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Abstract—It is common for cloud data centers meeting unexpected loads like request bursts, which may lead to overloaded situation
and performance degradation. Dynamic Voltage Frequency Scaling and VM consolidation have been proved effective to manage
overloads. However, they cannot function when the whole data center is overloaded. Brownout provides a promising direction to avoid
overloads through configuring applications to temporarily degrade user experience. Additionally, brownout can also be applied to
reduce data center energy consumption. As a complementary option for Dynamic Voltage Frequency Scaling and VM consolidation,
our combined brownout approach reduces energy consumption through selectively and dynamically deactivating application optional
components, which can also be applied to self-contained microservices. The results show that our approach can save more than 20%
energy consumption and there are trade-offs between energy saving and discount offered to users.

Index Terms—Cloud Data Centers, Energy Efficient, Application Component, Microservices, Brownout
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1 INTRODUCTION

The emergence of cloud computing is viewed as a new
paradigm in IT industry [1]. Cloud computing provides
compelling features such as pay-as-you-go pricing model,
low operation cost, high scalability and easy access. This
makes Cloud computing attractive to business owners as it
eliminates the requirement for users to plan ahead for pro-
visioning, and allows enterprises to start with the minimum
and request resources on demand. Providers like Amazon,
Microsoft, IBM and Google have established data centers to
support cloud applications around the world, and aimed to
ensure that their services are flexible and suitable for the
needs of the end-users.

Energy consumption by the cloud data centers has cur-
rently become one of the major problems for the computing
industry. The growth and development of complex data-
driven applications have promulgated the creation of huge
data centers, which heightens the energy consumption [2].
The servers hosted in data centers dissipate more heat and
need to be maintained in a fully air-conditioned and engi-
neered environment. The cooling system is already efficient,
while servers are still one of the major energy consumer.
Hence, reducing server energy consumption has become a
main concern of researchers [3].

Given the scenario that the budget and resource are
limited, overloaded tasks may trigger performance degra-
dation and lead the applications to saturate, in which some
applications cannot be allocated by provider. Therefore,
some users are not served in a timely manner or experience
high latencies, others may even not receive service at all [4].
The saturated applications also bring over-utilized situation
to hosts and cause high energy consumption. Unfortunately,
current resource management approaches like Dynamic
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Voltage Frequency Scaling (DVFS) and VM consolidation
cannot function when the holistic data center is overloaded.

Currently, applications can be constructed via set of self-
contained components that are also called microservices.
The components encapsulate its content and expose its func-
tionality through interfaces, which makes them flexible to be
deployed and replaced. With components or microservices,
developers and users can benefit from their technological
heterogeneity, resilience, scaling, ease of deployment, or-
ganizational alignment, composability and optimizing for
replaceability [5]. This brings the advantage of more fine-
grained control over the application resource consumption.

It is common that application components have different
priorities to be provided to users. Therefore, not all compo-
nents or microservices in an application are mandatory to
be functional all the time on hosts. We investigate whether
it is feasible to downgrade user experience by disabling part
of non-mandatory application components or microservices
to relieve the over-utilized condition and reduce energy
consumption.

Therefore, we take advantage of a paradigm called
brownout. It is inspired by the concept of brownout in
electric grids. Its original definition is the voltage shutdown
to cope with emergency cases, in which light bulbs emit
fewer lights and consumes less power [6]. A brownout
example for online shopping system is introduced in [4],
the online shopping application provides a recommenda-
tion engine to recommend similar products that users may
be interested in. The recommendation engine component
helps service provider to increase the profits, but it is not
essential to run the engine. Recommendation engine also
requires more resource in comparison to other components.
Therefore, with brownout, under overloaded situation, the
recommendation engine could be deactivated to serve more
clients who require essential requirements.

There are many other applications with some features
can be disabled under brownout situation. Like the online
document process application that contains the components
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for spell checking and report generating. These components
are not required to be running all the time and can be
deactivated for a while to reduce resource utilization. Other
applications contain components that are not required to be
executing all the time can be applied with the brownout
approach. What the service providers need to spend efforts
on is identifying the optional components and determin-
ing their discount when deactivated. Our motivation is to
investigate the trade-off between energy consumption and
discount, as well as offering different component selection
policies.

We consider component-level control in our system
model. The model could also be applied to container or
microservices architecture. We model the application com-
ponents as mandatory and optional, if required, optional
components can be deactivated. By deactivating the op-
tional components selectively and dynamically, the appli-
cation utilization is reduced and eventually total energy
consumption is saved as well. While under market scenario,
service provider may provide discount for user as the ser-
vices are deactivated.

Our objective is to tackle the problem of energy efficiency
and our contributions are as below:

• Our approach considers the trade-offs between dis-
count that should be given to a user if a component
is deactivated and how much of energy can be saved.

• Then we propose a number of policies that consider
the aforementioned trade-offs and dynamically make
decisions on which components are going to be de-
activated.

The rest of this paper is organized as: after discussing
related work in Section 2, we present the brownout enabled
system model and problem statement in Section 3. Section
4 introduces our proposed brownout enabled approach
in details, while the experimental results of the proposed
approach are illustrated in Section 5. The conclusions along
with future work are given in Section 6.

2 RELATED WORK

It is an essential requirement for Cloud providers to reduce
energy consumption, as it can both decrease operating costs
and improve system reliability. Data centers can consume
from 10 to 100 times more power per square foot than a
typical office building. A large body of literature has focused
on reducing energy consumption in cloud data centers,
and the dominant categories for solving this problem are
VM consolidation and Dynamic Voltage Frequency Scaling
(DVFS) [7].

VM consolidation is regarded to be an act of combining
into an integral whole, which helps minimizing the energy
consumed by allocating work among fewer machines and
turning off unused machines [8]. Under this approach,
the VMs hosted on underutilized hosts would be consol-
idated to other servers and the remaining hosts would
be transformed into power-saving state. Beloglazov et al.
[9] proposed scheduling algorithms considering Quality of
Service and power consumption in Clouds. The algorithms
objective is energy-efficient mapping VMs to cloud servers
through dynamic VM consolidation. The VM consolidation

process is modeled as a bin-packing problem, where VMs
are regarded as items and servers are regarded as bins. The
advantages of the proposed algorithms are that they are
independent of workload types and do not need to know
the VM application information in advance.

The authors in [10] introduced adaptive approaches for
VM consolidation with live migration according to VM
historical data. Similar to [9], the VM placement is also
modeled as a bin-packing problem, in which VMs from
over-utilized servers are allocated to the PM with the least
increase of power consumption and under-utilized servers
are switched to be off or low power mode. In comparison
to [9], this work considers multiple dimension resource
(CPU, memory and bandwidth) and focuses more on VM
placement optimization stage by proposing various policies.
This work advances previous work by discussing online
algorithm competitive ratio for energy efficient VM consoli-
dation, which proves the algorithm’s efficiency.

