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Abstract—In online social networks, numerous users generate and distribute tremendous content simultaneously, and how
information spreads in online society has attracted critical attention. Recent studies introduce deep learning to help mine the complex
diffusion pattern and forecast the diffusion trend. However, there are two limitations of the state-of-art methods. On the one hand,
existing models only focus on the internal influence within the diffusion flow but ignore the external influence from the dissemination of
other contents. On the other hand, the dynamics of user interest are barely considered, while the changes of user preference for
contents also have a considerable impact on future diffusion. To address these issues, we introduce the hypergraph structure and a
sequential framework to model complex interactions in social networks. Then, we propose dual-channel hypergraph neural networks to
tackle the diffusion prediction problem, denoted by HyperINF. Specifically, in the user channel, we build sequential user interactive
hypergraphs and learn the dynamic user representation, and in the diffusion channel, we construct a diffusion interactive graph to
capture the cross-diffusion relation. At last, we consider the social relation to help make the prediction. Experimental results on three
datasets suggest the effectiveness and practicability of the proposed framework.

Index Terms—Social networks, information diffusion prediction, hypergraph

1 INTRODUCTION

HE emergence of social networks enriches the real-time
Tcommunication of individuals, and a large number of
contents are spreading in the social network. Hence, under-
standing information diffusion is critical for social market-
ing and even misinformation recognition. Researchers
explore the factors of information diffusion and propose
various models to extract the diffusion patterns for future
prediction.

Previous studies have shown that the factors of informa-
tion diffusion are diverse, such as topics [1], social relation-
ship [2], and time sensitivity [3]. The influence of different
factors is mixed and complex. Recent models settle the dif-
fusion prediction problem with the help of deep learning
techniques. Instead of manually extracting the features,
representation learning is widely used in diffusion models
[4], [5], [6], [7]. Furthermore, researchers get to adopt Recur-
rent Neural Networks (RNNs) to model the diffusion cascade
and improve the prediction accuracy. For example, some
models [8] directly adopt RNNs to process the diffusion
sequence in time order, while other works incorporate
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structural features of social networks by innovating basic
RNNSs [9] or adding customized structural module[10], [11].
Even though the state-of-art models achieve promising
results in diffusion prediction, these models have two limi-
tations. First, the external influence from the dissemination
of other contents is ignored. The existing models only focus
on the internal influence within the diffusion sequence,
such as temporal and social relations. As shown in Fig. 1,
multiple information diffusion flows coexist in the social
network. There are complex interactions not only within the
diffusion but also cross various contents dissemination. For
example, in the dissemination of p; and p,, it is observed
that the similar diffusion pattern occurs among w3, u2, and
uy at t5. Meanwhile, us retweets ps. In this case, if we utilize
previous models to predict who will retweet p, at s, the
most likely user is us. While it has not reckoned with the
spreading of p; at the same time, the fact remains that u;
retweets py not p; at tg. It shows that the simultaneous diffu-
sion flows may interfere with each other, and the external
influence from the dissemination of other posts needs to be
considered. So it is necessary to model the diffusion by con-
sidering the complex interactions in the global view.
Second, the dynamics of user interest are barely consid-
ered in existing methods. In the social network, the interests
of users are changing over time, and the diffusion patterns
may also change. As Fig. 1 shows, p; is retweeted by us at t;
and ug at t3, while p, is retweeted by us at t5 and g at tg. It
is also observed that u3 retweets p, at t,. With a similar pat-
tern of p3 and p4, it is more likely to predict p; will be
retweeted by u; in the future. But if u5 and us have changed
the preference of contents at ¢,, it is of a high probability
that the contents of p3 and p, are unrelated. In that case, us
is probably not interested in p3 and unlikely to retweet ps.
Hence, it is significant to consider the dynamics of
user interest and adopt dynamic user modeling for more
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Fig. 1. The information diffusion flows in social networks.

accurate prediction. Even though some works[12], [13] have
paid attention to the dynamics of user preference, they still
fail to model the diffusion flow in more realistic scenarios.
To address the above limitations, we introduce a hyper-
graph structure and dynamic user modeling to model the
complex interactions. As shown in Fig. 1, the global interac-
tions include various many-to-many connections between
users and posts. Hence, modeling the complex interactions
among users coincides with the concept of the hypergraph,
where an edge can link any number of nodes [14]. In this way,
we formulate each diffusion flow as a hyperedge and con-
struct a user interactive hypergraph. As shown in Figs. 2a and
2b, each hyperedge links users who spread the same post,
and the hypergraph preserves the high-order relations among
users. Meanwhile, to further capture the connections between
different diffusion flows, we construct a diffusion interactive
graph. As Fig. 2c shows, each vertex represents a hyperedge
in the user interactive hypergraph. The linkage exists if at
least one common user shares two related posts, and the cor-
responding weight indicates the concurrence of users. Fur-
thermore, to model the dynamics of user preference, we
construct sequential user interactive hypergraphs by dividing
the period into sequential time windows, shown in Fig. 2d.
Based on that, we propose dual-channel hypergraph
neural networks to tackle the information diffusion predic-
tion problem, denoted by HyperINF. As Fig. 3 shows, in the
user channel, we adopt hypergraph convolution networks
on each user interactive hypergraph to utilize the high-
order relations. Then, we establish a sequential framework
with a residual layer between two continuous periods to
model the dynamics of user interest. In the diffusion chan-
nel, the weighted graph neural networks are applied to the
diffusion interactive graph to capture the cross-diffusion
relations. Then we design a fusion layer to combine the
static user embedding, dynamic user embedding from the
user channel, and diffusion embedding from the diffusion
channel. Then we consider social relations and adopt diffu-
sion graph neural networks to forecast the subsequent acti-
vated users in the near future. The evaluation results
suggest the validity of HyperINF. Additionally, we make
comparisons of time and memory efficiency between the
proposed method with the state-of-art methods in Sec-
tion 4.6. The result shows that the proposed model is a prac-
tical framework running with much less GPU memory

