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Abstract—The present contribution proposes a spectrally efficient
censor-based cooperative spectrum sensing (C-CSS) approach in a
sustainable cognitive radio network that consists of multiple antenna
nodes and experiences imperfect sensing and reporting channels. In
this context, exact analytic expressions are first derived for the corre-
sponding probability of detection, probability of false alarm and sec-
ondary throughput, assuming that each secondary user (SU) sends its
detection outcome to a fusion center only when it has detected a primary
signal. Capitalizing on the findings of the analysis, the effects of critical
measures, such as the detection threshold, the number of SUs and
the number of employed antennas, on the overall system performance
are also quantified. In addition, the optimal detection threshold for each
antenna based on the Neyman-Pearson criterion is derived and useful
insights are developed on how to maximize the system throughput
with a reduced number of SUs. It is shown that the C-CSS approach
provides two distinct benefits compared with the conventional sensing
approach, i.e., without censoring: i) the sensing tail problem, which
exists in imperfect sensing environments, can be mitigated; ii) less SUs
are ultimately required to obtain higher secondary throughput, rendering
the system more sustainable.

Index Terms—Sustainble computing, energy efficiency, energy de-
tection, cooperative spectrum sensing, censoring, imperfect reporting
channels, multi-antenna systems.
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COGNITIVE radio networks (CRNs) have been pro-
posed as an effective approach to address the cur-

rent scarcity in frequency spectrum resources [1]. In light
of this, CRNs lead to a significant increase of spectrum
utilization due to the spectrum sensing capability of such
systems, particularly in collaborative configurations. In
general, CR systems consist of at least a primary user
(PU), that is typically assigned licensed frequency bands,
and a secondary user (SU) that attempts to access the
licensed spectrum when underutilized. This is practically
realized by means of three different approaches namely,
overlay, underlay, and interweave (i.e., opportunistically)
[1]. The present contribution is concerned with the third
approach, in which a secondary user attempts to access
the spectrum when the primary user is idle. Hence, there
is a need for a highly accurate and effective spectrum
sensing technique that will ensure sufficient interference
avoidance to primary user(s).

Several spectrum sensing (SS) techniques that mainly
focus on achieving an improved sensing performance
and/or a reduction of the overall system complexity
have been proposed in the past few years. In this context,
energy detection (ED) is widely considered among the
most common detection methods and has received con-
siderable attention owing to its relatively low computa-
tional and implementation complexity. Nevertheless, the
non-cooperative ED-based approach has been shown to
be susceptible to the so-called hidden terminal problem.
This phenomenon occurs when the SU is subject to non-
negligible fading or path-loss effects while the PU is still
in operation, thereby hindering an efficient detection of
the PU. Thus, cooperative spectrum sensing (CSS) has
been proposed as an effective method to improve the
sensing performance by exploiting the spatial diversity
among multiple SUs.

There are two successive phases in CSS: sensing phase
and reporting phase. During the second phase, time
division multiple access (TDMA) scheme is often as-
sumed, where multiple SUs report their local sensing
results to a fusion center (FC) in different time slot, in
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which the focus is mainly on the optimal sensing time
during the first phase. Longer sensing duration results
in an improved sensing performance at the expense of
increased waiting time for SUs to access the channel
which ultimately can lead to lower spectrum utilization.
One way to resolve such issue is to allow SUs to send
their decisions on orthogonal frequency bands. However,
more secondary users require larger bandwidth for the
reporting channels, which requires effective optimization
of the resource consumption of systems, while guaran-
teeing an acceptable sensing detection performance [2],
[3]. Majority of CSS schemes in the open literature rely
on on a conventional decision collection approach, in
which SUs report all their decisions to the FC with the
assumption of TDMA scheme in the reporting phase.
Hereafter, we will refer to this approach as traditional
(non-censor-based) CSS (T-CSS).

More recently, censor-based CSS (C-CSS) was pro-
posed as an effective method that can reduce the in-
curred signaling costs in the decisions, which are detri-
mental in spectrum sensing. In C-CSS, the collaborative
SUs report their decisions based on certain conditions
rather than periodically [4]–[7].

In contrast to T-CSS literature, there are important
issues related to C-CSS schemes that have not been
investigated in the open technical literature. How to re-
duce the cooperation overhead and the system resource
consumption while guaranteeing good sensing perfor-
mance is yet one of the crucial issues in CSS. Hence,
there should be a tradeoff between sensing efficiency
and sensing accuracy. In addition, the hidden terminal
problems exist not only in sensing channels but also in
reporting channels, while the CSS performance is usually
limited by the imperfect reporting channels.

Motivated by this, the present work is devoted to the
analysis of multi-antenna based C-CSS under imperfect
sensing and reporting channels. The extent of the safe
operation of the PU is quantified in relation to the prob-
ability of detection, while the corresponding spectrum
efficiency is determined in relation with the respective
probability of false alarm. Furthermore, we optimize
the secondary throughput through three key influencing
metrics, namely the number of the secondary users, the
number of the antennas, and the detection threshold. In
doing so, we show the theoritical improvements of the C-
CSS over the T-CSS, especially under realistic imperfect
sensing and reporting channel conditions. Specifically,
the contributions of this work are as follows:
• We investigate the relationship among the num-

ber of SUs, the number of antennas, the detection
threshold, the sensing bandwidth, the spectrum uti-
lization, and the secondary throughput in the con-
sidered C-CSS setup. We quantify the performance
of both T-CSS and C-CSS under imperfect sensing
and reporting channels, and derive simple analytic
expressions for the corresponding probability of de-
tection, probability of false alarm and the secondary
throughput.
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Fig. 1: Multiple antenna sensing network configuration.

• We derive lower bounds for the probability of false
alarm, and we show that the sensing tail problem,
which exist in the T-CSS, can be mitigated with the
aid of C-CSS.

• We analyze the optimal detection threshold that
maximizes the secondary throughput when the tar-
get probability of detection is satisfied, and propose
an optimal algorithm based on the Neyman-Pearson
criterion.

• We provide useful insights on how to maximize
the secondary throughput in the considered C-CSS
scheme.

The remainder of this paper is organized as follows:
Section 2 presents an overview of some related works.
Section 3 describes the underlying system model for the
considered T-CSS and C-CSS. In Section 4, we derive
various performance metrics for the non-cooperative and
cooperative configurations for both T-CSS and C-CSS
schemes with imperfect sensing and reporting channels.
In addition, we derive lower bounds for the probability
of false-alarm in Section 4.4. Moreover, we demonstrate
useful insights on the detection performance trends that
are useful in maximizing the secondary throughput. In
Section 5, we provide a solution for the problem of opti-
mizing the secondary throughput. Section 6 presents the
corresponding numerical results and findings, followed
by some closing remarks in Section 7.

