
1

Accounting for Vibration Noise in Stochastic
Measurement Errors of Inertial Sensors

Mucyo Karemera∗ , Lionel Voirol∗ , Davide A. Cucci , Wenfei Chu , Roberto Molinari , Stéphane Guerrier

Abstract—The measurement of data over time and/or space
is of utmost importance in a wide range of domains from
engineering to physics. Devices that perform these measure-
ments, such as inertial sensors, need to be extremely precise
to obtain correct system diagnostics and accurate predictions,
consequently requiring a rigorous calibration procedure before
being employed. Most of the research over the past years has
focused on delivering methods that can explain and estimate the
complex stochastic components of these errors. In this context,
the Generalized Method of Wavelet Moments emerges as a
computationally efficient estimator with appropriate statistical
properties and with different advantages over existing methods
such as those based on likelihood estimation and the Allan
variance. However it has this far not accounted for a significant
stochastic noise that arises for many of these devices: vibration
noise. This component can originate from different sources,
including the internal mechanics of the sensors as well as the
movement of these devices when placed on moving objects. To
remove this disturbance from signals, this work puts forward a
modelling framework for this specific type of noise and adapts
the Generalized Method of Wavelet Moments to estimate these
models. We deliver the asymptotic properties of this method when
applied to processes that include vibration noise and show the
considerable practical advantages of this approach in simulation
and applied case studies.

Index Terms—Wavelet Variance, Inertial Measurement Unit,
Generalized Method of Wavelet Moments, Stochastic Calibration

I. INTRODUCTION

THE task of measuring and predicting the evolution of
different physical systems passes through the precision

of the instruments built to carry out such a task. In order
to measure the evolution of these systems, the devices need
to perform repeated measurements (often at high frequency)
and can suffer from errors that can accumulate over time
and, consequently, have extreme negative impacts in many
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fields (see [1, 2]). For this purpose, especially when dealing
with high-precision measurement, these devices need to go
through a rigorous calibration procedure which, in the majority
of cases, is performed within a certain time-frame and in
controlled (static) settings. These procedures are mainly aimed
at quantifying and characterizing the measurement error of
these devices so as to explain and model them, subsequently
allowing to remove or filter out these errors when actually
employed in the real world as well as to deliver reliable
uncertainty metrics. An example of such a procedure can
be found in inertial sensor calibration. Inertial sensors are
generally composed of accelerometers and gyroscopes and
record the acceleration and the angular velocity (rotation rate)
of a moving body, which can be integrated over time to
estimate its position, velocity, and attitude [1]. Without lack of
generality, this work therefore focuses on modeling vibration
noises with these kind of measurement devices.

Inertial sensors are widely and increasingly being employed
in different areas, from robotics to unmanned navigation,
because of their low cost and light weight (see e.g., [3]).
Due to these characteristics, inertial sensors often suffer from
important measurement errors which, like many phenomena
measured over time, have deterministic and stochastic com-
ponents where the latter often have a considerable impact in
the overall measurement error (see e.g., [4]). Indeed, while
various statistical or machine learning techniques can be
employed to explain and remove the deterministic component
based also on physical models, the stochastic component
still represents a modelling challenge under many aspects
and is essential to quantify the measurement uncertainty.
More specifically, our work focuses on the modeling of the
stochastic component assuming that the deterministic noise
components (for example related to temperature, mechanics,
and electronics) have already been adequately modeled and
filtered. The stochastic measurement error of inertial sensors
is frequently characterized by a complex spectral structure
generally explained by composite models that are constituted
by the sum of different stochastic error processes which con-
tribute to the overall observed error (many state-space models
take on this form, see e.g., [4, 5]). The different underlying
(latent) stochastic error processes can either have a direct
physical justification (such as a random error accumulation
represented by a random walk) and/or can be extremely
useful in closely approximating the overall error structure.
An example of such composite processes is the renown class
of Auto-Regressive-Moving-Average (ARMA) models which
can be represented by the sum of individual white noise and
first-order autoregressive processes, as well as the larger class
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of (linear) state-space models. It must be underlined that the
stochastic errors of these devices are commonly observed in
static conditions and, hence, the above composite models are
chosen and estimated for this specific setting. However, in
many applied settings, there are circumstances where there
are additional noise components that are unaccounted for
by these composite models. More precisely, there are often
additional structures in the noise that, as a result of sources
of vibration, are of cyclical nature and can arise for different
reasons (see e.g., [6]). For example, in the context of stochastic
calibration of Inertial Measurement Units (IMU), [7] highlight
that MicroElectroMechanical Systems (MEMS) are very sen-
sitive to vibration via multiple experimental results and that
adapted measurement procedures and corrections should be
considered. Indeed, it has been highlighted how the stochastic
properties of the device errors vary as a function of external
conditions, such as, for example, the ambient temperature and
the sensor motion (see e.g., [8]). For instance, a device may
exhibit higher noise levels or bias instability during highly
dynamic motion or in presence of intense vibrations, see for
example [9]. In such cases, a standard procedure to mimic
dynamic conditions in a controlled environment for calibration
purposes is to use rotation or linear tables which are used to
move these devices according to known and repeated patterns
for a sufficient amount of time (see e.g., [3]). The stochastic
model estimated on the collected signal is then used in the
fusion algorithm (typically a variant of the Kalman filter)
employed when using the sensor in practical dynamic condi-
tions. However, imperfections on the calibration instruments,
such as rotation table control loops, make this process very
difficult and spurious, entailing periodic disturbances that are
left in the error signal and need to be removed through
stochastic modeling. To date, the estimation of the stochastic
error component has been addressed by employing complex
composite models which however do not include processes
that describe the impact of vibrations on the measurements.
In particular, even estimating these commonly employed com-
posite models (without vibration) has represented an important
computational challenge given the high-frequency and conse-
quent length of the error signals that these devices record.
For example, the Maximum Likelihood Estimator (MLE) is
generally implemented through the use of an Extended Kalman
Filter (EKF) and the Expectation-Maximization algorithm
which both become numerically unstable or computationally
prohibitive when considering the complexity of the composite
models and the length of the error signals (see [5]). Other
more tractable techniques have been proposed and adopted
over the past years but they often lack adequate statistical
properties (see [10]). For this purpose, [11] put forward the
Generalized Method of Wavelet Moments (GMWM) which
delivers a computationally feasible solution in these settings
while preserving appropriate statistical properties. Indeed,
considering a signal of length T , the computational bottleneck
of the MLE correponds to the inversion of a T × T matrix
which has a computational complexity of order O(T δ) where
δ ∈ [2, 3] depending on the considered algorithm. On the other
hand, the computational cost of the GMWM estimator is a
result of the computation of the empirical WV which has a

computational complexity of order O{T log2(T )}. However,
although the properties of the GMWM have been studied
for a wide class of processes [11, 12, 13], the inclusion
and estimation of vibration noise in this class of models has
not been addressed this far. Generally speaking, a substantial
amount of literature has either underlined the need to find
solutions to estimate this noise or have put forward approaches
that nevertheless do not adequately respond to the need to
jointly model this type of noise from device measurement
errors in a computationally-efficient and numerically-stable
manner for the large error signals frequently recorded from the
calibration of inertial sensors, often consisting in millions of
observations. Among the approaches which attempt to remove
this source of noise, [14] propose a mathematical modelling
of the vibration signal and discuss conditions under which
it can be filtered out using wavelet transforms, while [15]
propose a direct coning mitigation algorithm to test, estimate
and compensate a sinusoidal component in the signal of a
gyroscope whereas [16] propose a gradient descent algorithm
to correct vibration effects on an IMU. In all these cases
the vibration error is treated as an “outlier” effect where
the proposed methods aim to deliver adequate estimations
that are in some way resistant to this effect. Hence, these
methods are not tailored to the most common setting where
the vibration noise is a structural component of the stochastic
measurement errors in these devices. In this sense, to the
best of the authors’ knowledge, the only approach that aims
at addressing this noise as a structural component of these
measurement errors can be found in [17] or [18, 19] where
however it is not considered as a stochastic component but
as a deterministic one. Indeed, using the relationship between
the Allan Variance (AV) and the spectral density function (see
e.g., [4]), in [17] they derive a theoretical form of the AV for
a sinusoidal process to consequently characterize the low- and
high-frequency components of the measurement error in ring-
laser gyroscopes. However this characterization was proven to
be statistically inconsistent (see [10]). Finally, like the MLE
methodology in [18, 19], a limitation of these approaches is
that the sinusoidal process is assumed to be deterministic and,
as a consequence, certain characteristics of this process (such
as its frequency or phase) are assumed to be known which is
rarely the case in practice.