(b) User Interactive Hypergraph
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(c) Diffusion Interactive Graph (d) Sequential Hypergraphs

Fig. 2. The construction of the interactive graphs.

consumption and a little more time. In summary, the main
contributions of the paper lie in three aspects:

e We study the external influence from the dissemina-
tion of other contents and further consider the
dynamics of user interest when modeling informa-
tion diffusion.

e We propose the dual-channel hypergraph neural net-
works and establish a sequential framework for infor-
mation diffusion prediction, denoted by HyperINF.

e We evaluate HyperINF on three real-world datasets.
The experimental results suggest the effectiveness
and practicability of the proposed method.

The rest of the paper is organized as follows. The second
part gives a brief review of related works. The third section
introduces the proposed model in detail. The next section
describes the experimental settings and analyzes the evalua-
tion results. The final section summarises the proposed
model and includes a discussion of future works.

2 RELATED WORKS

2.1 Information Diffusion Prediction
Many studies have investigated information diffusion in
online social media and aimed at discovering the latent diffu-
sion patterns for future diffusion prediction. Generally, the
information diffusion prediction falls into two categories:
macro-prediction and micro-prediction. The macro-prediction
seeks to forecast the future popularity while the other focuses
on predicting the following activated users at the micro-level.
Recently, researchers have attempted to adopt emerging
deep learning techniques and proposed many diffusion
models for prediction. Representation learning is widely
used to learn the user embedding for further diffusion, such
as EmbeddingIC [4], inf2Vec [5], and HID [7]. Some works
[6] also consider the content feature and project the users
and contents into the same vector space. But these works
fail to incorporate the representation learning into the diffu-
sion model for prediction. Thus, there is a large number of
diffusion models that build up an end-to-end framework
for prediction. DeepCas [15] and DeepHawkes [16] are the
earlier RNN-based models to settle the macro-prediction
problem and consider the time features at the same time. In
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addition, [17] introduces the uncertainty in the diffusion
process with a variational autoencoder. Moreover, the mod-
els in [18], [19] also introduce the content features when
modeling the temporal process. Meanwhile, the graph neu-
ral networks are utilized in recent studies [20], [21], [22],
[23], [24].

For the diffusion prediction at the micro-level, some
models [8], [25] consider the temporal characteristics and
enrich the basic RNNs-based framework with the attention
mechanism. NDM [26] adopts the convolutional neural net-
work and attention mechanism to make a prediction. Other
models [9], [10], [27] introduce the structure information in
social networks. For example, TopoLSTM [9] improves the
basic LSTM with social topology while SNIDSA [10] adds a
structure attention model before the recurrent neural net-
works. Some diffusion models utilize both time and struc-
ture features, such as infVAE [28]. Moreover, FOREST [11]
proposes a multi-scale diffusion model to solve the micro-
prediction problem and further realizes macro-prediction
with reinforcement learning.

By contrast, previous studies pay more attention to the
internal influence within the diffusion flow and ignore the
mutual influence between simultaneous information dis-
semination. Furthermore, the dynamics of user interest are
barely considered. To address these issues, we propose the
model HyperINF and mainly focus on the diffusion predic-
tion at the micro-level in the paper.

2.2 Hypergraph Neural Networks

The hypergraph is a generalization of the concept of the
graph, where the edge could link even more than two nodes
[14]. Therefore, a hypergraph can represent the complex
relations among nodes. There are a lot of applications in
various fields, such as image recognition [29], sentiment
classification [30], and knowledge representation [31]. With
the emergence of graph neural networks, an increasing
number of scholars get to explore graph neural networks on
a hypergraph. Gao et al. first propose hypergraph neural
networks [32] and consider the dynamic modifications of
graph structure in [33]. Besides, HyperGCN [34] extends
graph convolutional networks on a hypergraph. The study
[35] proposes hypergraph neural networks with the self-
attention mechanism. Similarly, the model in [36] leverages
an attention module after performing convolution on a
hypergraph. Meanwhile, there are many personalized
hypergraph neural networks for various tasks. For example,
HGC-RNN [37] is proposed to settle the time series predic-
tion problems, and the works [38], [39] apply hypergraph
neural networks to recommendation tasks.

