
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

iBrownout: An Integrated Approach for
Managing Energy and Brownout in

Container-based Clouds
Minxian Xu, Adel Nadjaran Toosi, Member, IEEE, and Rajkumar Buyya, Fellow, IEEE

Abstract—Energy consumption of Cloud data centers has been a major concern of many researchers, and one of the reasons for huge
energy consumption of Clouds lies in the inefficient utilization of computing resources. Besides energy consumption, another challenge
of data centers is the unexpected loads, which leads to the overloads and performance degradation. Compared with VM consolidation
and Dynamic Voltage Frequency Scaling that cannot function well when the whole data center is overloaded, brownout has shown to
be a promising technique to handle both overloads and energy consumption through dynamically deactivating application optional
components, which are also identified as containers/microservices. In this work, we propose an integrated approach to manage energy
consumption and brownout in container-based cloud data centers. We also evaluate our proposed scheduling policies with real traces
in a prototype system. The results show that our approach reduces about 40%, 20% and 10% energy than the approach without
power-saving techniques, brownout-overbooking approach and auto-scaling approach respectively while ensuring Quality of Service.

Index Terms—Cloud Data Centers, Energy Efficiency, QoS, Containers, Microservices, Brownout

F

1 INTRODUCTION

Cloud computing has been regarded as a new paradigm
for resource and service provisioning, which provides the
pay-as-you-go pricing model [1]. Clouds have offered vital
benefits for IT industry by relieving the need for building
own infrastructures, therefore, the companies are able to
concentrate on making profits with their services. In ad-
dition, innovative ideas and Internet technologies can also
be delivered with less hardware investment and human
expense. To support the proliferation of cloud services,
more data centers are established, and many cloud service
providers, like Google, Amazon and Microsoft are deploy-
ing their data centers around the world and offering their
services.

Although cloud data centers are providing compelling
features for customers, the energy consumption of data cen-
ters has become a major topic of research. U.S. data centers
have consumed 100 billion kWh electricity in 2015, which is
equivalent to the total energy consumption of Washington
City. It is estimated that the energy consumption of U.S. data
centers will continue increasing and reach 140 billion kWh
by 2020 [2][3]. The servers hosted in data centers dissipate
heat and need to be maintained by cooling infrastructure,
which provides the cooling resource to extract the heat from
IT devices. Though the cooling infrastructure is already
efficient to some extent, the servers are still one of the major
energy consumers. Cloud data centers not only consume
huge energy consumption, but also have a non-negligible
impact on the environment. It is reported that data centers

• M. Xu, A. N. Toosi and R. Buyya are with Cloud Computing
and Distributed Systems (CLOUDS) lab, School of Computing and
Information Systems, University of Melbourne, Australia, 3010 .

Manuscript received ; revised

have contributed 200 million metric tons of carbon dioxide
to the environment [4]. Recently, some dominant service
providers established a community to promote energy ef-
ficiency for data centers to minimize the impact on the
environment, which is also known as Green Grid [5].

However, reducing energy consumption is a challenging
objective as applications and data are growing fast and com-
plex [6]. Normally, the applications and data are required
to be processed within the required time, thus, large and
powerful servers are required to offer services. To ensure
the sustainability of future growth of data centers, cloud
data centers must be designed to be efficiently utilize the
resources of infrastructure and minimize energy consump-
tion. To address this problem, the concept of green cloud
is proposed, which aims to manage cloud data centers in
an energy efficient manner [5]. Consequently, data centers
are required to offer resources while satisfying Quality of
Service (QoS), as well as reduce energy consumption.

One of the main reasons of high energy consumption
of cloud data centers lies in that computing resources are
inefficiently utilized by applications on servers. Therefore,
applications are currently built with microservices to utilize
infrastructure resource more efficiently. Microservices are
also referred as a set of self-contained application compo-
nents [7]. The components encapsulate its logic and expose
its functionality via interfaces to make them flexible to
be deployed and replaced. With microservices or compo-
nents, developers and user benefit from their technological
heterogeneity, resilience, scalability, ease of deployment,
organizational alignment, composability and optimization
for replicability. It also brings the advantage of more fine-
grained control over the application resource usage.

Thus, in this paper, we take advantage of brownout, a
paradigm inspired from voltage shutdown that copes with
emergency cases. In original brownout scenario, the light

ar
X

iv
:1

80
3.

08
60

5v
1

 [
cs

.D
C

]
 2

2
M

ar
 2

01
8

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

bulbs emit fewer lights to save energy consumption. In
Cloud scenario, brownout can be applied to microservices
or application components that are allowed to be temporar-
ily deactivated without affecting main functionality. When
brownout is triggered, the user’s experience is temporally
degraded to relieve the overloaded situation and reduce
energy consumption.

It is common for microservices or application compo-
nents to have this brownout feature. Klein et al. [8] in-
troduced an online shopping system that has a recom-
mendation engine to recommend products to users. The
recommendation engine enhances the function of the whole
system, while it is not necessary to keep it running all the
time, especially under the overloaded situation. As the rec-
ommendation engine requires more resource in comparison
to other components, if it is deactivated, more clients with
essential requests or QoS constraints can be served. Apart
from this example, brownout paradigm is also suitable for
other systems that allow some microservices or application
components to not keep running all the time.

In this paper, we propose a brownout prototype system
based on containers to reduce data center energy while
ensuring Quality of Service. The main contributions of our
work are as follows: 1) Proposed an effective architecture
that enables brownout paradigm to manage the container-
based environment, which enables fine-grained control on
containers; 2) Presented several scheduling policies for man-
aging microservices or containers to achieve power saving
and QoS constraints; 3) Implemented a prototype system
and 4) carried out the evaluation in INRIA Grid’5000 testbed
using resources from Lyon cluster for Wikipedia web work-
load.

The rest of this paper is organized as: Section 2 discusses
the related work, followed by scenarios that brownout can
be applied and the challenges for using brownout presented
in Section 3. Section 4 and Section 5 introduce the architec-
ture that enables brownout to manage the microservices or
application components and models respectively. Schedul-
ing policies for determining the activation and deactivation
of microservices are presented in Section 6. In Section 7,
we present our experiments environment and evaluate the
performance of different scheduling policies. Conclusions
and future directions are given in Section 8.

2 RELATED WORK

A recent report suggests that U.S. data center will consume
140 billion kWh of electricity annually in the next four years
by 2020 [2], which equals to the annual output of about
50 brown power plants and translates to higher carbon
emissions. To decrease operational costs and environmental
impact, numerous state-of-the-art research has been con-
ducted to reduce data center energy consumption. The main
categories for handling this energy efficient problem are
VM consolidation and Dynamic Voltage Frequency Scaling
(DVFS).

VM consolidation minimizes energy consumption by
allocating tasks among fewer machines and turning the
unused machines into low-power mode or power-off state.
To reduce the number of active machines, the VMs hosted

on underutilized machines are consolidated to other ma-
chines and the underutilized machines are transformed into
low-power mode. Beloglazov et al. [9] proposed several
VM consolidation algorithms to save data center energy
consumption. The VM consolidation process is modeled as
a bin-packing problem, where VMs are regarded as items
and hosts are regarded as bins. The objective of these VM
consolidation algorithms is mapping the VMs to hosts in an
energy-efficient manner. This work advanced the existing
work by modeling the algorithms to be independent of
workload types and do not need to know the VM applica-
tion information in advance. However, the algorithms have
not been evaluated under realistic testbeds. Based on the
VM consolidation approaches in this work, other works like
[10][11][12], have done some extension work to improve
algorithm performance.

Mastroianni et al. [13] introduced a self-adaptive method
for VM consolidation on both CPU and memory. The
method aims to reduce the overall costs caused by energy-
related issues. The VM consolidation process is determined
by a probabilistic function based on Bernoulli trial. Both
the mathematical analysis and realistic testbed results show
that the proposed method reduces total energy consumption
efficiently.