2 RELATED WORKS

The majority of CSS works rely on the non-censored
based approach (T-CSS), in which all decisions collected
by secondary users are unconditionally forwarded to the
FC. In what follows, we discuss existing T-CSS and C-
CSS contributions.

Ganesan and Li [8] considered periodic spectrum sens-
ing and proposed multiple user cooperation methods in
the presence of additive white Gaussian noise (AWGN)
[9]. The optimal number of users in a CSS scheme over
sensing channels in the presence of shadowing and relay
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fading was addressed in [10]–[12]. There, it was also
proved that CSS reduces the required average signal-
to-noise ratio (SNR) in the sensing phase. Likewise, the
authors in [13]–[17] analyzed the crucial relationship
between sensing time, secondary throughput, and spec-
trum utilization. Optimal sensing duration was inves-
tigated [18]–[21] in an attempt to improve the overall
system throughput, taking into account that a smaller
number of SUs leads to a reduced sensing duration at
the expense of reduced sensing diversity. Firouzabadi
et al. [22] considered wideband spectrum sensing and
formulated the sensing problem as an optimization prob-
lem with the purpose of maximizing the opportunistic
throughput of CRN by assuming the number of samples
used to report the sensing decisions to the FC, the
number of the sensing samples, the detection thresh-
old and the overall sensing-plus-reporting time. Unlike
previous work [18]–[22] whose optimization objectives
were to maximize the secondary throughput, Zheng et
al. [23] proposed joint optimization of sensing time and
the detection threshold with the aim of maximizing the
energy efficiency of cognitive sensor networks.

Liu et al. [24] proposed a group-based cooperative
medium access control protocol to solve the tradeoff
between sensing accuracy and efficiency. Deng et al. [25]
considered optimal sensor scheduling to realize energy-
efficient CSS. Zheng [26] considered OFDM modulation
to send each SU’s result to the FC. Li [27] proposed
a kind of random broadcast scheme in exchanging the
sensing results to reduce the signaling cost in reporting
phase, while in similar method, Noh [28] proposed
controlling the reporting order of the local test statistics
to reduce the reporting time. Zhang et al. [29] investi-
gated the optimal number of sensing users required to
minimize the total error probability, while achieving an
adequate tradeoff between the overall detection perfor-
mance and the control bandwidth used by each SU to
report its sensing results. More recently, the authors in
[30] investigated the joint effects of radio frequency im-
pairments on the performance of ED-based CSS environ-
ment. To this end, novel expressions were derived for the
probability of false-alarm and probability of detection
in the presence of Rayleigh fading conditions assuming
both error-free and imperfect reporting channels.

When considering specific imperfect reporting chan-
nel, Lee analyzed the T-CSS performance over Rayleigh
reporting channel [31], while several works studied spec-
trum sensing and T-CSS under generalized or composite
fading conditions [32]–[37]. For example, da Costa et al.
[32] investigated the outage probability performance of a
dual-hop decode-and-forward T-CSS scheme under the
presence of Nakagami-m fading and interference condi-
tions as well as the effects of fading severity, SU relay
placement, the number of PU and SU nodes on the end-
to-end T-CSS performance. Likewise, Sofotasios et al. [35]
investigated the performance of ED-based T-CSS under
different diversity receptions in the presence of both
generalized and extreme multipath fading conditions,

which are typically encountered in enclosed areas such
as malls and tunnels. More recently, the performance of
T-CSS with multi-antenna nodes over generalized and
composite fading channels was analyzed in [36], [37]
with the aid of the generic and semi-analytic mixture
Gamma (MG) distribution. Moreover, the optimal fusion
rule and the number of antennas that minimize the total
error rate in the square-law selection (SLS) framework
were also analyzed. Yet, accurate optimization of the
detection threshold was not addressed in [36], [37]. It is
also noted that Li et al. [38] proposed interesting tradeoffs
in T-CSS, namely: i) the impact of the number of sensing
users on spectrum utilization and secondary throughput;
and ii) the relationship between the detection threshold,
detection performance and secondary throughput.

As mentioned, T-CSS based schemes increase the de-
tection performance and resolve the hidden terminal
problem which is present in non-cooperative schemes.
However, they incur extra signalling overhead, and can
be unnecessarily determental to the detection perfor-
mance under imperfect sensing and reporting channels.
More recently, censor-based CSS (C-CSS) was proposed
as an effective method to reduce the signalling costs
and improve the network’s throughput [39]. In C-CSS,
the collaborative SUs report their decisions based on
certain conditions. For instance, a censor-based sensor
can forward the decision only when it has detected a
certain signal. On other instances, it can forward its
decision only when the corresponding reporting channel
is deemed reliable. Based on this, Rago et al. [4] firstly
analyzed the performance of censor-based sensors in de-
centralized detection systems, where only the likelihood
ratios of sufficient level of confidence are allowed to
transmit to the common receiver over perfect reporting
channels. Jiang et al. [5] considered a realistic scenario
where censor-based detection is performed over imper-
fect reporting channels assuming that the probability
of a present PU is sufficiently low. Likewise, Yiu et al.
[6] analyzed the ED-based detection performance of a
non-orthogonal signaling scheme for the transmission
of censored decisions and non-coherent fusion rules.
Sun et al. [24] investigated the detection performance
of a censoring method with quantization to decrease the
average number of transmitted bits, where only reliable
information (bits) are considered in the FC over perfect
and imperfect reporting channels. In [24], both binary
results of 0 (not present) and 1 (present) are transmitted
to the FC, where the quantization is subject to optimiza-
tion. Liu et al. [40] proposed a hierarchical cooperative
spectrum sensing scheme based on two-threshold energy
detection in CRNs, in which soft combination of the
observed energy were used to solve the sensing failure
problem.

In this paper, we provide a comprehensive study that
shows theoretical improvements in using multi-antenna
C-CSS scheme under imperfect sensing and reporting
channels, when compared to its T-CSS counterpart. That
is, we investigate the relationship among the number of
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Fig. 2: The bandwidth allocation in C-CSS.

SUs, the number of antennas, the detection threshold, the
sensing bandwidth, the spectrum utilization, and the sec-
ondary throughput in the considered C-CSS setup. More
notably, we derive lower bounds for the probability of
false alarm, and we show that the sensing tail problem,
which exist in the T-CSS, can be effectively mitigated
with the aid of C-CSS. Finally, we analyze optimal detec-
tion threshold that maximizes the secondary throughput
when the target probability of detection is satisfied, and
propose an optimal optimization algorithm based on the
Neyman-Pearson criterion.

