗‖2 ≤ ‖xk − (1N ⊗ Id)x̄k‖2
+ ‖(1N ⊗ Id)(x̄k − x∗)‖2 ≤

√
Xk +

√
N
√

X̄k. (96)

Substituting (94) into (93) and also using the assumption

24L2α2 ≤ 1 we obtain

Y k+1 ≤ (1 + σ2)
(
(12 + 24α2L2

1−σ2)Y k + 25L2

1−σ2X
k + NL2

1−σ2 X̄
k+

4
1−σ2G

k + 3
1−σ2G

k+1
)
. (97)

Part II: In (97), the term Gk+1 can be bounded by

E{Gk+1}
(66)
≤ E{c1Xk+1 + c2X̄

k+1 + c3D
k}

(a)

≤ E

{(
2c1σ

2 + c2b̄+ 2c3Pi)X
k + (c2(2 +

2c2
L2) + 2c3PiN)X̄k

+ (b3c2 + c3(1− 1
Sij

)) ·Dk−1 + 2α2c1 · Y k
}

(98)

where (a) is obtained by invoking (63), (77) and (89).

Part III: Substituting (66) and (98) into (97) yields

E{Y k+1} = E
{
a1X

k + a2X̄
k + a3Y

k + a4D
k−1

}
(99)

where {ai}4i=1 are defined in (92).

REFERENCES

[1] J. Konečný, H. McMahan, F. Yu, P. Richtárik, A. Suresh, and D. Ba-
con, “Federated learning: Strategies for improving communication effi-
ciency,” arXiv preprint arXiv:1610.05492, 2016.

[2] T. Li, A. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing

Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[3] S. Stich, “Local SGD converges fast and communicates little,” Interna-

tional Conference on Learning Representations, pp. 1–17, 2019.

[4] F. Haddadpour, M. Kamani, M. Mahdavi, and V. Cadambe, “Local SGD
with periodic averaging: Tighter analysis and adaptive synchronization,”
Advances in Neural Information Processing Systems, pp. 11 080–11 092,
2019.

[5] H. Yuan and T. Ma, “Federated accelerated stochastic gradient descent,”
Advances in Neural Information Processing Systems, pp. 5332–5344,
2020.

[6] Z. Li, D. Kovalev, X. Qian, and P. Richtárik, “Acceleration for com-
pressed gradient descent in distributed and federated optimization,”
International Conference on Machine Learning, pp. 5895–5904, 2020.

[7] L. Condat, I. Agarsky, and P. Richtárik, “Provably doubly acceler-
ated federated learning: The first theoretically successful combina-
tion of local training and compressed communication,” arXiv preprint

arXiv:2210.13277, 2022.

[8] K. Mishchenko, G. Malinovsky, S. Stich, and P. Richtárik, “Proxskip:
Yes! local gradient steps provably lead to communication acceleration!
finally!” International Conference on Machine Learning, pp. 15 750–
15 769, 2022.

[9] J. Wang and G. Joshi, “Cooperative SGD: A unified framework for
the design and analysis of communication-efficient SGD algorithms,”
Journal of Machine Learning Research, vol. 22, no. 213, pp. 1–50, 2021.

[10] R. Pathak and M. Wainwright, “FedSplit: An algorithmic framework for
fast federated optimization,” Advances in Neural Information Processing

Systems, pp. 7057–7066, 2020.

[11] S. Cen, H. Zhang, Y. Chi, W. Chen, and T. Liu, “Convergence of
distributed stochastic variance reduced methods without sampling extra
data,” IEEE Transactions on Signal Processing, vol. 68, pp. 3976–3989,
2020.

[12] X. Zhang, M. Hong, S. Dhople, W. Yin, and Y. Liu, “FedPD: A federated
learning framework with adaptivity to non-iid data,” IEEE Transactions

on Signal Processing, vol. 69, pp. 6055–6070, 2021.