In this paper, we attempt to tackle the diffusion predic-
tion problem with hypergraph neural networks. Inspired by
previous works, we propose a dual-channel hypergraph
convolution module and establish a sequential framework
to model the dynamics of user preference for the content on
a social network.

3 METHODS

In this section, we present the overall framework, as shown
in Fig. 3. We first give the problem definition and details of
the proposed methods. To model the complex interactions

in social networks, we construct the user interactive hyper-
graph and the diffusion interactive graph. Then we propose
sequential hypergraph neural networks with dual-channel,
including user channel and diffusion channel. In the user
channel, we construct a sequential hypergraphs convolution
framework and model the dynamics of user preference. In
the diffusion channel, we adopt graph neural networks to
extract the cross-diffusion relations. At last, a prediction
module introduces the social structure for final diffusion
prediction. To facilitate reading, we summarize some sym-
bols in the paper in Table 1.

3.1 Problem Definition

We study the information diffusion on a social network G =
(U, E), where U denotes the users and £ represents the fol-
lowing relationships. Generally, we can collect the users’
action logs L = {(u,p,t)luel,pec P}, where (u,p,t)
denotes that user u takes action with post p € P at time ¢. In
the paper, we focus on the diffusion prediction problem at
the micro-level. For instance, we aim to predict who will
like, retweet, or comment on the post p on Twitter. Hence,
the overall objective is to predict the following activated
users, and the diffusion prediction problem can be formu-
lated as follows:

Problem Definition. Given the users’ action logs L in G, we
can get the diffusion sequences S = {s;|p; € P}. For each
peP, s={(u,t1),...,(un,t,)}, where (ug,p,ty) € L and
t—1 < t;. The objective is to predict the following activated
users at ¢, in s. Hence, the prediction problem is formu-
lated as u,,; = argmax,, P(U|s,G, L).

3.2 Modeling the Interaction in Social Networks

Generally, numerous contents are spreading in the social
network simultaneously. The users take actions on various
posts, and complex interactions exist between users and
posts. It is observed that the global interactions include vari-
ous many-to-many relations, as shown in Fig. 1. Each diffu-
sion flow consists of the participation of many users, and a
single user could spread multiple posts. In this case, the
simple graph structure cannot meet the requirements of
modeling many-to-many relations among users triggered
by information diffusion. Thus, we introduce the hyper-
graph structure to model the complex interactions. We for-
mulate each diffusion flow as a hyperedge and construct
the user interactive hypergraph, as shown in Fig. 2b. By
doing this, the connections between different diffusion
flows are implied in the user interactive hypergraph, and
yet we still want to build the cross-diffusion relations
directly to further address the connections between differ-
ent diffusion flows. Hence, we construct the diffusion inter-
active graph, as shown in Fig. 2c. Meanwhile, it is also
important to model the dynamics of user preferences as
mentioned before. Thus, we attempt to implement dynamic
user modeling. First, we model the interactions among users
in multiple time windows to extract current user preference.
So we get the sequential user interactive hypergraphs in
chronological order, as shown in Fig. 2d. Since it is not irrel-
evant to the user preference in continuous time windows,
we design a sequential framework with the residual layer
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Fig. 3. The overall framework of the proposed model HyperINF.

between two continuous-time windows to model the
dynamic changes of the user interest.

We illustrate the construction of the graphs mentioned
above in Fig. 2. Specifically, Fig. 2a shows the hypergraph
construction, and Fig. 2b presents an example of the user
interactive hypergraph, defined by:

Definition 1. User Interactive Hypergraph. Let H =
(U, E,W) denote the user interactive hypergraph, where E =
{eilei = {ug, up, ...}, where (uq, pi, tg), (ur, pi, tr), ... € L} and
W € RIFXIE is the weight matrix for hyperedges.

Wt is the positive weight assigned to each edge ¢, and we
define W, =1 in the paper. The connection between users
and hyperedges is denoted by H € RVFI. I is the inci-
dence matrix, where H, =1 if u € ¢, otherwise H, = 0.
Moreover, we can get the degree matrix of users and hyper-
edges, denoted by D, € NIV*IUland D, € NIPIXIF| in which

|E]|
d(u) = Z V[/EfHUE
e=1

Ul

d(e) =Y Hi M
u=1

Meanwhile, we notice that the derived line graph of a
hypergraph presents connections among hyperedges. In the
line graph, each vertex denotes a hyperedge, and two verti-
ces are adjacent if corresponding hyperedges link at least
one common node in the hypergraph [40]. For the user
interactive hypergraph, the hyperedge presents the diffu-
sion flow. Then the connections among different diffusion
flows can be represented by the line graph derived from the