A self-adaptive method for VM consolidation on both
CPU and memory is introduced in [11]. Its objective is mini-
mizing the overall costs caused by energy related issues. The
VM assignment and migration processes are determined by
probabilistic functions (Bernoulli trial). The mathematical
analysis and realistic testbed results show that the proposed
algorithm reduces total energy consumption for both CPU-
intensive and memory-intensive workloads with suitable
Bernoulli trial parameters. Compared with bin-packing ap-
proach (adopted in [9] [10]), the proposed algorithm in this
work can reduce migration times of VMs and its time com-
plexity is lower than bin-packing-based algorithm, which
offers higher efficiency in the online scenario. To achieve
the best performance, the disadvantage of this work is that
it needs some efforts to find the most suitable Bernoulli
trial parameter. Chen et al. [12] extended [11] and proposed
another utilization-based probabilistic VM consolidation al-
gorithm that aimed to reducing energy consumption and
VM migration times. The author also made performance
comparison with the algorithms in [9].

Corradi et al. [13] considered VM consolidation in a more
practical viewpoint related to power, CPU and networking
resource sharing and tested VM consolidation in OpenStack,
which shows VM consolidation is a feasible solution to
reduce energy consumption. Salehi et al. [14] proposed a
VM consolidation based approach, which is an adaptive
energy management policy that preempts VMs to reduce the
energy consumption according to user-specific performance
constraints and used fuzzy logic for obtaining appropriate
decisions.

Han et al. [15] used Markov Decision Process (MDP) to
handle VM management to reduce data center energy con-
sumption. Through MDP, the optimal result is obtained by
solving objective function. However, its solution dimension
is quite large, the authors also proposed an approximate
MDP approach to reduce the solution space and achieve
faster convergence. In this approximate algorithm, a cen-
tralized controller calculates the utilization function for each
VM and determines the possibilities for the state transition.
The state transitions in this algorithm represent the VMs
are migrated from one server to another. The authors also
theoretically validated the upper bound of algorithm’s error.

A practical OpenStack framework is implemented in
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[16] considering VM consolidation and data center power
management. This framework is available for customized al-
gorithm implementation. With public APIs, the framework
is transparent to the base OpenStack installation, and it is
not required to modify any OpenStacks configurations. This
work is the first step to implement VM consolidation in
OpenStack to minimize total energy consumption.

The DVFS technique introduces a trade-off between com-
puting performance and energy consumed by the server.
The DVFS technique lowers the frequency and voltage
when the processor is lightly loaded, and utilizes maximum
frequency and voltage when the processor is heavily loaded.
Von et al. [17] introduced a power-aware scheduling algo-
rithm based on DVFS-enabled cluster. Hanumaiah [18] et al.
introduced a solution that considers DVFS, thread migration
and active cooling to control the cores to maximize overall
energy efficiency.

The authors in [19] modelled real-time service to be real-
time VM requests and applied several DVFS algorithms to
reduce energy consumption. Their objective is balancing the
energy consumption and prices. The major concern in this
work is that less energy is preferred at the same price, thus
three different schemes based on DVFS are proposed to
balance the energy consumption and prices. The proposed
schemes are easy to implement while the adaptive DVFS
evaluations are restricted by the simplified and known-in-
advance queueing model.

Deng et al. [20] proposed a method named CoScale for
DVFS coordinating on CPU and memory while investi-
gating performance constraints, which is the first trial to
coordinate them together. Its objective is finding the most
efficient frequency from a set of frequency settings while
ensuring system performance. The most efficient frequen-
cies for cores and memory are selected as they minimize
the whole system energy consumption. CoScale adopts a
fine-grained heuristic algorithm that iteratively predicates
the component frequencies according to its performance
counters as well as online models. However, CoScale is not
suitable for offline workloads because it cannot reduce the
possible frequency space as like in online workloads.

Teng et al. [21] combined DVFS and VM consolidation
together to minimize total energy consumption. The en-
ergy saving objective is mainly applied to batch-oriented
scenario, in which the authors introduced a DVFS-based
algorithm to consolidate VMs on servers to minimize energy
consumption and ensure job Service Level Agreement. With
theoretical analysis and realistic testbed on Hadoop, the
authors proved that the proposed algorithm can find the
most efficient frequency that is only associated with the
processor type and its VM consolidation performance is
insensitive to tunable parameters. The limitations of this
work is that its realistic testbed is already upgraded to a
new version that provides better management, which is
more persuasive to implement the proposed approach on
the updated platform.

Brownout was originally applied to prevent blackouts
through voltage drops in case of emergency. Klein et al. [4]
firstly borrowed the approach of brownout and applied it to
cloud applications, aiming to design more robust applica-
tions under unpredictable loads. Tomas et al. [22] used the
brownout along with overbooking to ensure graceful degra-

dation during load spikes and avoid overload. Durango et
al. [6] introduced novel load balancing strategies for appli-
cations by supporting brownout. In a brownout-compliant
application or service, the optional parts are identified by
developers and a control knob called dimmer that controls
these optional parts is also exported. The dimmer value
represents a certain probability given by a control variable
and shows how often these optional parts are executed. In
addition, a brownout controller is also required to adjust the
dimmer value to avoid overload [22].

To the best of our knowledge, our approach is the first
research to reduce energy consumption with brownout at
components level, which also considers revenues for cloud
service providers. Our approach provides a complementary
option apart from VM consolidation and DVFS.

3 PROBLEM STATEMENT

In this section, we explain our system model and state the
problem we aim to tackle. For reference, Table 1 summaries
the symbols and their definitions throughout this paper.

3.1 System Model

Our system model (Fig. 1) includes entities: users, applica-
tions and cloud providers, which are discussed as below:

Users: Users submit service requests to cloud data cen-
ters to process. User entities contain user id and requested
applications (services) information.

Applications: The application entities in our model
come into system together with user entities. The applica-
tions consist of a number of components, which are tagged
as mandatory or optional.

Mandatory component: The mandatory component is
always running (activated) when the application is exe-
cuted.

Optional component: The optional component can be
set as activated or deactivated. These components have
parameters like utilization and discount (penalty payment
amount). Utilization indicates the amount of reduced uti-
lization, and discount represents the price that is cut. The
deactivation and activation of optional components are con-
trolled by the brownout controller, which makes decisions
based on system status and component selection policies.

The components can also be connected, which means
that they communicate with each other and there are data
dependencies between them. Therefore, we consider that if
a component is deactivated, then all its connected optional
components would also be set as deactivated. For example
in Fig. 1, if Com3 in Application #1 is deactivated, Com2
should also be deactivated; in Application #2, if Com1 is de-
activated, Com3 should also be deactivated; in Application
#n, if Com4 is deactivated, Com3 should also be deactivated,
but Com2 is still working (Com1 is connected with Com3,
but Com1 is mandatory, so it is not deactivated).

