
1

A Sustainable Multi-modal Multi-layer
Emotion-aware Service at the Edge

Long Hu, Wei Li, Jun Yang, Giancarlo Fortino, Senior Member, IEEE, and Min Chen, Senior Member, IEEE

Abstract—Limited by the computational capabilities and battery energy of terminal devices and network bandwidth, emotion
recognition tasks fail to achieve good interactive experience for users. The intolerable latency for users also seriously restricts the
popularization of emotion recognition applications in the edge environments such as fatigue detection in auto-driving. The development
of edge computing provides a more sustainable solution for this problem. Based on edge computing, this article proposes a
multi-modal multi-layer emotion-aware service (MULTI-EASE) architecture that considers user’s facial expression and voice as a
multi-modal data source of emotion recognition, and employs the intelligent terminal, edge server and cloud as multi-layer execution
environment. By analyzing the average delay of each task and the average energy consumption at the mobile device, we formulate a
delay-constrained energy minimization problem and perform a task scheduling policy between multiple layers to reduce the end-to-end
delay and energy consumption by using an edge-based approach, further to improve the users’ emotion interactive experience and
achieve energy saving in edge computing. Finally, a prototype system is also implemented to validate the architecture of MULTI-EASE,
the experimental results show that MULTI-EASE is a sustainable and efficient platform for emotion analysis applications, and also
provide a valuable reference for dynamic task scheduling under MULTI-EASE architecture.

Index Terms—computing offloading, edge computing, emotion recognition, energy saving, multi-modal data

F

1 INTRODUCTION

Emotion recognition is a complex process, that is aimed at the
individual’s emotional state, which means that the emotions corre-
sponding to each individual’s behavior are different [1]. With the
rapid development of artificial intelligence, many tasked related
to computer vision, speech recognition, and natural language
processing have achieved great success [2]–[4], but emotional
modeling for individuals still faces great challenges. Presently,
the main methods for emotion recognition include speech emotion
recognition [5], text emotion recognition [6], facial emotion recog-
nition [7], gesture emotion recognition [8], etc. As the emotional
data source is very rich, the single-modal model can not judge
the user’s emotion well, so we need multi-modal data to learn the
emotion model. In this paper, the emotion analysis is based on
multi-modal data such as user’s facial expression and voice.

In addition, the emotion recognition task cannot achieve a
good interactive experience due to the undesirable interactive
latency. To solve the problem, we introduce edge computing
and put forward a multi-layer model for algorithm execution,
that is emotional services can be provided at device terminals,
network edges and clouds [9], [10]. The emergent paradigm of
edge computing [11], [12], [15] advocates that computational and
storage resources can be extended to the edge of the network
so that the impact of data transmission latency over the Internet
can be effectively reduced for time-constrained applications, i.e.,
emotion analysis [13]. For example, in auto driving scene, the
virtual emotional robot needs to collect the driver’s voice, facial

• Long Hu, Wei Li, Jun Yang, and Min Chen are with School of Computer
Science and Technology, Huazhong University of Science and Technology,
Wuhan 430074, China (longhu.cs@gmail.com, weili epic@hust.edu.cn,
junyang cs@hust.edu.cn, minchen2012@hust.edu.cn).

• Giancarlo Fortino is with University of Calabria (g.fortino@unical.it).
• Min Chen is the corresponding author.

expression and other multi-modal emotional data, as well as some
surrounding environmental information, including the driver’s
current road condition information, geographical location, time
information, etc., which has strong demands on computational
and storage resources, as well as low latency. Therefore, we
deploy some AI algorithms at the edge computing nodes to handle
emotion recognition tasks [14]. These algorithms usually have
lower performance than algorithms deployed in the cloud, but edge
computing nodes can quickly feed back results to users.

However, with the widespread deployment of edge comput-
ing devices, the energy demand of these devices has increased
and started to become a noticeable issues for sustainable de-
velopment of time-constrained IoT applications [16]–[19]. En-
ergy efficiency optimization for such applications becomes more
challenging when considering the rapid constant grow of edge
devices/sensors [20], [21]. For example, the current number of
IoT devices will rapidly increase from 15 billion to 50 billion
by 2020 (according to CISCO), while the number of sensors will
increase to as high as 1 trillion by 2030 (according to HP Labs). In
emotion analysis applications [22], we need multi-modal data for
the emotion recognition, such application consumes lots of sen-
sors for acquiring emotion-related data such as facial expression,
voice and other physical data. The sustainability of such systems
becomes a necessity. Although local computing consumes more
energy, it can significantly minimize the execution latency without
additional communication or waiting delay. Thus, it is critical to
make efficient offloading decision between energy consumption of
smart mobile devices and execution latency of the corresponding
tasks [23]–[25].

Above all, a flexible task scheduling strategy must be adopted
considering the delay and energy demands [26], [27]. The delay,
energy consumption and quality of service (such as the accuracy
of emotion recognition in this paper) are different at different layer
levels, and the user’s sensitivity to the delay of emotion recogni-

ar
X

iv
:1

90
6.

01
81

0v
1

 [
cs

.N
I]

 5
 J

un
 2

01
9

2

tion is also different. At the same time, considering the energy
consumption problem, we hope to find a kind of compromise
scheduling scheme to enable energy consumption to be reduced
while satisfying user delay requirements and service quality re-
quirements. Therefore, in this paper, we propose a multi-modal
multi-layer emotion-aware services (MULTI-EASE) and perform
a task scheduling policy between multiple layers by formulating a
delay-constrained energy minimization problem which minimizes
the total energy consumption of the system subjected to the latency
and emotion service quality constrains. The main contributions of
this article are as follows:

1) We propose a MULTI-EASE architecture and perform a
task scheduling policy between multiple layers to reduce
the end-to-end delay and energy consumption by using
an edge-based approach;

2) We formulate a delay-constrained energy minimization
problem to improve the users’ emotion interactive expe-
rience and achieve energy saving;

3) We deploy a prototype system to validate the architecture
of MULTI-EASE that is proved to be a sustainable and
efficient platform for emotion analysis applications.