3 C-CSS SYSTEM MODEL

We consider the CSS network configuration in Fig. 1.
It consists of one PU and N SU nodes, each of them
equipped with L antennas. The considered C-CSS pro-
cess can be described in the following three steps:

Step 1: We let SUj
i represent the ith SU node equipped

with the jth antenna. Each SU node determines the local
decision Di by combining the results of L antennas, and
then deciding on the presence of a PU signal.

Step 2: Each SU node forwards its binary decision
to the FC via a reporting channel only if the corre-
sponding local decision is equal to unity, i.e. if Di = 1.
The set of transmitted decisions are denoted by D̂ =
{D1, D2, . . . , DMC}, where MC represents the number
of transmitted decisions. Similarly, the transmitted de-
cisions in T-CSS are denoted by D = {D1, D2, ..., DN},
where MC ≤ N . Furthermore, the local results for all SUs
are transmitted to the FC using orthogonal frequency di-
vision multiple-access (OFDMA), as illustrated in Fig. 2,
where W and B resemble the total bandwidth and the
control channel bandwidth used by each SU to report its
local decision, respectively.

Step 3: At the FC, all binary decisions are fused to-
gether and a final decision is made based on the k-out-
of-n rule.

4 PROPOSED CENSOR-BASED SPECTRUM
SENSING

4.1 Non-cooperative Detection

We commence by analyzing the single user perfor-
mance. To this end, let xji (t) represent the observed
signal at the jth antenna of the ith node at time t, and
H0 and H1 denote the hypotheses for the absence and

presence of a PU signal, respectively. Thus, the observed
signal can be represented as

xji (t) =

{
nji (t) , H0

hjis (t) + nji (t) , H1
(1)

where nji (t) is CN (0, σ2
n) denoting the circularly sym-

metric complex white additive Gaussian noise (AWGN)
in the secondary user channel SUj

i , s (t) is the informa-
tion signal transmitted by the PU with energy

Es = E{|s(t)2|} (2)

and hji is the complex Gaussian channel gain of the
sensing channel between the PU and SUj

i , with E{·}
denoting statistical expectation.

To this effect, when SUi makes a decision based on
the local observations, the corresponding energy Yi can
be statistically represented as follows [2]

Yi =

{
χ2

2u, H0

χ2
2u (2γi) , H1

(3)

where u denotes the time bandwidth product, γi repre-
sents the instantaneous SNR of the received signal at
the SUi, χ2

2u denotes a central chi-square distribution
with 2u degrees of freedom, and χ2

2u(2γi) represents a
noncentral chi-square distribution with 2u degrees of
freedom. Hence, the detection of PU signals can be
realized by comparing Yi with a predetermined energy
threshold λi, which is represented as{

Di = 1, Yi ≥ λi
Di = 0, Yi < λi

(4)

Based on the above, the probability density function
(PDF) of Yi under the two considered hypotheses is
given by

fYi(y) =

{
1

2uΓ(u)y
u−1 exp(−y2 ), H0

1
2 ( y

2γi
)
u−1

2 exp(− 2γi+y
2 )Iu−1(

√
2γiy), H1

(5)
which yields the corresponding conditional probability
of false-alarm and probability of detection:

P̂fi = Pr {Yi > λi |H0 } (6)

and
P̂di = Pr {Yi > λi |H1 } (7)

respectively, which yield

P̂fi =

∫ ∞
λ

fYi|H0
(y) dy =

Γ
(
u, λi2

)
Γ(u)

(8)

and

P̂di =

∫ ∞
λ

fYi|H1
(y) dy = Qu

(√
2γi,

√
λi

)
(9)

where Γ(a) and Γ (a, x) denote the Euler gamma function
and the upper incomplete gamma function, respectively,
In(x) is the nth order modified Bessel function of the
first kind, and Qm (a, b) is the generalized Marcum
Q−function [41].
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Since the P̂fi is independent of γi and the present
signal in the H1 hypothesis is typically subject to non-
negligible fading effects that affect the corresponding
probability of detection, the unconditional probabilities
of false alarm and detection are given by{

Pfi = P̂fi
Pdi =

∫
γ
P̂di (γ)f(γi)dγ

(10)

where f(γi) denotes the SNR PDF of the statistics of the
SUi sensing channel [42]. To this effect, by specifically
assuming Rayleigh distributed multipath fading and that
SUi performs local sensing independently, it follows that
the average probability of detection and probability of
false alarm of each antenna are expressed as [2]:

Pd =e−
λ
2

u−2∑
n=0

λn

n!2n
+

(
1 + γ̄

γ̄

)u−1

×

{
e−

λ
2(1+γ̄) − e−λ2

u−2∑
n=0

λnγ̄n

n!2n(1 + γ̄)n

} (11)

and
Pf =

Γ (u, λ/2)

Γ (u)
(12)

respectively, where γ̄ denotes the corresponding average
SNR.

4.2 Square-Law Selection
It is widely known that diversity receivers can signifi-

cantly improve the performance of CRNs, particularly in
the presence of multipath fading and shadowing effects.
Based on this, square-law combining and square-law se-
lection (SLS) techniques have been employed extensively
in numerous spectrum sensing scenarios. Although the
SLS combining technique is sub-optimal when compared
to the former combining scheme, it is adopted in our
C-CSS due to its tractability and low complexity that
renders its realization straightforward. To this end, it is
first recalled that SLS is based on the selection of the
branch with the maximum γ(j) for each SU, namely

γSLS = max
j=1,2,...,L

γ(j) (13)

where L denotes the number of antennas at each SU
node. Therefore, the probability of false alarm of each
SU can be expressed as

Pf,SLS = 1− Pr(γSLS < λ |H0 ) (14)

which upon use of (13) can be written as follows:

Pf,SLS = 1− Pr(max(γ(1), γ(2), ..., γ(L)) < λ |H0) (15)

which can be alternatively re-written as

Pf,SLS = 1− [1− Pf ]L. (16)

Likewise, the average probability of detection of each SU
for the SLS scheme is expressed as

Pd,SLS = 1− [1− Pd]L. (17)

4.3 Multi-User Detection
In multi-user sensing, local decisions are reported to

the FC through dedicated reporting channels which are
also subject to detrimental fading effects and additive
noise. By letting Pe,i denote the reporting error between
the ith SU and the FC and, without loss of generality,
assuming that all reporting channels are independent
and identically distributed, for a given γ with binary
phase shift keying (BPSK), the probability of reporting
error under AWGN can be expressed as

Pe,AWGN = Q(
√

2γ) (18)

where Q(·) denotes the one dimensional Gaussian
Q−function [41]. Hence, for the case of Rayleigh dis-
tributed multipath fading, the average error rate, Pe, is
given by