Following the above, in Section II this work firstly enriches
the class of composite models used for stochastic modelling
by adding one or more processes that adequately describe the
impact of vibration on the stochastic error components of these
measurement devices. Based on this, in Section III it then aims
to make use of the GMWM to estimate the composite models
that include the vibration components, studying its properties
in presence of vibration noise and giving theoretical guarantees
that support the validity of this approach. Finally Section IV
evaluates the numerical performance of the proposed method
through different simulation studies while Section V highlights
the advantages of this approach through the analysis of data
issued from a low-cost inertial sensor in different dynamic
conditions. Further discussions are presented in Section VI.
The proofs of the theoretical results together with some
additional information are collected in the appendix.
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II. MODELING VIBRATION NOISE

We first clearly define a model that can adequately describe
such a stochastic vibration effect over time. For this purpose,
let (St), t ∈ Z, represent the process issued from the vibra-
tion source which we assume to be periodic. Based on this
assumption, a natural candidate to model such a process is a
wave function which, for this work, we parametrize as follows:

St := α sin(βt+ U), (1)

with amplitude α ∈ IR+ := (0,+∞), angular frequency
β ∈ (0, π] and phase U ∼ U(0, 2π), where U(a, b) denotes
the Uniform distribution with parameters a and b. Within this
work, we will refer to the process as a sinusoidal process.
It is possible to notice that the only stochastic component
in the above parametrization is the uniform random variable
U which randomly shifts the phase of the process. While
other parametrizations of the trigonometric functions can ob-
viously be considered, in many applications (including inertial
measurement units) it is possible to observe roughly constant
behaviours in terms of amplitude and frequency of the distinct
vibration noises affecting each device, while the uncertainty
usually lies in the phase of their periodicity. Moreover, the
phase random variable is used to represent the random time at
which an IMU is turned on, thereby determining the observed
phase of the vibration.

Having defined the model to characterize vibration noise,
we can increase its flexibility by considering a summation of
L ∈ N independent latent sinusoidal processes given by:

L∑
l=1

S
(l)
t :=

L∑
l=1

αl sin(βlt+ Ul), (2)

where the parameters and the random phase are now indexed
by l = 1, . . . , L denoting how they specifically characterize the
lth sinusoidal latent process. Indeed, due to the mechanical
properties of a device or to the conditions under which it
operates, there may be different sources of vibration affecting
the measurement performance and such a composite process
would address (or well approximate) the diversity of these
vibration sources.

As mentioned in the introduction, devices are characterized
by a multitude of measurement errors that in many cases
are modelled by composite processes which, like the one
defined above, consist in a summation of different independent
processes representing different sources of error. A general
class of composite processes which is used to model these
errors is given by:

Zt := Wt +Qt +

K∑
k=1

Y
(k)
t +Dt +Rt, (3)

where (Wt) represents a white noise (WN) which is some-
times referred as angle (velocity) random walk; (Qt) is a
quantization noise (QN) which is a rounding error process
(see [20]) typically used to model the error introduced when
encoding an analog signal into digital form [21]; (Y

(k)
t ) is

the kth causal first-order autoregressive (AR1) process out of
a total of K ≥ 1 AR1 processes which are sometimes used

as an approximation for bias instability noises [10]; (Dt) is
a deterministic drift (DR) process occasionally referred to as
rate ramp; and (Rt) is a random walk (RW) process (see
e.g., [4, 10] for more details) generally employed to model
the error resulting from the integration of random noise in
acceleration and often called rate random walk. Noting that
the sum of AR1 and WN processes delivers an ARMA process
(see [22]), this class of composite processes is extremely
flexible since the subsets of models that originate from it
can adequately describe or approximate the behaviour of the
vast majority stationary signals. Moreover, we assume that
all individual stochastic processes are uncorrelated with each
other. Indeed, the key assumption of the GMWM framework
is that the innovations of the different process are independent,
since otherwise the parameters of the model are typically not
identifiable.

The goal of this work, as underlined in the introduction, is
to reliably estimate the class of models (Zt) while accounting
for vibration noise which would be considered as a “nuisance”
process. As a consequence, we aim to combine the above-
defined classes of composite processes, i.e., (St) and (Zt),
to ensure that the additional sources of noise are addressed
appropriately by considering a larger class of processes which
is intuitively given by their summation, i.e.,

Xt := Wt +Qt +

K∑
k=1

Y
(k)
t +Dt +Rt +

L∑
l=1

S
(l)
t . (4)

The first aspect to underline is that, from a practical perspec-
tive, one would not usually postulate a model based on all the
latent processes available in the class (Xt). Nevertheless, in
various applied settings it may be necessary to make use of at
least one of each latent process since the noise characterizing
measurement devices can have a highly complex spectral
behaviour. In particular, for this work we consider the sum of
vibration noises in (4) to be a structural nuisance component
that needs to be estimated to obtain adequate estimates of
the processes that are specific to (Zt). In this optic, the next
section studies how the proposed methodology estimates these
nuisance components whose form is given in (1).

III. ESTIMATION FRAMEWORK

In this work we intend to make use of the GMWM which
has been adapted to different time series estimation settings
(see e.g., [12, 13, 23]). To define this framework, let Fθ0

represent the data-generating process with true parameter
θ0 ∈ Θ ⊂ IRp, where p represents the number of parameters
of a model of interest belonging to the class defined in (4),
which we aim to estimate and perform inference on. Given
a signal (Xt)t=1,...,T , let J < log2(T ), the GMWM delivers
an estimator of θ0 based on the following generalized least-
squares problem:

θ̂ := argmin
θ∈Θ

∥∥ν̂ − ν(θ)
∥∥2

Ω
, (5)

where ‖x‖2A := x>Ax with x ∈ IRJ and A ∈ IRJ×J ;
ν̂ ∈ IRJ

+ represents the Wavelet Variance (WV) estimated
on the signal (Xt); ν(θ) = [νj(θ)]j=1,...J ∈ IRJ

+ is the
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theoretical WV implied by the model of interest; and Ω ∈
IRJ×J is a positive-definite weighting matrix for which a
good choice, for example, is the inverse of the covariance
matrix of ν̂ (see e.g., [11]). More specifically, the WV is
the variance of the wavelet coefficients (ωj,t) issued from a
wavelet decomposition of the process (Xt) with relative scales
of decomposition j = 1. . . . , J , and has different advantageous
properties for the analysis of time series (see e.g., [24]).

The GMWM framework therefore relies firstly on the
properties of the estimator of WV ν̂, and then on those of
the theoretical WV ν(θ) implied by the model Fθ. More
specifically, the properties of the estimator ν̂ were first studied
in [24] and [25] under a set of standard conditions for time
series analysis, followed by the results of [13] and [23]
allowing for statistical consistency (and asymptotic normality)
of this estimator under weaker conditions. We will first focus
solely on defining the conditions required to obtain asymptotic
normality of the estimator for the class of processes (Zt) and
consequently denote the WV estimator applied exclusively
to this class as ν̂Z . Secondly, we will study the properties
of the estimator of the WV when applied exclusively to the
realization of a single sinusoidal process (St). We will then use
these two properties to obtain the main result on the estimated
WV of the class of processes of interest (Xt).

The properties of consistency and asymptotic normality of
ν̂Z have already been studied in [13] and [23] so, for the sake
of completeness, we will briefly summarize and discuss the
conditions needed to achieve these properties. To do so, let us
start by denoting the first order difference of the process (Zt)
as ∆t := Zt − Zt−1. We also define G(·) to be an IR-valued
measurable function as well the filtration Ft = (. . . , εt−1, εt),
where εt are i.i.d random variables.

ASSUMPTION A: The process (∆t) is strictly stationary and
can be represented as

∆t = G(Ft).
This assumption is commonly required when analyzing

time series and, in the setting of this work, allows to make
use of the results in [26]. Intuitively, Assumption A requires
stationarity of ∆t which, among others, implies that the
process’ theoretical moments and other quantities are “stable”
(do not depend on time) and informative for the process
itself. For the next assumptions, we also define the operation
‖D‖p := (E[|D|p])1/p, for p > 0, as well as the filtration
F?t = (. . . , ε?0, . . . , εt−1, εt), where ε?0 is an i.i.d. random
variable. The latter also allows us to define ∆?

t = G(F?t )
which differs from (∆t) as a result of the different innovation
noise at time t = 0 (clearly we have ∆?

t = ∆t for t < 0).

ASSUMPTION B: ‖∆t‖4 <∞.

ASSUMPTION C:
∑∞
t=0 ‖∆t −∆?

t ‖4 <∞.

To summarize, Assumptions B and C require bounded
fourth moments of the process (∆t) and of the difference
between this process and its “copy”, implying a stability of
(∆t) since a change in the innovation process does not have
long-lasting effects on the behaviour of (∆t). Generally speak-

ing, these assumptions guarantee that quantities computed on
these processes, among others, have bounded variance thereby
ensuring convergence in distribution. Overall, Assumptions A,
B and C are quite common and are generally satisfied for the
class of processes (Zt) (see [13] and [23] for a more detailed
account on these assumptions). Under these assumptions, the
consistency of ν̂Z and asymptotic normality of

√
T (ν̂Z − νZ)

is ensured by the results given in [13] and [23]. For complete-
ness, we report this result here as well and, to do so, we first
need to define ωt :=

[
ω
(Z)
j,t

]
j=1,...,J

as the vector of wavelet

coefficients at time t applied to the process (Zt) as well as the
projection operator Pt(·) := E [· | Ft]−E [· | Ft−1]. It must be
noted that these definitions will also be used for the theoretical
results delivered further on.