Cloud Providers: Cloud providers offer resources to
meet service demands, which host a set of VMs or containers
to run applications.
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TABLE 1
Symbols and Definitions

Symbol Definition
hi Server (host) i

P serveri Power of hi
P idlei Power when hi is idle

P dynamici Power when hi is fully loaded
Pmaxi Maximum power of hi
hl Server list in data center
wi Number of VMs assigned to hi

VMi,j VM j on hi
u(VMi,j) Utilization of VM j on hi
d(VMi,j) Discount of VM j on hi
Appc Application component c
Aj Total number of application components

u(Appc) Utilization of application component c
d(Appc) Discount of application component c
Di Total discount from server i
N Total number of VMs
M Total number of servers

Effpa Algorithm efficiency of proposed algorithm pa
Epa Energy consumption of proposed algorithm pa
Ebl Energy consumption of baseline algorithm bl
Dpa Discount amount of proposed algorithm pa
α Weight of discount to calculate algorithm efficiency
t Time interval t
T The whole scheduling interval
TP Overloaded power threshold
θt Dimmer value in brownout at time t
nt Number of overloaded hosts at time t
P ri Expected power reduction of hi

COH() Calculate the number of overloaded hosts
HPM() Host power model to compute expected utilization reduction
urhi

Expected utilization reduction on hi
V UM() VM utilization model to compute expected utilization reduction
urVMi,j

Expected utilization reduction on VMj on hi
CSP () Component selection policy to deactivate components
dcli,j,t Deactivated component list at time t on hi
St Set of deactivated components connection tags

Ct(Appc) Connection tag of component Appc
ocli,j,t Optional component list of VMj on hi at time t
p Position index in optional component list
Rh Available resource of host
Rv Maximum requested resource of VM
Ce Cost of energy consumption per unit of time
Co Cost of overloads per unit of time
ε Relative cost of overloads compared with Ce
tb Time for brownout operation
tm Time for VM consolidation
τ The times of brownout and VM consolidation occur in T

3.2 Power Model
To calculate the total energy consumption of data center, we
adopt the server power model proposed by Zheng et al. [23].
The server power consumption is modeled as:

P serveri =

{
P idlei +

∑wi
j=1 u(VMi,j)× P dynamici , wi > 0

0 , wi = 0
(1)

P server
i is composed of idle power and dynamic power. The

idle power is regarded as constant and the dynamic power
is linear to the total CPU utilization of all the VMs on the
server. If no VM is hosted on a server, the server is turned
off to save power. VMi,j refers to the jth VM on the ith
server, wi means the number of VMs assigned to server i.

u(VMi,j) =

Aj∑
c=1

u(Appc) (2)

The utilization of VMi,j is represented as u(VMi,j), which
is computed by summing up all the application utilization on
the jth VM. The c is the component id and Aj is the number of
application components. As processors are still the main energy
consumer of servers, we focus on CPU utilization in this work.

Fig. 1. System Model with Brownout

3.3 Discount Amount

Di =

wi∑
j=1

d(VMi,j) (3)

In equation (3), Di is the total discount amount obtained
from all VMs, in which the individual discount d(VMi,j)
from VMi,j is the sum of all application components discount
amount d(Appc) as shown in equation (4).

d(VMi,j) =

Aj∑
c=1

d(Appc) (4)

Aj is the number of applications hosted on VMj , and
d(VMi,j) is the discount happened from VMj on server
i, and Di is the total discount amount on server i.

3.4 Constraints and Objectives
The above equations subject to the following constraints:

M∑
i=1

wi = N (5)

wi∑
j=1

u(VMi,j) ≤ 1, ∀i ∈ [1,M ] (6)

N is the total number of VMs and M is the total number
of servers. Equation (5) represents the total number of VMs
assigned to hosts wi equals to the sum of VMs. Equation (6)
represents the sum of all the VMs utilization cannot surpass
their host available utilization.

We formulate the objectives of this problem as:

min

M∑
i=1

P serveri (7)

As well as

min(

M∑
i=1

Di) (8)

Therefore, we aim at investigating the trade-off total energy
consumption and discount amount.
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To measure the performance of an algorithm, we repre-
sent the algorithm efficiency Effpa:

Effpa =
Epa

Eb
+ αDpa (9)

where Epa is the energy consumption of the proposed
algorithm, Eb is the baseline algorithm energy consump-
tion, Dpa is the discount amount offered by the proposed
algorithm. If the proposed algorithm saves more energy
than the baseline algorithm, Epa

Eb
is a value between 0 to 1,

and Dpa represents the offered discount percentage, which
also belongs to 0 to 1. Thus, the smaller Effpa is, the more
energy is reduced and less discount amount is offered. The
α is the weight of discount, its default value is 1.0, if service
provider care more on discount, α is set as larger than 1.0; if
they care more about energy saving, α is set as less than 1.0.

4 PROPOSED APPROACH

Algorithm 1 Energy Efficient with Brownout Algorithm
(EEBA)
Input: hostList hl with size M , application components information,

overloaded power threshold TP , dimmer value θt at time t,
scheduling interval T , deactivated component list dcli,j,t of VMi,j

on host hi, power model of host HPM , VM utilization model
V UM , component selection policy CSP

Output: total energy consumption, discount amount, number of shut-
ting down hosts

1: use PCO algorithm to initialize VMs placement
2: initialize parameters with inputs, like TP
3: for t← 0 to T do
4: nt ← COH(hl)
5: if nt > 0 then
6: θt ← =

√
nt
M

7: for all hi in hl (i.e. i = 1, 2, . . . ,M ) do
8: if (P serveri > Pmaxi × TP ) then
9: P ri ← θt × Phi

10: urhi
← HPM (hi, P ri )

11: for all VMi,j on hi (i.e. j = 1, 2, . . . , wi) do
12: dcli,j,t ← NULL
13: urVMi,j

← V UM (urhi
, VMi,j )

14: dcli,j,t ← CSP (urVMi,j
)

15: Di ← Di + d(VMi,j)
16: end for
17: end if
18: end for
19: else
20: activate deactivated components
21: end if
22: use VM consolidation in PCO algorithm to optimize VM place-

ment
23: end for

Prior to brownout approach, we require a VM placement
and consolidation algorithms. We adopt the placement and
consolidation algorithm (PCO) proposed by Beloglazov et
al. [9]. Then we propose our brownout enabled algorithm
based on PCO and introduce a number of component
selection policies considering component utilization and
discount.

4.1 VM Placement and Consolidation Algorithm (PCO)

The VM placement and consolidation (PCO) algorithm is
an adaptive heuristics for dynamic consolidation of VMs
and extensive experiments show that it can significantly

reduce energy consumption. In the initial VM placement
phase, PCO sorts all the VMs in decreasing order of their
current CPU utilization and allocates each VM to the host
that increases the least power consumption due to this allo-
cation. In the VM consolidation phase, PCO optimizes VM
placement according to loads of hosts: PCO separately picks
VMs from over-utilized and under-utilized hosts to migrate,
and finds new placements for them. After migration, the
over-utilized hosts are not overloaded any more and the
under-utilized hosts are switched to sleep mode.

4.2 Energy Efficient Brownout Enabled Algorithm

Our proposed energy efficient brownout enabled approach
(noted as EEBA) is an enhanced approach based on PCO
algorithm. According to host power consumption, the
brownout controller dynamically deactivates or activates
applications’ optional components on VMs to relieve over-
loads and reduce the power consumption.