Zheng et al. [14] jointly considered VM consolidation
and traffic consolidation together to minimize the servers
and network energy consumption in data centers. The au-
thors not only model the server power model, but also the
switch model in the network. Experiments conducted under
real environment show that this joint approach outperforms
the approaches that only adopt VM consolidation in energy
consumption and service delay. Ferdaus et al. [15] proposed
a VM consolidation algorithm combining with Ant Colony
Optimization, in which a number of artificial ants select
feasible solutions and exchange information for their solu-
tions quality to obtain an optimized solution. As the authors
consider multiple resource types, the VM consolidation pro-
cess in this work is modeled as a multi-dimensional vector
packing process.

The difference of DVFS and VM consolidation lies in that
DVFS achieves energy saving through adjusting frequencies
of processors rather than using less active servers. The DVFS
approach introduces a trade-off between energy consump-
tion and computing performance, where processor lowers
the frequency/voltage when it is lightly loaded and utilizes
full frequency/voltage when heavily loaded.

Kim et al. [16] modeled real-time service as real-time
VM requests. To balance the energy consumption and price,
they proposed several DVFS algorithms to reduce energy
consumption. Pietri et al. [17] introduced another energy-
aware workflow scheduling approach using DVFS and its
objective is finding an available frequency to minimize en-
ergy consumption while ensuring user deadline. Deng et al.
[23] coordinated CPU and memory together to investigate
performance constraints, which is the first trial to consider
them together when applying DVFS. They aim to find
the most energy efficient frequency while ensuring system
performance constraints.

To reduce energy consumption, an approach that com-
bines DVFS and VM consolidation together was presented
in [18]. The authors proposed several heuristic algorithms

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

TABLE 1
Comparison of focus of related work and our work

Approach Technique Optimization Objective Management Unit Experiments Platform
VM

Consolidation DVFS Brownout Energy
Consumption SLA/QoS Overloads VMs Containers Simulation Real Testbed

Beloglazov et al. [9] X × × X X X X × X ×
Beloglazov et al. [10] X × × X X × X × X ×

Chen et al. [11] X × × X X × X × X ×
Han et al. [12] X × × X X X X × X ×

Mastroianni et al. [13] X × × X × X X × × X
Zheng et al. [14] X × × X X × X × × X

Ferdaus et al. [15] X × × X X × X × × X
Kim et al. [16] × X × X X × × × X ×
Pietri et al. [17] × X × X X × × × X ×
Teng et al. [18] X X × X X × × × X X
Klein et al. [8] × × X × X X × × × X

Tomas et al. [19] × × X × X X × × × X
Wang et al. [20] X × × X X × X × × X

Xu et al. [21] X × X X × X X X X ×
Xu et al. [22] X × X X × X X X X ×
iBrownout × × X X X X × X × X

for batch-oriented scenarios. A DVFS-based algorithm for
consolidating VMs on hosts is introduced to minimize the
data center energy consumption while ensuring Service
Level Agreement of jobs. The results demonstrate that these
two techniques can work together to achieve better energy
efficiency.

VM consolidation and DVFS have been proven to be
efficient to reduce energy consumption, however, both of
them cannot function well when the whole data center
is overloaded. Therefore, we introduce a paradigm, called
brownout, to handle data center overloads and reduce en-
ergy consumption. Originally, the brownout is applied to
prevent blackouts through voltage drops in case of emer-
gency. In Cloud scenario, it is first borrowed in [8] to
design more robust applications under the overloaded or
unpredicted situation. Tomas et al. [19] introduced a com-
bined brownout-overbooking approach to improve resource
utilization while ensuring response time. In our previous
work, we applied brownout to save energy consumption
in data centers. In [21], we presented the brownout enabled
system model and proposed several heuristic policies to find
the microservices or application components that should be
deactivated for energy saving purpose. We also introduced
that there was a trade-off between energy consumption and
discount in our model. In [22], we extended our previous
work and adopted approximate Markov Decision Process
to improve the aforementioned trade-off. Both in [21] and
[22], the experiments are conducted under simulation envi-
ronments. Different from them, in this paper, we implement
a prototype system based on real infrastructure.

Some other works related to energy-aware resource
scheduling in Clouds are also proposed in the literature.
Gai et al. [24] presented a cost-aware heterogeneous cloud
memory model to provision memory services and consid-
ered energy performance. In [25], the authors introduced
a novel approach that aimed to reduce the total energy
cost of heterogeneous embedded systems in mobile Clouds.
A dynamic energy-aware model to reduce the additional
power consumption of wireless communications in the dy-
namic network environment was introduce in [26]. Different
from our work, these articles are not focused on data center
energy consumption.

In this work, our objective is reducing data center en-

ergy consumption while ensuring Quality of Service (QoS).
Some related work considering power and QoS have also
been conducted. Khanouche et al. [27] proposed an energy-
aware and QoS-aware service selection algorithm, which is
designed to solve a multi-objective optimization problem.
But it is applied to the Internet of Things rather than
data centers. Wang et al. [20] used an improved particle
swarm optimization algorithm to develop an optimal VM
placement approach involving a tradeoff between energy
consumption and global QoS guarantee for data-intensive
services in national cloud data centers.

Different from the energy efficient approaches based on
VMs, our implementation is based on containers. Com-
pared with VMs, containerization provides cloud applica-
tion management based on lightweight virtualization. Cur-
rently, most work related to containers are focused on the
orchestration of containers construction and deployment
[28]. A detailed comparison of related work is shown in
Table 1.

To the best of our knowledge, our work is the first proto-
type system to reduce energy consumption with brownout
based on containers, which also considers the trade-offs be-
tween energy consumption and QoS. Our prototype system
provides practice and experience for finding complemen-
tary option apart from VM consolidation and DVFS.

3 MOTIVATIONS: SCENARIOS AND CHALLENGES

To study service providers’ requirement and concerns for
managing services based on containers, we give a moti-
vation example of a real-world case study with brownout
technology.

A good example of the container-based system is the
web-based service. An online shopping system imple-
mented with containers are presented in [29], which con-
tains multiple microservices, including user, user database,
payment, shipping, front-end, orders, carts, catalog, carts
database and etc. As it is implemented with microservices,
each microservice can be activated or deactivated indepen-
dently. When requests are bursting, the online shopping
system may be overloaded, and it cannot satisfy QoS re-
quirements. To handle the overloads and reduce energy

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

consumption, the brownout approach can be applied to tem-
porarily disable some microservices, such as the recommen-
dation engine, to save resource and power. By deactivating
the recommendation engine, the system is able to serve
more requests with the essential requirement and satisfy
QoS. When the system is not overloaded anymore, the
disabled microservices are activated again. Considering the
overloaded situation, we assume that the service provider
of this online shopping system is interested to improve QoS
and save energy costs. In addition, the service provider may
prefer to apply brownout to manage microservices in their
systems. For such deployment, the service provider faces
several challenges as below:

1. How to predict the tendency of future workload. It is
common for cloud data centers meeting unexpected loads,
which may lead overloaded situation and performance
degradation. Estimating the workloads precisely enables
the service providers to select proper resource management
policy.

2. When to disable microservices. Microservices can be
dynamically deactivated or activated according to system
conditions. A crucial decision should be made in both
situations to determine the best time to deactivate containers
to relieve overloads and reduce energy consumption while
ensuring predefined QoS constraints.

3. Which microservice to disable. Firstly, mandatory
and optional microservices are required to be identified. The
mandatory microservices, like the database, must be kept
running all the time. While the optional microservices are
allowed to be deactivated temporarily, such as the recom-
mendation engine in the online shopping system. Secondly,
once brownout is triggered, it may require selecting one
or more microservices to deactivate. The challenge lies in
determining the proper combinations of deactivated mi-
croservices to achieve the best beneficial results.

4. When to turn the hosts on or into low-power mode.
To reduce energy consumption, it is required to combine
brownout and dynamically turning hosts into low power
states, which saves the energy of idle hosts. To ensure QoS,
it is also essential to determine efficiently when the host
states should be switched, because hosts are required to be
turned on quickly when requests are increasing.

5. How to design scheduling policy based on
brownout. In brownout-compliant microservices, there is
a control knob called dimmer that represents a certain
probability and shows how often the optional components
are executed. It is required to design the dimmer value to
be efficiently computed, which supports the brownout to
be triggered quickly. The designed policy is also needed to
be available for different preferences, like investigating the
trade-offs between energy consumption and QoS.