Diffusion sequence Diffusion Prediction

Diffusion graph
©) neural networks
Pl Ll
= Q Prediction layer ~ ~——
g L o aye
T
= Q |
g o |
= Diffusion graph
Softmax

5 3%

g
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@®® - ®
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]

user interactive hypergraph. In this way, we construct the
diffusion interactive graph to capture the cross-diffusion
relations shown in Fig. 2c. For each p € P, we use p to repre-
sent the diffusion of the post p for simplicity. The definition
is as follows:

Definition 2. Diffusion Interactive Graph. Let GP =
{P, E4, W1} denote the diffusion interactive graph, where P is
the set of diffusion flows. E? is the edge set and E? =
{(pi,p)|(pirp;) = 1if | Nej| >=1}. W7 is the weight
matrix and wi; = |&; N ¢l /|e; U gjl.

Moreover, the interests of users are not static and will
change over time. It is also important to capture the dynam-
ics of user preference for more accurate predictions. To
model the users at different times, we construct the sequen-
tial user interactive hypergraphs in chronological order, as
shown in Fig. 2d. Specifically, we divide the period into con-
tinuous-time windows and generate user interactive hyper-
graphs for each time window. We give the formulation in
Definition 3.

Definition 3. Sequential User Interactive Hypergraphs.
Let H™ = (U', E',W') denote the user interactive hyper-
graph at kth time window, and HT = {H" 1", ..., H'"} is the
sequential user interactive hypergraphs.

Based on this, we propose the dual-channel hypergraph
neural networks, including the user channel and the diffu-
sion channel. The user channel is to extract the high-order
relations between users and learn dynamic user embedding,
while the diffusion channel utilizes the connections between
diffusion flows to embed the cross-diffusion relations into
diffusion embedding.
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TABLE 1
The Overall Descriptions of Symbols

Symbol Description

the social network

the users in G

the posts in G

the users’ action logs

the diffusion sequences of P

the user interactive hypergraph

the interaction hyperedges in H

the weight matrix of hyperedges F

the incidence matrix of H

GP  the diffusion interactive graph

the user interactive hypergraph at kth time window
the sequential user interactive hypergraphs
G"  the diffusion graph of the post p

TEETH=ITQ

3.3 The User Channel

In the user channel, the objective is to utilize the high-order
relations in user interactive hypergraph and learn robust
users’ representation for the prediction task. Hence, we
expect the representations of users, who share more com-
mon posts, to be closer to each other. Recently, the study of
graph neural networks (GNNs) on the hypergraph has
obtained promising results, such as [32], [36]. The hyper-
graph convolution networks update the hidden state of the
user by aggregating the related hyperedges’ features, and
the hyperedges’ features are generated by gathering the
linked users’ features in a previous step. Similarly, if we
apply the convolution operation on user interactive hyper-
graph, the user could receive more information from neigh-
borhoods linked by more common hyperedges. Since
sequential user interactive hypergraphs are constructed in
continuous time windows, we apply hypergraph convolu-
tion networks on each hypergraph.

Let X denote the static user embedding matrix and
X0 = [x#0 ,x‘tk f: | denote the initial user embedding
matrix at kth time window. Then the updated users’ repre-
sentations X'*! are derived as

th,l

= fOX0 H Wk, ©F) 2

where f(-) denotes the hypergraph convolution operation.
H' and W' are the incidence matrix and the weight matrix
of H'. @" is the transform matrix to extract the user feature
for propagation in the convolution layer. For each user on
H'*, the updating operation can be formulated by:

U || E%|

= Z H* HEW 000 3)

ee Xy
u=1 e=

For all users of H, we can get the matrix form as follow:

th,l _ HtkwtkHtkatk.[)@O (4)

While stacking [ layers in the model, the scale of X'+
would be changed by the computation in Eq.(4), which
could make the gradients explode or disappear during the
feature propagation. Thus we add the symmetrical normali-
zation to keep the convolution layer numerically stable.
Moreover, we add an activation function o(-) before the out-
put. Overall, the hypergraph convolution layer is derived as

Xik,l — U(DZ"_I/QH% WtkDik —lHtk.TDZk. —1/2xtk,0®0) (5)
where D and D{* are the degree matrix of users and hyper-
edges in H's. Then, with /th layers, the user representation is
computed by:

th,l _ f(Xt"‘lfl, H?ﬂ Wtk, @l*l)
— O_(D;k71/2Htkwtthk71H7‘,kTDLk71/2xtk,l—l®l*1) (6)

Residual Layer. Since the dynamic user embedding is inde-
pendently learned in each time window, it extracts the user
preference in the present time but still fails to model the
dynamics of user interest. Hence, we add a residual layer
between two continuous-time windows. It is expected to
keep the static information of users and model the dynamics
of user interest. To do that, the layer is designed as the lin-
ear weighted sum of user static embedding and user
dynamic embedding from last time windows. Therefore, for
each user u € U't, the initial user embedding X'*" of kth
hypergraph convolution module is derived as