As shown in Algorithm 1, EEBA mainly consists of 6
steps:

Before entering the approach procedures, service
provider firstly needs to initialize VM placement by algo-
rithm like PCO and overloaded power threshold (lines 1-2).
The power threshold TP is a value for checking whether a
host is overloaded. Then the other steps are as below:

1) In each time interval t, checking all the hosts and
counting the number of overloaded hosts as nt (line 4);

2) Adjusting dimmer value θt as
√

nt

M based on the
number of overloaded hosts nt and host size M (line 6).

As mentioned in our related work, the dimmer value θt
is a control knob used to determine the adjustment degree
of power consumption at time t. The dimmer value θt is
1.0 if all the hosts are overloaded at time t and it means that
brownout controls components on all the hosts. The dimmer
value is 0.0 if no host is overloaded and brownout will not
be triggered at time t. The dimmer adjustment approach
shows that dimmer value varies along with the number of
overloaded hosts.

3) Calculating the expected utilization reduction on the
overloaded hosts (lines 8-10). According to the dimmer
value and host power model, EEBA calculates expected
host power reduction P r

i (line 9) and expected utilization
reduction urhi

(line 10). With host power model (like in Table
3), we have host power at different utilization levels, so the
utilization reduction can be computed based on power re-
duction. For example, in a power model, the host with 100%
utilization is 247 Watts and 80% utilization is 211 Watts, if
the power is required to be reduced from 247 to 211 Watts,
the expected utilization reduction is 100%− 80% = 20%.

4) Calculating the expected utilization reduction on VM
(lines 11-13). An empty deactivated component list dcli,j,t
of VMj on host hi is initialized to prepare for storing
deactivated components (line 12). Then the expected VM
utilization reduction urVMi,j

is computed based on VM
utilization model as VM utilization multiplies urhi

(line 13).
5) Applying component selection policy CSP to find

and deactivate components list dcli,j,t (line 14). According
to the expected VM utilization reduction urVMi,j

, compo-
nent selection policy is responsible for finding the compo-
nents satisfying the utilization constraint, deactivating these
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components and their connected ones, and updating total
discount amount (line 15).

6) In EEBA, if no host is above the power threshold, the
algorithm activates the optional components that have been
set as deactivated (line 20).

Finally, after finishing the main steps of EEBA, VM
consolidation in PCO algorithm is applied to optimize VM
placement (line 22).

The EEBA algorithm takes effect between the VM place-
ment and VM consolidation in PCO. VMs are initially
placed by VM placement phase in PCO, after that, if no
host is above the power threshold, the EEBA does not
work; otherwise, the brownout is triggered to handle the
overloaded condition, then the VM consolidation phase in
PCO is applied.

Algorithm 2 Component Selection Policy: Lowest Utiliza-
tion First Component Selection Policy (LUFCS)
Input: expected utilization reduction urVMi,j

on VMi,j

Output: deactivated components list dcli,j,t
1: Sort the optional component list ocli,j,t based on utilization
u(Appc) in ascending order //Other policies may change the
sorting approach at this line. If there are connected components,
the connected components are treated together and sorted by their
average utilization

2: St← NULL
3: if u(App1st) ≥ urVMi,j

then
4: dcli,j,t ← dcli,j,t + App1st
5: St← St + Ct(App1st)
6: for all Appc in ocli,j,t do
7: if Ct(Appc) is in St then
8: dcli,j,t ← dcli,j,t +Appc
9: d(VMi,j)← d(VMi,j) + d(Appc)

10: end if
11: end for
12: else
13: p← 0
14: for Appc in ocli,j,t do
15: if (

∑k
0(Appc) < urVMi,j

&
∑k+1

0 (Appc) > urVMi,j
) then

16: if (urVMi,j
−

∑k
0(Appc) <

∑k+1
0 (Appc)− urVMi,j

) then
17: p = k − 1
18: else
19: p = k
20: end if
21: break
22: end if
23: end for
24: for c←0 to p do
25: dcli,j,t ← dcli,j,t +Appc
26: St← St + Ct(Appc)
27: d(VMi,j)← d(VMi,j) + d(Appc)
28: end for
29: for all Appc in ocli,j,t do
30: if Ct(Appc) in St then
31: dcli,j,t ← dcli,j,t +Appc
32: d(VMi,j)← d(VMi,j) + d(Appc)
33: end if
34: end for
35: end if
36: return dcl(i, j, t)

As applications may have multiple optional components
with different utilization and discount amount, for Algo-
rithm 1 step 4 that applies component selection policy, we
have designed several policies:

Nearest Utilization First Component Selection Policy
(NUFCS): The objective of NUFCS is finding and deactivat-
ing a single component in the component list. Compared
with other components, the single component has the near-

est utilization to urVMi,j
. NUFCS can find the goal compo-

nent in O(n) time, which is efficient in online scheduling.
If the deactivated component is connected with other

components, NUFCS also deactivates other connected com-
ponents. NUFCS runs fast and can reduce utilization, but
if urVMi,j

is much larger than all the single component
utilization in the component list, more components should
be deactivated to achieve expected energy reduction. There-
fore, we propose another 3 multiple components selection
policies to achieve expected utilization reduction:

Lowest Utilization First Component Selection Policy
(LUFCS): LUFCS selects a set of components from the com-
ponent with the lowest utilization until these components
achieve expected utilization reduction. This policy follows
the assumption that the component with less utilization is
less important for users. Hence, with this policy, the service
provider deactivates a number of components with low
utilization to satisfy the expected utilization reduction.

Lowest Price First Component Selection Policy
(LPFCS): LPFCS selects a set of components from the
component with lowest discount. This policy focuses more
on discount and its objective is deactivating a number of
components with less discount amount and satisfying the
expected utilization reduction.

Highest Utilization and Price Ratio First Component
Selection Policy (HUPRFCS): HUPRFCS selects a set of
components considering component utilization and dis-
count together. The components with larger u(Appc)

d(Appc)
values

are prior to be selected. Its objective is deactivating the
components with higher utilization and smaller discount.
Therefore, the service provider saves more energy while
offering less discount amount.

Algorithm 2 shows an example about how the compo-
nent selection policy works. The example is about LUFCS:
the input of the algorithm is the expected configured utiliza-
tion urVMi,j

and the output is the deactivated components
list dcli,j,t. The steps are:

a) Algorithm 2 sorts the optional components list ocli,j,t
based on component utilization parameter in ascending
sequence (line 1), therefore, the component with the lowest
utilization is put at the head. For connected components,
the sorting process is modified as treating the connected
components together and using their average utilization for
sorting, which lowers the priority of deactivating connected
components to avoid deactivating too many components
due to connections;

b) Initialize a set St that stores the deactivated compo-
nents connection tags (line 2);

c) Algorithm 2 deactivates the first component and its
connected components if it satisfies the expected utilization
reduction (lines 3-11). If the first component utilization
parameter value is above urVMi,j

, Algorithm 2 puts this
component into the deactivated components list dcli,j,t and
puts its connection tag Ct(App1st) (a tag shows how it
is connected with other components) into St. After that,
Algorithm 2 finds other connected components and put
them into deactivated components list. Finally, summing up
the deactivated components discount amount as d(VMi,j);

d) If the first component utilization does not satisfy the
expected utilization reduction, Algorithm 2 finds a position
p in the optional components list (lines 13-23). The sublist
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before p − 1 is the last sublist that makes its components
utilization sum less than urVMi,j

and the sublist that before p
is the first sublist that makes its components utilization sum
larger than u. The policy selects the sublist with utilization
sum closer to the urVMi,j

from these two sublists;
e) Algorithm 2 puts all the components in the sublist into

the deactivated components list and puts their connection
parameters into the St (lines 24-28);

f) Algorithm 2 finds other connected components and
puts them into the deactivated components list, and updates
the discount amount (lines 29-35);

g) Finally, Algorithm 2 returns the deactivated compo-
nents list (line 36).