To address aforementioned issues and enable system de-
ployment based on containers and brownout, we introduce
our approach: iBrownout.

4 IBROWNOUT ARCHITECTURE

The architecture of iBrownout is demonstrated in Fig. 1 and
its main components are explained below:

1) Users: All services provided by the system are avail-
able for users to submit their requests to cloud data cen-
ters. The user component contains user’ information and

Fig. 1. iBrownout Architecture

requested services. In addition, the system administrator is
also included in this component, in which it captures admin-
istrators’ configurations such as predefined QoS constraints
(including maximum response time, error rates and etc.),
energy budget and service deployment patterns (in Docker,
it is represented as a compose file [30]).

2) Cloud Service Repository: The services provided by
the service provider are managed by Cloud Service Repos-
itory component, which contains the service information,
including service’s name and image. Each service may be
constructed by several microservices, for example, in the
online shopping system, the carts service manages items
in user’s cart, which contains cart microservice showing
items in carts and cart database microservice storing items
information. To manage microservices with brownout, the
microservices are identified as mandatory or optional.

a. Mandatory microservices: The mandatory microser-
vice keeps running all the time when it is launched, such as
database-related microservices.

b. Optional microservices: The optional microservices
are allowed to be activated or deactivated according to
system status. Optional microservices have parameters like
CPU utilization u(MSc), which indicates the amount of
CPU usage when it is running and the reduced amount of
CPU usage if it is deactivated.

3) Execution Environment: It represents the running
environment for containerized applications. The dominant
environments are Docker, Kubernetes and Mesos. In our
prototype system, we adopt Docker to provide the execution
environment for containers/microservices.

4) Brownout Controller: The operation of optional mi-
croservices are controlled by Brownout Controller, which
determines operations based on system overloaded status.
The Brownout Controller takes advantage scheduling poli-

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

cies that are introduced in Section 6 (Scheduling Policies) to
offer an elegant solution for operating optional microser-
vices. It is also responsible for monitoring the health of
all services. To adapt to our architecture, our dimmer in
Brownout controller is different from the one in [8] that
requires a dimmer per application. Our dimmer is only
applied to the optional microservices. Moreover, rather than
based on response time, our dimmer is computed according
to the severity of overloaded hosts (the number of over-
loaded hosts).

5) System Monitor: These components provide health
monitoring of nodes and collects hosts resource usage
information. Third party monitoring toolkit can be used
to provide a view of host status. For instance, the APIs
provided by Grid’5000 [31] (a real cluster infrastructure
in France) give users real-time reports on infrastructure
metric, including host healthy status, utilization and energy
consumption.

6) Scheduling Policy Manager: This component pro-
vides a set of scheduling policies for Brownout Controller
to schedule containers/microservices. Because there exist
energy consumption budget and QoS constraints, we have
to design and implement policies targeting for different
preferences. For example, when service provider cares more
about QoS, a scheduling policy that focuses on optimizing
QoS will be applied.

7) Models Management: It provides energy consump-
tion and QoS models for the system. The power consump-
tion model should be modeled to be relevant to microser-
vice/container utilization, and the QoS model identifies the
constraints of QoS. such as response time and error rates.

8) Cloud Infrastructure: In infrastructure as a service
model, Cloud providers offer bare metal to support service
requests, which host multiple containers/microservices. We
take advantage of Grid’5000 clusters as our infrastructure.

In order to realize the proposed architecture, several
techniques are utilized.

Java: iBrownout is built using Java and it benefits from
Java’s feature to run on any platform with Java Virtual Ma-
chine. Components including Brownout Controller, System
Monitor, Deployment Policy Manager and Models Man-
agement are all implemented with Java. These components
calls Docker APIs to collect containers information, such as
utilization of containers.

Docker [32]: iBrownout takes advantage of Docker
Swarm cluster to manage the containers/microservices, in-
cluding microservices deployment, stop, start, update and
etc. Docker compose file is used to define features of con-
tainers, such as whether containers are optional, which con-
tainers are deployed, how many containers are provided,
how much resources are allocated to containers, deployment
constraints of containers and dependencies between differ-
ent containers.

Ansible [33]: It is a toolkit to automate applications
provisioning, configuration management and application
deployment. iBrownout utilizes it to send management op-
erations among nodes.

5 MODELLING AND PROBLEM STATEMENT

In this section, we will introduce the models in our system
and state the problem we aim to optimize. Table 2 presents

TABLE 2
Symbols and their meanings

Symbols Meanings
hi Server (host) i
t Time interval t

Pi(t) Power of hi at time t
P idle
i Power when hi is idle

P dynamic
i Power when hi is fully loaded
Pmax
i Maximum power of hi
hl Server list in data center
M Size of server list hl
Ni Number of microservices assigned to hi
ui Utilization of host hi

MSi,j Microservice j on hi
u(MSi,j) Utilization of microservice j on hi
E(t) Energy consumption at time interval t
ut Overloaded threshold of host

OTR(ut) Overloaded time ratio according to ut
k Maximum percentile value of response time
tv Time threshold of SLA violation

SLAV R(tv) SLA violation ratio according to violation time threshold tv
Numv The number of requests that violate SLA
Numa The total number of requests from clients
C The maximum number of containers on hosts
α The maximum allowed overloaded time ratio
β The maximum allowed average response time
φ The maximum allowed 95th percentile of response time
γ The maximum allowed SLA violation ratio
Ma The number of current active hosts
M

′
a The updated number of active hosts for Auto-scaling policy

no Overloaded threshold of request number based on profiling data
nr Request rate
ocli,t The optional container/microservice list on hi at time interval t

P(ocli,t) The power set of ocli,t
dcli,t The deactivated container/microservice list on hi at time interval t
HUM() Host utilization model to compute host power based on host utilization
HP The expected host power calculated by host utilization model
TP The overloaded power threshold
uri The expected utilization reduction

u(dcli,t) The utilization of deactivated container/microservice list
nt The number of overloaded hosts at time interval t
θt The dimmer value

COH() Compute overloaded hosts
HPM() Host power model to compute host utilization based on host power
P r
i Expected power reduction of hi

MSc Container/microservice c
St The set of deactivated containers/microservice connection tags

Ct(MSc) Connection tag of MSc

X Random variable to generate sublist of ocli,t

the symbols and their meanings used in this paper. For
example, we use hi to denote host i and Pi(t) to represent
the power of hi at time interval t.

5.1 Power Consumption
We adopt the servers power model derived from [14]. The
power of server i is Pi(t) that is dominated by the CPU
utilization:

Pi(t) =

{
P idle
i + ui × P dynamic

i , Ni > 0

0 , Ni = 0
(1)

Pi(t) is composed of idle power and dynamic power.
The idle power is regarded as constant and the dynamic
power is linear to the server utilization ui [14]. If no con-
tainer or microservice is hosted on a server, the server is
turned off to save power. The server CPU utilization equals
to total CPU utilization of all the containers/microservices
deployed to the server, which is represented as:

ui =
Ni∑
j=1

u(MSi,j(t)) (2)

where MSi,j refers to the jth microservice on server i, Ni

represents the number of microservices deployed to server
i. And u(MSi,j(t)) refers to the CPU utilization of the
container/microservice at time interval t.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

Then the total energy consumption during time interval
t, with M servers is:

E(t) =
M∑
i=1

∫ t

t−1
Pi(t)dt (3)

5.2 Quality of Service

To model the QoS requirement in our system, we adopt
several QoS metrics as below:

Overloaded Time Ratio: based on host loads, we define
two states for hosts: overloaded and non-overloaded. Over-
loads will lead hosts to experience performance degrada-
tion. We regard host as overloaded when host utilization is
above the predefined utilization threshold. To evaluate this
QoS metric to be independent of workloads, we adopt the
metric introduced in [9], which is denoted as Overloaded
Time Ratio (OTR):

OTR(ut) =
to(ut)

ta
(4)

where ut is the overloaded CPU utilization threshold; to is
the time period that host is identified as overloaded, which
is relevant to ut; and ta is the total time periods of the
hosts. As a QoS constraint, this metric is configured as the
maximum allowed value ofOTR. For instance, if the system
SLA is defined as 10%, it the time period of overloaded
states for all the hosts is less then 10%. The SLA constraint
can be formulated as:

1

M

n=M∑
i=1

OTRn(ut) ≤ 0.1 (5)

where M is the total number of hosts in the data cen-
ter. As introduced the later, our brownout-based approach
checks the host status at each time period and triggers the
brownout to deactivate when there are overloaded hosts.
Therefore, this metric also represents the ratio that brownout
is triggered.