Pe =

∫
γ

Q(
√

2γ)f(γ)dγ (19)

=
1

γ

∫ ∞
0

Q(
√

2γ)e−
γ
γ dγ (20)

which can be expressed in closed-form as follows

Pe =
1

2

(
1−

√
γ

1 + γ

)
. (21)

Since in T-CSS, both types of decisions are sent to the
FC, the imperfect false-alarm probability and detection
probability can be expressed as

P ′f,SLS,T−CSS = Pr{H1|H0}(1−Pe) + Pr{H0|H0}Pe (22)

and

P ′d,SLS,T−CSS = Pr{H1|H1}(1−Pe) + Pr{H0|H1}Pe (23)

respectively, which yields

P ′f,SLS,T−CSS = (1− Pe)Pf,SLS + (1− Pf,SLS)Pe (24)

and

P ′d,SLS,T−CSS = (1− Pe)Pd,SLS + (1− Pd,SLS)Pe (25)

respectively.
Here, the FC combines all decisions and makes the

final decision according to the hard k-out-of-n fusion
rule. That is, the FC infers the presence of the PU when
there exist at least k SUs that either (i) correctly claim H1

without an error in reporting phase (i.e., (1−Pe)Pd,SLS),
or (ii) falsely claim H0 with an error in reporting phase
((1 − Pd,SLS)Pe). Therefore, it follows that for the case
of T-CSS, the total probability of false alarm (Qf,T−CSS)
and probability of detection (Qd,T−CSS) are represented
as

Qf,T−CSS =

N∑
i=k

(
N

i

)
(P ′f,SLS,T−CSS)i

(1− P ′f,SLS,T−CSS)−(N−i) (26)

and

Qd,T−CSS =

N∑
i=k

(
N

i

)
(P ′d,SLS,T−CSS)i

(1− P ′d,SLS,T−CSS)−(N−i) (27)
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where k ∈ 1, 2, ..., N and
(
b
a

)
is the binomial coefficient

[41].
On the contrary, in C-CSS, due to the fact that SUs

only report their decisions only when they claim H1,
the corresponding false-alarm and detection probabilities
become

P ′f,SLS,C−CSS = Pr {H1|H0} (1− Pe) (28)
= (1− Pe)Pf,SLS (29)

and

P ′d,SLS,C−CSS = Pr {H1|H1} (1− Pe) (30)
= (1− Pe)Pd,SLS (31)

respectively. Thanks to the censoring technique, the un-
favorable error terms due to erroneous reporting chan-
nels in (24) and (25) was filtered out in (28) and (30).

The number of transmitted decisions in the C-CSS
scheme is not necessarily equal to the number of the
sensing users, and the actual transmitted sensing deci-
sions are based on two possible outcomes: i) the SUs de-
tected falsely the presence of PU signals with probability
Pf,SLS, while the corresponding frequency band is idle;
ii) the SUs detected correctly the presence of PU signals
with probability Pd,SLS, while the spectrum is actually
being utilized. Therefore according to Bayes theory, the
expected number of transmitted decisions in the C-CSS
scheme can be determined as [7]:

MC = dN(P0Pf,SLS + (1− P0)Pd,SLS)e (32)

where P0 accounts for the probability of idle channel,
and d.e denotes the ceiling function. In this context,
with C-CSS scheme, when utilizing the hard k-out-of-
N fusion rule, for the total probability of detection, we
need at least k users that correctly claim H1 without an
error in reporting phase, i.e.,

Qd,C−CSS =

MC∑
i=kc

(
MC

i

)
(P ′d,SLS,C−CSS)i

(1− P ′d,SLS,C−CSS)−(MC−i)
(33)

and for the total false-alarm probability, we need at least
k users that falsely claim H1 without an error in the
reporting phase, i.e.,

Qf,C−CSS =

MC∑
i=kc

(
MC

i

)
(P ′f,SLS,C−CSS)i

(1− P ′f,SLS,C−CSS)−(MC−i)
(34)

where kc = 1, 2, ...,MC .

4.4 The False Alarm Bound
In this subsection, we determine the false alarm bound

for the T-CSS and C-CSS schemes. It is noted here that
the former sensing technique experiences a considerable
sensing tail issue when the reporting channels are erro-
neous (subject to fading effects). However, with the aid
of the aforementioned C-CSS setup, the sensing tail is ul-
timately eliminated. We demonstrate such phenomenon
by considering 1-out-of-n fusion rule, i.e., k = kc = 1.

Proposition 1. When the reporting channel is subjected to
rayleigh fading with an average error rate of Pe, and as
Pf → 0, the false alarm for the considered T-CSS and C-CSS
schemes can be represented as:

Qf,T−CSS,min ≈ NPe +O(P 2
e ) (35)

and
Qf,C−CSS,min = 0 (36)

where Qf,T−CSS,min and Qf,C−CSS,min denote the minimum
value of Qf,T−CSS and Qf,C−CSS, respectively.

Proof. The proof is provided in Appendix A.

There is a lower bound on the cooperative probability
of false alarm Qf,T−CSS in the T-CSS scheme, with a
truncation error of the order O(P 2

e ). Correspondingly,
the cooperative probability of detection approaches zero
when

Qf,T−CSS = Qf,T−CSS,min. (37)

It merits to emphasize that Qf,T−CSS,min increases
proportionally with the number of SUs (N ) and the
fading severity (Pe) of the reporting channel. On the
contrary, the lower bound on Qf,C−CSS,min is practically
independent of the number of SUs and the quality of the
reporting channels. The above result is intuitive in the
sense that when the characteristics of the reporting chan-
nel is severed from the perspective of the SU, refraining
from voting is advantageous.

4.5 Detection Performance Trends
In CRNs, the cooperative probability of detection,

1−Qf , constitutes a reasonable measure of the spectrum
utilization [11]. As already shown, Qf is a function of
local detection threshold (λ), the number of antennas (L),
and the number of decisions i.e. MC in C-CSS and N in
T-CSS, where MC ≤ N . Next, we show how the afor-
mentioned parameters affect the cooperative detection
performancefor both T-CSS and C-CSS.

Lemma 1. When N and L are fixed, the total cooperative
detection probability, Qd, and probability of false alarm, Qf ,
of both T-CSS and C-CSS schemes decrease monotonically
with respect to the detection threshold, since the following
inequalities hold: {

∂Qd,T−CSS

∂λ < 0
∂Qf,T−CSS

∂λ < 0
(38)

and {
∂Qd,C−CSS

∂λ < 0
∂Qf,C−CSS

∂λ < 0
(39)

Proof. The proof is provided in Appendix B.