LEMMA 1 ([23], Theorem 1): For the Haar wavelet filter and
under Assumptions A, B and C, we have

√
T {ν̂Z − νZ (θ0)} D→ N (0,V ),

where θ0 is the true parameter vector, νZ (θ0) is the theo-
retical WV of the process (Zt) and V := E

[
D0D

>
0

]
with

D0 :=
∑∞
t=0 P0 (ωt).

Having recalled the properties of the WV estimator when
applied to the class of processes (Zt), let us now consider the
properties of the estimator of WV ν̂ when applied exclusively
to the realization of a single sinusoidal process (St) and denote
this specific estimator as ν̂S := [ν̂j,S ]j=1,...,J to indicate
its implicit dependence on the parameters underlying this
particular process. With τj denoting the length of the wavelet
filter at the jth level of decomposition, the following theorem
highlights the statistical consistency of ν̂S when using the
commonly used Haar wavelet filter for which τj = 2j .

THEOREM 1: For the Haar wavelet filter and for any j =
1, . . . , J < log2(T ), we have

ν̂j,S = νj (α, β) +Op
(
T−1

)
,

where

νj (α, β) := E [ν̂j,S ] =
α2
{

1− cos
(
βτj
2

)}2

τ2j {1− cos (β)} .

PROOF: By definition, we have

ν̂j,S =
1

Mj

T∑
t=τj

(
τj−1∑
l=0

hj,lSt−l

)2

.

and Mj = T −τj+1 and hj,l corresponds to the Haar wavelet
filter. Using elementary trigonometric identities, we can show
that

E [ν̂j,S ] =
α2

τ2j

{
1− cos

(
βτj
2

)}2

1− cos (β)
.

Using Markov’s inequality, for any C > 0 we get

Pr
[
T
∣∣ ν̂j,S − E [ν̂j,S ]

∣∣ ≥ C] ≤ D

C2
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where D := 16α4/ [sin(β) {1− cos(β)}]2 with 0 < D < ∞.
Equivalently, setting ε := D/C2 and δε := εC3/D, we have
that for any ε > 0, there exists δε > 0 such that

Pr
[
T
∣∣ ν̂j,S − E [ν̂j,S ]

∣∣ ≥ δε] ≤ ε,
which means that T ( ν̂j,S − E [ν̂j,S ]) = Op(1) and leads to
the result. A more detailed explanation of this proof can be
found in Appendix A.

The Haar wavelet filter is one of the most commonly
employed wavelet filters (see e.g., [27]) and, as a result
of this theorem, it is possible to see that the estimator ν̂S
is statistically consistent when making use of this filter. In
addition, the use of the Haar filter is the only condition needed
to obtain this result. Interestingly, the obtained theoretical WV
of (St) agrees with the result in Table 1 of [28] on the Allan
variance of a sinusoidal noise. However, the main contribution
of Theorem 1 lies in the determination of the rate of conver-
gence of the estimated wavelet variance to its expectation. The
properties of this estimator using other wavelet filters is left
for future work. Using Lemma 1 and Theorem 1, we can now
easily extend the study of the properties of the WV estimator
ν̂ to the class of models (Xt) defined in (4), which adds the
sinusoidal processes to the class of models (Zt). Indeed, we
have

ν̂ = ν̂Z +

L∑
l=1

ν̂Sl and ν(θ0) = νZ(ζ0) +

L∑
l=1

νSl(αl, βl),

where θ0 and ζ0 are the parameter vectors of (Xt) and (Zt)
respectively, ν̂Sl corresponds to the empirical WV of the lth

sinusoidal process in (Xt) and νSl(αl, βl) corresponds to its
theoretical counterpart. Hence, we derive

√
T{ν̂ − ν(θ0)} =

√
T{ν̂Z − νZ(ζ0)}+
L∑
l=1

√
T{ν̂Sl − νSl(αl, βl)}

D→ N (0,V ) + 0 = N (0,V )

where the second line is obtained using Lemma 1, Theorem 1
and Slutsky’s theorem. We remark that the expression of the
theoretical WV of the sinusoidal process does not depend on
the term U but only on the scale τj and on the parameters α
and β. Hence, we only estimate these two parameters when
modelling a sinusoidal process using the GMWM. We notice
that Assumptions A to C are only relevant when studying the
term

√
T [ν̂Z − νZ(ζ0)] in the above equation. We formally

state this result in the following theorem.

THEOREM 2: For the Haar wavelet filter and under Assump-
tions A, B and C, we have

√
T {ν̂ − ν (θ0)} D→ N (0,V ),

where θ0 is the true parameter vector characterizing the class
of processes (Xt), ν (θ0) is the theoretical WV of the process
(Xt) and V := E

[
D0D

>
0

]
with D0 :=

∑∞
t=0 P0 (ωt).

Although this result is straightforward to obtain given

Lemma 1 and Theorem 1, its implications are insightful.
Indeed, it can be noticed that, while the results hold for the
WV estimator ν̂, which is applied to the process (Xt), the
asymptotic covariance matrix is defined solely based on ωt
which represent the wavelet coefficients from the decomposi-
tion of the process (Zt) that does not contain the sinusoidal
noise. In particular, we must recall that the wavelet coefficients
(ωj,t) are stationary for the processes belonging to the class of
models in (Zt) (see e.g., [27]). As a consequence, for example,
an estimator of the asymptotic covariance matrix V can be
computed without taking into account the sinusoidal process,
allowing to take advantage of existing results for this purpose.

With Theorem 2 we can now obtain the asymptotic distribu-
tion of the GMWM estimator θ̂. To start, we need to consider
the following additional assumptions.

ASSUMPTION D: Θ is compact.

ASSUMPTION E: If Ω̂ ∈ IRJ×J is an estimator of a definite-
positive matrix Ω, then∥∥Ω̂−Ω

∥∥
S

= op(1),

where ‖ · ‖S denotes the spectral norm.

ASSUMPTION F: The function ν(θ) = [νj(θ)]j=1,...,J iden-
tifies θ, in that for any θ1,θ2 ∈ Θ we have that νj(θ1) =
νj(θ2), for j = 1, . . . , J, implies θ1 = θ2.

Assumption D is a common regularity condition which can
eventually be replaced by a condition on the convexity of
the parameter space that however can only be verified on
a model-specific basis. On the other hand, Assumption E
is only required in case an estimator is chosen instead of
any deterministic positive-definite matrix Ω. Indeed, if an
estimator Ω̂ is chosen, then this assumption requires this
estimator to be consistent for the chosen positive-definite
matrix Ω. Finally, an assumption that is also challenging to
verify and is often assumed in practice is Assumption F, which
is equivalent to requiring that ν(θ) be an injective function.
In [12], [13] and [23] the validity of this assumption was
discussed for different classes of composite processes which
include combinations of, among others, white noise, random
walk, quantization noise, drift and AR1 components. Hence,
before stating the asymptotic properties of the GMWM, we
add to these previous results by discussing the validity of this
assumption when including a sinusoidal process in the class of
composite processes defined in (4). As a first step, we verify
this assumption when considering only one sinusoidal process
through the following lemma.

LEMMA 2: For J ≥ 2, the function ν(α, β) :=
[νj(α, β)]j=1,...,J identifies (α, β), in that for any
(α1, β1), (α2, β2) ∈ IR+ × (0, π], we have that
νj(α1, β1) = νj(α2, β2), for j = 1, . . . J, implies
(α1, β1) = (α2, β2).
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PROOF: We define

ν∗(α, β) := [ν1(α, β) , ν2(α, β)]
>

=

[
α2{(1− cos(β)}

4
,
α2{1− cos(2β)}2
16{1− cos(β)}

]>
,

for (α, β) ∈ IR+ × (0, π]. Suppose that, ν∗(θ1) = ν∗(θ2),
where θi = (αi, βi), i = 1, 2. From there, straightforward
computations lead to the result. Detailed explanations can be
found in Appendix B.

This result is important to confirm that the WV is informa-
tive with respect to this process, meaning that the information
contained in the WV is sufficient to identify the parameters of
the process in (1). We now try to extend this evidence towards
the composite model (4) for which we consider the lengths
of the wavelet filters for each level j (i.e., τj) to live on a
subset of the rational numbers representing the range of values
containing those scales that would naturally arise in practice.
More specifically, we assume that the WV scales are defined
by τ ∈ Λ where Λ :=

[
2, 2J

]
∩Q. This definition of the scales

does not completely correspond to the ideal scenario for which
we would like to provide supporting evidence for Assumption
F, but is an extension that allows to provide additional support
to this assumption in the case of the process in (4). Using
these definitions, for our next result we focus exclusively on a
specific model representative of the class defined in (4) given
by:

Xt := Wt +Qt + Yt +Dt +Rt + St, (6)

which is composed of a white noise, a quantization noise, an
AR1 process, a drift, a random walk and a sinusoidal noise
process. Given the number of parameters characterizing each
component of this particular model, the parameter space Θ is
a subset of IR8 (i.e. 8 parameters in total for this case). Using
the notation ντ (θ) to refer to the WV over scales τ ∈ Λ, the
following lemma states the identifiability of the parameters of
the model in (6) within this continuous scale setting.