Response time: this metric measures the time that from
sending requests to receiving requests. We also evaluate the
response time with the maximum of kth percentile response
time of all requests, where k could be 90, 95, 99 and etc. For
example, if the maximum of 95th percentile response time
equals to 1 second, it means that 95% of all requests get the
response within 1 second.

SLA Violation Ratio: It represents how many requests
are failed due to overload. If clients send Numa requests to
the system, and Numerr of them are returned with errors,
then error rate is represented as:

SLAV R =
Numerr

Numa
(6)

5.3 Optimization Objective

As discussed in the previous section, it is necessary to min-
imize the total energy consumption, while ensuring QoS by
avoiding overloads, decreasing response time and reducing

error rates. Therefore, our problem can be formulated as an
optimization problem (7)-(10):

min
T∑

t=1

E(t) (7)

1

M

n=M∑
n=1

OTRn(ut) ≤ α (8)

Rt
avg ≤ β, Rt

95th ≤ φ (9)

SLAV R ≤ γ (10)

where
∑T

t=1E(t) is the total energy consumption of data
center, α is the maximum allowed average response time
of overloaded states; Rt

avg is the average response time
and β is the allowed average response time; Rt

95th is the
maximum of 95th percentile response time and φ is the
allowed the 95th percentile response time, and γ is allowed
SLA violation ratio.

6 SCHEDULING POLICY

In this section, we will introduce our brownout-based
scheduling policies. Prior to brownout approach, we require
an auto-scaling algorithm to dynamically add or remove
hosts to utilize host resource more efficiently.

6.1 Auto-scaling Policy

Algorithm 1 Auto-scaling Policy
Input: host list hl with size M , number of active hosts Ma, number

of requests when host is overloaded no, recent request rate in the
recent time nr .

Output: number of active hosts Ma′

1: Ma ← number of current active hosts
2: no ← overloaded threshold of request number according to profil-

ing data
3: nr ← number of request rate at current time window according to

previous time windows
4: Ma′ ← dnr ÷ noe
5: M ′ ←Ma′ −Ma

6: if M ′ > 0 then
7: Add M ′hosts
8: else if M ′ < 0 then
9: Remove |M ′|hosts

10: else
11: no scaling
12: end if
13: update number of active hosts with Ma′

We adopt the auto-scaling algorithm in [34], which is
a predefined threshold-based approach. With profiling ex-
periments, we configure the requests overloaded threshold
above which the host cannot respond to requests within
an acceptable time limit. As shown in Algorithm 1, in the
initialization stage, the master node that runs auto-scaling
algorithm firstly gets the number of current active hosts
(line 1), sets the overloaded threshold of request number
according to profiling data (line 2) and fetches the request
rate at current time window according to previous time
windows (line 3). The advantage of sliding time window is
to give more weights to the values of recent time windows,
and more details will be given in Section 7. Line 4 shows

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

the method to compute the current required hosts Ma′ ,
which is the ratio of current request rate and the overload
threshold. If the required number of hosts is more than
current active hosts, more hosts will be added to provide
services, otherwise, if current active hosts are more than
required, then the excess machine can be set as low-power
mode to save energy consumption (lines 6-12). Finally, the
master node will update the number of active hosts.

6.2 Initial Deployment

Fig. 2. Simple example of Docker compose file

In the initial deployment stage, containers are deployed
based on Docker compose file, which identifies the all the
required information of services and the configurations of
initial deployment. A simple example is shown in Fig. 2.
Lines 2-14 show the information of recommendation engine
service, which is built on the Ubuntu image and attached
with a data volume. The recommendation engine is set as
optional microservice, which can be deactivated and has
two replicates. Moreover, this service will only be deployed
on Docker worker node as deployment constraint. Lines 16-
21 demonstrate the information of user database service,
which is not optional and restricts to be deployed to Docker
master node.

6.3 Optimization Deployment with Scheduling Policies
based on Brownout

We have proposed three brownout-based policies as follows:

6.3.1 Lowest Utilization Container First (LUCF)
The Lowest Utilization Container First policy selects a

set of containers with the lowest utilization that reduces
the utilization to be less than the overloaded threshold of
a host is overloaded. Let ocli,t be the optional container
list on host hi at time interval t. Let P(ocli,t) to be the
power set of ocli,t, the LUCF finds the deactivated container
list dcli,t, which is included in P(ocli,t). The deactivated
container list minimizes the value difference between the

Algorithm 2 Lowest Utilization Container First Policy
(LUCF)
Input: host list hl with size M , microservice information, overloaded

power threshold TP , dimmer value θt at time t, scheduling interval
T , deactivated component list dcli,t on host hi, power model of
host HPM , the optional component list ocli,t, which is sorted
based on utilization u(MSc) in ascending order

Output: total energy consumption, number of shutting down hosts
1: initialize parameters with inputs, like TP
2: for t← 0 to T do
3: nt ← COH(hl)
4: if nt > 0 then
5: θt ← =

√
nt
M

6: for all hi in hl (i.e. i = 1, 2, . . . ,M) do
7: if (Pi(t) > TP) then
8: P r

i ← θt × Pi(t)
9: uri ← HPM (hi, P r

i)
10: dcli,t ← NULL
11: St← NULL
12: if u(MS1) ≥ uri then
13: dcli,t ← dcli,t + MS1

14: St← St + Ct(MS1)
15: end if
16: for MSc in ocli,t do
17: if (u(MSc) ≤ uri) & (u(dcli,t) ≤ uri) then
18: dcli,t ← dcli,t + MSc

19: St← St + Ct(MSc)
20: min← (uri − u(dcli,t))
21: end if
22: end for
23: for all MSc in ocli,t do
24: if Ct(MSc) in St then
25: dcli,t ← dcli,t +MSc

26: end if
27: end for
28: end if
29: deactivate components in dcli,t
30: end for
31: else
32: activate deactivated components
33: end if
34: end for

expected utilization reduction uri and its utilization u(dcli,t)
The deactivated container list is defined in Equation (11).

dcli,t =

{
{HP ≤ TP, ur

i − u(dcli,t)→ min}, if Pi(t) ≥ TP

∅, if Pi(t) < TP
(11)

where HP is the expected host power calculated by host
utilization model HUM(hi, ui − u(dcli,t)) that fetches the
host power based on host utilization ui − u(dcli,t); TP is
the overloaded power threshold of hi.

The pseudocode of LUCF is shown in Algorithm 2,
which mainly consists of 8 steps as discussed below. Be-
fore entering the approach procedures, service provider
firstly needs to initialize input parameters for the algorithm,
such as overloaded power threshold (lines 1-2). The power
threshold TP is a value for checking whether a host is
overloaded.

1) In each time interval t, checking all the hosts status
and counting the number of overloaded hosts as nt (line 3).

2) Adjusting the dimmer value θt as
√

nt

M based on the
number of overloaded hosts nt and host size M (line 5). As
introduced in related work, the dimmer value θt is applied
to compute the adjustment degree of power consumption
at time t. The dimmer value θt is 1.0 if all the hosts are
overloaded at time t and it means that brownout controls

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

TABLE 3
Power consumption of selected node at different utilization levels in

Watts

Utilization Sleep 0% 10% 20% 30% 40%
Power (Watts) 10 201 206 211 213 216

Utilization 50% 60% 70% 80% 90% 100%
Power (Watts) 221 223 225 231 233 237

containers/microservice on all the hosts. The dimmer value
is 0.0 if no host is overloaded and brownout will not be
triggered at time t. The adjustment of dimmer presents that
the dimmer value is relevant to the number of overloaded
hosts.