Using the derived representations in Section III.C, we
can deduce insightful theoretical performance bounds.
Specifically, it follows from (24)−(30) that

P ′f,SLS,C−CSS ≤ P ′f,SLS,T−CSS, (40)



7

where the indicated equality holds only when Pe = 0.
Likewise, from (26) and (34) and recalling that MC ≤ N
yields

Qf,C−CSS ≤ Qf,T−CSS. (41)

Thus, it is evident that although the cooperative proba-
bility of false alarm in both T-CSS and C-CSS decreases
monotonically with λ, the C-CSS scheme can achieve
lower probability of false alarm compared to its tradi-
tional counterpart.

Remark 1. When L and λ are fixed, the total cooperative
detection probability Qd and probability of false alarm Qf of
both T-CSS and C-CSS schemes increase monotonically with
the number of local decision results.

This is evident by the fact that in the case of T-CSS, it
is straightforwardly observed that Qf from (32) and (34)
are monotonically increasing with the number of sensing
users, while the following accurate representations are
also valid

∂Qf,T−CSS

∂N
≈ Qf,T−CSS(N + 1)−Qf,T−CSS(N) > 0

(42)
and
∂Qd,T−CSS

∂N
≈ Qd,T−CSS(N + 1)−Qd,T−CSS(N) > 0.

(43)
Likewise, for the C-CSS scheme, it follows from equa-
tions (32), (34) and (33) that

∂Qf,C−CSS

∂N
=
∂Qf,C−CSS

∂MC

∂MC

∂N
> 0 (44)

and
∂Qd,C−CSS

∂N
=
∂Qd,C−CSS

∂MC

∂MC

∂N
> 0 (45)

which can be accurately expressed as follows:

∂Qd,C−CSS

∂N
≈{Qd,C−CSS(MC + 1)−Qd,C−CSS(MC)}

× {P0Pf,SLS + (1− P0)Pd,SLS}.
(46)

Notably, when λ and L are known, lower probability
of false alarm can be obtained by the C-CSS scheme
compared to its T-CSS counterpart, since the transmitted
local decision results in C-CSS are less than those in T-
CSS. Alternatively, lower energy detection threshold is
required in the C-CSS scheme to reach the same target
probability of detection as in T-CSS.

Lemma 2. When N and λ are fixed, the total cooperative
probability of detection Qd and probability of false alarm Qf
increase monotonically with the number of antennas L in both
T-CSS and C-CSS, where the following inequalities are valid:{

∂Qd,T−CSS

∂L > 0
∂Qf,T−CSS

∂L > 0
(47)

and {
∂Qd,C−CSS

∂L > 0
∂Qf,C−CSS

∂L > 0
(48)

Proof. The proof is provided in Appendix C.

It is noted that Lemma 2 verifies that the probability of
detection and probability of false alarm increase with the
number of antennas for fixed values of N and λ. How-
ever, the main difference between the two approaches is
that lower probability of false alarm can be achieved by
C-CSS.

5 SECONDARY THROUGHPUT

With an idle PU and no false-alarm generated with
probability P0(1 − Qf ), the SU throughput can be ex-
pressed as (W − NB)δ0/W , where δ0 represents the
throughput of the secondary network with idle PU. On
the contrary, when the PU is active and the probabil-
ity of miss-detection is P1(1 − Qd), the corresponding
throughput is (W −NB)δ1/W , where δ1 represents the
throughput of the SU with active PU. Thus, the average
throughput in the T-CSS scheme can be expressed as

R(N,L, λ) =
W −NB

W
δ0P0(1−Qf (N,L, λ))

+
W −NB

W
δ1P1(1−Qd(N,L, λ)).

(49)

Given that the core objective of cognitive radio sys-
tems is to maximize the spectrum utilization by ensuring
a smooth operation for PUs, it is evident that when
sufficient protections to PUs are satisfied, such as 0.9, the
first term in the right hand side of (49) becomes dom-
inant. Thus, in T-CSS we can maximize the secondary
throughput subject to a pre-defined target cooperative
probability of detection according to

RT−CSS (N,L, λ) ≈ (1−Nα) (1−Qf (N,L, λ)) (50)

where α = B/W denotes the ratio of the occupied
control bandwidth, for sending 1-bit local decision, to the
overall system bandwidth. Likewise, in the case of C-CSS
the normalized achievable throughput can be expressed
as

R̄C−CSS(MC , L, λ) ≈ (1− αMC)(1−Qf (MC , L, λ)) (51)

where MC is a function of N , as in (32). The relationship
trend between the probability of detection, probability of
false-alarm, and secondary throughput with N , L and λ
is depicted in Table I.

TABLE 1: Effect of N , L and λ on the System Perfor-
mance.

Parameters
Performance

Qd Qf R
Interference to

the PU
λ ↑ (N,L, fixed) ↓ ↓ ↑ ↑
N ↑ (λ,L, fixed) ↓ ↓ ↑ ↑
L ↑ (λ,N, fixed) ↑ ↑ ↓ ↓

It is recalled that one of the core aims of the analysis
of the considered setup is to maximize the probability of
detection and minimize the probability of false alarm. To
this end, the optimal fusion rule in the minimization of
the total error rate, when N and L are fixed, depends
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Fig. 3: Total error rate with different fusion rules for
varying values of N and fixed L.

only on the detection threshold, as shown in Fig. 3.
On the contrary, when L and λ are fixed, the target
probability of detection is guaranteed by decreasing the
level of the detection threshold (λ) and increasing the
probability of false alarm. Finally, when N and λ are
fixed, the probability of detection and the probability of
false alarm increase proportionally with the number of
antennas, which reduces the corresponding secondary
throughput.

In addition, the actual number of local decisions is
different in the T-CSS scheme than in C-CSS, which is
related to N . Therefore, there should be an optimum
balance between N , L and λ in order to achieve sec-
ondary throughput maximization while satisfying the
target probability of detection. Based on the above, if
we increase L, the detection threshold should be im-
proved to ensure the target detection probability Q̄d and
improve the secondary throughput. To this effect, better
performance can be achieved with the C-CSS scheme at a
lower number of SUs, which ultimately yields reduced
control bandwidth requirements. Likewise, when N , L
and λ are fixed, higher secondary throughput can be
achieved with the aid of the C-CSS scheme compared
to the T-CSS counterpart.

5.1 Secondary Throughput Optimization
We consider the optimization problem of finding the

optimal values of (N,L, λ) that maximize the secondary
throughput while satisfying the condition Qd ≥ Q̄d,
where Q̄d is the minimum target detection probability
which practically takes values between 0.9 and 1. Ac-
cording to the Neyman-Pearson criterion [43] , when
N and L are fixed, the optimization problem can be
formulated as follows [44]:{

max
λ

R (λ) = (1−Nα) (1−Qf (λ))

s. t. Qd ≥ Q̄d
(52)

By also using (39) and (52), it is readily shown that

∂R(λ)

∂λ
= −(1−Nα)

∂Qf (λ)

∂λ
> 0 (53)

and therefore, there is a maximum point of R within the
(0, λopt) interval, where λopt depends on the constraint
in (52).