The remainder of this article is organized as follows. Section
2 introduces the MULTI-EASE architecture. Section 3 introduces
the modeling of multi-layer task scheduling and the analysis of
delay and energy. Section 4 presents the MULTI-EASE prototype.
Section 5 discusses the testing of main MULTI-EASE compo-
nents. Finally, Section 6 concludes the article.

2 MULTI-EASE ARCHITECTURE

Based on edge computing, this paper proposes a multi-modal
multi-layer emotion-aware service (MULTI-EASE) architecture
that considers multi-modal data as the data source of emotion
recognition, and employs the intelligent terminal, edge server and
cloud as multi-layer execution environment. The architecture of
MULTI-EASE is shown in Fig. 1. The MULTI-EASE conducts
a long-term intelligent and personalized emotion perception of a
single user from multi-model data, and meanwhile performs a task
scheduling policy between multiple layers to optimize the emotion
recognition task. Adaptive information fusion technologies [28]
can also be integrated into MULTI-EASE in order to enhance the
emotion perception accuracy. Details of MULTI-EASE architec-
ture are introduced as follows.

2.1 Multi-modal
At present, the emotion data sources are very abundant, as shown
in Fig. 1, the data could be audio-visual information, physiological
signal, diet and sports information, etc. In this paper, the facial and
audio data are adopted to achieve emotion recognition, and facial
emotion detection is characterized by higher recognition accuracy
and lower computation overhead, while the audio emotion detec-
tion requires high accuracy of the original audio data. This paper
mainly adopts the intelligent terminal such as an interactive robot
to collect audio-visual data of the user and assist in better detection
and recognition of user emotion.

2.2 Multi-layer
After acquiring the emotion data, a terminal always has to offload
the computing tasks. Networking between different edge terminals

can be implemented based on some existing advanced energy-
efficient communication mechanisms such as [29]. The emotion
data of users are personalized, and the demands on delay are strict
for users, so that the emotion computing tasks may be offloaded
to different service nodes for processing, such as other terminals,
edge servers and cloud platforms as shown in Fig. 1.

a) Terminal device: In the emotion recognition, an intelligent
device or emotion recognition robot denotes as a local terminal
device. The terminal device has the function of collecting the
emotion data. For instance, a robot can collect facial expression
and audio of a user, and the smart clothing and other wearable
devices can collect the physiological data of a user. However,
both computing and storage capability and the battery energy of
terminal devices are limited. When the number of users’ requests
is excessive, or the complexity of a computing task is larger than
available computing power, it is not suitable to perform the task
directly on a terminal device. On the other hand, local devices are
the closest devices to user, thus, they have low communication
latency and are suitable for processing simple task with sensitive
latency.

b) Edge server: A part of computing tasks can be processed on
a network edge by introducing the edge computing to reduce net-
work congestion. The edge computing layer is composed of many
nodes possessing the computing capability. These edge nodes
can be gateway, router, exchange or local server, etc. In emotion
recognition, a local server near a terminal device is considered
as an edge node. The computing capability of edge computing
is weaker than that of cloud computing, but the communication
latency of edge server is far below that of a cloud platform. The
performance of algorithm deployed on the edge server is generally
lower than that of algorithm deployed on the cloud, but algorithm
deployed on the edge server can rapidly feed-back the result to
a user. The computing capability and storage capability of an
edge computing node are also limited. Therefore, more complex
computation should be executed on a remote cloud platform.

c) Cloud platform: Both local computing and edge comput-
ing may relieve network congestion and reduce communication
latency, while cloud computing does not process unnecessary
computing tasks and can focus on high-precision computation and
analysis to provide an optimal computing service for users. The
infrastructure of cloud computing is based on a cloud platform
that deploys a high-performance emotion recognition algorithm.

d) Scheduling engine: By using the SDN (Software Defined
Network, SDN) technology, we can deploy a scheduling engine
in three layers of a network framework. The scheduling engine
processes real-time multimodal emotional data flow in network
environment, and can execute task scheduling policy through per-
ceiving the computing resources, environmental communication
resources, and network resources (such as network type, business
data flow, communication quality, and other dynamic environment
parameters) of a three-layer structure. The scheduling engine has
global information about multi-layer execution environment and
determines the scheduling policy on line according to current task
requests and network resources.

3 MODELING AND ANALYSIS

3.1 Task model
For each task Qi, it can be expressed as Qi = {ωi, si, oi, ai}.
ωi is the computation resource for task Qi and can be measured
by the number of CPU cycles required to accomplish the task; si

3

Data Sensing: Camera/Social/Physiological/Diet/Sports etc.

Physiological

Social

Diet

Sports

Sensing

Multi-modal

Sensing Sensing

Multi-layer

Remote cloud

Emotion Recognition

Multi-modal emotion
data collection

Task
offloading

Task
processing

User

Scheduling engine

Fig. 1. MULTI-EASE Architecture

specifies the size of the task in bits; oi represents the amount of
data generated by the task feedback; ai represents the quality of
task performance. In emotion detection , ωi is the computation
resource required for the emotion detection task; si is the emotion
data (image, voice, video, etc.); oi is the amount of data fed
back to the client; and ai is the recognition accuracy of emotion
detection. In addition, di represents the task duration of task
Qi. Considering that the output of a task is generally much
smaller than the task size, and can be returned to the device with
negligible transmission delay (e.g., face recognition and language
processing), the feedback time can be represented by ξi(oi) which
is viewed as a constant and can be ignored.