3) Calculating the expected utilization reduction on the
overloaded hosts (lines 7-9). Based on the dimmer value and
host power model, LUCF calculates expected host power
reduction P r

i (line 8) and expected utilization reduction
uri (line 9) respectively. In our host power model, the host
power consumption is mainly relevant to it CPU utilization.
As shown in Table 3, we list power consumption at different
CPU utilization levels of one host in Grid’5000 (Sagittare
cluster in Lyon). In this power model, for example, the
host with 100% utilization is 237 Watts and 80% utiliza-
tion is 231 Watts, if the power is required to be reduced
from 237 to 231 Watts, the expected utilization reduction is
100%− 80% = 20%.

4) Resetting the deactivated container list dcli,t and the
set of deactivated container connection tags St as empty
(lines 10-11). This list and the set will be ready to collect
deactivated containers and their connection tags.

5) Finding the containers to be deactivated (lines 16-
27). The LUCF sorts the optional container list ocli,t based
on container utilization parameter in ascending order ,
therefore, the container with the lowest utilization is put in
the head of the list. Since we consider connected containers,
each container has a connection tag Ct(MSc) that shows
how it is connected with other containers. If the first con-
tainer utilization parameter value is above uri , Algorithm 2
adds this container into the deactivated container list dcli,t
and inserts its connection tag Ct(MS1) into St (lines 12-13).
After that, Algorithm 2 finds other connected containers and
adds them into deactivated container list (line 14). If the first
container utilization does not satisfy the expected utilization
reduction, Algorithm 2 finds the containers sublist in the
optional container list to deactivate more containers (lines
16-22). The utilization of this sublist is closest to the expected
utilization reduction among all the sublists.

Algorithm 2 also puts all the containers in the sublist
into the deactivated containers list and puts their connection
parameters into the St. For connected containers, the sorting
process is modified as treating the connected containers to-
gether for sorting, which lowers the priority of deactivating
the connected containers, and avoids deactivating too many
containers due to connections.

6) Finding other connected container and puts them into
the deactivated container list (lines 23-27).

7) Deactivating the containers in the deactivated con-
tainer list (line 29).

8) In algorithm 2, if no host is above the power threshold,
the algorithm activates the deactivated containers (line 32).

It is noticed that when the whole data center is over-
loaded, auto-scaling cannot add more hosts because of the
limited resource. LUCF takes effects when Auto-scaling
cannot function well, to be more specific, LUCF can be em-
bedded into line 7 in Algorithm 1 to handle with overloads
and reduce energy consumption.

Algorithm Complexity: the complexity of LUCF at each
time interval is calculated as below: the complexity of
finding the deactivated containers is O(C ∗M), where C is
the maximum number of containers on hosts and M is the
number of hosts. The complexity of finding the connected
components is also O(C ∗M). Therefore, the complexity at
each time interval of LUCF is the sum of these parts, which
is O(2 ∗ C ∗M). To be noted, line 3 relies on the network
connection, if C and M are small, the network delay O(Td)
can be a dominant part of algorithm execution time. Please
see the results in Section 7.4.

6.3.2 Minimum Number of Components First Policy
(MNCF)
The Minimum Number of Containers First (MNCF) policy
selects the minimum number of containers while reducing
the energy consumption in order to deactivate fewer ser-
vices, as formalized in Equation (12). We do not provide the
pseudocode of MNCF here because it is quite similar to the
LUCF algorithm introduced earlier.

dcli,t =

{
{HP ≤ TP, |u(dcli,t)| → min}, if Pi(t) ≥ TP

∅, if Pi(t) < TP
(12)

6.3.3 Random Selection Container Policy (RSC)
The Random Selection Container policy (RSC) policy takes
advantage of a random selection of a number of optional
containers to reduce energy consumption. Based on a uni-
formly distributed discrete random variable (X), which
selects randomly a subset of dcli,t, RSC is presented in
Equation (13).

dcli,t =

{
{HP ≤ TP,X = U(0, |ocli,t| − 1)}, if Pi(t) ≥ TP

∅, if Pi(t) < TP
(13)

7 PERFORMANCE EVALUATION

We are evaluating our techniques experimentally on INRIA
Grid’5000 testbed for Wikipedia web workload. We also
compare the performance with related policies introduced
in [5], [19] and [34].

7.1 Workload

We use real trace from Wikipedia requests on 2007 October
17 to replay the workload of Wikipedia users. To scale the
workload set to fit with our experiments, we use 5% of the
original user requests size. JMeter [35] is a toolkit designed
for load testing and performance measurement, we use it to
generate the requests by replaying the Wikipedia trace. nr
is the predicted request rate, which is calculated based on a

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

Fig. 3. Predicted and actual requests rate

sliding window [9]. Let Lw to be the window size, and nr(t)
to be the request rate at t, we estimate nr as:

nr(Lw) =
1

Lw

Lw−1∑
t=0

nr(t) (14)

In our experiments, we set the sliding window size as 5. Fig.
3 shows the requests rate per second during the day, and the
predicted rates and the actual rates are quite close.

7.2 Testbed
We use Grid’5000 [31], a French experimental grid platform,
as our testbed. We adopt the cluster equipped with power
measurement APIs at Lyon site, which is located at the
southeast French. The architecture of prototype system de-
ployed on the Grid’5000 clusters is presented in Fig.4, which
shows that all the nodes are deployed with Docker swarm
and categorized according to different roles as below:

• Master node: this node is initialized as the master
node and running some services that can only be
deployed on the master node, such as the brownout
controller containing scheduling policies, as well as
the Java Runtime and Ansible toolkit.

• Worker node: these nodes are workers that running
services apart from the services on master node and
database services. We have multiple worker nodes in
our system.

• Worker node (node only for the database): the
database services are deployed on a specific worker
node, which only hosts database-related services.

We also have another node, namely request node, that
contains workload trace and installed with JMeter to send
requests to our cluster. This node can be located at any
place to simulate users’ behavior. In our experiments, to
reduce the impacts of uncontrolled network traffic out of
Lyon cluster, we also locate this node in Lyon cluster.

The hardware information of our selected nodes is as
below:

• Machine model: Sun Fire V20z. The maximum power
of this model is 237 Watts, and its power of sleep
mode is 10 Watts;

• Operating system: Debian Linux;
• CPU: AMD Operon 250 with 2 cores (2.4 GHz);
• Memory: 2 GB

One of the nodes is running as the Docker Swarm master
node, and other nodes are running as worker nodes. All
required applications, such as Java, Docker, Ansible and
JMeter, are installed in advance to minimize the impacts of
CPU utilization and network traffics.

Fig. 4. Architecture of Prototype System

7.3 Results

To evaluate the performance of our proposed policies, we
use three benchmark policies for comparison.

1). Non-Power-Aware (NPA) policy [5]: it applies no
power-aware optimization and hosts are keeping on all the
time. We give 13 nodes as the resource for NPA.

2). Brownout-OverBooking (BOB) policy [19]: it aims
to maximize actual utilization while reducing response time
and minimally triggering brownout. The brownout opera-
tion in BOB is based on response time. When the response
time is less than target utilization, the approach gradually
increases application utilization. To let BOB experience over-
loads, only 10 nodes are given to it.

3). Auto Scaling (Auto-S) policy [34]: it dynamically
scales in and out the number of active hosts as introduced in
Algorithm 1. To let Auto-S endure overloads, we also give
10 nodes to Auto-S.

For our proposed policies, they have the identical re-
source as BOB and Auto-S. In the following experiments, we
mainly investigate two parameters: overloaded threshold
and optional utilization percentage.

Overloaded threshold: it represents the CPU utilization
threshold that identifies whether a host is overloaded. We
adopt this parameter since [5] have shown that it has an
impact on energy consumption. It is varied from 60% to
90% in increments of 10%. We choose this range because
of the smaller overloaded threshold, like 50%, means hosts
are easier to be identified as overloaded and it will lead to
inefficient resource usage.

Optional utilization percentage: it identifies how much
CPU resource is given to optional containers, which also
means how much CPU utilization can be reduced to save
energy consumption. This parameter is investigated because
[21] shows that it influences the power consumption. It is
varied from 10% to 40% in increments of 10%. We choose
these ranges because [21] shows large optional utilization
percentage, like 50%, comes along much revenue loss and
non-negligible experience degradation.