[13] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of FedAvg on non-iid data,” arXiv preprint arXiv:1907.02189, 2019.

[14] T. Li, A. Sahu, M. Sanjabi, M. Zaheer, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of

Machine Learning and Systems, vol. 2, pp. 429–450, 2020.

[15] W. Liu, L. Chen, Y. Chen, and W. Zhang, “Accelerating federated learn-
ing via momentum gradient descent,” IEEE Transactions on Parallel and

Distributed Systems, vol. 31, no. 8, pp. 1754–1766, 2022.

[16] H. Yang, Z. Liu, T. Quek, and H. Poor, “Scheduling policies for federated
learning in wireless networks,” IEEE Transactions on Communications,
vol. 68, no. 1, pp. 317–333, 2019.

[17] M. Amiri, D. Gündüz, S. Kulkarni, and H. Poor, “Convergence of update
aware device scheduling for federated learning at the wireless edge,”
IEEE Transactions on Wireless Communications, vol. 20, no. 6, pp.
3643–3658, 2021.

[18] J. Ren, Y. He, D. Wen, G. Yu, K. Huang, and D. Guo, “Scheduling
for cellular federated edge learning with importance and channel aware-
ness,” IEEE Transactions on Wireless Communications, vol. 19, no. 11,
pp. 7690–7703, 2020.

[19] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani,
“FedPAQ: A communication-efficient federated learning method with
periodic averaging and quantization,” International Conference on Arti-

ficial Intelligence and Statistics, pp. 2021–2031, 2020.

[20] M. Chen, N. Shlezinger, H. Poor, Y. Eldar, and S. Cui, “Communication-
efficient federated learning,” Proceedings of the National Academy of

Sciences, vol. 118, no. 17, p. e2024789118, 2021.

http://arxiv.org/abs/1610.05492
http://arxiv.org/abs/2210.13277
http://arxiv.org/abs/1907.02189

16

[21] Q. Dinh, N. Pham, D. Phan, and L. Nguyen, “FedDR-Randomized
douglas-rachford splitting algorithms for nonconvex federated composite
optimization,” Advances in Neural Information Processing Systems, pp.
30 326–30 338, 2021.

[22] T. Chen, G. Giannakis, T. Sun, and W. Yin, “LAG: Lazily aggregated
gradient for communication-efficient distributed learning,” Advances in
Neural Information Processing Systems, pp. 5050–5060, 2018.

[23] T. Chen, Y. Sun, and W. Yin, “Communication-adaptive stochastic
gradient methods for distributed learning,” IEEE Transactions on Signal
Processing, vol. 69, no. 3, pp. 4637–4651, 2021.

[24] J. Sun, T. Chen, G. Giannakis, Q. Yang, and Z. Yang, “Lazily aggregated
quantized gradient innovation for communication-efficient federated
learning,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 44, no. 4, pp. 2031–2044, 2022.

[25] A. Aji and K. Heafield, “Sparse communication for distributed gradient
descent,” Proceedings of the 2017 Conference on Empirical Methods in

Natural Language Processing, pp. 440–445, 2017.
[26] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:

Communication-efficient SGD via gradient quantization and encoding,”
Advances in Neural Information Processing Systems, pp. 1707–1718,
2017.

[27] J. Bernstein, Y. Wang, K. Azizzadenesheli, and A. Anandkumar,
“SignSGD: Compressed optimisation for non-convex problems,” Inter-

national Conference on Machine Learning, pp. 560–569, 2018.
[28] S. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi, “Error feedback

fixes signSGD and other gradient compression schemes,” International

Conference on Machine Learning, pp. 3252–3261, 2019.
[29] J. Wu, W. Huang, J. Huang, and T. Zhang, “Error compensated quan-

tized SGD and its applications to large-scale distributed optimization,”
International Conference on Machine Learning, pp. 5325–5333, 2018.

