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Abstract—With the rise of bidirectional encoder representa-
tions from Transformer models in natural language processing,
the speech community has adopted some of their development
methodologies. Therefore, the Wav2Vec models were introduced
to reduce the data required to obtain state-of-the-art results. This
work leverages this knowledge and improves the performance
of the pre-trained speech models by simply replacing the fine-
tuning dense layer with a lateral inhibition layer inspired by
the biological process. Our experiments on Romanian, a low-
resource language, show an average improvement of 12.5% word
error rate (WER) using the lateral inhibition layer. In addition,
we obtain state-of-the-art results on both the Romanian Speech
Corpus and the Robin Technical Acquisition Corpus with 1.78%
WER and 29.64% WER, respectively.
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I. INTRODUCTION

Deep neural networks benefit from large amounts of an-
notated training data. However, annotated data is challenging
to obtain in many settings. Except for English, generating
thousands of hours of transcribed audio necessary to train
a state-of-the-art speech recognition system is infeasible for
most languages worldwide. Self-supervised learning [1] has
become the de facto technique for addressing this issue by
first teaching a general data representation from unlabeled
samples and then transferring the accumulated knowledge to
a downstream task via fine-tuning [2].

Working with self-supervision on unlabeled speech signals
involves similar challenges as in computer vision. However,
the research community continued to build pre-trained models
on audio that have pushed further the state of the art in speech
recognition. Schneider et al. [3] introduced the Wav2Vec
model, which encodes the input audio data into a latent
space to create a contextualized representation employing a
Transformer encoder [4]. Baevski et al. [5] built Wav2Vec 2.0
on top of the previous work, mainly using the same model
architecture while changing the pre-training objective to a
discretized contrastive loss similar to the masked language
model strategy from natural language processing.

Introduced by Păis, [6], the lateral inhibition layer helps
the model to learn when the annotated data is scarce. This

paper investigates its application in transcribing human voice
from audio files by integrating the lateral inhibition mechanism
into a pre-trained automatic speech recognition (ASR) system.
We choose the Wav2Vec 2.0 Base model pre-trained on 100k
hours of unlabeled audio data extracted from VoxPopuli (i.e.,
Wav2Vec2.0-VP-100k) [7]. We run our experiments on a low-
resource language, namely the Romanian language.

Our results for the experimental setup with the lateral
inhibition layer show an average performance of 12.5% word
error rate (WER) on various dataset settings compared with
the feed-forward layer. In addition, we obtain state-of-the-art
results on the Romanian Speech Corpus (RSC) [8] with 1.78%
WER, using fewer training data than the previous model, and
on the Robin Technical Acquisition Speech Corpus (RTASC)
[9] with 29.64% WER, using the same training data.

We can summarize our main contributions as follows: (i)
applying the technique of neural lateral inhibition to ASR;
(ii) performing an analysis of the improvements brought by
the lateral inhibition layer; (iii) to the best of our knowledge,
creating the first publicly available Romanian Wav2Vec 2.0
model1 (called RoWav2Vec2.0-VP-100k-LI) that was thor-
oughly evaluated on several benchmarks; and (iv) obtaining
state-of-the-art performance on two Romanian ASR datasets.

II. LATERAL INHIBITION

Inspired by the human brain’s biological process of lat-
eral inhibition, the neural lateral inhibition layer has been
successfully applied in named entity recognition [6]. This
process accounts for exciting neurons reducing the activity of
neighboring neurons in the human brain [10]. Also, it provides
an increased perception of the visual cortex under challenging
scenarios, such as low-lighting conditions [11]. Intuitively, we
envisage that the new layer should be able to better focus on
the actual voice data while possibly removing unwanted noise.

Following the original formulation [6], the lateral inhibition
layer is described as follows:

F (x) = x ·Diag(Θ(x · ZeroDiag(W ) + b)) (1)

1https://huggingface.co/racai
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where x is the input vector of the layer (i.e., the embedding
representation produced by the RoWav2Vec2.0-VP-100k-LI
model), Diag(·) denotes a diagonal matrix having the diagonal
set to the vector presented as a parameter, ZeroDiag(·)
generates a matrix with the zero value on the diagonal, W
is the weight matrix, b corresponds to the bias values, and
Θ(·) is the Heaviside function (see Equation 2).

Θ(x) =

{
1, x > 0
0, x ≤ 0

(2)

Following the analogy with the biological process, the
Heaviside function determines which values can pass to the
next layer. The decision is based on the adjacent values in the
supplied embedding representation. Equation 1 is used for the
forward pass, with the Heaviside function included, thereby
providing a strict pass or reject functionality for the input
values. However, in the backward pass, the non-differentiable
Heaviside function is replaced with the parameterized sigmoid
function [12] (see Equation 3, where k is the scaling param-
eter). This technique, known as surrogate gradient learning
[13], allows using a known derivative (see Equation 4) in the
backward pass.