(1) Comparison with different overloaded thresholds

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

Fig. 5. Algorithm Performance Comparison

Fig. 6. Performance Comparison of Proposed Policies

We have conducted several experiments with different
values of overloaded threshold and optional utilization per-
centage for LUCF policy. In Fig. 5, the results show that
when the overloaded threshold is higher, LUCF reduces
less energy consumption, and when the system has higher
optional utilization percentage, LUCF saves more energy
consumption. However, as shown in Fig. 5 (b), when the
overloaded threshold is smaller, like 60%, the overloaded
time ratio is quite high (around 85%), which means hosts are
regarded as overloaded in most time periods and brownout
will be triggered frequently. As optional utilization per-
centage does not influence overloaded time ratio, we only
show the LUCF with 10% optional utilization here. From the
results, we observe a trade-off between energy consumption
and overloaded ratio time when the overloaded threshold
is varied, and we find out that configuring the overloaded
threshold as 70% and 80% achieves better trade-offs, which
reduces energy consumption while not triggering brownout
too frequently. Therefore, we conduct experiments under
70% and 80% overloaded thresholds to compare our pro-
posed policies in the following section.

(2) Comparison with proposed policies
Fig. 6 shows the results with varied overloaded thresh-

olds and optional utilization percentages for our proposed
policies, we compare the energy consumption, average re-
sponse time, maximum of 95th percentile response time and
SLA violations achieved by LUCF, MNCF and RSC. For
the energy consumption, under same optional utilization
percentage, policies with 70% overloaded threshold save
more energy than policies with 80%. For example, when
the optional utilization percentage is 10%, LUCF with 70%
overloaded threshold has 39.7 kWh and LUCF with 80%
overloaded threshold has 40.9 kWh. It is observed that with
more optional utilization percentage, all the policies reduce
more energy consumption, and both LUCF and MNCF save
more energy consumption and RSC. Under 80% overloaded
threshold, as the energy consumption of LUCF and MNCF
is quite close, we conduct the paired t-tests for them, and
the p-values are 0.09, 0.15, 0.1 and 0.09 respectively. There-
fore, we conclude that energy consumption of LUCF and
MNCF has no statistically significant difference when the
overloaded threshold is 80%.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

Fig. 7. Number of Active Hosts Comparison

For the comparison of average response time and max-
imum of 95th percentile response time in Fig. 6(b) and
Fig. 6(c), policies with 70% overloaded threshold experi-
ence more average response time and maximum of 95th
percentile response time than the ones with 80% overloaded
threshold. The average response time of LUCF with 70%
overloaded threshold ranges from 515 to 621 ms, while with
80% overloaded threshold, it is from 452 ms to 500 ms. When
more optional utilization percentage is configured, the av-
erage response time and the maximum of 95th percentile
response time is reduced. For instance, with 80% overloaded
threshold, the average response time of LUCF is reduced
from 500 to 452 ms, and the maximum of 95th percentile
response time of MNCF is decreased from 780 to 680 ms.
The results show that brownout-based policies are able to
improve response time as well as energy saving. Fig. 6(d)
illustrates the comparison of SLA violations. When the over-
loaded threshold is 70% and optional utilization percentage
is 10% the SLA violation is more than 4%, as the overloaded
threshold and the optional utilization percentage increase,
the SLA violations are reduced to less than 1%.

To conclude, LUCF and MNCF achieve better perfor-
mance than RSC, as RSC selects containers randomly rather
than deterministic methods. LUCF and MNCF have close
energy consumption, but in most cases, LUCF achieves
better performance in response time and SLA violations
than MNCF. The reason lies in that LUCF has more con-
tainer deactivation options than MNCF. For different over-
loaded thresholds comparison, policies with 70% over-
loaded threshold save more energy but have the more
average response time, maximum of 95th percentile re-

sponse time and SLA violations than policies with 80% over-
loaded threshold. Configuring overloaded threshold as 80%
achieves a better trade-off than 70%, as it reduces energy
consumption while not having large average response time.
Thus, the following experiments are conducted under 80%
overloaded threshold. Additionally, as LUCF has the best
performance among our proposed policies, we choose LUCF
as the representative of our proposed algorithms to compare
with benchmark policies.

(3) Final experiment results
Fig. 7 and Table 4 present the mean values of energy

consumption, average response time, maximum of 95th
percentile response time and SLA violations along with
95% CI for the NPA, BOB, Auto-S and LUCF with different
optional utilization percentages. The results demonstrate
that NPA has energy consumption 69.71 kWh with 95% CI
(68.94, 70.45), BOB has 49.83 kWh with 95% CI (49.06, 50.6),
and Auto-S reduces it to 43.95 kWh with 95% CI (43.48,
44.43). LUCF saves more energy consumption than Auto-
S, to be more specific, LUCF with 10% optional utilization
leads to 40.36 kWh with 95% CI (40.01, 40.71) and lowers
gradually to 38.6 kWh with 95% CI (38.21, 39.01) when
optional utilization is 40%.

In the comparison of average response time and the
maximum of 95th percentile response time in Fig. 7(b) and
7(c), as NPA has adequate resources, it has the minimum
response time compared with other policies. Its average
response time is 188.8 ms with 95% CI (137.4, 240.2) and its
maximum of 95th percentile response time is 312.2 ms with
95% CI (178.8, 445.8). As Auto-S experiences overloads, its
average response time and the maximum of 95th response

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

TABLE 4
Final Experiment Results

Policy Energy (kWh) Average response time Max of 95th response time SLA violation

NPA 69.71 (68.94,70.45) 188.8 (137.4, 240.2) 312.2 (178.8, 445.8) -
BOB 49.83 (49.06, 50.60) 440.1 (426.0, 454.1) 712.4 (696.8, 727.9) 1.240 (1.098, 1.381)

Auto-S 43.95 (43.48, 44.43) 511.0 (502.3, 519.6) 929.5 (840.9, 1018.1) 4.240 (4.098, 4.382)
LUCF-10 40.36 (40.01, 40.71) 482.1 (471.5, 492.7) 775.4 (746.2, 804.6) 2.140 (2.020, 2.259)
LUCF-20 40.17 (39.87, 40.47) 476.0 (462.4, 489.5) 735.7 (712.2, 759.1) 1.516 (1.340, 1.691)
LUCF-30 39.41 (38.93, 39.89) 451.5 (428.1, 475.0) 721.1 (702.3, 739.9) 1.082 (1.005, 1.158)
LUCF-40 38.60 (38.21, 39.01) 431.1 (415.0, 447.2) 687.8 (661.2, 714.4) 0.494 (0.439, 0.548)

Fig. 8. Number of Active Hosts Comparison

Fig. 9. Scalability Evaluation of iBrownout with LUCF policy

TABLE 5
Scalability Experiments Results

Number of Hosts Energy
Consumption

Average
Response Time

Brownout
Execution Time

5 hosts 22.6 kWh 882 ms 1.223421 s
10 hosts 40.2 kWh 476 ms 1.224356 s
15 hosts 53.4 kWh 251 ms 1.224973 s

time are 511 ms with 95% CI (502.3, 519.6) and 929.5 with
95% CI (840.9, 1018.1) respectively. Taking advantage of
brownout, although BOB and LUCF endure overloads, their
brownout controllers relieve the overloaded situation. In
BOB, its average response time is reduced to 440.1 ms with
95% CI (426.0, 454.1) and its maximum of 95th response time
is 712.4 ms with 95% CI (696.8, 727.9). In LUCF with 40%
optional utilization percentage, its average response time
and the maximum of 95th response time are reduced to
431.1 ms with 95% CI (415, 447.2) and 687.8 ms with 95%
CI (661.2, 714.4) respectively. Fig. 7(d) presents the SLA
violation comparison. NPA does not have SLA violations,

BOB has 1.24% with 95% CI (1.098, 1.381), and Auto-S has
4.24% with 95% CI (4.098, 4.382) SLA violations. When
more optional utilization is offered, LUCF improves the SLA
violations from 2.14% to 0.5% in average values.