[30] N. Shlezinger, M. Chen, Y. Eldar, H. Poor, and S. Cui, “UVeQFed:
Universal vector quantization for federated learning,” IEEE Transactions

on Signal Processing, vol. 69, pp. 500–514, 2020.
[31] S. Stich, J. Cordonnier, and M. Jaggi, “Sparsified SGD with memory,”

Advances in Neural Information Processing Systems, pp. 4452–4463,
2018.

[32] A. Beznosikov, S. Horváth, P. Richtárik, and M. Safaryan, “On biased
compression for distributed learning,” arXiv preprint arXiv:2002.12410,
2020.

[33] S. Horváth, D. Kovalev, K. Mishchenko, S. Stich, and P. Richtárik,
“Stochastic distributed learning with gradient quantization and variance
reduction,” Optimization Methods and Software, vol. 38, no. 1, pp. 91–
106, 2023.

[34] P. Richtárik, I. Sokolov, E. Gasanov, I. Fatkhullin, Z. Li, and E. Gor-
bunov, “3PC: Three point compressors for communication-efficient dis-
tributed training and a better theory for lazy aggregation,” International

Conference on Machine Learning, pp. 18 596–18 648, 2022.
[35] I. Hegedüs, G. Danner, and M. Jelasity, “Gossip learning as a decentral-

ized alternative to federated learning,” IFIP International Conference on
Distributed Applications and Interoperable Systems, pp. 74–90, 2019.

[36] S. Savazzi, M. Nicoli, and V. Rampa, “Federated learning with cooper-
ating devices: A consensus approach for massive IoT networks,” IEEE
Internet of Things Journal, vol. 7, no. 5, pp. 4641–4654, 2020.

[37] H. Xing, O. Simeone, and S. Bi, “Federated learning over wireless
device-to-device networks: Algorithms and convergence analysis,” IEEE

Journal on Selected Areas in Communications, vol. 39, no. 12, pp. 3723–
3741, 2021.

[38] A. Koloskova, S. Stich, and M. Jaggi, “Decentralized stochastic op-
timization and gossip algorithms with compressed communication,”
International Conference on Machine Learning, pp. 3478–3487, 2019.

[39] H. Ye, L. Liang, and G. Li, “Decentralized federated learning with
unreliable communications,” IEEE Journal of Selected Topics in Signal

Processing, vol. 16, no. 3, pp. 487–500, 2022.
[40] R. Xin, U. Khan, and S. Kar, “Variance-reduced decentralized stochas-

tic optimization with accelerated convergence,” IEEE Transactions on

Signal Processing, vol. 68, pp. 6255–6271, 2020.
[41] ——, “Fast decentralized nonconvex finite-sum optimization with recur-

sive variance reduction,” SIAM Journal on Optimization, vol. 32, no. 1,
pp. 1–28, 2022.

[42] D. Kovalev, A. Koloskova, M. Jaggi, P. Richtarik, and S. Stich, “A
linearly convergent algorithm for decentralized optimization: Sending
less bits for free!” International Conference on Artificial Intelligence

and Statistics, pp. 4087–4095, 2021.
[43] N. Singh, D. Data, J. George, and S. Diggavi, “SPARQ-SGD: Event-

triggered and compressed communication in decentralized optimization,”
IEEE Transactions on Automatic Control, vol. 68, no. 2, pp. 721–736,
2022.

[44] M. Qureshi, R. Xin, S. Kar, and U. Khan, “Push-SAGA: A decentralized
stochastic algorithm with variance reduction over directed graphs,” IEEE
Control Systems Letters, vol. 6, pp. 1202–1207, 2021.