Xu, t= 1
R ™
' ax, 4+ (1—a)x,, t>1

where z,, is the static user embedding and x,<* is the latest
user embeddmg for u before kth time windows. If u € U1,
x,<F = xU1. otherwise, x,°" = x, where u € U« and q=
arg min,(t; — t,). The momentum term « controls the pro-
portion of the feature from the last time window. It is
noticed that the longer the time interval, the smaller the
impact on the current time window. Meanwhile, the resid-
ual layer can guarantee that the gradient will not disappear
especially when there are many time windows. Because
there always exists a constant 1 — « after taking derivative,
the loss can still be effectively propagated back even if the
9L g extremely small. In this way, we learn the dynamic

x
user embedding in each time window.

3.4 The Diffusion Channel

In the diffusion channel, we extract the cross-diffusion rela-
tions and learn the diffusion embedding based on the diffu-
sion interactive graph. In the graph, the linkage exists if at
least one common user share both two posts. The more com-
mon users are, the bigger the related edge weight is. Thus,
we expect the representations of the diffusion, with the con-
nection of higher weight, to get closer to each other. For this
to happen, we adopt the weighted graph neural networks,
and the diffusion embedding matrix X, at Ith layer is
updated by:

X, =D;'A X0, ®)

where @/, is the transformation matrix for the /th layer. Let
A, = A +1and I be the identity matrix A, € RPXIPl s the
weight matrix of G”, where A, ; Thus we can get
the dlagonal degree matrix Dd e ]R‘P| HD‘ where Dd (id) =
Z i 1Ad (ij)- In this way, the weighted graph neural net-
works realize to aggregate information from the neighbors
in line with the proportion of edge weight.

Fusion Layer. To integrate the information embedded in the
learned embeddings, we combine the static user embed-
ding, dynamic user embedding from the user channel, and
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diffusion embedding from the diffusion channel for further
diffusion prediction. Thus, we propose a fusion operation
g(+) to combine the learned embeddings. In the paper, we
choose concatenation to generate the embedding for each
user. Then, the embedding for user u in the diffusion of p in
k-th time window is computed by:

- g(xu» Xf‘k, Xd,[’)
=Wp [xzm Xik7 xd,P] ©)

€pu

where X, is the static user embedding and xF denotes the
latest dynamic user embedding at #;. x4, is the embedding
of the diffusion flow with post p. W is the learnable trans-
formation matrix in the fusion layer.

3.5 Information Diffusion Prediction

After getting the user representation through the fusion
layer, we next settle the diffusion prediction problem. To
predict the future flow of a specific post, we need to con-
sider the internal influence within the diffusion cascade. For
example, we can adopt the GRU to model the diffusion flow
in time order.

Considering that the social relations between users are
important factors of triggering the information diffusion,
we further introduce the social structure in diffusion predic-
tion. Thus, we adopt the diffusion graph neural networks
with a gated mechanism to introduce the influence of social
relations. We formulate each diffusion flow as a diffusion
graph. For p € P, the diffusion sequence s = {(u,t),...,
(un,t,)}, where (ug,p,tr) €L and t,; < t,. Let G =
{U?, P} denote the diffusion graph of p, where U” =
{uk|(uk,tk) € S} and & = {(ua,ub)|(ub,ua) € &andt, < t,
where u,, uy € U},

Similar to the model in [27], we expect to learn each user
embedding on the diffusion graph by aggregating the
neighborhood users’ embedding and the previous related
users’ embedding alternately. Then, the initial user embed-

ding xé“u = e,,, and the update function v(-) is derived as

K, = WX, A,

bu

(10)

where x%/ is the hidden representation of user u € U at
time step (f) in the dissemination of p and X[ =
[xl(full)7. .,xéful ] is the user embedding matrix at prev1ous
time step (¢t — 1). Moreover, since the diffusion graph is a
directed graph, the adjacent matrix A, is the combination of
the incoming and outgoing adjacent matrix of diffusion
graph G’, denoted by A, = [A;)“,Az?“t]. To be specific, we
first gather the features from the spatial neighborhood users
in the diffusion graph, denoted by:

2 n - Ou —
by, = [SATX] ), p(APXI )] an

where ¢(-) is the linear transformation function. Then we
use a gated mechanism of GRU to model the diffusion flow
in the temporal dimension. The related users’ states at pre-
vious time steps are aggregated by:

P

)
) = o(W'b +U’ )
)

(t h h t—1
h"), = tanh(W"b!") U ( ) oxIY))

t) t—1 t) (t)

) =1 -z))oxiV+2) ohl) (12)
where z ) and r , are update gate and reset gate. o(-) is acti-

vation funct1on Then we learn the user hidden representa-
tion X, = [Xpu, s -5 Xp,u, | ON the diffusion graph G”.

