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Abstract— Cough and respiratory sound processing can assist 

in the early diagnosis of infections such as Covid-19. Even 

asymptomatic Covid-19 patients can be diagnosed early enough if 

appropriate speech modeling and signal-processing is applied. 

Covid-19 affects various speech subsystems that are involved in 

respiration, phonation and articulation. Based on a symptom 

tracking platform that was recently presented by the authors 

(Coronario), we focus on the sound processing subsystem that is 

capable of classifying cough or respiratory sounds in multiple 

categories. Specifically, we attempt to classify a cough sound file in 

one of the following 5 categories: male dry or productive, female 

dry or productive and child’s cough. The classification is 

performed using Pearson Correlation Similarity, in frequency 

domain. Several alternative methods that employ averaging and 

Principal Component Analysis have been tested to estimate their 

recall and precision/accuracy metrics. The average 

precision/accuracy achieved is about 75% and 88%, respectively. 

The sound processing platform used is extensible allowing 

researches to experiment with several different classification 

methods applied on the anonymized data exchanged during 

symptom tracking. 

Keywords— sound processing; classification; cough sound; 

symptom tracking; embedded systems 

I. INTRODUCTION  

Covid-19 pandemic showed how valuable remote symptom 
tracking is, since primary health care services had to rely on 
contactless diagnosis. Morecular tests include Nucleic Acid 
Amplification such as Reverse Transcription - Quantitative 
Polymerase Chain Reaction (RT-qPCR)), Immunoassays and 
Sequencing and are the only way to confirm an infection [1]. 
However, it is difficult to apply these tests massively.  

In the simplest case, symptom tracking can be based on the 
answers given by the patient in questions about whether he has 
fever, headaches, cough, fatigue, anosmia, etc. Ten major 
telemedicine applications are reviewed in [2] that minimize the 
need to visit a doctor. More advanced techniques search for 
lesions in pneumonia chest Coaxial Tomography (CT) [3] or X-
ray scans [4]. A review on imaging techniques for the detection 
of Covid-19 can be found in [5].  

The coordination of speech neuromotors of the respiration, 
phonation and articulation is altered if a person is infected by 
Covid-19. Thus, sound processing and speech models are 
presented in [6] for tracking both asymptomatic and 
symptomatic phases of Covid-19. Sound processing of either 

respiratory or cough sounds can also be employed for Covid-19 
diagnosis [7-8].  

The purpose of the Coronario platform introduced in [9] is  
to reduce the traffic in primary healthcare units through remote 
symptom tracking. It supports real-time screening of vulnerable 
population with weak immune system while it can be used to 
monitor the patients in pre- or post-hospitalization phase. It 
consists of a mobile user and a supervisor application 
exchanging information through cloud services. It is also 
combined with eHealth sensors for more reliable diagnosis. 

Fig. 1. The architecture of the Coronario platform. 

The anonymous medical data that are used in the Coronario 
platform can also be exploited in the context of research on 
Covid-19, after patient consent. For this reason, an extensible 
sound processing platform (ScientificApp) has been developed. 
We focus on this specific platform in this paper and test several 
classification methods to demonstrate how it can be used for 
distinguishing cough sounds that may indicate Covid-19 
infection. Since there aren’t available public databases with 
recorded cough sounds from Covid-19 patients we examine a 
more general problem which is also slightly more difficult: we 
try to classify cough sounds in one of 5 categories depending on 
the age, the gender and the dry or productive nature of the cough 
sound. We do not intend to test all possible sound classification 
methods. Instead, our purpose is to demonstrate how the 
developed Coronario ScientificApp can be customized to 
support and compare different cough or respiratory sound 
analysis methods. However, the achieved average precision of 
75% and accuracy of 88% are quite high taking into 
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consideration that our classification concerns 5 categories and 
not just a binary decision (e.g., dry or productive cough). 

Fig. 2. The main ScientificApp window (a) and an example of visualized 

sound file in the frequency domain (b) [9]. 