LEMMA 3: The function ντ (θ) associated with the model in
(6) identifies θ, in that for any θ1,θ2 ∈ Θ ⊂ IR8, we have
that ντ (θ1) = ντ (θ2), for all τ ∈ Λ implies θ1 = θ2.
PROOF: For any given θ ∈ Θ we consider ντ (θ) as a function
of τ that we write νθ(τ). Hence, by assumption, we have
νθ1(τ) = νθ2(τ), for all τ ∈ Λ. We consider the following
facts:

(i) For all θ ∈ Θ, νθ(τ) is continuous is τ ∈
[
2, 2J

]
. Hence,

by continuity and the fact that Λ is a dense subset of[
2, 2J

]
⊂ IR, we have ∀τ ∈

[
2, 2J

]
, νθ1

(τ) = νθ2
(τ).

(ii) For all θ ∈ Θ, τ2νθ(τ) can be shown to be an analytic
function of τ ∈ IR, since its only non-polynomial
expressions in τ are cos(βτ/2) in the wavelet variance
of the sinusoidal process, and φτ − 4φτ/2 in the wavelet
variance of the AR1 process which are both analytic
functions of τ ∈ IR. Hence, by (i) and the unicity of
the analytical continuation, we have that for all τ ∈ IR,
τ2νθ1(τ) = τ2νθ2(τ).

(iii) By (ii), τ2νθ1
(τ) and τ2νθ2

(τ) have the same Taylor
expansion for all τ ∈ IR and thus the same coefficients.

A careful analysis of the latter coefficients allows us to
complete the proof. A more detailed explanation of this proof
can be found in Appendix C.

While being valid for the specific model defined in (6),
the results of Lemmas 2 and 3 are broadly helpful in sup-
porting the validity of Assumption F when adding sinusoidal
processes to the modelling framework. More specifically, if
only considering the sinusoidal process (St) in the model in
(6), it is obvious that the identifiability through ν(θ), given in
Lemma 2, implies Lemma 3 but the converse is not necessarily
true. Therefore Lemma 3 is useful but does not imply the
identifiability of the general class of models defined in (4).

Following the results in [23] and [13], the GMWM estimator
θ̂ is consistent for the class of models in (4) under Assump-
tions A to F. In order to obtain its asymptotic normality, we
need to consider two additional assumptions defined below.

ASSUMPTION G: Θ ⊂ IRp is convex and θ0 ∈ Θ is an interior
point.

ASSUMPTION H: The derivative A(θ0) :=
∂

∂θ>
ν(θ)

∣∣∣
θ=θ0

is
such that

B(θ0) := A(θ0)> �Ω,

is non-singular, where M�N := MNM> for M ∈ IRJ×p

and N ∈ IRJ×J .
Assumption G is a regularity condition that allows us to

make use of the mean value theorem which can nevertheless
be quite restrictive, for example in the case where the assumed
model overfits the data. Indeed in the latter case some compo-
nents of the parameter vector θ0 may lie on the border of Θ
if, for example, some variance parameters are equal to zero.
Assumption H on the other hand simply enables us to define
the asymptotic covariance matrix of θ̂. The following theorem
delivers the final result on θ̂.

THEOREM 3: Under Assumptions A to H, we have that
√
T
(
θ̂ − θ0

)
D→ N (0,Ξ),

where Ξ := {B(θ0)−1A(θ0)>Ω} � V and V is given in
Theorem 2.

As for consistency, this theorem follows directly from the
results in [23] and [13]. In brief, based on Assumption G we
can use the mean value theorem on the GMWM objective
function in (5) around the true value θ0 and, based on the
consistency of θ̂, it is possible to show convergence of the
different quantities defined by this expansion (including that
of the derivative A(θ)) towards their theoretical values which
define the asymptotic covariance matrix.

It can be noticed how all quantities that define the asymp-
totic covariance Ξ depend on the parameter θ0 with the
exception of Ω and V . While the quantities that depend on
θ0 can be estimated by plugging in the consistent estimator
θ̂, the matrix Ω is chosen by the user while V has to
be estimated. Given the results in this work, the asymptotic
covariance matrix V can be estimated using the proposals in
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[23] and [13] without considering the presence of vibration
noise. Moreover, making the choice Ω := V −1 delivers the
most asymptotically efficient GMWM estimator θ̂ (see [29]).
Indeed, for this particular choice of the weight matrix the
expression of the GMWM covariance matrix simplifies to
Ξ = {A(θ0)> � V −1}−1 = B(θ0)−1. This expression is
actually the same as the one obtained in the just-identified
case, i.e., when J = p. In the latter case, we also have
Ξ = B(θ0)−1 independently of the choice of Ω.

IV. SIMULATION STUDIES

In this section we present different simulation studies to
investigate the performance of the GMWM when considering
various models included in the general class defined in (4),
specifically those characterized by the presence of sinusoidal
processes which we consider as a nuisance noise. In particular,
although these cannot be considered a proof for parameter
identifiability, the simulations also aim at understanding to
what extent the GMWM is able to identify the parameters
of models which include sums of sinusoidal noises and other
latent processes. In addition, we want to understand the loss
of statistical efficiency of the GMWM with respect to more
computationally-demanding likelihood-based approaches (and
also how much computational gain is achieved when using
the GMWM). In all cases we simulate 500 signals from each
model and choose parameter values that are consistent with
those that are commonly identified for the stochastic errors of
measurement devices such as IMUs (see e.g., [1, 4, 10] and
the applied case study in Section V). The simulations were
executed on a high-performance computing cluster equipped
with current state-of-the-art CPU models. Moreover, con-
sidering that parallelization could be implemented for both
the GMWM and likelihood-based methods, our results report
the computation time for a single thread execution (i.e., no
parallelization was used when comparing estimation methods).
The parameter values for each of the simulations presented in
this section are reported in Appendix D.

For the first study (which we refer to as Simulation 1), we
consider a model represented by the sum of a WN, a RW,
an AR1 and a single sinusoidal process therefore requiring
the estimation of six parameters in total (see Appendix D for
values) considering the parametrization in (1). We use this
model to compare the statistical and computational perfor-
mance of the GMWM with respect to the MLE implemented
in the open-source software Hector (v2.0) which represents
the fastest available implementation of the MLE for these
latent models (see [18, 19]). It must be noted that, for the
latter approach the vibration noise is purely deterministic
and assumes that the frequency is known, leaving amplitude
and phase to be estimated. Hence, Simulation 1 does not
constitute a fair comparison of the methods since the MLE
requires inputs which are not required by the GMWM. It is
however the closest method to which we can compare our
estimator in order to jointly model the sinusoidal component
and other stochastic processes. Also, due to these different
parametrizations, the two approaches cannot be compared in
terms of estimation of the sinusoidal process parameters, but

only in terms of estimation of the processes of true interest
(i.e., WN, RW and AR1). For this purpose, considering com-
monly large signals recorded by high-frequency measurement
devices, we generate signals of five different lengths, i.e.,
T = Ti · 104 with {T1, . . . , T5} = {1, 2, 4, 8, 16} (hence the
sampling rate is considered constant), and compute the Root
Mean Squared Error (RMSE) as well as the average running
time for both approaches. This information is represented in
Fig. 1 and Fig. 2 respectively where, for both methods, we
removed results that were affected by convergence problems
for the MLE (approximately 1% or less of the Monte Carlo
realizations when considering sample sizes of 104 and 2 ·104)
in order to make fair comparisons.

We denote the parameters as: σ2 ∈ IR+ (WN variance);
φ ∈ (−1, 1) and ζ2 ∈ IR+ (AR1 autoregressive and innovation
variance parameters respectively) and γ2 ∈ IR+ (RW innova-
tion variance). As can be observed in Fig. 1, for all parameters
of interest both methods have an RMSE that decreases with
the sample size thereby supporting consistency of the GMWM
and the MLE in this setting. Moreover it can be seen how, with
few marginal differences, the RMSE of both methods appear to
be extremely close to each other suggesting that the potential
loss of statistical efficiency of the GMWM with respect to
the MLE is almost negligible in sample sizes of relevance
for the considered applications. This conclusion needs to be
evaluated jointly with the results presented in Fig. 2: as it can
be observed, the average MLE running time ranges from less
than 2 seconds (for T = 104) up to more than 5 hours (for
T = 16 ·104) while the GMWM consistently runs in less than
half a second for all sample sizes considered. This implies that,
with comparable performance in terms of RMSE, the GMWM
is at least 12 ·102 times faster on average than the MLE in the
considered sample size settings (15 · 104 faster for the largest
sample size). It must also be noted that, for smaller sample
sizes the MLE suffers from convergence issues which is not
the case for the GMWM.