The delay and energy consumption in different layers will be
discussed below.

3.2 Multi-layer task scheduling

3.2.1 Local Layer

The latency of emotion computing task on a terminal device is
given by (1). In (1), T locn,i is the time required to perform the task
locally at the terminal device n. We assume that the CPU at the
nth local device is operating at frequency f locn (in Hz) if a task is
being executed, and its energy consumption is given by P locn (in
W); otherwise, the local CPU is idle and consumes no energy. The
number of required CPU cycles for executing a task successfully is
denoted as ωi, which depends on the types of mobile applications
as introduced in the task definition Qi = {ωi, si, oi, ai}. Then
the task duration of local processing can be represented by dlocn,i,
as given by

dlocn,i = T locn,i =
ωi
f locn

. (1)

The CPU power consumption is widely modeled to be a
superlinear function of f locn , as given by P locn = κ(f locn)γ . κ
and γ are pre-configured model parameters depending on the chip
architecture. According to [30], the energy consumption of device
n for local computation, denoted by Elocn,i , is therefore given by

Elocn,i = P locn · T locn,i = κ(f locn)γ−1ωi (2)

Typically, κ = 10−26 denotes the energy coefficient that
depends on the chip architecture [31], and 2 ≤ γ ≤ 3 [32].

3.2.2 Edge Layer
In order to offload a computation task to the edge server, all the
input data of the task should be successfully delivered to the
edge server over the wireless channel. We assume P trn is the
uplink transmission power of terminal device n, hn,m denotes
the channel power gain between the device n and the edge server
m, B is the system bandwidth and N0 is the noise power spectral
density at the receiver; According to the work in [33], the uplink
data rate rn,m of device n can be given by

rn,m = Blog2(1 +
P trn hn,m
N0

) (3)

The latency of edge computing is given by (4) where
T loc→edgen,m is the time needed to offload emotion data to a edge
server m. T edgem,i is the execution time of task i on edge server m,
T downm,n is the time needed to feedback the computation results to
terminal device n. Assume that fedgem represents the computing
capacity of the mth edge node, then the task duration on edge
node can be represented by dedgem,i .

dedgei = T loc→edgen,m +T edgem,i +T downm,n =
sn,m
rn,m

+
ωi

fedgem

+ξi(oi).

(4)
The energy consumption can be calculated as the commu-

nication consumption between the local device and edge node.
Let P trn denotes the transmission power of terminal device n
and P idn denotes the idle power. When the task is executed
on the edge server, the mobile device needs to wait for the
return of the response result. The idle power consumption of the
mobile device can be calculated as P idn T

edge
m,i . Then, the energy

consumption is defined as the sum of idle power consumption and

4

data transmission power consumption which can be expressed as
Eedgem,i as follows:

Eedgem,i = P trn T
loc→edge
n,m + P idn T

edge
m,i = P trn

sn,m
rn,m

+ P idn
ωi

fedgem
(5)

3.2.3 Cloud Layer
The latency of cloud computing is given by (6), where T loc→cloudn,k

is the time for emotion data offloading to the remote cloud server
k, and T cloudk,i is the execution time of task i on cloud server k.
Assume that f cloudk represents the computing capacity of the kth
cloud server, then the task duration on cloud can be represented
by dcloudk,i .

dcloudk,i = T loc→cloudn,k +T cloudk,i +T downk,n =
sn,k
rn,k

+
ωi

f cloudk

+ξi(oi).

(6)
The energy consumption can be calculated as the communica-

tion consumption between the local device and cloud, as the same
case of edge computing, the energy consumption is defined by
Ecloudk,i as follows:

Ecloudk,i = P trn T
loc→cloud
n,k +P idn T

cloud
k,i = P trn

sn,k
rn,k

+P idn
ωi

f cloudk
(7)

3.3 Delay and Power Analysis
In this subsection, we will analyze the average delay of each
task and the average power consumption at the mobile device by
modeling the MULTI-EASE system.

Let ploci ,pedgei ,pcloudi represent the offloading policy of task
Qi. If Qi is processed by a local device n, then plocn,i equals to 1,
otherwise it equals to 0. Similarly, if Qi is processed by a edge m,
then pedgem,i equals to 1, otherwise it equals to 0. If Qi is processed
by a cloud k then pcloudk,i is 1, otherwise it equals to 0. Also, the
sum of ploci pedgei pcloudi should equal to 1 as defined by (11).

plocn,i =

{
1, if task i is processed by local device n,
0, otherwise.

(8)

pedgem,i =

{
1, if task i is processed by edge m,
0, otherwise.

(9)

pcloudk,i =

{
1, if task i is processed by cloud k,
0, otherwise.

(10)

plocn,i + pedgem,i + pcloudk,i = 1. (11)

Then, the task duration di and energy consumption Ei of task
Qi can be expressed by:

di = plocn,id
loc
n,i + pedgem,i d

edge
m,i + pcloudk,i dcloudk,i . (12)

Ei = plocn,iE
loc
n,i + pedgem,i E

edge
m,i + pcloudk,i Ecloudk,i . (13)

Considering the delay, energy consumption and quality of ser-
vice are different at different layer levels, and the user’s sensitivity

to the delay of emotion recognition is also different. We formulate
a delay-constrained energy minimization problem to minimize the
energy consumption while satisfying user delay requirements and
accuracy of algorithm. Let assume user’s requirement be defined
as Ui = {Ai, Di}, where Ai represents the requirement for task
performance (accuracy in emotion detection), and Di is the task
deadline, i.e., the maximum delay that the task can tolerate.

di ≤ Di. (14)

ai ≥ Ai. (15)

Assume that the total number of tasks initiated within the ser-
vice area is q. An energy efficiency optimization problem, which
is to minimize the overall energy consumption while satisfying
user’s requirement, can be formulated by:

minimize:
1

q

q∑
i=1

Ei,

subject to: (2)− (15).