[45] ——, “Variance reduced stochastic optimization over directed
graphs with row and column stochastic weights,” arXiv preprint

arXiv:2202.03346, 2022.
[46] M. Qureshi and U. Khan, “Stochastic first-order methods over distributed

data,” 2022 IEEE 12th Sensor Array and Multichannel Signal Processing

Workshop, pp. 405–409, 2022.
[47] B. Wang, J. Fang, H. Li, X. Yuan, and Q. Ling, “Confederated learning:

Federated learning with decentralized edge servers,” IEEE Transactions

on Signal Processing, vol. 71, pp. 248–263, 2023.
[48] S. Kia, J. Cortés, and S. Martinez, “Distributed convex optimization via

continuous-time coordination algorithms with discrete-time communica-
tion,” Automatica, vol. 55, pp. 254–264, 2015.

[49] Y. Kajiyama, N. Hayashi, and S. Takai, “Distributed subgradient method
with edge-based event-triggered communication,” IEEE Transactions on
Automatic Control, vol. 63, no. 7, pp. 2248–2255, 2018.

[50] J. George and P. Gurram, “Distributed stochastic gradient descent with
event-triggered communication,” Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 05, pp. 7169–7178, 2020.

[51] L. Gao, S. Deng, H. Li, and C. Li, “An event-triggered approach for
gradient tracking in consensus-based distributed optimization,” IEEE

Transactions on Network Science and Engineering, vol. 9, no. 2, pp.
510–523, 2021.

[52] S. Zehtabi, S. Hosseinalipour, and C. Brinton, “Decentralized event-
triggered federated learning with heterogeneous communication thresh-
olds,” 2022 IEEE 61st Conference on Decision and Control, pp. 4680–
4687, 2022.

[53] Y. Chen, R. Blum, M. Takák̆, and B. Sadler, “Distributed learning with
sparsified gradient differences,” IEEE Journal of Selected Topics in
Signal Processing, vol. 16, no. 3, pp. 585–600, 2022.

[54] P. Lorenzo and G. Scutari, “NEXT: In-network nonconvex optimization,”
IEEE Transactions on Signal and Information Processing over Networks,
vol. 2, no. 2, pp. 120–136, 2016.

[55] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” IEEE Transactions on Control of Network Systems, vol. 5,
no. 3, pp. 1245–1260, 2017.

[56] S. Pu, W. Shi, J. Xu, and A. Nedić, “Push-Pull gradient methods for
distributed optimization in networks,” IEEE Transactions on Automatic

Control, vol. 66, no. 1, pp. 1–16, 2020.
[57] R. Xin and U. Khan, “A linear algorithm for optimization over directed

graphs with geometric convergence,” IEEE Control Systems Letters,
vol. 2, no. 3, pp. 315–320, 2018.

[58] R. Horn and C. Johnson, “Matrix analysis,” Cambridge university press,
2012.

http://arxiv.org/abs/2002.12410
http://arxiv.org/abs/2202.03346

	Introduction
	Problem Formulation
	CFL Framework
	Function and Server-Network Assumptions

	Overview of GT and GT-SAGA
	Gradient Tracking
	Gradient Tracking with Variance Reduction
	Adapting GT-SAGA for CFL

	Proposed Algorithm
	Summary of Algorithm
	Rationale Behind The CTUS Mechanism
	Discussions

	Convergence Results
	Proof of Theorem 1
	Finding bold0mu mumu
	Ensuring positiveness of [(29)-1]
	Ensuring positiveness of [(30)-1]
	Determining [bold0mu mumu]1 and [bold0mu mumu]2
	Determining [bold0mu mumu]3
	Determining [bold0mu mumu]4

	A Further Analysis of CTUS
	Simulation Results
	Experimental Settings
	Experimental Results

	Conclusion
	Appendix A: Preliminary Results
	Appendix B: Proof of Proposition 1
	Appendix C: Proving the First Inequality in (22)
	Appendix D: Proving the Second Inequality in (22)
	Bounding [(82)-1] and [(82)-2]
	Combining

	Appendix E: Proving the Third Inequality in (22)
	Appendix F: Proving the Forth Inequality in (22)
	References