For a given N and L and following [44], the detec-
tion threshold λ0 is selected such that Qd(λ0) = Q̄d.
If we select a the detection threshold λ1 ≤ λ0 such
that Qd(λ1) ≥ Qd(λ0), Qf (λ1) ≥ Qf (λ0), and thus,
R̄(λ1) ≤ R̄(λ0). Hence, the optimal solution to (53) can
be achieved when the constraint in (52) is equality. Al-
ternatively, the maximized secondary throughput could
be achieved by maintaining PU sufficiently protected
when λ0 is selected as the detection threshold. Notably,
a suboptimum spectrum utilization can be also achieved
by minimizing Qf . The detailed steps of the optimal
algorithm are described as follows:
• Find the optimal detection threshold λopt for each

N and L. This can be realized by using several existing
algorithms, such as Newton-Raphson, Bi-Section, SEC-
OND, to determine the root of the equation Qd(λ) = Q̄d.
In the present analysis we adopt the Newton-Raphson
method as it provides a faster convergence rate com-
pared to other algorithms [45]. Moreover, in our context,
the algorithm is guaranteed to converge since Qd(λ) is
differentiable and its partial derivative with respect to λ
is monotonic (as shown in Lemma 1) [46]. It is also noted
that the maximization process for both T-CSS and C-CSS
schemes is rather similar. Thus, we only demonstrate the
maximization of the T-CSS case. To this end, we initially
let

g(λopt
N ) = Qd,T−CSS(λopt

N )− Q̄d (54)

where the process of the Newton-Raphson algorithm is
described in Algorithm 1. Based on this and with the aid

Algorithm 1 the Newton-Raphson algorithm

1: procedure
2: Step 1.1:
3: Choose the tolerance λ

opt

N,L(1)
4: the initial guess ε
5: i← 1
6: Step 1.2:
7: if g(λoptN,L(i))| < ε then return stop
8: otherwise goto step 1.3.
9: Step 1.3:

10: Let
11: λoptN,L(i+ 1) = λoptN,L(i)− g(λoptN,L(i))/g′(λoptN,L(i))
12: i← i+ 1.
13: goto step 1.2.

of equations (17), (25) and (34), we can determine the op-
timal detection threshold that maximizes the secondary
throughput when the target detection probability Q̄d is
satisfied as follows:
• Determine the corresponding local probability of

false alarm P opt
f,T−CSS and the probability of detection

P opt
d,T−CSS of each antenna based on (8) and (9).

• Determine the ith SU probability of detection
P opt
d,SLS,T−CSS and probability of false alarm
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P opt
f,SLS,T−CSS from the results of the previous

step.
• Determine the corresponding probability of false

alarm of CSS Qopt
f,T−CSS (λopt

N,L) according to (26)
based on the results of the above step.

• Determine the optimal secondary throughput
Ropt

T−CSS(λopt
N,L) according to (50).

Since the number of local decisions transmitted to the
FC in C-CSS is smaller than that in T-CSS, i.e., MC ≤ N ,
the target detection probability is guaranteed when the
inequality

P opt
d,SLS,C−CSS ≥ P

opt
d,SLS,T−CSS (55)

is satisfied. By comparing (50) and (51), it is also noticed
that the optimal detection threshold for maximizing the
secondary throughput in the C-CSS scheme is smaller
than that in the T-CSS scheme, namely

λopt
C−CSS ≤ λ

opt
T−CSS. (56)

To the best of the authors knowledge, the offered results
have not been previously reported in the open technical
literature.

6 NUMERICAL RESULTS

In this section, the offered analytic results are used to
quantify the performance of the considered setup and
develop meaningful theoretical and technical insights
that will be useful in the design and deployment of CR
systems. Respective results from computer simulations
are also provided for verifying the validity of the offered
analytic results.

Fig. 4 demonstrates the results from the analysis in
Section III, where the performance of T-CSS and C-
CSS is compared for different number of sensing users
(N), number of antennas (L), and average SNR of the
reporting channel (γr). Here, we assume that the average
SNR of the sensing channel is (γs) is 10 dB, while
k = kc = 1, α = 0.1, and P0 = 0.5. Recall that

Qf,T−CSS,min ≈ NPe (57)

in T-CSS; therefore, when either N or the fading sever-
ity of the reporting channels increase, the sensing tail
problem becomes more evident. The sensing tail problem
is illustrated clearly in Fig. 4, where at low false alarm
regions, the detection performance of the T-CSS scheme
is acutely degraded, contrary to the C-CSS scheme which
does not suffer from such degradation. Furthermore for
the T-CSS scheme, it is shown that increasing N does
not enhance the detection performance significantly, par-
ticularly in the low false alarm region, due to the de-
pendence of the lower bound on N . Likewise, Fig. 4(b)
shows that the lower bound of the probability of false
alarm is independent of L, while Fig. 4(c) demonstrates
the increase of the false alarm bound as γr decreases.
Fig. 4 also shows that the detection probability in the T-
CSS scheme reduces drastically to zero at the lower false
alarm bound.
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Fig. 4: Performance of C-CSS and T-CSS with: (a) differ-
ent number of sensing users with L=1 and γr = 0dB; (b)
different number of antennas with N=1 and γr = 0dB;
(c) different SNRs γs of the reporting channels with L=1
and N=2.

Fig. 5 demonstrates some performance metrics versus
the detection threshold for the C-CSS scheme while
varying the parameters N and L. Here, we assume
k = kc = 1, P0 = 0.5, α = 0.1, γr = 0dB, and γs = 10dB.
More specifically, Figs. 5(a) and 5(c) demonstrate that for
a fixed detection threshold and as the number of sensing
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Fig. 5: The performance of C-CSS: (a) probability of false
alarm; (b) normal throughput of secondary system; (c)
probability of detection.

users and antennas increase, the detection and false
alarm probabilities increase due to the cooperation of the
multiple users. On the contrary, the secondary through-
put in Fig. 5(b) degrades as N increases, due to the cor-
responding overhead caused by the increased multiuser
cooperation. Furthermore, the secondary throughput de-
creases as L increases, which improves both the detection
and false alarm probabilities.
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Fig. 6: The performance comparison between the C-
CSS and the T-CSS schemes: (a) Normal throughput of
secondary system. (b) Detection probability.