II. CORONARIO ARCHITECTURE 

The architecture of the Coronario platform [9] appears in 
Fig. 1. It consists of 4 modules connected to the Cloud: the user 
mobile application (UserApp), the supervisor (SupervisorApp) 
and the scientific (ScientificApp) desktop applications  as well 
as a number of medical IoT sensors that are connected to the 
Cloud through a Sensor Controller. The information uploaded to 
the Cloud from the UserApp includes symptom descriptions, the 
user location and processed or unprocessed recorded sounds 
(e.g., cough or respiratory) and images. The sensor data and the 
information from the UserApp are uploaded to the Cloud and 
can be accessed by the supervisor doctor. Researchers can access 
anonymized data (e.g., sound files) through ScientificApp after 
patient consent. The supervisor doctor is responsible for the 
diagnosis results. All of the information stored in the Cloud can 
be represented in the following format: (uid, sid, ts, v). The 
parameters uid, sid, ts are the user and sensor identity, and the 
timestamp, respectively. The parameter v is string type and it can 
store a single or multiple integer or floating point values, whole 
text files such as the Medical Protocols (MP) or even sounds and 
images encoded as text. Additional meta-data (e.g., sender-
recipient of a message can also be incorporated in the v field. 

Coronario offers a flexible MP file format that allows the 
dynamic definition of sensor sampling strategies, alert rules and 
questionnaire formats. Thus, it can support several medical cases 
with different requirements. Additional services can also be 
offered by the Coronario platform including user tracking, 

localization and social distancing. In this paper, we focus on the 
study of the Coronario sound processing platform in the 
ScientificApp. We will explain how several cough classification 
methods can be incorporated and tested in order to demonstrate 
how the research on Covid-19 or similar infections can benefit 
from this sound processing platform.  

III. SOUND PROCESSING AND CLASSIFICATION  

A. ScientiricApp Description 

The main window of the ScientificApp is shown in Fig. 2a. 
In this page, the researcher can select a sound file (e.g., 
pom12.wav in Fig. 2a and play it. This sound file can be 
analyzed through the corresponding button either in the context 
of training or testing. In training phase, the number of training 
samples has to be initially defined in the “Tr. Samples (5:5)” 
field of Fig. 2a. The similarity metric used for the classification 
in this paper, is applied in the frequency domain. For this reason, 
Fast Fourier Transform (FFT) is supported and its size is defined 
in the corresponding field (“FFT size”).  

The researcher can select to apply the FFT to a subsampled 
input in order to cover a longer time interval with a single FFT. 
The number Sm set in the “Subsampling (f/?)” field indicates that 
only 1 out of  Sm consecutive samples will be used as input to the 
FFT.  

The drop down menu “Select Analysis Type” selects the 
similarity method that will be used. Extra parameters that may 
be needed by certain similarity methods can be set in the 
reserved fields “Param1” and “Param2”. The magnitude of the 
FFT output values will serve as the features checked for 
similarity. They are displayed at the bottom of Fig. 2a when the 
analysis is completed. These values can be exported for 
statistical processing outside the application. The researcher can 
select the file with the reference features of the supported classes 
(“classmax_1024_s4_maw7.txt” in the case of Fig. 2a) and 
proceed with the classification. The set of supported classes can 
be extended if the system is trained with sounds belonging to a 
new category. The classification results are displayed in the field 
starting with “Recognized as:” at the bottom of the Fig. 2a page).  

B. Similarity Metrics and Classification Methods 

Analyzing a sound file may require the application of FFT to 
multiple segments (depending on the selected subsampling 
scheme). The output of different FFT segments of the same 
sound file are either a) averaged (Add method) or b) the 
maximum power of the same frequency in different segments is 
used (Max method). More specifically, let xi be the N-point FFT 
input vector after subsampling, Xi, be the corresponding output 
vector and Nf, be the number of frames that a single sound file 
F consists of (0≤i<Nf). The file F can be represented in time 
domain as ��� � ����…�	
and in frequency domain as ��� �
����…�	
. Although each FFT frame may have different 

significance we will combine them with equal weights when the 
sound file signature FS is estimated: 

 �
 � ����� � ����, ��, … , �	
� (1) 

where S in the Add method is the averaging of the 
corresponding elements of the Xi vectors. In the Max method the 
largest value of the corresponding elements of the Xi vectors is 
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used in FS. During training the signatures FS of the training 
sound files belonging to the same class Ci are used to generate 
its feature vector FSCi. In our implementation all the signatures 
are simply averaged. 