In some cases, social relations are not available. Thus, we

also explore the proposed framework with recurrent neural
networks and self-attention mechanisms to make the pre-
diction in Section 4.4.
Diffusion Prediction. For the final prediction, we fuse the
final users’ embedding to generate the diffusion graph
representation. In the paper, we use the soft attention mech-
anism to calculate the graph representation e, as follows:

e, = tanh < g oz,;xp,“,),

w; €UP
[
T
o = E w, o(Wix,, + WQXT,J,,). + wy)

J=1

(13)

where W; and W, are the transformation matrix. w, is the
vector to learn the attention score of the user in each time
step, and w;, is the bias vector. Since the latest activated
users have a significant influence on the future diffusion,
we combine the diffusion graph representation and the
most recently activated users’ representations x,,,, for final
prediction, denoted by:

Slp = softmax(X[ep, xp:“nD (14)
wherey, € Rl is the next activation probability distribution.
Model Optimization. The objective of diffusion prediction
is to predict the following activated users in the diffusion
flow. Hence, we choose the cross-entropy as the loss func-
tions, derived as

]

- |7)t‘ 2D ilog

peEP i

8(¥,.) (15)

where P is the training samples and y,, € Nl'is the ground
truth. To train the proposed model, we adopt Adam opti-
mizer to find the optimal model in the paper.

4 EVALUATIONS

In this section, we conduct experiments to evaluate the pro-
posed model, denoted by HyperINF. First, we test the
model on three datasets and explore the function of differ-
ent modules. Then we analyze different settings of the
hyper-parameters. At last, we compare the time and mem-
ory efficiency between HyperINF and baselines.

4.1 Experimental Settings
4.1.1 Datasets
For evaluations, we choose three datasets: Digg [41], Flixster

[42], and Weibo [43]. The detailed statistics are shown in
Table 2.
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TABLE 2
The Statistics of Three Datasets: Digg, Flixster, and Weibo
Dataset Digg Flixster Weibo
Users 14, 381 19, 036 32,595
Edges 268, 521 275,186 178, 169
Cascades 3,553 10, 000 13, 808
Avg. Cascade length 30.0 16.3 8.4

e Digg is a news-sharing platform where users vote
and elect the most valuable articles. The dataset
includes 3553 reports and related users’ activity logs
during one month in 2009.

e Flixster is a social movie site where users share or
comment on movies. We filter the diffusion cascades
where the participants are less than five from the
original dataset. For evaluation, we randomly select
10000 movies from 2006 to 2009.

e Weibo is a social networking site based on a micro-
blogging service. We select the cascades where there
are at least five participants and more than half of
the users take action at least three times. Then we
collect the 13, 808 posts and the retweet logs between
2009 to 2012.

4.1.2 Baselines

To compare HyperINF with the state-of-art models, we
choose several baselines as follows:

e Deepdiffuse [8] is proposed to model the diffusion
with RNNs and predicts the following users with
timestamps. In the experiment, the predicted time-
stamp is neglected.

e TopoLSTM [9] aims to improve the diffusion model
by considering the social relations between users
and proposes a novel LSTM-based framework with
the social structure.

e SNIDSA [10] defines the structure attention module
to introduce the structure features and then adopts
the RNNs to model the diffusion for prediction.

e FOREST [11] incorporates the user’s neighbor infor-
mation into the GRU-based diffusion model and
deals with the macroscopic diffusion prediction
problem with reinforcement learning. We only uti-
lize FOREST for diffusion prediction at the micro-
level in the experiments.

e infGNN [27] proposes personalized graph neural
networks to model the diffusion in spatial and tem-
poral dimensions alternately for prediction.

e DyHGCN [12] builds a heterogeneous graph includ-
ing following relations and reposting relations
between users and considers the evaluation of the
heterogeneous graph while modeling the diffusion
with an attention mechanism.

4.1.3 Experimental Settings

For Digg and Flixster datasets, we divide the period into 20
time windows and generate user interactive hypergraphs in
each time window. For Weibo dataset, we divide the time

into 16 intervals. In the experiment, we distribute the dataset
into train/valid/test datasets in a ratio of 0.8/0.1/0.1. We
tune the hyperparameters for each dataset. Specifically, the
settings of batch size are {64, 128, 256, 512}; the embedding
size is chosen from {32, 64, 128}; the options of learning rate
are {0.005, 0.001, 0.0005}. We stack two layers with 64 or 128
hidden units for all convolution modules. The maximum
iterations are 100 to train the models. Besides, the other
parameters of the baselines are defined as the default in the
original paper. The evaluation metrics are hit ratio (Hits) and
mean reciprocal rank (MRR) with the top-k predictions,
denoted by Hits@k and MRR@k. Hits@k is the accuracy
among the top-k candidate users predicted by the evaluated
model. The higher accuracy means the higher probability of
selecting the right activated users among the top-k candidate
users. MRR@k is the average of the reciprocal ranks of the
next activated users within the top-k candidate users. The
larger value indicates the higher ranking of the right acti-
vated users in the top-k candidate users. For two metrics, the
bigger value addresses the better performance of the evalu-
ated model. The ranges of k are {1, 10, 20, 50}. Since Hits@ 1 is
equal to MRR@1, we add MRR@5 for MRR. We repeat each
test multiple times for all models on each dataset and present
the average results. All experiments are conducted on a
machine with one Tesla V100 GPU.