This is due to the fact that LUCF uses less active hosts as
shown in Fig. 8, which shows the number of active hosts
within one day. For instance, at the time intervals from
400-500, 6 hosts are active with Auto-S, while LUCF runs
5 active hosts. For NPA and BOB, hosts are always at active
states. From the presented results, we can conclude that
the LUCF achieves better energy consumption than NPA,
BOB and Auto-S. According to response time and SLA vio-
lation comparison, LUCF outperforms Auto-S. Compared
with BOB, LUCF has better performance when optional
utilization percentage is larger than 30%.

7.4 Scalability
In this section, we evaluate the scalability of the proposed
approach and the efficiency of the algorithm when the num-
ber of nodes is increased. As mentioned in previous sections,

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

iBrownout is implemented based on Docker Swarm, thus,
its performance depends on the performance of Docker
Swarm. Our aim in this paper is not to discuss the scalability
design of Docker Swarm. In [36], the authors conducted
scalability testing on Docker Swarm with 1,000 nodes and
30,000 containers, and results show that Docker Swarm has
high scalability.

We evaluate the scalability of iBrownout in terms of the
number of hosts. The experiment settings are almost as same
as in the previous experiments, the overloaded threshold
is set as 80% and optional utilization percentage is 30%,
while the difference lies in the number of hosts, we conduct
experiments with 5, 10 and 15 hosts respectively. Energy
consumption and QoS are the main concern of our proposed
approach. Because of page limitation, we only focus on
average response time as QoS metric. In addition, to com-
pare algorithm efficiency, we also evaluate the brownout
algorithm (LUCF policy) execution time, which represents
the time between brownout is triggered and the deactivated
components are selected.

Fig. 9 and Table 5 show the impact of the varied number
of hosts on energy consumption, average response time
and brownout algorithm execution time. As it can be seen,
when there are more hosts, the energy consumption is
increased and the average response time is reduced, while
the brownout execution time is kept as stable. The energy
consumption is growing from 22.6 kWh with 5 hosts to
53.4 kWh with 15 hosts, while the average response time
is dropping to 251 ms with 15 hosts from 882 ms with 5
hosts. The reason lies in that when more hosts are running,
these hosts consume more energy, and the benefit is that the
average response time is reduced due to more resources. The
brownout execution time remains 1.22 s when the number
of hots is varied. As mentioned in Section 6.3.1, although
the algorithm complexity of LUCF is relevant to the number
of hosts, the search operation in LUCF only consumes a
small portion of time compared with the network delay to
fetch the information of hosts and containers. Therefore, the
brownout execution time remains stable when the number
of hosts is increased. The results show that iBrownout
scales reasonably well when the number of hosts grows.
To be noted, the master node in Docker Swarm may be the
bottleneck if there are a number of worker nodes but only
one master node, thus, more nodes should be promoted as
master nodes to ensure the system scalability.

8 CONCLUSIONS AND FUTURE WORK

Brownout has been proven to be effective to solve the
overloaded situation in cloud data centers. Additionally,
brownout can also be applied to reduce energy consump-
tion. In this paper, we introduced a brownout-based archi-
tecture by deactivating optional containers in applications
or microservices temporarily to reduce energy consump-
tion. Under this architecture, we introduce an integrated
approach to managing energy and brownout in container-
based clouds. We also propose several policies to find the
suitable containers to deactivate and evaluate their per-
formance in a prototype system. The experiment results
under real test-beds have shown that our proposed poli-

cies achieve better performance in energy consumption,
response time and SLA violations than baselines.

In the future, we plan to explore how brownout ap-
proaches can be applied in existing different approaches
that are using models such as 1) Map-Reduce application
2) Stream-oriented application workload and 3) Bag of tasks
application.

ACKNOWLEDGMENTS

This work is supported by China Scholarship Council, Aus-
tralia Research Council Future Fellowship and Discovery
Project Grants. We thank Marcos Assuncao and Laurent
Lefevre from INRIA (France) for providing the access to
Grid’5000 infrastructure. We also thank Shashikant Ilager for
polishing the writing of this paper. Experiments presented
in this paper were carried out using the Grid’5000 testbed,
supported by a scientific interest group hosted by Inria and
including CNRS, RENATER and several Universities as well
as other organizations (see https://www.grid5000.fr).

REFERENCES

[1] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-oriented cloud
computing: Vision, hype, and reality for delivering it services as
computing utilities,” in 10th IEEE International Conference on High
Performance Computing and Communications, 2008, pp. 5–13.

[2] T. Bawden. (2016) Global warming: Data centres to consume three
times as much energy in next decade, experts warn. [Online].
Available: http://www.independent.co.uk/environment/
global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.
html

[3] P. Delforge. (2014) Data center efficiency assessment - scaling up
energy efficiency across the data center industry: Evaluating key
drivers and barriers. [Online]. Available: https://www.nrdc.org/
sites/default/files/data-center-efficiency-assessment-IP.pdf

[4] (2014) Data center energy: Reducing your carbon
footprint — data center knowledge. [Online]. Avail-
able: http://www.datacenterknowledge.com/archives/2014/12/
17/undertaking-challenge-reduce-data-center-carbon-footprint

[5] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for
cloud computing,” Future Generation Computer Systems, vol. 28,
no. 5, pp. 755–768, 2012.

[6] Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang, M. Mar-
wah, and C. Hyser, “Renewable and cooling aware workload
management for sustainable data centers,” in ACM SIGMETRICS
Performance Evaluation Review, vol. 40, no. 1. ACM, 2012, pp. 175–
186.

[7] S. Newman, Building Microservices. ” O’Reilly Media, Inc.”, 2015.
[8] C. Klein, M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez,

“Brownout: building more robust cloud applications,” in Proceed-
ings of the 36th International Conference on Software Engineering, 2014,
pp. 700–711.

[9] A. Beloglazov and R. Buyya, “Managing overloaded hosts for
dynamic consolidation of virtual machines in cloud data centers
under quality of service constraints,” IEEE Transactions on Parallel
and Distributed Systems, vol. 24, no. 7, pp. 1366–1379, 2013.

[10] A. Belog1azov and R. Buyya, “Optimal online deterministic al-
gorithms and adaptive heuristics for energy and performance
efficient dynamic consolidation of virtual machines in cloud data
centers,” Concurrency and Computation: Practice and Experience,
vol. 24, no. 13, pp. 1397–1420, 2012.

[11] Q. Chen, J. Chen, B. Zheng, J. Cui, and Y. Qian, “Utilization-
based vm consolidation scheme for power efficiency in cloud data
centers,” in 2015 IEEE International Conference on Communication
Workshop (ICCW). IEEE, 2015, pp. 1928–1933.

[12] Z. Han, H. Tan, G. Chen, R. Wang, Y. Chen, and F. C. M. Lau,
“Dynamic virtual machine management via approximate markov
decision process,” in IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications, April 2016,
pp. 1–9.

http://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
http://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
http://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
https://www.nrdc.org/sites/default/files/data-center-efficiency-assessment-IP.pdf
https://www.nrdc.org/sites/default/files/data-center-efficiency-assessment-IP.pdf
http://www.datacenterknowledge.com/archives/2014/12/17/ undertaking-challenge-reduce-data-center-carbon-footprint
http://www.datacenterknowledge.com/archives/2014/12/17/ undertaking-challenge-reduce-data-center-carbon-footprint

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 14

[13] C. Mastroianni, M. Meo, and G. Papuzzo, “Probabilistic consoli-
dation of virtual machines in self-organizing cloud data centers,”
IEEE Transactions on Cloud Computing, vol. 1, no. 2, pp. 215–228,
2013.

[14] K. Zheng, X. Wang, L. Li, and X. Wang, “Joint power optimization
of data center network and servers with correlation analysis,”
in IEEE INFOCOM 2014-IEEE Conference on Computer Communi-
cations, 2014, pp. 2598–2606.

[15] M. H. Ferdaus, M. Murshed, R. N. Calheiros, and R. Buyya, “Vir-
tual machine consolidation in cloud data centers using aco meta-
heuristic,” in European Conference on Parallel Processing. Springer,
2014, pp. 306–317.

[16] K. H. Kim, A. Beloglazov, and R. Buyya, “Power-aware provision-
ing of virtual machines for real-time cloud services,” Concurrency
and Computation: Practice and Experience, vol. 23, no. 13, pp. 1491–
1505, 2011.