It is also observed that when N and L are kept
constant and as the detection threshold λ increases,
the false alarm and detection probabilities decrease,
whereas the secondary throughput increases. Therefore,
it is evident that larger detection threshold is required
when N or L increase, demonstrating that the opti-
mal detection threshold for maximizing the secondary
throughput naturally depends on N and L. For example
Fig. 5(b) demonstrates the case of N = 2, L = 1, where
the maximized secondary throughput can be achieved
when λ = 13, which yields a detection probability of
0.9. However, when the secondary throughput increases
(e.g., λ > 13), the detection probability is considerably
less than 0.9, which is also the case when N = 5 and
L = 1, where the optimal detection threshold would be
λ = 15.

Fig. 6 illustrates an additional comparison between
the C-CSS and T-CSS schemes assuming k = kc = 1,
P0 = 0.5, α = 0.1, γr = 0dB and γs = 10dB. It is
shown that for similar values of N and L, the C-CSS
scheme outperforms the T-CSS scheme in terms of opti-
mal secondary throughput and detection performance.
For example, when N = 5, L = 5 and λ = 60,
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Fig. 7: Detection performance of T-CSS with optimization
algorithm: (a) Secondary throughput; (b) Probability of
false alarm; (c) Normal throughput of secondary system.

the secondary throughput is increased by a factor of
almost 0.7/0.2 = 3.5, while the detection performance is
enhanced by a factor of 0.9/0.6 = 1.5, which constitutes
a substantial performance improvement. In addition, for
a specific target detection probability, e.g., Q̄d = 0.9, the
required detection threshold is lower in C-CSS than
in T-CSS, while higher secondary throughput can be
obtained with less number of sensing users in the C-CSS
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Fig. 8: Detection performance of C-CSS with optimiza-
tion algorithm: (a) secondary throughput; (b) probability
of false alarm; (c) normal throughput of secondary sys-
tem.

scheme, which is particularly advantageous in practical
realizations of CR networks.

Next, we evaluate the optimization algorithm for the
secondary throughput which is employed for the T-
CSS and C-CSS schemes with the assumption of SLS
combining technique. To this end, Fig. 7 and Fig. 8
illustrate the detection performance of the two schemes
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Fig. 9: Performance comparison between the C-CSS and
the T-CSS schemes under different sensing channels and
reporting channels with optimization algorithm for: (a)
secondary throughput vs. the number of antennas (N =
2); (b) secondary throughput vs. the number of sensing
users (L = 2).

under different sensing channel conditions. It is observed
in Fig. 7(a) that the secondary throughput in the T-CSS
exhibits a concave shape as N varies. This is in fact
due to the effect of the involved cooperation, where
the performance of the T-CSS scheme outperforms the
single spectrum sensing when N is particularly low.
Nevertheless, as N increases, the bandwidth required
to send the local decisions also increases, which in turn
reduces the respective secondary throughput R̄opt.

However, the secondary throughput in the C-CSS
scheme plateaus as N grows, as shown in Fig. 8(c). Fur-
thermore, comparing Fig. 7(c) with Fig. 8(c), we observe
that the secondary throughput in C-CSS grows more
rapidly with respect to N (especially when the number
of antennas is small). For example, when γs = 10dB and
L = 2, the secondary throughput increases from 0.5 to
0.7 in the T-CSS scheme, whereas it increases from 0.1 to
0.6 in the C-CSS scheme. This observation becomes even
more evident as the channel conditions deteriorates, i.e.,
when γs → −∞ dB. It also merits to allude that for

N > 1, the secondary throughput in the C-CSS scheme
increases with respect to the number of antennas regard-
less of the corresponding sensing channel conditions.

Finally, Fig. 9 illustrates the optimized secondary
throughput for the T-CSS and C-CSS schemes with
different sensing channels and reporting channels. As
shown, larger secondary throughput can be achieved in
the case of C-CSS with smaller N and L. In Fig. 9(a),
as parameter L increases, the optimized throughput for
both T-CSS and C-CSS depicts a non-decreasing function,
where the C-CSS scheme achieves considerably larger
values with a faster trend. As L → ∞, the secondary
throughput plateaus. In Fig. 9(b), as parameter N in-
creases, the optimized throughput for T-CSS depicts a
concave trend, whereby as N → ∞, the secondary
throughput tends to zero. On other hand, as parameter
N increases, the optimized throughput for C-CSS depicts
a non-decreasing function that plateaus as N →∞.

7 CONCLUSION

We introduced a censor-based cooperative spectrum
sensing approach using multiple antenna nodes that
operates in realistic communication scenarios with im-
perfect sensing and reporting channel conditions. Novel
analytic expressions were derived for the corresponding
probabilities of detection and probabilities of false-alarm
as well as for the secondary throughput in both T-CSS
and C-CSS schemes. Capitalizing on this, we determined
the relationship between the number of sensing users,
the number of antennas and the detection thresholds.
In addition, a lower bound for the cooperative false
alarm was derived for the T-CSS and based on the
Neyman-Pearson criterion, we proposed an optimiza-
tion algorithm for maximizing the secondary through-
put. Furthermore, it was shown that the considered C-
CSS schemes provides a solution to the critical sensing
tail problem. Numerous useful insights were developed
throughout the respective analysis, which are expected
to be useful in future designs and deployment of efficient
cognitive radio networks.

APPENDIX A
PROOF OF PROPOSITION 1

By substituting (16) and (24) into (26), and then differ-
entiating (26) one obtains

∂Qf,T−CSS

∂Pf
=−N [1− Pe − (1− 2Pe)(1− [1− Pf ]L)N−1]

× (−1)(1− 2Pe)L[1− Pf ]L−1

(58)

which can be equivalently expressed as

∂Qf,T−CSS

∂Pf
=LN(1− 2Pe)[1− Pf ]L−1

× [1− Pe − (1− 2Pe)(1− [1− Pf ]L)N−1].
(59)
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Since the error probability is practically no more than
1/2, equation (35) satisfies the inequality

∂Qf,T−CSS

∂Pf
≥ 0. (60)

It is evident that Qf,T−CSS is monotonically increas-
ing with respect to Pf . Hence, the minimum value of
Qf,T−CSS is obtained when Pf = 0, yielding

Qf,T−CSS,min = lim
Pf→0

Qf,T−CSS (61)

= 1− (1− Pe)N . (62)

Using the binomial expansion of (1 + (−Pe))N , and
truncating to the first term, we obtain

Qf,T−CSS,min ≈ NPe +O(P 2
e ). (63)

In the case of C-CSS, by first substituting (16) and (28)
into (34), and then differentiating (34) with respect to Pf ,
yields

∂Qf,C−CSS

∂Pf
≈LMC(1− Pe)[1− Pf ]L−1

× {(1− (1− Pe)(1− [1− Pf ]L))}MC

(64)

which leads to
∂Qf,C−CSS

∂Pf
> 0 (65)

and thus, the minimum value of Qf,C−CSS is given by

Qf,C−CSS,min|Pf=0 = 0 (66)

which completes the proof.