4.2 Overall Results

We evaluate the proposed model on three datasets and com-
pare it with the baselines mentioned above. The results are
presented in Figs. 4 and 5. In general, HyperINF performs
the best in most cases. It is observed that there is a signifi-
cant improvement in the accuracy of the Top-k predictions
when £k is small, such as Hits@1 and MRR@5 on three data-
sets. HyperINF excels all baselines when £ is smaller than
10. For example about Hits@1, the improvements are nearly
double on Digg and more than double on Flixster. The per-
formance on Weibo also improves up by half in most cases.
It shows that the accuracy of the prediction is greatly pro-
moted by HyperINF.

It is noticeable that the performance gains on Flixster
dataset are more than 10% about Hits and over 20% about
MRR. Since Flixster is a social movie site, users gather due
to the same interest in films, and the preference is relatively
stable in a certain period. Then, the diffusion pattern is
highly correlated with the type of movie. Thus, the effect of
the cross-diffusion relationships in the diffusion interactive
graph is at work, and the proposed method performs much
better. For Digg dataset, even if FOREST and DyHGCN per-
form slightly better than HyperINF in terms of certain indi-
cators, the values of MRR are always the highest. For
Weibo, all baselines and HyperINF perform relatively
worse than Digg and Flixster. It is noticed that there are
more users and the average length of cascades is also
shorter in Weibo dataset. In this case, HyperINF still has a
relatively higher performance. It shows that modeling the
diffusion from a global view can extract more information
of users’ preferences and offer enough information for pre-
diction even in the early stages of diffusion.

As for the baselines, the models incorporating the social
structure, such as FOREST and infGNN, are better than
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Fig. 5. Experimental results of diffusion prediction on Digg, Flixster, and Weibo datasets about MRR@k (%).

those that sequentially model the diffusion in the temporal
dimension, such as Deepdiffuse. In addition, the results
illustrate that the dynamic user modeling has a positive
effect on the accuracy of diffusion prediction, which is intro-
duced in DyHGCN and HyperINF. By contrast, our model
performs better than DyHGCN in most cases. Overall, our
proposed method is proved to be effective, and the sequen-
tial hypergraph neural networks framework works in the
case of modeling the diffusion from a global view.

4.3 The Analysis of the Dual-Channel Module

To further explore the function of two channels in Hyper-
INF, we conduct an ablation study. Therefore, we establish
several variants of the proposed model. To be specific,
HyperINF-U gets rid of the whole modules in the user chan-
nel, while HyperINF-D is the variant without the diffusion
channel. HyperINF-S is the model without the sequential
framework in the user channel, and the user interactive
hypergraph is constructed in the whole period. HyperINF-
R only takes off the residual layer between two hypergraph
convolution modules in continuous time windows. In addi-
tion, we also study the effect of the static user preference for
prediction. Thus, we only preserve the dynamic user
embedding from the user channel for further prediction in
HyperINF-d. The evaluation results on Digg and Flixster
datasets are presented in Table 3.

The Analysis of User and Diffusion Channel. HyperINF-U
and HyperINF-D take off the user channel and the diffusion
channel, respectively. Overall, the two variants suffer per-
formance degradation compared to HyperINF, except for
HyperINF-U on Digg about Hits@50. While HyperINF-U
still has clear performance degradation on Hit@1 and the
performances of HyperINF-U are degraded by around 0.7%
about MRR. Besides, even though HyperINF-D has a higher
performance than HyperINF-U about Hit@l on Digg,
HyperINF-D still performs worse than HyperINF-U about
the remaining metrics. It shows that the diffusion channel
and the user channel play different roles in the case. The
user channel can help to improve the prediction accuracy
with the fewer top-k candidate users and the diffusion
channel plays an important role in accurately selecting
effective users on the whole. As for the Flixster, HyperINF-
D, without the diffusion channel, has relatively worse per-
formance than HyperINF-U. The performance of Hyper-
INF-D drops by over 10% about Hit@l and 6% about
MRR@5, while the performances of HyperINF-U only fall
by around 1%. It also indicates that cross-diffusion relations
have a more profound impact. Because Flixster is a content-
sensitive community and users share the movies depending
largely on individual interests. Thus, the post embedding
learned by the diffusion channel embeds the feature of the
content and plays an important role in the prediction. Fur-
thermore, it is found that HyperINF-S, without the
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TABLE 3
The Performance of the Variants of HyperINF on Digg and Flixster Datasets (%)