(16)

The problem defined by (16), is a typical 0-1 integer linear
optimization problem. By the use of branch and bound algo-
rithm [34], the optimal solution can be obtained. Thus, the linear
iterative algorithm can be utilized and obtain the approximate
optimal solution.

4 MULTI-EASE TEST PLATFORM

4.1 Prototype system
The MULTI-EASE prototype platform is shown in Fig. 2, where
it can be seen that intelligent terminal and local server are two
typical edge computing nodes, cloud platform is a data center and
GPU server is an analysis server.

The MULTI-EASE hardware parameters presented in Table 1
show the hardware profile of MULTI-EASE prototype platform
and list the computing performance of a device under three
different levels (terminal device, local server (edge node), and
cloud platform). Each MULTI-EASE layer has different comput-
ing capability and different working load distributed to it. While
generating the working load, different numbers of service requests
are generated following the uniform probability distribution, and
different load scenes are simulated. “Experimental parameters
settings” in Table 1 shows the statistics of test executed on devices
at each level. We deploy facial expression recognition and voice
emotion recognition algorithms on each layer. The concurrent
request time is set from 1 to 60 at Robot for facial recognition, and
from 1 to 35 at Robot for voice recognition, that is because voice
recognition task consumes more computation resources. Cloud has
higher load capacity than local server so the concurrent invocation
cloud be from 50 to 700 while it is from 50 to 550 at local server.
In the experiment, we conduct several stress tests on multi-layers
based on above settings.

4.2 Emotion Analysis
The emotion recognition algorithms used in this paper are facial
and voice emotion recognition. The model training was executed
based on an independent GPU algorithm server. At the end of
the training, the trained model was saved in the binary file in
the form of “.pb” file. The model could be executed on a cloud

5

Fig. 2. MULTI-EASE Prototype

TABLE 1
MULTI-EASE Prototype Platform Profile

MULTI-EASE Hardware Parameters
Node Core Processor Memory
Robot 4 x ARM Cortex-A33, 1.2GHz 1GB LPDDR2

Edge Server Intel Cor 2 Quad 9400, 2.66GHz 8GB DIMM
Cloud AMD FX 8-Core, 4GHz 32 GB RAM DDR3

Experimental Parameters Settings
Robot Edge Server Cloud

Algorithm Facial + Voice Facial + Voice Facial + Voice
Concurrent Invocation(Facial) 1 to 60 50 to 550 50 to 700
Concurrent Invocation(Voice) 1 to 35 50 to 550 50 to 700

platform and migrated to the terminal device or other devices
for execution. The model execution on the edge device needed a
TensorFlow environment, and the model execution on the terminal
device needed a TensorFlow support package. Figure. 3 shows the
execution results of real-time emotion recognition in the terminal
device. Two figures on the left side of Fig. 3 show the probability
distribution of results of image emotion recognition (upper figure)
and voice emotion recognition (lower figure). On the interface
bottom, seven specific emotions (angry, disgust, fear, happy, sad,
surprise, and neutral) are shown. The emotion mark colored in
red is currently recognized emotion. The image used in the test
was captured by a self-contained camera of a terminal device.
The OpenCV can catch the human face in the image, conduct
the corresponding preprocessing, and transmit obtained result to
the model as an input data. The audio data were collected by
a microphone (MIC), and the collected voice data denoted an
input to the emotion model for real-time recognition. The specific
algorithms are introduced as below.

• Facial emotion recognition: The facial emotion recog-
nition firstly realizes a facial expression captured by
OpenCV, then realizes a face alignment by the MTCNN
(Multi-task Cascaded Convolutional Networks) [35], and
finally realizes the facial feature training by the VGGNET
to generate a 256-dimension facial feature vector for
executing the task of expression classification.

• Voice emotion recognition: First, the speech framing is
conducted, then the MFCC is adopted for feature extrac-
tion, the static speech feature vector is generated, the first
and second derivatives of a generated static speech feature

are evaluated, and a three-channel speech spectrogram is
obtained. Finally, the AlexNet DCNN (deep convolutional
neural network) model for emotion feature extraction is
adopted to generate 512-dimension emotion feature vector
for executing the task of speech emotion classification
[36].

5 PERFORMANCE EVALUATION OF EMOTION
RECOGNITION

We introduce three baseline task scheduling policies, including
the local execution policy, which executes all the computation
tasks locally at the mobile device; the cloud execution policy,
where all the tasks are offloaded to the cloud for computing; and
random execution policy, which randomly select one layer for
task execution. Our proposed task scheduling policy called edge-
based multi-layer execution policy solves the delay-constrained
energy minimization problem to reduce the end-to-end delay and
energy consumption towards specific latency and energy demands
of emotion analysis task.

For large scale performance analysis and evaluation, the nu-
merical simulations are designed except for the real prototype
system. The simulations are deployed based on real-world settings
according to our real prototype system. All the parameters, in-
cluding the energy consumption rates and computing capacity, are
measured from real mobile devices. In the experimental setup, we
assume that system bandwidth B is 1 MHz, the local processing
power P locn , the standby power P idn , and the transmitting power
P trn of mobile device are 0.9 W, 0.3 W and 1.3 W respectively. The

6

Fig. 3. Emotion Recognition Demo

corresponding Gaussian channel noiseN0 and channel power gain
hn,m are 10−9 W and 10−5, respectively. For task Qi, we assume
that required computing capacity wi and data size si are generated
by a probability distribution [37]. Furthermore, we assume that
the computing capabilities of cloud server f cloudn , edge server
fedgen and mobile device f locn are 15GHz, 10 GHz and 2 GHz,
respectively.