The LPFCS and HUPRFCS procedures are quite similar
to LUFCS except the sorting process at line 1. For example,
the LPFCS sorts the optional components list according to
component discount, while HUPRFCS sorts the optional
components list based on component utilization and dis-
count ratio u(Appc)

d(Appc)
. For connected components, these poli-

cies also treat them together and use their discount or
utilization and discount ratio to sort.

The complexity of our proposed algorithm at each
time interval is calculated based on two parts, one is the
brownout part and the other is the PCO part. At each time
interval, the complexity of the brownout part is O(m ∗M),
where m is the maximum number of components in all
applications, M is the number of hosts. The complexity of
the PCO part is O(2M) as analyzed in [9]. The complexity
at each time interval of our proposed algorithm is the sum
of the two parts, which is to O((2 +m) ∗M).

4.3 EEBA Competitive Analysis
We apply competitive analysis [24] [10] to analyze the
brownout approach combining with VM consolidation for
multiple hosts and VMs. We assume that there are M ho-
mogeneous hosts and N homogeneous VMs. If the available
resource of each host is Rh and maximum resource that can
be allocated to VM is Rv , then the maximum number of
VMs allocated to host is Rh

Rv
. Overloaded situation occurs

when VMs require more capacity than Rh. The brownout
approach handles with the overloaded situation with a
processing time tb, and VMs are migrated between hosts
through VM consolidation with migration time tm. The cost
of overloads per unit of time is Co, and the cost of energy
consumption is Ce. Without loss of generality, we can define
Ce = 1 and Co = ε. Then we have the following theorem:
Theorem 1. The upper bound of the competitive ratio of

EEBA algorithm for the components control and VM
migration problem is EEBA(I)

OPT (I) ≤ 1 + Nε
N+M .

Proof: The EEBA controls the application components
to handle with the overloaded situation and applies VM
consolidation to reduce energy consumption. This algorithm
deactivates application components to make the hosts to
be not overloaded and consolidates VMs to the minimum
number of hosts. Under normal status, the number of VMs
allocated to each host is N

M , while in overloaded situation,
at least N

M + 1 VMs are allocated to a single host. Thus, the
maximum number of overloaded hosts is Mo = b N

N
M +1
c,

which is equivalent to Mo = b MN
N+M c.

In the whole scheduling interval T , we split the time into
3 parts T = (tb + tm)τ + t0, where tb is the time that EEBA
uses brownout to relieve overloads, tm is the time consumed
for VM migration, t0 is the time that hosts running at normal
status and τ ∈ R+ . For the brownout and VM migration
parts, the behaviors are as below:

1). During the tb, the brownout controller selects applica-
tion components on overloaded hosts and deactivates them.
Because all the hosts are active during tb, the cost of this
part is tb(MCe +MoCo).

2). During the tm, if there are still overloaded hosts, VMs
are migrated from the overloaded hosts M

′

o, and M
′

o ≤Mo.
As the VM migration time is tm and all the hosts are active
during migration, the total cost during this time of period is
tm(MCe +M

′

oCo).
Therefore, the total cost C during tb + tm is defined as

below:

C = tb(MCe +MoCo) + tm(MCe +M
′

oCo). (10)

And the total cost incurred by EEBA for the input I is
shown in equation (11):

EEBA(I) = τ [tb(MCe+MoCo)+tm(MCe+M
′

oCo)] (11)

The optimal offline algorithm for this problem only
keeps the VMs at each host and does not apply brownout
and VM consolidation. Therefore, the total cost of an optimal
offline algorithm is defined as:

OPT (I) = τ(tb + tm)MCe (12)

Then we compute the competitive ratio of an optimal
offline deterministic algorithm as:

EEBA(I)

OPT (I)
=
τ [tb(MCe +MoCo) + tm(MCe +M

′

oCo)]

τ(tb + tm)MCe
(13)

As M
′

o ≤Mo, we have:

EEBA(I)

OPT (I)
≤ τ [(tb + tm)(MCe +MoCo)]

τ(tb + tm)MCe
=
MCe +MoCo

MCe
(14)

As Mo = b MN
N+M c, we have M0 ≤ MN

N+M and combine with
equation (14) as well Ce = 1, Co = ε, the competitive ratio
is defined as:

EEBA(I)

OPT (I)
≤ MCe +MoCo

MCe
≤
M + MN

N+M ε

M
= 1+

Nε

N +M
(15)

5 PERFORMANCE EVALUATION

5.1 Environment Setting
We use the CloudSim framework [25] to simulate a cloud
data center with 100 hosts. Two types of hosts and four
types of VMs are modeled based on current offerings in EC2
as shown in Table 2. The power models of hosts we adopted
are derived from IBM System x3550 M3 with CPU Intel
Xeon X5670 and X5675 [26], and their power consumption
at different utilization levels are demonstrated in Table 3.
We assume that the idle host consumes 50% full utilization.

The application modeled in CloudSim is based in a class
called cloudlet. We have extended the cloudlet to model
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TABLE 3
Power consumption of servers in Watts

Servers 0%
(sleep mode) 10% 20% 30% 40% 50%

(idle) 60% 70% 80% 90% 100%
(max)

IBM x3550 M3
(Interl Xeon X5670 CPU) 66 107 120 131 143 156 173 191 211 229 247

IBM x3550 M3
(Intel Xeon X5675 CPU) 58.4 98 109 118 128 140 153 170 189 205 222

TABLE 4
Parameter Configurations for Testing

Parameters P1: Optional component
utilization threshold

P2: Percentage of
optional Components

P3: Percentage of
connected components P4: Discount

Range 0% to 100% 0% to 100% 0% to 100% 0% to 100%
Categories 25%, 50%, 75%, 100% 25%, 50%, 75%, 100% 25%, 50%, 75%, 100% varying with P1

TABLE 5
A Testcase Example

Testcase ID Optional component
utilization threshold

Percentage of
optional Components

Percentage of
connected components Discount

TC1 50% 50% 25% 50%

TABLE 2
Host / VM Types and Capacity

Name CPU Cores Memory Bandwidth Storage
Host Type 1 1.86 GHz 2 4 GB 1 Gbit/s 100 GB
Host Type 2 2.66 GHz 2 4 GB 1 Gbit/s 100 GB
VM Type 1 2.5 GHz 1 870 MB 100 Mbit/s 1 GB
VMType 2 2.0 GHz 1 1740 MB 100 Mbit/s 1 GB
VM Type 3 1.0 GHz 1 1740 MB 100 Mbit/s 1 GB
VM Type 4 0.5 GHz 1 613 MB 100 Mbit/s 1 GB

application with optional components, and each component
has its corresponding CPU utilization, discount amount,
and connection parameter. The components are uniformly
distributed on VMs.