When a new file F is analyzed, its signature FS is compared 
for similarity with all the FSCi reference feature vectors. Pearson 
Correlation Coefficient (PC) [10] is used as a similarity metric 
and is defined as follows: 

 �� � 	∑�������∑�� ∑����
�	∑�����∑������∑����� ��∑������

, (2) 

Each sum in eq. (2) implies the sum over all the elements of 
its vector operand. The PC values are in the range [-1,+1]. If �� � 1 then the compared vectors match while if �� � 0 then, 
they are totally uncorrelated. If �� � −1, then the minimums of 
one vector match the maximums of the other and vice versa. We 
select the class that a sound file belongs to, using the highest PC 
value.  

We may also apply a smoothing function to the elements of 
FS and FSCi in order to compare the fundamental patterns of these 
vectors. The smoothing functions we have tested are the 
following two: a) Moving Average Window of 7 or 15 elements 
(called maw7 or maw15, respectively) and b) Principal 
Component Analysis (PCA) using m out of n eigenvectors 
(called pca2 and pca5 for m=2 or 5 respectively).  

PCA [11] is used to smooth or compress data by discovering 
the fundamental patterns hidden in the high-dimensional data. 
Let us assume that we want to apply PCA to the FFD vector 
transformed into a N×Nf matrix FFDM as (n=Nf): 

 ���# � ������…�	
�  (3) 

The covariance matrix Ri with each Xi is:  

 $% � ∑ �%&�%&�	&'�  (4) 

where Xij is the j-th element of vector Xi. With Singular 
Value Decomposition (SVD), Ri can be expressed as:  

 $% � (�)� (5) 

V is a matrix having as columns the right singular vectors of 
Ri and S is the diagonal matrix with the singular values of Ri. 
Finally, U=[U1 U2 … UNf] is a feature vector with columns being 
the left singular vectors of Ri. 

If we preserve only the first m of the Nf eigenvectors from 
the vector U, ordered by magnitude then U can be reduced to 
Ur=[U1 U2 … Um], m<Nf. Those Ui vectors correspond to the 
principal components while m represents the level of smoothing 
or compression. We previously used n=Nf. However, Nf is not 
constant and depends on the sound file duration. Thus, another 
approach is to split the resulting file signature FS in n segments 
and create FFDM from these N/n-sized segments. The various 
combinations of the aforementioned parameters that have been 
tested are listed in Table I. 

 
 
 

TABLE I.  ALTERNATIVE SIMILARITY METHODS TESTED 

Method Name Add/Max, N, Sm, Filtering 

1024_s4 Add, 1024, 4, No filtering 

256_s1 Add, 256, 1, No filtering 

pca2 Add, 1024, 4, PCA with m=2 

pca5 Add, 1024, 4, PCA with m=5 

maw15 Add, 1024, 4, MAW with W=15 

maw7 Add, 1024, 4, MAW with W=7 

max1024_s4 Max, 1024, 4, No filtering 

max_pca5 Max, 1024, 4, PCA with m=5 

max_maw7 Max, 1024, 4, MAW with W=7 

IV. EXPERIMENTAL RESULTS 

The sound files were retrieved from SoundSnap 
(soundsnap.com) and split into 5 categories: child’s cough, male 
dry, male productive, female dry, female productive. The 
number of sound files is not constant across all categories 
depending on their availability. The average duration of the 
sound files was 3 seconds. Ten representative sound files of each 
category were used for training. The size of the training set 
ranges between 8% and 33% of the class population. Had a 
larger training set been used, the achieved precision would be 
even higher. We use the recall and precision metric to compare 
the alternative similarity methods listed in Table I. The recall is 
the fraction of the sound files of a class that were correctly 
recognized. The precision is the fraction of those files that 
indeed belong to the class C from all the files that were labeled 
as C. 