Below we discuss the task computing time at different layers,
and the analysis of task delay and energy consumption. For
convenience, we illustrate the performance indexes in detail in
Table 2.

5.1 Stress testing for task computing time
The performance evaluation of emotion recognition algorithm
using the MULTI-EASE system is based on facial emotion and
voice emotion analysis. We deploy facial expression recognition
and voice emotion recognition algorithms on each layer. The stress
testing for task computing time at different layers can be seen from
Fig. 4.

It is obvious that the local computing time increases sharply
when the concurrent request number increases to 60 for facial
recognition, and to 35 for voice recognition, that is due to the
limited computational capabilities of local device, and voice
recognition task consumes more computation resources which
results in that it cannot response much concurrent requests as
facial recognition task. When the concurrent request number
increases to 550 and 700 respectively, the edge computing time
and cloud computing time increase sharply. Cloud has higher load
capacity than local server so the concurrent invocation cloud be
from 50 to 700 while it is from 50 to 550 at local server. It can also
be seen that voice recognition task needs much more computing
time for its higher computation demands.

5.2 Delay and energy analysis with task scale
The average delay is shown in Fig. 5(a), it can be observed from
the figure that, the average delays achieved by the local execution,
cloud execution, random execution and the edge-based multi-
layer execution, increase with the average computation task arrival
number q, which is in accordance with our intuition. The task
delay of local execution policy is much larger than that of other

0 100 200 300 400 500 600 700
Concurrent Requests in a Batch

2000

4000

6000

8000

10000

12000

14000

16000

T
as

k
C

om
pu

tin
g

T
im

e
(m

s)

local execution
edge execution
cloud execution

(a) Task computing time for facial emotion recognition

0 100 200 300 400 500 600 700
Concurrent Requests in a Batch

0.5

1

1.5

2

2.5

3

3.5

T
as

k
C

om
pu

tin
g

T
im

e
(m

s)

104

local execution
edge execution
cloud execution

(b) Task computing time for voice emotion recognition

Fig. 4. Stress testing for task computing time at different Layers

7

TABLE 2
Performance Indexes Illustration

Indexes Symbols Illustration

Task computing time
T loc Task computing time at local layer
T edge Task computing time at edge layer
T cloud Task computing time at cloud layer

Task delay
∑q

i=1 di di is the task duration of task Qi defined in (12)

Task energy consumption
∑q

i=1 Ei Ei is the task energy consumption of task Qi defined in (13)

50 100 150 200 250 300 350 400 450 500

Task Arrival Number (q)

0

5

10

15

20

25

T
as

k
D

el
ay

 (
s)

edge-based multi-layer execution policy
local execution policy
cloud execution policy
random execution policy

(a) Task delay with task arrival number q

50 100 150 200 250 300 350 400 450 500

Task Arrival Number (q), s=10 MB

0

50

100

150

200

250

T
as

k
E

ne
rg

y
C

on
su

m
pt

io
n

(J
)

edge-based multi-layer execution policy
local execution policy
cloud execution policy
random execution policy

(b) Energy consumption with task arrival number q, where s=10 MB

50 100 150 200 250 300 350 400 450 500

Task Arrival Number (q), s=110 MB

0

50

100

150

200

250

300

T
as

k
E

ne
rg

y
C

on
su

m
pt

io
n

(J
)

edge-based multi-layer execution policy
local execution policy
cloud execution policy
random execution policy

(c) Energy consumption with task arrival number q, where s=110 MB

Fig. 5. Delay and energy analysis with task scale

8

policies, this is due to the fact that the execution time required by
cloud server and edge server is much smaller than that by the local
CPU. When q increases, more arrived tasks should be sent to the
edge server or cloud server for lower latency.

In the energy efficiency performance aspects, simulations
results show the superiority of the proposed scheme. Fig. 5(b)
and Fig. 5(c) show the energy consumption of the mobile device
when the number of computation task increases from 50 to 500
with four different task offloading policies, considering two cases
with different task data size, i.e., si = 10MB and si = 110MB.
It is obvious that the energy consumption of our proposed policy
is the lowest in both two cases compared with other three policies.
However, the gap of energy consumption between local execution
policy and cloud execution policy is different. It can be seen that
the energy consumption of local execution policy is much larger
than that of cloud execution policy when the task data size is
small, while it is almost the same and even lower than that of
cloud execution policy when the task data size is large. This is
because it results in large transmission latency and energy when
the task data size is too large.

5.3 Performance analysis on energy consumption

In this subsection, we will discuss the influence of different factors
on energy consumption, i.e., the task deadline, the task data size
and the task computation amount. Obviously, the proposed method
can always find a better energy-saving solution than other three
approaches with the changes of different factors as shown in Fig.
6.

Fig. 6(a) shows the average energy consumptions when task
deadline D ranges from 1s to 3.5s. With the growth of D, the
energy consumptions of edge-based multi-layer execution policy
first decrease and then stabilize at 0.95 J when D ≥ 1.6s. This
is because increasingly relaxed deadlines allow a growing number
of devices to be selected for offloading, thereby reducing energy
consumption. When the deadlines are so loose that almost all tasks
can be selected for offloading, it can be seen that our policy has
lower energy consumption compared with cloud execution policy
when deadlines are loose.