We adopt the realistic workload trace from more than
1000 PlanetLab VMs [27] to create an overloaded envi-
ronment [28]. Our experiments are simulated under one-
day scheduling period and repeated 10 times based on 10
different days PlanetLab data. The brownout is invoked
every 300 seconds (5 minutes per time slot) if hosts power
surpasses the power threshold. The CPU resource is mea-
sured with capacity of running instructions. Assuming that
the application workload occupies 85% resource on a VM
and the VM has 1000 million instructions per second (MIPS)
computation capacity, then it presents the application con-
stantly requires 0.85 × 1000 = 850 MI to 1.0 × 1000 = 1000
MI per second in the 5 minutes.

To reflect the impact of different configurations, we
investigate a set of parameters as shown in Table 4:

1) Optional component utilization threshold: it repre-
sents the threshold portion of utilization that is optional
and can be reduced by deactivating optional components.
An optional component with 25% utilization means 25% of
application utilization is reduced if it is set as deactivated.
We adjust this parameter from 0% to 100% and categorize it
as 25%, 50%, 75% and 100%.

2) Percentage of optional components: it represents how

many components of the total components are optional.
Assuming the number of all components is numcom and
the number of optional components is numopt, then the per-
centage of optional components is numopt

numcom
. This parameter

is varied from 0% to 100% and is categorized as 20%, 50%,
75% and 100%.

3) Percentage of connected components: it represents
how many components are connected among all the com-
ponents. Assuming the number of connected components is
numconnected, then the percentage of connected components
is numconnected

numcom
. This parameter is also varied from 0% to

100% and is categorized as 25%, 50%, 75% and 100%. The
connections between components are randomly generated
based on percentage of connected components.

4) Discount: It represents the discount amount that
allowed to be paid back to the user if components are
deactivated. We assume that application maximum discount
is identical to the optional component utilization threshold,
for example 50% optional component utilization threshold
comes along with 50% discount.

We assume that the components utilization u(Appc)
and discount d(Appc) conform normal distribution
u(Appc):N(µ, σ2), d(Appc):N(µ, σ2), the µ is the mean
utilization of component utilization or discount, which is
computed as the optional component utilization threshold
(or discount amount) divided by the number of optional
components. The σ2 is the standard deviation of compo-
nents utilization or discount.

Based on σ2, we consider two component design pat-
terns according to component utilization and discount. One
pattern is that components are designed with uniform or ap-
proximate utilization and discount, which means each com-
ponent is designed to require same or approximate resource
amount, like there are 5 components and each component
requires 10% utilization and offers 10% discount. We define
the components as approximate if their utilization standard
deviation and discount standard deviation are both less
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than 0.1. Another pattern is that components utilization and
discount are conspicuous different, which means the com-
ponents are designed to require quite different resource. We
define the components as different if either their utilization
standard deviation or discount standard deviation is larger
than 0.1.

According to Table 4, Table 5 shows a testcase with
configured parameters, the optional component utilization
threshold is configured as 50%, the percentage of optional
utilization is configured as 50%, the percentage of connected
components is set as 25% and the discount is 50%.

Table 6 demonstrates an application components ex-
ample fits the configurations in Table 5. This application
consists of 8 components: 4 of them (50%) are optional
components. Each component has utilization, discount and
connected relationship with other components: the optional
component utilization threshold is 50% (the utilization sum
of component 5, 6, 7 and 8), there are 2 components (20%) of
all components are connected (component 5 and 6) and the
total discount of optional components is 50%.

5.2 Results and Analysis
In this section, we compare EEBA performance with two

baselines algorithms:
1) VM Placement and Consolidation algorithm (PCO):

the algorithm is described in Section 4.1. We configure its
upper threshold as 0.8 and the lower threshold as 0.2.

TABLE 6
An Application Component Example1

Components
ID

Mandatory /
Optional Utilization Discount Connected

Comp 1 Mandatory 10% 10% N/A
Comp 2 Mandatory 10% 10% N/A
Comp 3 Mandatory 20% 20% N/A
Comp 4 Mandatory 10% 10% N/A
Comp 5 Optional 5% 5% Comp8
Comp 6 Optional 10% 10% Comp7
Comp 7 Optional 15% 20% N/A
Comp 8 Optional 20% 15% N/A

2) Utilization-based Probabilistic VM consolidation
algorithm (UBP) [12]: in the VM placement, UBP adopts the
same approach as PCO: sorting all the VMs in decreasing or-
der based on their utilization and allocating each VM to the
host that increases the least power consumption. In the VM
consolidation phase, UBP applies a probabilistic method
[11] to select VMs from overloaded host. The probabilistic
method calculates the migration probability based on PM
utilization u as :

fm(u) = (1− u− 1

1− Th
)λ (16)

where fm(u) is the migration probability, Th is the upper
threshold for detecting overloads and λ is a constant to
adjust probability. We configure the Th = 0.8 and λ = 1.

In EEBA, we also configure TP = 0.8 that is as same as
the upper threshold in PCO and Th in UBP.

We separately conduct experiments for the two design
patterns to evaluate algorithm performance. With approx-
imate components, our proposed policies LUFCS, LPFCS
and HUPRFCS select the same components, so we focus on

comparing PCO, UBP, NUFCS and LUFCS policies, which
represent baseline algorithms without brownout, EEBA
with single component selection policy and EEBA with mul-
tiple components selection policy respectively. While with
different components, we focus on comparing the LUFCS,
LPFCS and HUPRFCS policies to evaluate performance of
different multiple components selection policies.

In addition, as introduced in Section 3.1, components
may be connected. Therefore, to investigate the effects of
individual component selection and connected components
selection, we separately run experiments for components
without connections and connected components.

As PCO and UBP performance are not influenced by
the parameters in Table 4, we firstly obtain their results
as baselines. The PCO leads to 345.3 kWh with 95% con-
fidence interval (CI): (336.9, 353.7), and UBP reduces this
value to 328.5kWh with 95% CI: (321.1, 335.9). Both these
two algorithms offer no discount and no disabled utiliza-
tion. Because UBP performance is better than PCO, we
set PCO as the benchmark. Referring to equation (9), Eb

is set as 345.3, so PCO algorithm efficiency EffPCO =
345.3/345.3 + 0.0 = 1.0; for UBP algorithm, its efficiency
is EffUBP = 321.1/345.3 + 0.0 = 0.95.