TABLE II.  RECALL COMPARISON 

Re 

call 

1024

_s4 

256_

s1 

pca2 pca5 maw

15 

maw

7 

max

1024

_s4 

max

_pca

5 

max_

maw

7 

Child 0.81 0.80 0.87 0.67 0.73 0.80 0.60 0.73 0.67 

Male

Dry 

0.42 0.36 0.48 0.45 0.25 0.25 0.50 0.36 0.52 

Fem.

Dry 

0.56 0.05 0.56 0.61 0.33 0.56 0.72 0.44 0.67 

Male

Prod. 

0.68 0.08 0.52 0.61 0.51 0.60 0.88 0.91 0.82 

Fem. 

Prod. 

0.48 0.48 0.41 0.48 0.48 0.48 0.52 0.48 0.65 

Aver

age 

0.59 0.35 0.57 0.56 0.46 0.54 0.64 0.59 0.66 

Table II lists the recall measured for all the alternative 

methods presented in Table I for the 5 categories of cough 

defined earlier. Similarly, Table III lists the corresponding 

precision.  The combinations that were listed in Table I, were 

selected based on the following facts: initially, the unfiltered 

data were tested using either (N=1024, Sm=4) or (N=256, 

Sm=1). As can be seen from Table II, 1024_s4 achieves better 

precision than 256_s1 in all of the cases. Consequently, the rest 

of the combinations tested, used: N=1024 and Sm=4. With Add 

method, when either moving average or PCA was applied, the 

results were worse when heavy smoothing was applied 

(maw15, pca2). After these observations, the Max was applied 

only to the methods that achieved the best results with the Add 

i.e.: 1024_s4, pca5 and maw7. 

216



TABLE III.  PRECISION COMPARISON 

Preci

sions 

1024

_s4 

256_

s1 

pca

2 

pca5 maw

15 

maw

7 

max

1024

_s4 

max

_pca

5 

max_m

aw7 

Child 0.72 0.21 0.46 0.53 0.38 0.44 0.53 0.79 0.67 

Male

-Dry 

0.74 0.32 0.44 0.50 0.35 0.36 0.84 0.63 0.77 

Fem.

-Dry 

0.33 0.25 0.48 0.46 0.21 0.33 0.62 0.50 0.60 

Male

Prod

uctiv

e 

0.64 0.38 0.68 0.63 0.67 0.70 0.68 0.65 0.68 

Fem. 

Prod

uctiv

e 

0.58 0.26 0.50 0.58 0.48 0.58 1.00 0.85 0.79 

aver

age 

0.60 0.28 0.51 0.54 0.42 0.48 0.73 0.68 0.70 

TABLE IV.  CONFUSION MATRIX FOR MAX_1024_S4 

 Child Male 

Dry 

Female 

Dry 

Male 

Productive 

Female 

Productive 

Child (20) 18 0 2 10 0 

Male Dry (66) 4 34 0 28 0 

Female Dry (36) 2 0 26 8 0 

Make Productive 

(132) 

8 4 4 116 0 

Female 

Productive (46) 

2 2 10 8 24 

 As can be seen from Table III the highest average precision 
is achieved with Max method without filtering although MAW7 
is quite close and achieves better average recall. Table IV is the 
confusion matrix for the case of max_1024_s4. In the first 
column of this table the population of each class is listed in 
parentheses.  

In the literature, the problem of distinguishing cough from 
noise is handled with a recall of about 80% [12]. Distinguishing 
wet from dry cough is achieved in [13] with recall and accuracy: 
75% and 76%, respectively. The accuracy metric differs from 
precision: it takes into account the fraction of both the samples 
that were correctly recognized as positive or negative. The 
corresponding accuracy in our case is 88%. It has to be stressed 
that both [12] and [13] address a binary decision problem which 
is a much easier task than the classification in 5 categories. 

V. CONCLUSION 

An extensible sound processing platform was described that 
analyzed and classified cough sounds in 5 categories with 
average recall, precision and accuracy of 64%, 73% and 88% 
respectively. Several parameters of this sound processing 
platform can be configured including classification methods, 
similarity metrics, FFT size, filtering methods, etc. Several 

combinations of these parameters have already been tested to 
demonstrate the extensibility of this platform. 

Future work will focus on testing the platform on the 
classification of Covid-19 cough sounds. Proper classification 
methods will be investigated for this case study. 
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