Fig. 6(b) shows the average energy consumptions when task
data size s ranges from 10 to 80 MB. With the growth of s, the
energy consumptions of edge-based multi-layer execution policy
first increase along with that of cloud execution policy, and then
stabilize at 2.3 J when s ≥ 55MB. It indicates that in our
proposed scheduling policy, the task is offloaded to edge server
or cloud server when the task data size is small and is executed
locally when the data size is larger than 55 MB.

Fig. 6(c) shows the average energy consumptions when task
computation amount s ranges from 0.1 to 10 gigacycles. With the
growth of w, the energy consumptions of edge-based multi-layer
execution policy first increase along with that of local execution
policy, and then slowly increase when w ≥ 5gigacycles. When
the task computation amount is small, the task should better
be processed locally for lower energy consumption caused by
data transmission. In contrast, when w ≥ 5gigacycles, the
energy consumption of cloud execution is smaller due to its large
computational capabilities resulting in lower latency and lower
idle energy consumption for terminal device. The average energy
consumption achieved by the random execution policy fluctuates
in all cases since it randomly selects one layer for task execution.

6 CONCLUSION

In this article, the MULTI-EASE architecture that could reduce the
end-to-end delay and energy consumption by using an edge-based
approach is presented. By analyzing the average delay of each
task and the average power consumption at the mobile device,
we formulated a delay-constrained energy minimization problem
which minimizes the total energy consumption of the system
subjected to the latency and emotion service quality constrains.
The multi-layer solution can find a kind of compromise scheduling
scheme in terms of processing power availability than single-
layer at device, edge server and cloud, by considering that the
delay, energy consumption and quality of service are different
at different layer levels, and the user’s sensitivity to the delay
of emotion recognition is also different. A prototype system is
also implemented to validate the architecture of MULTI-EASE
to be a sustainable and efficient platform for emotion analysis
applications by comparing it with systems not using such edge-
based scheme. It is shown that the multi-layer solution always
find a better energy-saving solution than other three approaches
like local execution policy, cloud execution policy and random
execution policy.

However, in this paper, we did not consider the storage
capability of multi-layer execution environment, because for the
emotional recognition application, the recognition model is trained
offline, only real-time emotional data are needed for processing.
So for small scale concurrent requests, different layers are able
to store the data needed to be processed. But when the request
numbers are very huge and high amount of data need to be
processed, we still need to consider the case, which would be
our future work that will consider the storage capability.

REFERENCES

[1] M. Chen, J. Zhou, G. Tao, et al., “Wearable Affective Robot,” IEEE
Access, Vol. 6, pp. 64766–64776, 2018.

[2] A. Krizhevsky, I. Sutskever, G. E. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks,” Advances in Neural Information
Processing Systems 25, pp. 1097–1105, 2012.

[3] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, et al., “Deep
Speech 2: End-to-End Speech Recognition in English and Mandarin,”
Proceedings of The 33rd International Conference on Machine Learning,
Vol. 48, pp. 173–182, 2016.

[4] F. Meng, Z. Lu, M. Wang, et al., “Encoding source language with
convalutional neural network for machine translation,” arXiv preprint
arXiv:1503.01838, 2015.

[5] Z. Huang, M. Dong, Q. Mao, et al., “Speech emotion recogniton using
CNN,” Proceedings of the ACM International Conference on Multimedia,
ACM, 2014.

[6] X. Li, J. Pang, B. Mo, and Y. Rao, “Hybrid neural networks for social
emotion detection over short text,” Proc. Int. Joint Conf. Neural Netw, pp.
537–544, 2016.

[7] Y. Huang, H. Lu, “Deep learning driven hypergraph representation for
image-based emotion recognition,” Proceedings of the International Con-
ference on Multimodal Interaction, pp. 467-474, 2015.

[8] D. Wu, L. Pigou, P.J. Kindermans, et al., “Deep dynamic neural networks
for multimodal gesture segmentation and recognition,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 38, No. 8, pp. 1583–
1597, 2016.

[9] Y. Zhang, et al., “TempoRec: Temporal-Topic Based Recommender for
Social Network Services,” Mobile Networks and Applications, Vol. 22,
No. 6, pp. 1182-1191, 2017.

[10] R. Casadei, G. Fortino, D. Pianini, W. Russo, C. Savaglio, M. Viroli,
“Modelling and simulation of Opportunistic IoT Services with Aggregate
Computing,” Future Generation Comp. Syst, Vol 91, pp 252-262 ,2019

[11] W. Shi, et al., “Edge Computing: Vision and challenges,” IEEE Internet
Things J., Vol. 3, No. 5, pp. 637C-646, 2016.

[12] M. Chen, W. Li, G. Fortino, et al., “A Dynamic Service-Migration
Mechanism in Edge Cognitive Computing,” ACM Transactions on Internet
Technology, https://arxiv.org/pdf/1808.07198, 2018.

http://arxiv.org/abs/1503.01838

9

1 1.5 2 2.5 3

Latency Requirement, D (s)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
A

ve
ra

ge
 E

ne
rg

y
C

om
su

pt
io

n
(J

)
edge-based multi-layer execution policy
local execution policy
cloud execution policy
random execution policy

(a) Average energy consumption as D req increases from 1s to 3.5s.

10 20 30 40 50 60 70 80

Task Average Data Size, s (MB)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
ve

ra
ge

 E
ne

rg
y

C
om

su
pt

io
n

(J
)

edge-based multi-layer execution policy
local execution policy
cloud execution policy
random execution policy

(b) Average energy consumption as s increases from 10 to 80 MB.

0 1 2 3 4 5 6 7 8 9 10

Average Computation per task (gigacycles)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
ve

ra
ge

 E
ne

rg
y

C
om

su
pt

io
n

(J
)

edge-based multi-layer execution policy
local execution policy
cloud execution policy
random execution policy

(c) Average energy consumption as w increases from 0.1 to 10 gigacycles.