5.2.1 Components without Connections
1) Varying Optional Component Utilization Threshold

Fig. 2 shows the comparison between PCO, UBP, NUFCS
and LUFCS when components are approximate by varying
the optional utilization threshold (the percentage of optional
components is fixed as 50%). Fig. 2a shows the energy con-
sumption of these policies respectively. NUFCS and LUFCS
can save more energy when the optional component utiliza-
tion threshold is larger. However, more discount amount is
also offered to users according to Fig. 2b. The reason lies
in that Fig 2c and Fig 2d demonstrate that more utilization
amount is disabled in NUFCS and LUFCS, and more hosts
are shutdown by these policies, which contributes to more
energy reduction. We use UBP and NUFCS with 100%
optional utilization threshold to compare the number of
shutdown hosts with PCO, which shows the maximum
and minimum number of shutdown hosts in this series
of experiments. The number of shutdown hosts of other
experiments falls between the UBP and LUFCS-100% lines
in Fig 2d. Compared with UBP, NUFCS reduces 2% to 7%
energy and LUFCS reduces 6% to 21% energy while 1% to
6% and 8% to 22% discount amount are offered respectively.

Fig. 3 shows LUFCS, LPFCS and HUPRFCS policies’ ef-
fects on energy and discount amount when components are
different and optional utilization threshold increases, more
energy is reduced and more discount amount is offered. As
Fig. 3a and Fig. 2a illustrate, when components are different,
LUFCS cannot save as much energy as when components
are approximate. For example, LUFCS-100% in Fig 3a shows
it reduces maximum 15% energy (the dotted line represents
UBP energy consumption), while LUFCS-100% in Fig. 2a
saves 21% energy. Therefore, our proposed policies work
better when components are designed with approximate
resource requirement, which also shows the value of proper
design of components or microservices. According to Fig. 3a
and Fig. 3b, LUFCS reduces the maximum energy, but also
offers the maximum discount amount, which gives LUFCS
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Fig. 2. Comparison by Varying Optional Utilization Threshold for Approximate Components

Fig. 3. Comparison by Varying Optional Utilization Threshold for Different Components

Fig. 4. Comparison by Varying Optional Component Percentage for Approximate Components

Fig. 5. Comparison by Varying Optional Component Percentage for Different Components

< LPFCS < HUPRFCS in energy and LUFCS > LPFCS >
HUPRFCS in discount amount. We conduct paired t-tests
for energy consumption of these policies, when optional
utilization threshold is 25%, the p-value for LUFCS-25% and
HUPRFCS-25% is 0.12, which shows nonstatistically signif-
icant differences between these policies, while the optional
utilization threshold increases, the p-value for LUFCS-50%
and LPFCS-50% is 0.038 and the p-value for LPFCS-50% and
HUPRFCS-50% is 0.046, which shows there are statistically
significant differences in energy consumption. As shown in
Fig. 3c and Fig. 3d, it reflects more utilization amount is
disabled and more hosts are shutdown in LUFCS as shown.
The different effects between these policies come from the
LUFCS selects components without considering discount, as

it can select as many components as possible until achieving
expected utilization reduction. While other two policies
consider discount amount and do not deactivate as many
components as in LUFCS.

2) Varying Percentage of Optional Components

Fig 4 shows the results when components are approxi-
mate by varying the percentage of optional components (the
optional component utilization threshold is fixed as 50%).
Fig. 4a and Fig. 4b illustrate that in comparison to PCO
and UBP, more energy is saved and more discount amount
is offered with the increase of the optional components in
NUFCS and LUFCS, which results from more options of
components are available to be selected. In comparison to
UBP, when more than 25% components are optional, NUFCS
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Fig. 6. Comparison by Varying Percentage of Connected Components for Approximate Components

Fig. 7. Comparison by Varying Percentage of Connected Components for Different Components

Fig. 8. Energy Consumption Comparison by Varying Percentage of Connected Components and Optional Component Utilization Threshold

Fig. 9. Discount Amount Comparison by Varying Percentage of Connected Components and Optional Component Utilization Threshold

saves 1% to 7% energy and offers maximum 12% discount
amount, and LUFCS saves 5% to 19% energy but offers
5% to 20% discount amount. As shown in Fig. 4c and Fig.
4d, compared with UBP, LUFCS disables maximum 19%
utilization amount and more than 8 hosts averagely.

Fig. 5 compares LUFCS, LPFCS and HUPRFCS policies
for different components when varying the percentage of
optional components. The results in Fig. 5a and Fig 5b show
that these policies save more energy when optional compo-
nents increases, and show LUFCS < LPFCS < HUPRFCS in
energy as well as LUFCS > LPFCS > HUPRFCS in discount
amount. As demonstrated in Fig. 5c and Fig. 5d, LUFCS
disables more utilization amount than other two policies
and shuts down the maximum number of hosts when with

100% optional components. Through paired t-tests for 25%
optional components, we observe the p-value for LUFCS
and LPFCS is 0.035, which shows statistically significant dif-
ferences. But the p-value for LPFCS and HUPRFCS is 0.095,
which shows nonstatistically significant different. Similar p-
values are also observed when more optional components
are provided.

Although LUFCS with 100% optional components saves
about 19% and 16% energy for approximate components
and different components respectively, it is not recom-
mended to set all components as optional since too much
discount amount is offered. We will discuss policies selec-
tion considering the trade-offs in the Section 5.2.3.
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Fig. 10. Disabled Utilization Amount Comparison by Varying Percentage of Connected Components and Optional Component Utilization Threshold

TABLE 7
Recommended Policies for Components without Connections under Different Configurations

Components
Design Pattern

Discount
Constraint

Optional Component
Utilization Threshold

Percentage of
Optional Components Recommend Policy Algorithm Efficiency

Approximate
Components

≤ 5% ≤ 100% ≤ 100% NUFCS 0.947 with 95% CI: (0.941, 0.953)
>5% LUFCS 0.91 with 95% CI: (0.887, 0.933)

Different
Components ≤ 100%

≤ 50%
≤ 100%

LUFCS 0.918 with 95% CI: (0.895, 0.941)
50%-75% LPFCS 0.913 with 95% CI: (0.891, 0.936)
>75% HUPRFCS 0.908 with 95% CI: (0.885, 0.931)

TABLE 8
Recommended Policies for Connected Components under Different Configurations

Components
Design Pattern

Discount
Constraint

Percentage of
Connected Components

Optional Component
Utilization Threshold

Percentage of
Optional Components

Recommended
Policy

Algorithm Efficiency
with 95% CI

Approximate
Components

≤ 5% ≤ 100% ≤ 100% ≤ 100% NUFCS 0.901 (0.852, 0.953)
>5% ≤ 100% LUFCS 0.877 (0.852, 0.902)

Different
Components ≤ 100%

≤ 50% ≤ 50%

≤ 100%

LUFCS 0.895 (0.859, 0.931)
>50% LPFCS 0.89 (0.858, 0.922)

50%-75% ≤ 50% LPFCS 0.886 (0.855, 0.917)
>50% HUPRFCS 0.881 (0.856, 0.906)

>75% ≤ 100% HUPRFCS 0.880 (0.85, 0.91)