APPENDIX B
PROOF OF LEMMA 1

Assuming Pe < 0.5 in the T-CSS scheme, from (27),
the derivative of Qd,T−CSS with respect to the threshold
λ is represented as

∂Qd,T−CSS

∂λ
=

∂Qd,T−CSS

∂P ′d,SLS,T−CSS

∂P ′d,SLS,T−CSS

∂Pd Rayleigh

∂Pd Rayleigh

∂λ
(67)

which after some algebraic manipulations yields the
following analytic representations

∂Qd,T−CSS

∂P ′d,SLS,T−CSS

= N

(
N − 1

k − 1

)
(P ′d,SLS,T−CSS)N

(1− P ′d,SLS,T−CSS)k−N
> 0

(68)

and
∂P ′d,SLS,T−CSS

∂Pd Rayleigh
=
∂P ′d,SLS,T−CSS

∂Pd,SLS

∂Pd,SLS

∂Pd Rayleigh
(69)

=
L(1− 2Pe)

(1− Pd Rayleigh)1−L (70)

> 0 (71)

as well as

Pd AWGN =
1√
2γ

∫ ∞
√
λ

xµe−
x2+2γ

2 Iu−1(
√

2γx)dx (72)

and

∂Pd Rayleigh

∂Pλ
=

∫ ∞
√
λ

∂Pd AWGN

∂Pλ
fγ(x)dx (73)

=

∫ ∞
√
λ

λ
u−1

2 Iu−1(
√

2γλ)

2(
√

2γ)
u−1

2 e
λ+2γ

2

fγ(x)dx (74)

< 0. (75)

Substituting the above representations in (67), it follows
that

∂Qd,T−CSS

∂λ
< 0. (76)

Likewise, from (26) it follows that

∂Qf,T−CSS

∂λ
=

∂Qf,T−CSS

∂P ′f,SLS,T−CSS

∂P ′f,SLS,T−CSS

∂Pf

∂Pf
∂λ

(77)

and

∂Qf,T−CSS

∂P ′f,SLS,T−CSS

= N

(
N − 1

k − 1

)
(P ′f,SLS,T−CSS)N

(1− P ′f,SLS,T−CSS)k−N

(78)

which yields

∂Qf,T−CSS

∂P ′f,SLS,T−CSS

> 0. (79)

Also,

∂P ′f,SLS,T−CSS

∂Pf
=
∂P ′f,SLS,T−CSS

∂Pf,SLS

∂Pf,SLS

∂Pf
(80)

= L(1− 2Pe)[1− Pf ]L−1 (81)
> 0 (82)

and
∂Pf
∂λ

= − λu−1

2uΓ (u)
e−

λ
2 < 0 (83)

which upon using (77)−(83), it readily follows that

∂Qf,T−CSS

∂λ
< 0. (84)

For the C-CSS scheme, using (34) and (33) yields

∂Qd,C−CSS

∂λ
=

(
MC − 1

kc − 1

) MC

(
P ′d,SLS,C−CSS

)MC

(1− P ′d,SLS,C−CSS)
kc−MC

× L(1− Pe)[1− Pd]L−1 ∂Pd Rayleigh

∂λ

(85)

and

∂Qf,C−CSS

∂λ
=

(
MC − 1

kc − 1

) MC

(
P ′f,SLS,C−CSS

)MC

(1− P ′f,SLS,C−CSS)kc−MC

× L(1− Pe)[1− Pf ]L−1 ∂Pf
∂λ

(86)

where
(
b
a

)
denotes the binomial coefficient in [41]. There-

fore, by substituting (73) into (85), it follows that

∂Qd,C−CSS

∂λ
< 0 (87)
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and by substituting (83) into (86) one obtains

∂Qf,C−CSS

∂λ
< 0 (88)

which completes the proof.

APPENDIX C
PROOF OF LEMMA 2

With the aid of (17), (25) and (27) in the T-CSS scheme,
it follows that

∂Qd,T−CSS

∂L
=

∂Qd,T−CSS

∂P ′d,SLS,T−CSS

∂P ′d,SLS,T−CSS

∂Pd,SLS

∂Pd,SLS

∂L
(89)

where

∂Pd,SLS

∂L
= −[1− Pd]L ln[1− Pd] > 0. (90)

Based on this and using (68), (69), (89) and (90) yields

∂Qd,T−CSS

∂L
> 0. (91)

Likewise,

∂Qf,T−CSS

∂L
=

∂Qf,T−CSS

∂P ′f,SLS,T−CSS

∂P ′f,SLS,T−CSS

∂Pf,SLS

∂Pf,SLS

∂L
(92)

whereas

∂P ′f,SLS,T−CSS

∂Pf,SLS
= L(1− 2Pe) > 0 (93)

and
∂Pf,SLS

∂L
= −[1− Pf ]L ln[1− Pf ] > 0. (94)

Hence, with the aid of (79), (92), (93) and (94), one
obtains

∂Qf,T−CSS

∂L
> 0. (95)

Finally, for the C-CSS scheme, it readily follows that

∂Qd,C−CSS

∂L
=

∂Qd,C−CSS

∂P ′d,SLS,C−CSS

∂P ′d,SLS,C−CSS

∂Pd,SLS

∂Pd,SLS

∂L
(96)

which can be expressed in closed-form as follows

∂Qd,C−CSS

∂L
=MC

(
MC − 1

kc − 1

) (
P ′d,SLS,C−CSS

)MC

(1− P ′d,SLS,C−CSS)kc−MC

× (1− Pe)×
∂Pd,SLS

∂L
.

(97)

Likewise,

∂Qf,C−CSS

∂L
=

∂Qf,C−CSS

∂P ′f,SLS,C−CSS

∂P ′f,SLS,C−CSS

∂Pf,SLS

∂Pf,SLS

∂L
(98)

which can be expressed by the following closed-form
representation

∂Qf,C−CSS

∂L
=MC

(
MC − 1

kc − 1

) (
P ′f,SLS,C−CSS

)MC

(1− P ′f,SLS,C−CSS)kc−MC

× (1− Pe)×
∂Pf,SLS

∂L
(99)

which upon substitution of (90) into (97) and (94) into
(99), it follows that

∂Qd,C−CSS

∂L
> 0 (100)

and
∂Qf,C−CSS

∂L
> 0 (101)

respectively, and thus, completing the proof.
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