[17] I. Pietri and R. Sakellariou, “Energy-aware workflow scheduling
using frequency scaling,” in 2014 43rd International Conference on
Parallel Processing Workshops. IEEE, 2014, pp. 104–113.

[18] F. Teng, L. Yu, T. Li, D. Deng, and F. Magoulès, “Energy efficiency
of vm consolidation in iaas clouds,” The Journal of Supercomputing,
pp. 1–28, 2016.

[19] L. Tomás, C. Klein, J. Tordsson, and F. Hernández-Rodrı́guez, “The
straw that broke the camel’s back: safe cloud overbooking with
application brownout,” in International Conference on Cloud and
Autonomic Computing, 2014, pp. 151–160.

[20] S. Wang, A. Zhou, C.-H. Hsu, X. Xiao, and F. Yang, “Provision of
data-intensive services through energy-and qos-aware virtual ma-
chine placement in national cloud data centers,” IEEE Transactions
on Emerging Topics in Computing, vol. 4, no. 2, pp. 290–300, 2016.

[21] M. Xu, A. V. Dastjerdi, and R. Buyya, “Energy efficient scheduling
of cloud application components with brownout,” IEEE Transac-
tions on Sustainable Computing, vol. 1, no. 2, pp. 40–53, 2016.

[22] M. Xu and R. Buyya, “Energy efficient scheduling of application
components via brownout and approximate markov decision pro-
cess,” in In the proceedings of 15th International Conference on Service-
Oriented Computing, 2017.

[23] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bian-
chini, “Coscale: Coordinating cpu and memory system dvfs in
server systems,” in Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Computer
Society, 2012, pp. 143–154.

[24] K. Gai, M. Qiu, and H. Zhao, “Cost-aware multimedia data alloca-
tion for heterogeneous memory using genetic algorithm in cloud
computing,” IEEE Transactions on Cloud Computing, 2016.

[25] K. Gai, M. Qiu, and H. 2hao, “Energy-aware task assignment
for mobile cyber-enabled applications in heterogeneous cloud
computing,” Journal of Parallel and Distributed Computing, vol. 111,
pp. 126–135, 2018.

[26] K. Gai, M. Qiu, H. Zhao, L. Tao, and Z. Zong, “Dynamic energy-
aware cloudlet-based mobile cloud computing model for green
computing,” Journal of Network and Computer Applications, vol. 59,
pp. 46–54, 2016.

[27] M. E. Khanouche, Y. Amirat, A. Chibani, M. Kerkar, and A. Yachir,
“Energy-centered and qos-aware services selection for internet of
things,” IEEE Transactions on Automation Science and Engineering,
vol. 13, no. 3, pp. 1256–1269, 2016.

[28] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, “Cloud container
technologies: a state-of-the-art review,” IEEE Transactions on Cloud
Computing, 2017.

[29] Weaveshop-microservices-demo. [Online]. Available: https://
github.com/microservices-demo/microservices-demo

[30] (2017) Docker compose file version 3 reference. [Online].
Available: https://docs.docker.com/compose/compose-file/

[31] (2017) Grid5000. [Online]. Available: https://www.grid5000.fr/
mediawiki/index.php/Grid5000:Home

[32] (2017) Docker documentation — docker documentation. [Online].
Available: https://docs.docker.com/

[33] (2017) Ansible is simple it automation. [Online]. Available:
https://www.ansible.com/

[34] A. N. Toosi, C. Qu, M. D. de Assunção, and R. Buyya, “Renewable-
aware geographical load balancing of web applications for sus-
tainable data centers,” Journal of Network and Computer Applications,
vol. 83, pp. 155–168, 2017.

[35] (2017) Apache jmeter - apache jmeter. [Online]. Available:
http://jmeter.apache.org/

[36] A. Luzzardi. Scale testing docker swarm to 30,000 containers -
docker blog. [Online]. Available: https://blog.docker.com/2015/
11/scale-testing-docker-swarm-30000-containers/

Minxian Xu received the BSc degree in 2012
and the MSc degree in 2015, both in software
engineering from University of Electronic Sci-
ence and Technology of China. He is working
towards the PhD degree at the Cloud Comput-
ing and Distributed Systems (CLOUDS) Labora-
tory, School of Computing and Information Sys-
tems, the University of Melbourne, Australia. His
research interests include resource scheduling
and optimization in cloud computing. He has
co-authored several peer-reviewed papers on T-

SUSC, T-ASE, CCPE, ICSOC and ICC.

Adel Nadjaran Toosi Dastjerdi is a Research
Fellow at the Cloud Computing and Distributed
Systems (CLOUDS) Laboratory, School of Com-
puting and Information Systems (CIS), Univer-
sity of Melbourne, Australia. He received his
B.Sc. degree in 2003 and his M.Sc. degree in
2006 both in Computer Science and Software
Engineering from Ferdowsi University of Mash-
had, Iran and his Ph.D. degree in 2015 from
the University of Melbourne. Adel’s Ph.D. stud-
ies were supported by International Research

Scholarship (MIRS) and Melbourne International Fee Remission Schol-
arship (MIFRS). His Ph.D. thesis was nominated for CORE John Make-
peace Bennett Award for the Australasian Distinguished Doctoral Dis-
sertation and John Melvin Memorial Scholarship for the Best Ph.D.
thesis in Engineering. His research interests include scheduling and
resource provisioning mechanisms for distributed systems. Currently,
he is working on resource management in Software-Defined Networks
(SDN)-enabled Cloud Computing.

Rajkumar Buyya is a Redmond Barry Distin-
guished Professor and Director of the Cloud
Computing and Distributed Systems (CLOUDS)
Laboratory at the University of Melbourne, Aus-
tralia. He is also serving as the founding CEO of
Manjrasoft, a spin-off company of the University,
commercializing its innovations in Cloud Com-
puting. He served as a Future Fellow of the Aus-
tralian Research Council during 2012-2016. He
has authored over 625 publications and seven
text books including ”Mastering Cloud Comput-

ing” published by McGraw Hill, China Machine Press, and Morgan
Kaufmann for Indian, Chinese and international markets respectively.
He is one of the highly cited authors in computer science and software
engineering worldwide (h-index=114, g-index=245, 66,900+ citations).
Dr. Buyya is recognized as a ”Web of Science Highly Cited Researcher”
in 2016 and 2017 by Thomson Reuters, a Fellow of IEEE, and Scopus
Researcher of the Year 2017 with Excellence in Innovative Research
Award by Elsevier for his outstanding contributions to Cloud computing.
He served as the founding Editor-in-Chief of the IEEE Transactions
on Cloud Computing. He is currently serving as Co-Editor-in-Chief of
Journal of Software: Practice and Experience, which was established
over 45 years ago. For further information on Dr.Buyya, please visit his
cyberhome: www.buyya.com

https://github.com/microservices-demo/microservices-demo
https://github.com/microservices-demo/microservices-demo
https://docs.docker.com/compose/compose-file/
https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home
https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home
https://docs.docker.com/
https://www.ansible.com/
http://jmeter.apache.org/
https://blog.docker.com/2015/11/scale-testing-docker-swarm-30000-containers/
https://blog.docker.com/2015/11/scale-testing-docker-swarm-30000-containers/

	1 Introduction
	2 Related Work
	3 Motivations: scenarios and challenges
	4 iBrownout Architecture
	5 Modelling and Problem Statement
	5.1 Power Consumption
	5.2 Quality of Service
	5.3 Optimization Objective

	6 Scheduling Policy
	6.1 Auto-scaling Policy
	6.2 Initial Deployment
	6.3 Optimization Deployment with Scheduling Policies based on Brownout
	6.3.1 Lowest Utilization Container First (LUCF)
	6.3.2 Minimum Number of Components First Policy (MNCF)
	6.3.3 Random Selection Container Policy (RSC)

	7 Performance Evaluation
	7.1 Workload
	7.2 Testbed
	7.3 Results
	7.4 Scalability

	8 Conclusions and Future Work
	References
	Biographies
	Minxian Xu
	Adel Nadjaran Toosi Dastjerdi
	Rajkumar Buyya