5.2.2 Connected Components

After investigating the components without connections, we
move to investigate connected components. As mentioned
in Algorithm 2, in these cases, our proposed policies treat
the connected components together and use their average
utilization or discount to sort. Fig. 6 shows the PCO, UBP,
NUFCS and LUFCS for approximate components when
varying the percentage of connected components (optional
component utilization threshold and percentage of optional
components are both fixed as 50%). Fig. 6a shows that the
connected components affects the NUFCS impressively. The
energy consumption drops heavily in NUFCS when the
percentage of connected components increases, i.e., from 9%
to 21% reduction compared with UBP. While in LUFCS, the
connected components do not affect its performance signif-
icantly. Although the energy consumption is also reduced
when the percentage of connected components increases,
energy consumption drops slowly from 14% to 21%. When
100% components are connected, NUFCS and LUFCS pro-
duce the same effects. As shown in Fig. 6b, with the increase
of connected components, discount amount increases fast
from 10% to 23% in NUFCS while slowly in LUFCS from
17% to 23%. NUFCS and LUFCS both offer same discount
amount when all the components are connected. For the
cases that save more energy, like NUFCS or LUFCS with
100% connected components, Fig. 6c and Fig. 6d show that
more utilization amount is disabled and more hosts are
shutdown than baseline algorithms.

Fig .7 illustrates the comparison of LUFCS, LPFCS and
HUPRFCS for different components when varying the per-
centage of connected components. Fig. 7a shows that when
connected components are larger than 75%, these policies
do not result in significant differences, this is due to when
the percentage of connected components increases, similar
deactivated component lists are obtained although these
components may be put into the list in different orders by
these policies. Apparent differences for discount amount
and disabled utilization amount are illustrated in Fig. 7b
and Fig. 7c when connected components are less than 75%,
like LUFCS reduces 2% to 5% energy than LPFCS and 5% to
10% energy than HUPRFCS, LUFCS offers 4% to 10% more
discount than LPFCS and 9% to 15% more discount amount
than HUPRFCS. Fig. 7d shows that when components are
connected, more hosts are shutdown than UBP. In summary,
our proposed multiple components selection policies works
better under components with lower connected percentage
up to 75%, which enables to provide multiple choices for
service provider rather than providing same effects.

To evaluate the effects of combined parameters, we vary
optional component utilization threshold and percentage
of connected components together. We choose the optional
component utilization threshold, as this parameter shows
more significant effects than the percentage of optional com-
ponent in energy and discount. Fig. 8 to 10 demonstrate the
energy consumption, discount amount and disabled utiliza-
tion amount separately when varying these two parameters
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together. Each subfigure is with fixed optional component
utilization threshold and variable percentage of connected
components, for example, Fig. 8a represents energy con-
sumption when optional component utilization threshold is
25% and percentage of connected component is varied from
25% to 100%. Fig. 8 shows that energy is reduced when con-
nected components increases or larger optional component
utilization threshold is given. For the compared policies,
LUFCS, LPFCS and HUPRFCS show similar results when
optional component utilization threshold is below 25% or
percentage of connected components is above 75%. This
is because when optional component utilization threshold
is low, the disabled utilization is quite close for different
policies, and higher percentage of connected components
also contributes to deactivating the same list of components.
For other cases that show statistically significant differences
in energy consumption with p-value less than 0.05, like
in Fig. 7(a), the results are given as LUFCS ≤ LPFCS ≤
HUPRFCS. In these cases, Fig. 9 and Fig. 10 also show
that LUFCS > LPFCS > HUPRFCS in discount amount and
disabled utilization.

In conclusion, EEBA algorithm saves more energy than
the VM consolidation approaches without brownout, like
PCO and UBP. It is noticed that our experiments are mainly
focused on optimizing servers energy consumption, so the
network infrastructure energy consumption is not opti-
mized. Since the component selection policies in brownout
controller can be modelled into applications, like in [6], they
are insensitive to network infrastructures.

5.2.3 Policy Selection Recommendation
To help make choices for component selection policies, we
use the equation (9) to calculate their algorithm efficiency
and summarize suitable policies under different configura-
tions to achieve better energy efficiency. We consider energy
consumption and discount with the same importance, so
the α is set as 1. Table 7 shows the results for components
without connections and Table 8 presents the results for the
connected components.

To sum up, for components without connections, 1)
when the components are approximate, NUFCS fits in the
configurations when service provider allows maximum 5%
discount and LUFCS performs better when more discount
amount is allowed by service provider. 2) When the compo-
nents are different, although the discount constraint is not as
important as in the approximate components cases, the poli-
cies are picked out by other parameters, for instance, LUFCS
achieves the best efficiency with less than 50% optional
component utilization threshold, LPFCS overwhelms others
with 50% to 75% optional component utilization threshold,
HUPRFCS performs the best efficiency with more than 75%
optional components utilization threshold.

For connected components, the suitable conditions are
more complex: 1) when the components are approximate,
NUFCS is recommended if discount amount is limited un-
der 5% and LUFCS is suggested if more than 5% discount
amount is allowed; 2) when the components are different,
recommended policy changes via different configurations.
For example, when connected components are less than
50%, if optional component utilization threshold is less
than 50%, LUFCS is recommended; if optional component

utilization threshold is larger than 50%, LPFCS is recom-
mended. When connected components are between 50%
and 75, LPFCS is recommended for optional component uti-
lization threshold that is not larger than 50%, HUPRFCS is
recommended for optional component utilization threshold
larger than 50%. When more than 75% components are con-
nected, any policy achieves quite close results, HUPRFCS is
a choice.

6 CONCLUSIONS AND FUTURE WORK

Brownout has been proven effective to solve the overloaded
situation in cloud data centers. Additionally, brownout can
also be applied to reduce energy consumption. We introduce
the brownout enabled system model by considering appli-
cation components, which are either mandatory or optional.
In the model, the brownout controller can deactivate the
optional components to reduce data center energy con-
sumption while offering discount to users. We also propose
a brownout enabled algorithm to determine when to use
brownout and how much utilization on a host is reduced.
Then we present a number of policies to select components
and investigate their effects on energy consumption and
discount offering.

In our experiments, we consider different configurations,
such as components without connections, connected compo-
nents, approximate components, different components and
etc. The results show that these proposed policies save more
energy than the baselines PCO and UBP. The comparison
of proposed policies demonstrates that these policies fit in
different configurations. Considering the discount amount
offered by a service provider, NUFCS is recommended when
a small amount of discount (like less than 5%) is offered, as
it can reduce maximum 7% energy consumption in contrast
to UBP. When more discount amount (like more than 5%)
is allowed by service provider, other multiple components
selection policies are recommended, for example, compared
with UBP, HUPRFCS saves more than 20% energy with 10%
to 15% discount amount.

As for future work, to avoid ineffective deactivation, we
plan to investigate Markov Decision Process (MDP) to de-
termine whether the energy consumption would be reduced
if some components are deactivated. We also plan to imple-
ment proposed policies and deploy them to OpenStack and
web application system such as Apache web server.
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