σ(x) =
1

1 + e−kx
(3)

σ′(x) = kσ(x)σ(−x) (4)

III. EXPERIMENTAL SETTINGS

A. Dataset

The fine-tuning of the RoWav2Vec2.0-VP-100k-LI model
was done on a speech dataset whose composition contained
ten Romanian corpora with transcribed audio files. The corpora
contain recordings from several domains, including Wikipedia,
News, Internet, and Legal. The resulting dataset has ap-
proximately 300 hours of transcribed speech from 222.7k
utterances. It is composed of both reading and spontaneous
speech, distributed in an imbalanced manner, with 229 hours
of reading and 71 hours of spontaneous speech, respectively.

We further split our Romanian speech dataset into five
subsets based on the total recording time by random sampling
without replacement audio files until the desired size was
reached: Small (S) - 10 minutes, Medium (M) - 1 hour, Large
(L) - 10 hours, Extra Large (XL) - 100 hours, and Extra Extra
Large (XXL) - the whole dataset. The split was necessary to
evaluate the lateral inhibition performance in more extreme
settings, i.e., with fewer labeled audio files.

B. Fine-tuning

We used the primary fine-tuning mechanism for the
Wav2Vec 2.0 model as introduced in the original paper [5].
Therefore, using the raw audio input, we project the contex-
tualized embeddings ci obtained by the model for each time
step i into a tensor yi whose dimensions match the number of
letters in the Romanian alphabet, plus the space character and
the blank token. We project the data using either the standard
fully-connected layer or the lateral inhibition layer followed by

a dense layer. Using the connectionist temporal classification
algorithm [16], we computed the loss between the predicted
logits and target labels. We set k = 10 for the lateral inhibition
layer, which we believe is a good enough approximation of
the surrogate gradient of the Heaviside function.

We employed the Adam method [17] to optimize the loss
with a learning rate set to 3e−5 and a weight decay to 5e−3.
We fine-tuned each model on two NVIDIA 1080 TI GPUs.
Due to GPU memory limitations, we set the batch size to 4
with a gradient accumulation of 8. In addition, we clipped the
gradients from the back-propagation algorithm to 2 to improve
training stability [18].

IV. RESULTS

A. Romanian ASR

We evaluate our models, namely RoWav2Vec2.0-VP-100k
(i.e., without lateral inhibition) and RoWav2Vec2.0-VP-100k-
LI (i.e., with lateral inhibition), on the test set of three
corpora: Spontaneous Speech Corpus (SSC) [19], RSC, and
RTASC. Compared with previous works on Romanian ASR,
the results of the evaluation regarding WER and character error
rate (CER) are listed in Table I. In all our experiments, the
decoding phase employs a 4-gram KenLM language model
[20] trained on the textual part of the corpus for contemporary
Romanian language [21].

Our model with lateral inhibition, trained on the full dataset
(i.e., RoWav2Vec2.0-VP-100k-LI-XXL), obtains state-of-the-
art performance on the RSC and RTASC corpora, achieving
1.78% WER and 29.64% WER, respectively2. It improves
the performance of the best Kaldi [22]-based ASR system,
the Time Delay Neural Network - Recurrent Neural Network
(TDNN-RNN) [15], by 1.01% WER on RSC and also the
performance of the Romanian DeepSpeech2 model [14] on
RTASC by 7.57% WER.

However, our proposed models do not improve the per-
formance on the SSC evaluation set, with our best variant
(i.e., RoWav2Vec2.0-VP-100k-LI-XXL) falling behind 2.24%
WER compared to the TDNN-RNN architecture. The main
driver behind this difference is the need for more spontaneous
speech data within our training corpus compared to the dataset
used for training the state of the art. Specifically, the TDNN -
Long Short-Term Memory (TDNN-LSTM), the Convolutional
Neural Network - TDNN (CNN-TDNN), the TDNN, and the
TDNN-RNN were all trained on a dataset with 235 hours of
speech, namely 95 hours of read speech data from RSC and
140 hours of dedicated internal spontaneous speech data, sim-
ilar to the one used in the SSC evaluation set. Meanwhile, we
used only 71 hours of spontaneous speech data, approximately
half the amount used to train the TDNN-based models.

On the other hand, we increased the number of read speech
data by decreasing the amount of spontaneous speech data
within our training corpus. Hence, the performance of our best

2The high difference in WER between the two corpora comes from the
type of utterances found in them: RSC contains common Romanian words
and phonemes, while RTASC has more specific utterances from technology,
with many words and phonemes borrowed from the English language.



TABLE I. RESULTS OF OUR MODELS WITH OR WITHOUT LATERAL INHIBITION, WHICH ARE TRAINED ON EACH DATASET SUBSET AND EVALUATED
ON RSC, SSC, AND RTASC, COMPARED WITH OTHER ROMANIAN ASR MODELS.