Fig. 6. Performance analysis on energy consumption with different influence factors.

[13] M. Chen, P. Zhou, G. Fortino, “Emotion Communication System,” IEEE
Access Vol. 5, pp. 326-337, 2017.

[14] M. Chen, Y. Hao, K. Lin, et al., “Label-less Learning for Traffic Control
in an Edge Network,” IEEE Network, Vol. 32, No. 6, pp. 8–14, 2018.

[15] P. Pace, G. Aloi, R. Gravina, G. Caliciuri, G. Fortino, A. Liotta, “An
Edge-based Architecture to Support Efficient Applications for Healthcare
Industry 4.0”, IEEE Transactions on Industrial Informatics, Article in
Press, 2018. DOI: 10.1109/TII.2018.2843169

[16] M. Chen, Y. Hao, L. Hu, M. Hossain, A. Ghoneim, “Edge-CoCaCo:
Towards Joint Optimization of Computation, Caching and Communication
on Edge Cloud”, IEEE Wireless Communications, Vol. 25, No. 3, pp. 21–
27, 2018.

[17] Y. Zhang, et al., “SOVCAN: Safety-Oriented Vehicular Controller Area
Network,” IEEE Communications, Vol. 55, No. 8, pp. 94–99, 2017.

[18] M. Hu, W. Liu, J. Lu, et al., “On the Joint Design of Routing and
Scheduling for Vehicle-Assisted Multi-UAV Inspection,” Future Gener-
ation Computer Systems, Vol.94, pp.214–223, 2019.

[19] G. Fortino, W. Russo, C. Savaglio, W. Shen, M.C. Zhou, “Agent-Oriented
Cooperative Smart Objects: From IoT System Design to Implementation,”
IEEE Trans. Systems, Man, and Cybernetics: Systems, Vol. 48 No. 11, pp.
1939-1956, 2018.

[20] Y. Hao, Min Chen, L. Hu, M. Hossain, A. Ghoneim, “Energy Efficient
Task Caching and Offloading for Mobile Edge Computing,” IEEE Access,
Vol. 6, No. 1, pp. 11365–11373, 2018.

[21] M. Hu, Z. Chen, K. Peng, et al., “Periodic Charging for Wireless Sensor
Networks with Multiple Portable Chargers,” IEEE Access, 10.1109/AC-

CESS.2018.2885949, 2018.
[22] M.M. Hassan, M.G.R. Alam, M.Z. Uddin, S. Huda, A. Almogren,

G. Fortino, “Human emotion recognition using deep belief network
architecture”, Information Fusion, Vol. 51, pp. 10-18, 2019. DOI:
10.1016/j.inffus.2018.10.009

[23] Y. Zhang, “Grorec: A group-centric intelligent recommender system
integrating social, mobile and big data technologies,” IEEE Transactions
on Services Computing, Vol. 9, No. 5, pp. 786–795, 2016.

[24] M. Chen, Y. Hao, “Task Offloading for Mobile Edge Computing in
Software Defined Ultra-dense Network,” IEEE Journal on Selected Areas
in Communications, Vol. 36, No. 3, pp. 587–597, 2018.

[25] Md. Golam Rabiul Alam, M. M. Hassan, Md. Zia Uddin, A. Almogren,
G. Fortino, “Autonomic computation offloading in mobile edge for IoT
applications,” Future Generation Comp. Syst. Vol. 90, PP. 149-157, 2019.

[26] K. Peng, M. Hu, C. Cai, et al., “On Simultaneous Power Replenishment
for Wireless Sensor Networks With Multiple Portable Chargers,” IEEE
Access, Vol.6, pp.63120–63130, 2018.

[27] M. Hu, W. Liu, K. Peng, et al., “Joint Routing and Scheduling for
Vehicle-Assisted Multi-Drone Surveillance,” IEEE Internet of Things
Journal, 10.1109/JIOT.2018.2878602, 2018.

[28] D. Tian, J. Zhou, Z. Sheng, “An adaptive fusion strategy for distributed
information estimation over cooperative multi-agent networks,” IEEE
Transactions on Information Theory, Vol. 63, No. 5, pp. 3076–3091, 2017.

[29] D. Tian, J. Zhou, Z. Sheng, V. C. M. Leung, “Robust energy-efficient
mimo transmission for cognitive vehicular networks,” IEEE Transactions
on Vehicular Technology, Vol. 65, No. 6, pp. 3845–3859, 2016.

10

[30] Y. Wen, W. Zhang, H. Luo, “Energy-optimal mobile application execu-
tion: Taming resource-poor mobile devices with cloud clones,” in Proc.
IEEE INFOCOM, pp. 2716–2720, 2012.

[31] W. Zhang, Y. Wen, K. Guan, et al., “Energy-optimal mobile cloud
computing under stochastic wireless channel,” IEEE Transactions on
Wireless Communications, Vol. 12, No. 9, pp. 4569–4581, 2013.

[32] X. Chen, L. Jiao, W. Li, et al., “Efficient multi-user computation offload-
ing for mobile-edge cloud computing,” IEEE/ACM Trans. Netw., Vol. 24,
No. 5, pp. 2795–2808, 2016.

[33] B. Chen, C. Yang, “Energy Costs for Traffic Offloading by Cache-enabled
D2D Communications,” in : 2016 IEEE Wireless Communications and
Networking Conference, 2016.

[34] S. Boyd, L. Vandenberghe, “Convex optimization”, Cambridge university
press, 2014.

[35] E. M. Hand, R. Chellappa, “Attributes for improved attributes: A multi-
task network utilizing implicit and explicit relationships for facial attribute
classification,” AAAI, 2017.