For the next simulation settings, we consider more complex
models and larger sample sizes which are often observed in
real measurement error signals. In these settings the MLE can
become more numerically unstable and remains computation-
ally demanding for these sample sizes. Therefore, considering
the comparison made in Simulation 1, in the next simulations
we only verify the performance of the GMWM and, as a
result, also focus on the estimation of the parameters of the
sinusoidal process put forward in (1). More in detail, we first
consider a model defined as the sum of two AR1 processes
(i.e., K = 2), with parameters φi ∈ (−1, 1) and ζ2i ∈ IR+,
and two sinusoidal processes (i.e., L = 2), with parameters
αi ∈ IR+ and βi ∈ (0, π], for i = 1, 2 (we refer to this
setting as Simulation 2) and then a model composed of an
AR1 (i.e., K = 1), a RW, a WN and a sinusoidal process
(i.e., L = 1), all with parameter notations consistent with the
previous simulations (we refer to this setting as Simulation 3).
For these two simulations we consider a sample size of 1 ·107

and, as mentioned previously, simulate 500 time series for both
simulations with parameter values in the range of those found
in practical applications such as those discussed in [11] and
[5] (see Appendix D for values). In particular, due to the high-
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Fig. 1: RMSE of the estimated parameters of Simulation 1 for the MLE (orange line) and the GMWM (blue line) for sample
sizes T = Ti · 104 with {T1, . . . , T5} = {1, 2, 4, 8, 16}
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Fig. 2: Mean running time of the MLE (orange line) and the
GMWM (blue line) in Simulation 1 for sample sizes T =
Ti · 104 with {T1, . . . , T5} = {1, 2, 4, 8, 16}

.

frequency of the measurements, the autoregressive parameters
φ for example can be close to unit value (i.e., close to a RW
process) creating additional numerical convergence issues of
the MLE.

A representation of these two models is given through a
WV plot in Fig. 3 where it can be seen that the theoretical
WV ν(θ) of each model (orange line) is composed from the
contribution of the WV of the individual processes, generating
realizations of empirical WV estimates ν̂ (light grey lines)
that closely follow it. Hence, as explained in the previous
section, the GMWM observes the grey line ν̂ and aims
at finding the parameter vector θ ∈ Θ that allows the
implied theoretical WV ν(θ) (orange line) to be as close as
possible to this empirical WV in L2-norm (weighted by Ω).
Indeed, this representation of the WV is useful to detect the

underlying processes, including the presence and number of
sinusoidal processes (this will be the approach followed also
in the next case study section). The empirical distributions of
the estimated parameter values are represented through the
boxplots in Fig. 4. We subtract the true parameter values
from these distributions (hence all boxplots should be roughly
centered around zero if the GMWM is correctly estimating
these parameters) and standardize them via their respective
empirical standard deviations to compare them all on the same
scale. We consider this re-scaling since we cannot compare
these distributions to those of other estimators, therefore we
are mainly interested in consistency rather than efficiency of
the GMWM, which however can be observed in the boxplots
in Appendix D as well as partially studied through the RMSE
in smaller sample sizes in Simulation 1 (see Fig. 1). As
highlighted by the two plots in Fig. 4, the GMWM appears
to correctly target the true values of the parameters of the
models considered in both simulations, including those of
the sinusoidal processes put forward in this work thereby
supporting the theoretical results in Section III.

V. CASE STUDY: INERTIAL SENSOR CALIBRATION

To study the advantage of the proposed approach for real-
world applications, we consider stochastic measurement error
data (of size T = 2, 879, 999) collected from controlled
IMU calibration sessions after using factory calibration for
the deterministic components. More specifically, to study the
impact of vibration noise, the stochastic measurement errors
of the same z-axis gyroscope of a low cost MEMS IMU were
measured at 200 Hz in two controlled settings: (i) a static
setting and (ii) a rotating setting where the IMU is placed
on rotating table at a fixed rotation-speed of 200 deg/sec.
Having accounted for the theoretical measurements resulting
from the rotation table, the latter setting is used to deliver
the possible vibrations that can often corrupt measurement
devices during their calibration phases. The intuition for this
application is that the stochastic model for the measurement
error in static settings constitutes the basic error specific to
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Fig. 3: Theoretical wavelet variance ν(θ) (orange line) of the
settings considered in Simulation 2 and Simulation 3. The
light grey lines represent WV estimates ν̂ from 10 different
realizations of the respective models. The other lines represent
the theoretical WV of the individual processes contributing to
the models.

the measurement device which we are interested in, however
this model becomes more complex under rotation through the
addition of one or more vibration noise components which
constitute disturbances to the true stochastic error. Hence, we
would like to understand how the basic measurement error
model changes when the additional vibration noise is taken
into account and, as a consequence, what are the impacts of
this change when employing the estimated models (with and
without considering vibration noise) in navigation settings.

The basic model for the IMU was chosen via a visual
representation of the WV (black line) shown in the upper
plot of Fig. 5. The WV log-log plot also conveys information
regarding the frequency and precision of the sensor. Indeed,
the frequency of the sensor can be approximated based on
the length of the Haar wavelet filter at scale j and the X-
axis graduated in time. Moreover, a crude approximation of
the variance of the error term can be obtained by taking the
square of the WV at the first scale under the assumption that
the error term only consists in white noise (i.e. angle random
walk). It is important to note that the theoretical wavelet
variance of stochastic processes as well as their estimated
parameters do not depend on the frequency of the sensor.
However, the estimated parameters should be transformed and
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Fig. 4: Empirical distribution of GMWM parameter estimates
for Simulations 2 and 3. The true parameter values were
subtracted from each boxplot and all distributions were stan-
dardized by their respective empirical variances.

re-parametrized based on their units and the sensor’s frequency
when employed in the navigation filter algorithm (for which a
very common choice is the Extended Kalman Filter (see e.g.,
[5, 30]). Comparing different models, the composition of an
AR1 and a RW process (orange line) appeared to best fit the
observed empirical WV on the measurement error in static
settings. Indeed, the theoretical WV implied by the GMWM
estimates of this model (AR1 and RW) appears to closely
follow the empirical WV. Having identified the basic model for
the stochastic error of this IMU, we considered the empirical
WV of the same IMU under the above-mentioned rotation
setting which can be observed in the lower plot of Fig. 5. In the
latter setting, the assumption is that the structure of the basic
model remains the same but is complemented with additional
vibration noise in the form of one or more sinusoidal processes
which themselves can have an impact on the parameter values
of the basic model. More precisely, the postulated parametriza-
tion in (1) appears to better fit the additional structure in
the empirical WV observed under rotation, in particular with
respect to the fit implied by the new parameters of the basic
model (i.e. the dashed blue and green lines in the lower plot
of Fig. 5). Indeed, the idea would be to preserve the model

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2024.3387313

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



10

structure (i.e. the basic model) within the navigation filter, but
update its parameters when in the presence of vibration noise
to better fit the “corrupted” error signal. To highlight the effect
of vibration on the parameters of the basic model (i.e., AR1
and RW parameters), Table I reports these parameters values
when estimated in static and rotating conditions (including
sinusoidal processes) respectively. It can be seen how all the
estimated parameters of the basic model differ significantly
when considered in the two settings, highlighting how the
presence of vibrations due to rotation affects the values of
this model’s parameters requiring them to adapt accordingly.

To date, as described earlier in this work, the modelling
of the vibration noise as an additional stochastic component
(that carries through after deterministic components have been
filtered) has not been comprehensively addressed by existing
methods either in terms of (i) joint modelling with the other
different latent stochastic components, (ii) appropriate statisti-
cal properties for uncertainty quantification and/or (iii) compu-
tational feasibility. Generally speaking, the common approach
to this kind of setting is to approximate these error signals
through the standard models (e.g., AR1 and RW) under static
scenarios which however can often be affected by different
sources of vibration. Considering this, we will study the extent
of the bias induced by excluding the sinusoidal processes, that
are present during the calibration phase, through a simulation
study based on the parameter estimates from the MEMS IMU
under rotation in Table I (the estimated parameters of the
sinusoidal processes are given in Appendix D). Therefore we
will simulate from the model that includes the two sinusoidal
processes and then, each time, use the GMWM to estimate
a misspecified model with only an AR1 and a RW process
(Model 1) as well as a correctly specified model which also
includes the two sinusoidal processes (Model 2). We focus on
how much model-misspecification in this scenario impacts the
estimates of the basic model of interest composed of the AR1
and RW processes. The results of this simulation, based on
the real estimates from the considered MEMS IMU data, are
represented in the boxplots of Fig. 6. As expected, from these
boxplots it is clear to what extent the model misspecification
can have significantly negative impacts both in terms of bias
as well as in terms of variance, especially with respect to the
AR1 parameters.