Model Train Size RSC SSC RTASC
(#hours) WER(%) CER(%) WER(%) CER(%) WER(%) CER(%)

DeepSpeech2 [14] 230h 5.34 1.59 25.55 9.617 37.21 17.66
TDNN-LSTM [15] 235h 4.55 - 19.25 - - -
CNN-TDNN [15] 235h 3.44 - 16.00 - - -
TDNN [15] 235h 3.32 - 16.85 - - -
TDNN-RNN [15] 235h 2.79 - 16.63 - - -

RoWav2Vec2.0-VP-100k-S 10m 44.78 9.13 68.40 22.55 80.73 33.68
RoWav2Vec2.0-VP-100k-LI-S 10m 35.00 7.05 58.05 18.72 76.33 31.47

RoWav2Vec2.0-VP-100k-M 1h 16.55 3.44 39.86 12.75 58.47 24.08
RoWav2Vec2.0-VP-100k-LI-M 1h 13.92 3.07 38.55 12.33 54.98 23.42

RoWav2Vec2.0-VP-100k-L 10h 4.80 1.62 28.23 11.55 44.52 23.04
RoWav2Vec2.0-VP-100k-LI-L 10h 3.95 1.18 24.73 9.35 37.12 16.50

RoWav2Vec2.0-VP-100k-XL 100h 2.31 0.86 23.12 9.62 33.35 17.08
RoWav2Vec2.0-VP-100k-LI-XL 100h 1.80 0.70 19.21 7.96 29.69 13.95

RoWav2Vec2.0-VP-100k-XXL 300h 2.01 0.72 20.04 7.89 31.51 14.12
RoWav2Vec2.0-VP-100k-LI-XXL 300h 1.78 0.71 18.87 7.87 29.64 13.71

variant on the RSC evaluation set may have benefited from this
fact. However, RoWav2Vec2.0-VP-100k-LI-XL still achieves
almost state-of-the-art performance with 1.80% WER on RSC,
indicating that our methodology has not benefited too much
from the increased amount of read speech data on this test set.

Apart from our best model, the rest of the variants per-
formed reasonably well on each evaluation task, given the low
amount of available training data. The RoWav2Vec2.0-VP-
100k model obtained good results when fine-tuned on the L,
XL, and XXL subsets, but the word error rate rapidly increased
when the training dataset was switched to the more extreme
cases (i.e., the M and S subsets). For instance, on the RSC
dataset, the variants fine-tuned on the L, XL, and XXL sub-
sets maintained a fairly good performance, achieving 4.80%,
2.31%, and 2.01% WER, respectively (or 3.95%, 1.80%, and
1.78% WER, respectively, with the lateral inhibition layer).
However, the WER increased by more than three times on
the RSC M subset and more than eight times on the RSC S
subset, with our model obtaining 16.55% and 44.78% WER,
respectively (or 13.92% and 35.00% WER with the lateral
inhibition layer).

B. Lateral Inhibition Layer Improvements

We further analyze the improvements brought by the lateral
inhibition in the RoWav2Vec2.0-VP-100k-LI models on all
five evaluation subsets. An illustration of the difference in
performance obtained by our model fine-tuned on all subsets
is depicted in Figure 1. We observe that the lateral inhibition
layer decreases the error rates of the RoWav2Vec2.0-VP-100k-
LI models in all our experiments. We also notice that, on
average, the improvements become more significant for the
smaller subsets. We believe this results from the increased
regularization when the lateral inhibition layer is employed,
mainly because it allows the model to focus better on the fea-
tures of the actual human voice, thereby learning to distinguish
the speech from the noise better even when the data is scarce.

We also compute the average relative improvement of the
lateral inhibition mechanism to all the RoWav2Vec2.0-VP-
100k-LI variants on each evaluated corpus. We depict the
results in Figure 2. The greatest improvements are achieved
on the RSC evaluation subsets, the lateral inhibition layer
reducing the WER on average by 17.8% and the CER by
16.1%. The lowest average WER improvement (i.e., 9.0%) is
obtained on the RTASC evaluation subsets. Also, the lowest
CER improvement (i.e., 11.4%) is obtained on the SSC eval-
uation subsets. The average improvement over all evaluation
subsets is 12.5% for WER and 13.1% for CER.

V. CONCLUSIONS

Automatic speech recognition for low-resource languages
remains an important research direction. In this work, we
applied the recently introduced mechanism, namely the lateral
inhibition layer, which helps the speech recognition neu-
ral networks to better distinguish between the human voice
and the surrounding noise. We performed experiments on
the Romanian language using the RoWav2Vec2.0-VP-100k-LI
models and a custom dataset composed of 300 hours of speech.
The results showed that the lateral inhibition layer reduces, on
average, the WER by 12.5% over all the evaluated test sets.
Furthermore, we achieved state-of-the-art performance on the
RSC and RTASC datasets using this mechanism, obtaining
1.78% WER and 29.64% WER, respectively.

Future work considers experimenting with the lateral inhibi-
tion layer on languages other than Romanian and an evaluation
of a speech dataset containing more than 300 hours. In
addition, we intend to fine-tune other variants of the Wav2Vec
2.0 model, pre-trained on various datasets and with different
methodologies, to validate that our results generalize beyond
the pre-trained variant employed in this work.
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Fig. 1. WER and CER comparison between fine-tuning the RoWav2Vec2.0-VP-100k model with a feed-forward (FF) layer or a lateral inhibition (LI) layer
on each evaluation corpus subset.

Fig. 2. The average relative WER and CER improvement brought by the
lateral inhibition layer.
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[21] D. Tufiş, V. Barbu Mititelu, E. Irimia, V. Păiş, R. Ion, N. Diewald,
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