[36] S Zhang, S Zhang, T Huang, et al., “Speech Emotion Recognition Using
Deep Convolutional Neural Network and Discriminant Temporal Pyramid
Matching,” IEEE Transactions on Multimedia, Vol.20, No. 6, pp. 1576–
1590, 2017.

[37] L. Tong, Y. Li, W. Gao, “A Hierarchical Edge Cloud Architecture for
Mobile Computing,” IEEE INFOCOM, pp. 399–400, 2016.

Long Hu is a Ph.D student in School of Com-
puter Science and Technology at Huazhong Uni-
versity of Science and Technology (HUST). He
has also received his Master and B.S. degree
in HUST. He is the Publication Chair for 4th
International Conference on Cloud Computing
(CloudComp 2013). Currently, his research in-
cludes 5G Mobile Communication System, Big
Data Mining, Marine-Ship Communication, Inter-
net of Things, and Multimedia Transmission over
Wireless Network, etc.

Wei Li graduated from Wuhan University of
Technology (WHUT) in 2015. Now, she is a Ph.D.
candidate in Embedded and Pervasive Comput-
ing Lab of Huazhong University of Science and
Technology (HUST), China. Her further research
includes Pervasive Computing, The Internet of
things, edge computing, cognitive computing,
etc.

Jun Yang received Banchelor and Master de-
gree in Software Engineering from HUST, China
in 2008 and 2011, respectively. Currently, he is
a Ph.D candidate at Embedded and Pervasive
Computing (EPIC) Lab in School of Computer
Science and Technology, HUST. His research
interests include cognitive computing, software
intelligence, Internet of Things, cloud computing
and big data analytics, etc.

Giancarlo Fortino (SM12) is Full Professor of
Computer Engineering at the Dept. of Infor-
matics, Modeling, Electronics, and Systems of
the University of Calabria (Unical), Italy. He re-
ceived a Ph.D. in Computer Engineering from
Unical, in 1995 and 2000, respectively. He is also
guest professor at Wuhan University of Technol-
ogy (Wuhan, China), high-end expert at HUST
(China), and senior research fellow at the Italian
National Research Council ICAR Institute. He
is the director of the SPEME lab at Unical as

well as co-chair of Joint labs on IoT established between Unical and
WUT and SMU Chinese universities, respectively. His research interests
include agent-based computing, wireless (body) sensor networks, and
Internet of Things. He is author of over 400 papers in intl journals,
conferences and books. He is (founding) series editor of IEEE Press
Book Series on Human-Machine Systems and EiC of Springer Internet
of Things series and AE of many int’l journals such as IEEE TAC, IEEE
THMS, IEEE IoTJ, IEEE SJ, IEEE SMCM, Information Fusion, JNCA,
EAAI, etc. He is cofounder and CEO of SenSysCal S.r.l., a Unical spinoff
focused on innovative IoT systems. Fortino is currently member of the
IEEE SMCS BoG and of the IEEE Press BoG, and chair of the IEEE
SMCS Italian Chapter.

Min Chen (M08CSM09) was an Assistant Pro-
fessor with the School of Computer Science and
Engineering, Seoul National University (SNU),
from 2009 to 2012. He was a Post-Doctoral Fel-
low with SNU. He was a PostDoctoral Fellow
with the Department of Electrical and Computer
Engineering, University of British Columbia. He
is currently a Professor with the School of Com-
puter Science and Technology, Huazhong Uni-
versity of Science and Technology (HUST). He
is also the Director of the Embedded and Per-

vasive Computing Laboratory. He has authored over 260 paper publica-
tions, including over 120 SCI papers, over 50 IEEE Transactions/Journal
papers, six ISI highly cited papers and one hot paper. He has authored
a book on IoT, OPNET IoT Simulation (HUST Press, 2015), a book
on 5G, Software Defined 5G Networks (HUST Press, 2016) and a
book on big data, Big Data Related Technologies (2014) with Springer
Series in Computer Science. His Google Scholars Citations reached
over 8200 with an h-index of 45. His top paper was cited over 900
times. His research focuses on Internet of Things, mobile cloud, body
area networks, emotion-aware computing, healthcare big data, cyber
physical systems, and robotics. He received the Best Paper Award from
the IEEE ICC 2012 and the Best Paper Runner-up Award from QShine
2008. He is currently a Guest Editor of the IEEE NETWORK and the
IEEE Wireless Communications Magazine. He is the Co-Chair of the
IEEE ICC 2012-Communications Theory Symposium and the Co-Chair
of the IEEE ICC 2013-Wireless Networks Symposium. He is the General
Co-Chair of the 12th IEEE International Conference on Computer and
Information Technology and the Mobimedia 2015. He is the General Vice
Chair of the Tridentcom 2014. He is a Keynote Speaker of CyberC 2012,
Mobiquitous 2012, and Cloudcomp 2015.

	1 Introduction
	2 MULTI-EASE Architecture
	2.1 Multi-modal
	2.2 Multi-layer

	3 Modeling and Analysis
	3.1 Task model
	3.2 Multi-layer task scheduling
	3.2.1 Local Layer
	3.2.2 Edge Layer
	3.2.3 Cloud Layer

	3.3 Delay and Power Analysis

	4 MULTI-EASE test platform
	4.1 Prototype system
	4.2 Emotion Analysis

	5 Performance evaluation of emotion recognition
	5.1 Stress testing for task computing time
	5.2 Delay and energy analysis with task scale
	5.3 Performance analysis on energy consumption

	6 Conclusion
	References
	Biographies
	Long Hu
	Wei Li
	Jun Yang
	Giancarlo Fortino
	Min Chen