The previous simulation is a simple proof-of-concept of the
intuitive fact that not accounting for the vibration noise, when
this is actually present, can severely impact estimation for
the other (basic) model parameters. However, this does not
necessarily give the idea of the impact that this problem may
have in real-world applications. For this reason, we translate
the above simulation setting to a navigation scenario where
we take the estimated model under rotation (i.e., Model 2
which includes the two sinusoidal processes) and generate
stochastic error signals that we will add to an arbitrarily
determined and fixed navigation path defined by a trajectory
and an altitude profile (this is known as an emulation study).
In the latter scenario we can imagine that this path describes
the movement of an aerial vehicle (e.g., a drone) and, for
this emulation, we imagine that this vehicle is guided by an
integrated navigation system composed of a Global Positioning
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Fig. 5: Empirical WV (black line) of the MEMS IMU in static
conditions (upper plot) and under 200 deg/sec rotation (lower
plot). The WV implied by the respective models estimated
via the GMWM is represented by the orange line while the
contribution of each underlying process to these models is
represented through lines of other colors. In the lower plot,
we report the WV implied by the model estimated on the
signal under static conditions with a red line.

System (GPS) and IMUs such as the one considered in this
section. In these systems the most accurate measurements
are given by the GPS while the IMUs are used mainly to
update navigation estimates between GPS measurements and
also for uncertainty quantification. Unfortunately, GPS signals
can be corrupted or be absent in different situations and, as
a consequence, the IMUs are employed in so-called “coasting
mode” to provide the navigation solutions without the GPS.
In this case, and in general, it is extremely important for the
navigation filter associated to these IMUs, usually an Extended
Kalman Filter (EKF), to be programmed with precise estimates
of the stochastic error signals that characterize them so that
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Parameter\Rotation rate 0 deg/sec 200 deg/sec
Estimate CI (95 %) Estimate CI (95 %)

φ 1.63 · 10−1 (1.62 · 10−1 ; 1.64 · 10−1 ) 1.85 · 10−1 (1.81 · 10−1 ; 1.89 · 10−1)
ς2 4.78 · 10−3 (4.77 · 10−3 ; 4.78 · 10−3 ) 3.56 · 10−2 (3.55 · 10−2 ; 3.57 · 10−2)
γ2 3.09 · 10−12 (9.01 · 10−13; 5.52 · 10−12) 8.69 · 10−10 (5.88 · 10−10; 1.12 · 10−9)

TABLE I: Estimated parameters and 95% parametric bootstrap confidence intervals for the error signal collected at 0 deg/sec
(first and second column respectively) and for the error signal collected at 200 deg/sec (third and fourth column respectively).
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Fig. 6: Empirical distribution of the GMWM parameter estimates under Model 1 (misspecified) and Model 2 (correctly specified)
represented in the left and right boxplot in each plot respectively.

they can be removed from their measurements and obtain
more accurate navigation solutions for the vehicle. We rely
on the framework presented in [30] to perform this emulation
study and assess the impact on navigation performances when
considering or not the sinusoidal perturbations in the stochastic
calibration procedure.

Given this setting, let us perform an emulation study where
we determine a ground-truth trajectory and altitude profile
for a period of 235 seconds during which we mimic a GPS
outage for 50 seconds (from 160 seconds to 210 seconds) as
represented in Fig. 7. More in detail, we assume that the GPS
is measuring at 1 Hz while the IMU is measuring at 100 Hz.
Hence, let us study how much the navigation solutions, more
specifically position solutions, are affected by the approach
taken in the previous simulation which highlights the effects
of not accounting for vibration noise (see Fig. 6). To do so,
let us first define λ ∈ IR7 as the parameter vector containing
the GMWM estimates for Model 2 taken on the IMU under
rotation (therefore containing AR1, RW and two sinusoidal
processes) while we will define θ ∈ IR3 as the general param-
eter notation of the basic model structure consisting solely
in the sum of an AR1 and a RW process (this is indeed the
structure of Model 1). Given this, we can use θ? to represent
the elements of λ that correspond to the parameters of this
basic model, hence without the parameters of the sinusoidal
processes. Using this notation, we take the following approach
for the bth iteration (out of 500): (i) we simulate a stochastic
error signal from Model 2 based on λ and of the same length
as the original data (i.e., T = 2, 879, 999) that we refer to as
(x

(b)
t ); (ii) we use (x

(b)
t ) to estimate Model 1 (misspecified)

and Model 2 (correctly specified) using the GMWM and
denote the associated basic model parameters as θ̂(b)1 and θ̂(b)2

respectively (hence we discard the estimates of the parameters
of the sinusoidal processes in Model 2); (iii) we simulate an
additional stochastic error signal but this time from the basic
model (AR1 and RW) based on θ?, and add this error signal
to the previously mentioned navigation paths represented in
Fig. 7 (blue lines); (iv) we use an EKF based on θ̂(b)1 and θ̂(b)2

respectively to estimate the position of the vehicle when the
GPS is available as well as when there is an outage. Following
this, at each time point we have a position estimate using the
basic model parameters estimated under Model 1 and Model
2 respectively. Hence it is possible to compute a position error
ratio between the two solutions throughout the entire emulated
path. The position error is defined as the average over the
emulated trajectories of the `2-norm of the position error over
the three axes defined as ∆rt := r̂t − rt, where rt denotes
the true position at time t and r̂t is the estimated position at
time t. The results of this ratio (position error based on θ̂1
over position error based on θ̂2) are given in Fig. 8 where we
represent the mean position ratio along with its corresponding
95% confidence intervals. It can be observed how this ratio
is almost always above one when the GPS signal is available,
indicating that the model that accounts for vibration has a
slightly lower position error in-between GPS measurements.
This observation is confirmed when the GPS outage occurs
(grey area): the ratio drastically and steadily increases up to
1.1789 indicating a rapidly deteriorating position error for the
misspecified navigation filter, only to return towards one when
the GPS signal is available again. While this emulation study
substantially confirms the intuitive bias that can be induced by
an omission of stochastic disturbances during calibration (i.e.,
vibration noise), it also provides more insight to the real-life
impacts that such an omission can entail. In this example we
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Fig. 7: Trajectory and altitude profile (blue lines) of the
vehicle considered in the emulation study over 235 sec. The
highlighted part of these paths (in yellow) represent the portion
in which we mimic the GPS outage (from 160 sec to 210 sec).

can observe how much a misspecified navigation filter, based
on a model that does not account for vibration noise during
the calibration phase, can severely affect navigation precision
of (autonomous) vehicles. Indeed, a difference in position
error of 15% is considered large and in our study it actually
goes beyond 17%. If one wanted to correct an error of such
magnitude, this would generally require much more accurate
and expensive equipment. This study therefore highlights how
a significant improvement in navigation can be achieved when
accounting for vibration noise with important advantages for
many applications going from ground-vehicles to drones for
aerial-mapping and rescue-searches. In these applications it is
of essence to track their positions in situations where GPS
signals are often absent, thereby highlighting how much this
sizeable navigation error can affect the successful outcome of
these tasks.
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Fig. 8: Mean ratio of position errors for EKF based on θ̂1 over
those for EKF based on θ̂2. Yellow bands represent the 95%
confidence intervals for the mean ratio.

VI. CONCLUSIONS

The proposal of a stochastic parametrization of wave func-
tions to account for vibration noise can be helpful in many
applications ranging from engineering to natural sciences. In
particular, modeling this noise while considering the presence
of several other stochastic processes in large signals is a com-
putational and/or numerical challenge for standard approaches.
The derivation of theoretical forms for the WV and the study
of its properties in the context of sinusoidal processes has
allowed to extend the flexibility of the GMWM modeling
framework which can account for more complex features in
signals in a computationally efficient and numerically stable
manner, thereby greatly improving the precision of measure-
ment devices which was the specific focus of this work. More
broadly though, this methodology can be applied in a wide
range of domains where periodic signals are observed and need
to be taken in account when performing statistical modeling
and inference on time series data. For example, our approach
could be applied in the context of modeling daily position
time series from Global Navigation Satellite Systems where
periodic signals often need to be considered jointly with other
deterministic and stochastic signals as highlighted in [31].
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SUPPLEMENTAL MATERIALS

APPENDIX A
PROOF OF THEOREM 1

In this proof, ν̂j correspond to the wavelet variance estimator
associated with a single sinusoidal process, i.e., we have, by
definition,

ν̂j =
1

Mj

T∑
t=τj

(
τj−1∑
l=0

hj,lSt−l

)2

,

where Mj = T − τj + 1. With Wavelet coefficient

hj,l =

{
1
τj

for l 6 τj
2 − 1

− 1
τj

for l > τj
2

,

we then have

ν̂j =
1

τ2j

1

Mj

T∑
t=τj

 τj
2 −1∑
l=0

St−l − St− τj2 −l

2

.

Setting st := sin {βt+ u}, where β ∈ (0, π] and u ∈ (0, 2π),
we can write St = αst, where α∈ IR+. Plugging this into the
above equality, we define

νj,u :=
α2

τ2j

1

Mj

T∑
t=τj

[ τj
2 −1∑
l=0

st−l − st− τj2 −l

]2
.

Using sum to product formula

sin(a)− sin(b) = 2 cos

(
a+ b

2

)
sin

(
a− b

2

)
,

we get

νj,u =
4α2

τ2j

1

Mj
sin2

(
βτj
4

) T∑
t=τj

ct,

where ct =

[∑ τj
2 −1
l=0 cos

{
β
(
t− l − τj

4

)
+ u
}]2

. With sum

of cosines formula
N−1∑
n=0

cos (a+ nd) =

{
N cos(a) if sin

(
1
2d
)

= 0
R cos

{
a+ (N − 1)d2

}
otherwise,

where R =
sin( 1

2Nd)
sin( 1

2d)
, we obtain

νj,u =
4α2

τ2j

1

Mj

sin4
(
βτj
4

)
sin2

(
β
2

) T∑
t=τj

cos2
{
β
(
t− τj

2

)
+
β

2
+ u

}
.

Applying power reduction formula 2 cos2(θ) = 1+cos(2θ) to
the last equality we derived above, we attain

νj,u =
4α2

τ2jMj

sin4
(
βτj
4

)
sin2

(
β
2

) T∑
t=τj

1 + cos {β (2t− τj) + β + 2u}
2

.

Using power reduction formula 2 sin2(θ) = 1 − cos(2θ) to
sin4

(
βτj
4

)
and sin2

(
β
2

)
, we get

νj,u=
α2
{

1−cos
(
βτj
2

)}2

τ2jMj{1−cos (β)}
T∑

t=τj

1 + cos {β (2t−τj+1) + 2u}.

Reusing sum of cosines formula, we can simplify the last
equality to obtain

νj,u =
α2
{

1− cos
(
βτj
2

)}2

τ2j {1− cos (β)} [1 + a cos {β (T + 1) + 2u}]

where a :=
sin{β(T−τj+1)}

Mj sin(β)
. Combining this equality on νj,u

and the fact that

E [cos {β(T + 1) + 2U}]=
∫ 2π

0

cos {β (T + 1) + 2u}
2π

du = 0,

where U ∼ U(0, 2π), we deduce that

E [ν̂j ] =
α2
{

1− cos
(
βτj
2

)}2

τ2j {1− cos (β)} .

In addition, by Markov’s inequality, we have, for any C > 0,

Pr
[
T
∣∣ ν̂j − E {ν̂j}

∣∣ ≥ C]
≤ T 2

C2
E
(

[ν̂j − E {ν̂j}]2
)

≤ 16T 2α4

C2τ4jM
2
j sin2(β) {1− cos(β)}2

,

where the second inequality can be deduced from

E
(

[ν̂j − E {ν̂j}]2
)

=E{b2 cos2(c+ 2U)}=
b2

2
,

where b :=
α2
{
1−cos

(
βτj
2

)}2

τ2
jMj{1−cos(β)}

sin{β(T−τj+1)}
sin(β) and c :=β(T + 1).

Finally, we have

Pr
[
T
∣∣ ν̂j − E {ν̂j}

∣∣ ≥ C]
≤ 16T 2α4

C2τ4jM
2
j sin2(β) {1− cos(β)}2

≤ 16α4

C2 sin2(β) {1− cos(β)}2
≤ d

C2
,

where we used τ2jMj > T in the first inequality and where
where d := 16α4

[sin(β){1−cos(β)}]2 with 0 < d <∞. Equivalently,
setting ε := d/C2 and δε := εC3/d, we have that for any
ε > 0, there exist δε > 0 such that

Pr
[
T
∣∣ν̂j − E [ν̂j ]

∣∣ ≥ δε] ≤ ε,
which means that T (ν̂j − E [ν̂j ]) = Op(1). Thus, we obtain

ν̂j = E [ν̂j ] +Op
(
T−1

)
,

which concludes the proof.
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APPENDIX B
PROOF OF LEMMA 2

We define

ν∗(α, β) := [ν1(α, β) , ν2(α, β)]
>

=

[
α2{(1− cos(β)}

4
,
α2{1− cos(2β)}2
16{1− cos(β)}

]>
,

where [α , β]
> ∈ Θ := IR+×(0, π]. Fix [αi , βi]

> ∈ Θ, i =
1, 2 such that ν∗(θ1) = ν∗(θ2). Therefore, we have the
following system of equations

α2
1{1− cos(β1)}

4
=
α2
2{1− cos(β2)}

4
α2
1{1− cos(2β1)}2
16{1− cos(β1)} =

α2
2{1− cos(2β2)}2
16{1− cos(β2)} .

(7)

The first equation of (7) implies that

α2
2

α2
1

=
1− cos(β1)

1− cos(β2)
, (8)

and the second one that

α2
2

α2
1

1− cos(β1)

1− cos(β2)
=
{1− cos(2β1)}2

{1− cos(2β2)}2
. (9)

Using (8) in (9), we obtain{
1− cos(2β2)

1− cos(β2)

}2

=

{
1− cos(2β1)

1− cos(β1)

}2

. (10)

Setting f(x) = 4{1 + cos(x)}2 and since β ∈ (0, π], (10) is
equivalent to f(β2) = f(β1). Since f(x) is injective on [0, π],
the last equality implies that β1 = β2 and using (8), this also
implies that α1 = α2. Therefore, this proves that ν∗(θ) is
injective and consequently ν(θ) is also injective for J ≥ 2.

�

APPENDIX C
PROOF OF LEMMA 3

We first recall the expression of the WV at scale j ∈
{1, . . . , J}, for each process composing (Xt):

White Noise: νj(σ
2) =

σ2

τj
,

Quantization Noise: νj(Q
2) =

6Q2

τ2j
,

AR1: νj(φ, ς
2) =

ς2
{(
φ2 − 1

)
τj + 2φ

(
φτj − 4φτj/2 + 3

)}
(φ− 1)3(φ+ 1)τ2j

,

Drift: νj(ω
2) =

τ2j ω
2

16
,

Random Walk: νj(γ
2) =

(
τ2j + 2

)
γ2

12τj
,

Sinusoidal Noise: νj (α, β) =
α2
{

1− cos
(
βτj
2

)}2

τ2j {1− cos (β)} ,

where σ2, Q2, ς2, ω2, γ2, α ∈ IR+, |φ| ∈ (0, 1) and β ∈ (0, π].
Set θ :=

[
σ2, Q2, φ, ς2, ω2, γ2, α, β

]>
and Θ ⊂ IR8, the WV

at scale j = 1, . . . , J of the composite process (Xt) is given
by

νj(θ) = νj(σ
2) + νj(Q

2) + νj(φ, ς
2)+

νj(ω
2) + νj(γ

2) + νj(α, β).
(11)

The function νj(θ) can naturally be extended to ντ (θ) defined
by replacing τj’s entering (11) by a variable τ ∈ IR (even τ ∈
C). The latter function is therefore obtained as the summation
of the following functions:

ντ (σ2) =
σ2

τ
,

ντ (Q2) =
6Q2

τ2
,

ντ (φ, ς2) =
ς2
{(
φ2 − 1

)
τ + 2φ

(
φτ − 4φτ/2 + 3

)}
(φ− 1)3(φ+ 1)τ2

,

ντ (ω2) =
τ2j ω

2

16
,

ντ (γ2) =

(
τ2 + 2

)
γ2

12τ
,

ντ (α, β) =
α2
{

1− cos
(
βτ
2

)}2

τ2 {1− cos (β)} .

(12)

Given a θ ∈ Θ, we can consider ντ (θ) as functions of τ ∈ IR
and we will write νθ(τ) in place of ντ (θ) in the sequel of the
proof. Recalling that Λ :=

[
2, 2J

]
∩Q, suppose that for some

θ1,θ2 ∈ Θ ⊂ IR8, we have that for all τ ∈ Λ

νθ1
(τ) = νθ2

(τ). (13)

Using (13), we clearly have that τ2νθ1
(τ) = τ2νθ2

(τ), for all
τ ∈ Λ. We consider the following facts:

(i) By continuity and the fact that Λ is a dense subset
of
[
2, 2J

]
⊂ IR, we have ∀τ ∈

[
2, 2J

]
, τ2νθ1(τ) =

τ2νθ2(τ).
(ii) ∀θ ∈ Θ, τ2νθ(τ) is an analytic function of τ ∈ IR (even

τ ∈ C) since its only non-polynomial expressions in τ
are cos(βτ/2) in the wavelet variance of the sinusoidal
process, and φτ − 4φτ/2 in the wavelet variance of the
AR1 process which are both analytic functions of τ ∈ IR.
Hence, by (i) and the unicity of the analytical continua-
tion, we have that ∀τ ∈ IR, τ2νθ1

(τ) = τ2νθ2
(τ).

(iii) By (ii), τ2νθ1
(τ) and τ2νθ2

(τ) have the same Taylor
expansion for all τ ∈ IR and thus the same coefficients.

The last step of the proof is to show that (iii) implies that
θ1 = θ2. From there, we can directly deduce that νθ1(τ) =
νθ2(τ) implies θ1 = θ2, which will allow us to complete the
proof.
Let us compute the Taylor series associated to τ2νθ(τ), where
θ =

[
σ2, Q2, φ, ς2, ω2, γ2, α, β

]>
. We start by computing the

Taylor series associated to

τ2ντ (α, β) =
α2{1− cos(βτ/2)}2

1− cos(β)

=
α2

1− cos(β)
{1− cos(βτ/2)}2.

First, we have
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1− cos (βτ/2) = −
∞∑
n=1

(−1)n

(2n)!

(
β

2

)2n

τ2n,

which gives

{1− cos (βτ/2)}2 =

∞∑
n=2

(−1)n
(
β

2

)2n

ζnτ
2n.

where ζn =

n∑
m=1

1

(2m)!{2(n−m)}! Therefore, we have

τ2ντ (α, β) =

∞∑
n=2

anτ
2n, (14)

where for all n ≥ 2 we have

an =
α2

1− cos(β)
(−1)n

(
β

2

)2n

ζn. (15)

For the AR1 process, we first need to express the Taylor series
corresponding to φτ − 4φτ/2. Since φ ∈ (−1, 0) ∪ (0, 1), we
have

φτ =

{
eτ ln(φ) if φ ∈ (0, 1)
eτ{iπ+τ ln(−φ)} if φ ∈ (−1, 0),

where i :=
√
−1 and using the Taylor expansion of the

exponential function, we have

φτ =


∞∑
n=0

ln(φ)n

n!
τn if φ ∈ (0, 1)

∞∑
n=0

{iπ + ln(−φ)}n
n!

τn if φ ∈ (−1, 0).

Hence, we can compute the following

τ2ντ
(
φ, ς2

)
=
ς2
{(
φ2 − 1

)
τ + 2φ

(
φτ − 4φτ/2 + 3

)}
(φ− 1)3(φ+ 1)

=

∞∑
n=1

bnτ
n,

where

b1 =


ς2
{
φ2 − 2φ ln(φ)− 1

}
(φ− 1)3(φ+ 1)

if φ ∈ (0, 1)

ς2
[
φ2 − 2φ{iπ + ln(−φ)} − 1

]
(φ− 1)3(φ+ 1)

if φ ∈ (−1, 0),

(16)
and for n ≥ 2

bn =


ς2
(
1− 22−n

)
2φ

(φ− 1)3(φ+ 1)

ln(φ)n

n!
if φ ∈ (0, 1)

ς2
(
1− 22−n

)
2φ

(φ− 1)3(φ+ 1)

{iπ + ln(−φ)}n
n!

if φ ∈ (−1, 0).

(17)
Using equalities (12), (14), (15), (16) and (17),
for any θ =

[
σ2, Q2, φ, ς2, ω2, γ2, α, β

]> ∈ Θ we have that

τ2νθ(τ) =

∞∑
n=0

cnτ
n, (18)

where

c0 = 6Q2, c1 = σ2 +
γ2

12
+ b1, c2 = 0, c3 =

γ2

6
+ b3,

and

c4 =
ω2

16
+a4+b4, cn =

{
bn if n > 4 and n ∈ 2N + 1
an + bn if n > 4 and n ∈ 2N.

Now, we consider θ1 =
[
σ2
1 , γ

2
1 , ω

2
1 , Q

2
1, φ1, ς

2
1 , α1, β1

]>
and

θ2 =
[
σ2
2 , γ

2
2 , ω

2
2 , Q

2
2, φ2, ς

2
2 , α2, β2

]> ∈ Θ and their associ-
ated Taylor expansion (18) denoted as follows

τ2νθj (τ) =

∞∑
n=0

c(j)n τn,

where j = 1, 2. Since (13) is satisfied, it implies that for
all n ∈ N we have c

(1)
n = c

(2)
n . Given the definition of

these coefficients, we are going to consider four categories
of indices.

I. n = 0: We clearly have Q2
1 = Q2

2 from c
(1)
0 = c

(2)
0 .

II. n > 4 and n ∈ 2N + 1: For these indices, c(1)n = c
(2)
n is

equivalent to b
(1)
n = b

(2)
n which are associated uniquely

with the AR1 process. From (17), three cases need to be
considered:

1) φ1φ2 > 0 and φ1 > 0: In this case, b(1)n = b
(2)
n implies

0 <
ς21φ1
ς22φ2

(φ2 − 1)3(φ2 + 1)

(φ1 − 1)3(φ1 + 1)
=

{
ln(φ2)

ln(φ1)

}n
.

Since this equality is supposed to be true for all n > 4
with n ∈ 2N + 1, we have

ln(φ2)

ln(φ1)
= 1⇒ φ1 = φ2 ⇒ ς21 = ς22 .

2) φ1φ2 > 0 and φ1 < 0: Similarly, b(1)n = b
(2)
n for all

n > 4 with n ∈ 2N + 1 implies

0 <
ς21φ1
ς22φ2

(φ2 − 1)3(φ2 + 1)

(φ1 − 1)3(φ1 + 1)
=

{
iπ + ln(φ2)

iπ + ln(φ1)

}n
,

for all these n and thus gives

iπ + ln(φ2)

iπ + ln(φ1)
= 1⇒ φ1 = φ2 ⇒ ς21 = ς22 .

3) φ1φ2 < 0: We can suppose without loss of generality
that φ1 > 0. Here, b(1)n = b

(2)
n for all n > 4 with

n ∈ 2N + 1 leads to a contradiction. Indeed, since
{iπ + ln(−φ2)}2 ∈ �\IR, it implies that b(2)n ∈ �\IR
for an infinite number of n > 4 with n ∈ 2N + 1.
However, b(1)n ∈ IR for all n ∈ N which implies that
b
(1)
n 6= b

(2)
n for an infinite number of n > 4 with n ∈

2N + 1 which is contradictory.
III. n > 4 and n ∈ 2N: Here, c(1)n = c

(2)
n is equivalent to

a
(1)
n + b

(1)
n = a

(2)
n + b

(2)
n . However, from the previous

case, this is equivalent to a(1)n = a
(2)
n which are uniquely

associated with the sinusoidal process. From Lemma 2,
we have [α1, β1]> = [α2, β2]>.

IV. n = 1, 3, 4: From the two previous cases, we have that
c
(1)
3 = c

(2)
3 and c(1)4 = c

(2)
4 imply γ21 = γ22 and ω2

1 = ω2
2 .
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From there, c(1)1 = c
(2)
1 implies σ2

1 = σ2
2 .

This concludes the proof.

�

APPENDIX D
INFORMATION ON SIMULATION SETTINGS IN SECTION IV

AND SECTION V

Parameter Value
φ 0.975
ς2 0.03
σ2 1
γ2 0.0004
α 0.85
β 0.35

TABLE II: Parameters for Simulation Study 1

Parameter Value
φ1 0.999995
ς21 3 · 10−11

φ2 0.1107083
ς22 5.278666 · 10−4

α1 0.025
β1 0.056
α2 0.0015
β2 8 · 10−5

TABLE III: Parameters for Simulation Study 2

Parameter Value
φ 0.9997083
ς2 9 · 10−9

σ2 8 · 10−4

γ2 3 · 10−11

α 0.025
β 0.056

TABLE IV: Parameters for Simulation Study 3

Parameter Value

φ 1.851173 · 10−01

ς2 3.559081 · 10−02

γ2 8.692479 · 10−10

α1 3.235864 · 10−01

β1 1.199147
α2 1.359012 · 10−01

β2 1.357501 · 10−01

TABLE V: Parameters for the Emulation Study

The empirical distribution of the centered and scaled esti-
mated parameters (i.e., the estimated parameter minus its true
value divided by its empirical standard deviation) are shown
for the largest sample size in Fig. 9. As it can be observed,
the MLE is more efficient than the GMWM as the estimated
parameters present a lower variance compared to the estimated

Simulation 1

MLE GMWM

-3

-2

-1

0

1

2

3

σ2
WN

-3

-2

-1

0

1

2

3

ϕAR1

-3

-2

-1

0

1

2

3

ς2AR1

-3

-2

-1

0

1

2

3

γ2
RW

Fig. 9: Empirical distribution of GMWM and MLE parameter
estimates for Simulations 1 for a sample size of 16 · 104.
The true parameter values were subtracted from each boxplot
and all distributions were standardized by their respective
empirical variances.

parameters obtained with the GMWM, more notably for the
parameter of the white noise and the variance parameter of the
autoregressive process of order 1. However, the variability of
the GMWM estimator for all parameters is in a comparable
magnitude to the variability of the MLE.
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