Metric Flixster

Method Hits@1 Hits@50 MRR@5 MRR@50 Hits@1 Hits@50 MRR@5 MRR@50

HyperINF-U 1.972 28.451 3.225 4.363 37.603 62.207 40.453 41.519

HyperINF-D 2.254 26.197 3.159 4.260 27.275 59.288 35.327 35.725

HyperINF-S 2.028 27.606 3.235 4.428 37.867 62.750 40.486 41.610

HyperINF-R 2.141 28.732 3.370 4.434 38.050 62.820 41.246 41.774

HyperINF-d 1.690 27.169 2.897 4.165 25.010 55.460 32.162 32.558

HyperINF 2.817 28.310 3.884 4.977 38.401 63.283 41.126 42.124
TABLE 4

The Performance of HyperINF With LSTM, GRU, and Self-Attention on Digg and Flixster Datasets (%)

Metric Digg Flixster

Method Hits@1 Hits@50 MRR@5 MRR@50 Hits@1 Hits@50 MRR@5 MRR@50

HyperINF-LSTM 2.394 28.151 3.279 4.289 38.767 63.133 41.441 42.559

HyperINF-GRU 2.535 28.169 3.526 4.560 39.452 63.417 42.449 42.996

HyperINF-SF 1.690 23.662 2.350 3.368 37.452 59.529 39.665 40.662

HyperINF 2.817 28.310 3.884 4.977 38.401 63.283 41.126 42.124

sequential framework, also performs better than HyperINF-
U in some cases. It demonstrates the function of the user
channel in HyperINF again. Thus, the proposed dual-chan-
nel model benefits from each channel, and the combination
has a good effect on improving performance.

The Analysis of Sequential Framework. We further
explore the function of the sequential hypergraphs frame-
work in the user channel. As shown in Table 3, it is found
that HyperINF-R, without the residual layer, has better per-
formance than HyperINF-S, without the sequential frame-
work. It illustrates that the sequential hypergraph neural
networks in the user channel do work. The dynamic user
modeling with the sequential framework has a beneficial
effect. One interesting finding is that the model without the
residual layer performs better than HyperINF in some
cases. For Digg, the residual layers lead to a slight perfor-
mance degradation about the Hits@50. The possible reason
could be there is a palpable shift in some users’ interests,
and the residual layer may introduce nasty noises into next
time windows in that case. We also observed that HyperINF
performs worse than HyperINF-R in terms of MRR@5 on
Flixster. Since Flixster datasets include the cascades during
3 years, the instant interests of some users may not be able
to last. Then the noise will be introduced into the following
periods and has a bad impact on the performance. While
HyperINF-R performs worse than HyperINF in terms of the
remaining metrics. Overall, the rank of right prediction by
HyperINF is higher than HyperINF-R.

At last, we further remove the static user embedding
within the fusion layer in the absence of the diffusion chan-
nel. The results show that HyperINF-d suffers degraded
performance. So the static user feature embedded in the
user representation is crucial and useful. It is essential to
preserve the static user characteristics while modeling the
dynamics of user preference.

In summary, the high-order relations between users and
cross-diffusion relations, extracted by the dual-channel

modules, have a beneficial effect in improving the predic-
tion ability of HyperINF. Moreover, the sequential frame-
work is useful and necessary for capturing the dynamics of
user interest.

4.4 The Analysis of the Prediction Module

In this part, we want to explore the function of the social
structure in diffusion prediction. We test the proposed
framework without considering the social relation. Specifi-
cally, HyperINF-LSTM and HyperINF-GRU are the variants
replacing the diffusion graph neural networks with LSTM
and GRU. While HyperINF-SF adopts the self-attention
mechanism as the sequence model without the pooling layer
and uses the last outputs for further prediction. The results
are shown in Table 4. It is observed that HyperINF achieves
the best performance on Digg dataset, while HyperINF-
GRU and HyperINF-LSTM perform better than HyperINF
on Flixster. It shows that introducing social structural infor-
mation does not always work. For example, the influence of
social relations is not significant for Flixster, since it is a con-
tent-sensitive community. By contrast, the topic of the con-
tent is the dominant factor of information diffusion. Hence,
it is not necessary to introduce the structure information in
that case. In addition, it is noticed that HyperINF-SF per-
forms the worst by only utilizing the attention layer. In com-
parison, the RNNs-based diffusion sequence model works
in helping capture the diffusion pattern. In general, Hyper-
INF is a flexible and practical framework with different
methods to model the diffusion flow. In some cases, it is
beneficial to introduce social relations for further prediction.
In other cases, we can use RNNs to model diffusion flow in
time order.

4.5 Hyper-Parameters Sensitivity Analysis
This section explores the hyper-parameters sensitivity of
batch size, embedding size, learning rate, and « in the
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Fig. 6. The performance of HyperINF with different batch size, embed-
ding size, learning rate, and « of residual layer on Digg dataset.

residual layer. The basic settings are (batch size, embedding
size, learning rate, o) = (128, 64, 0.005, 0.5). We test the sensi-
tivity of each hyper-parameter, with other parameters
remaining the same. Specifically, we set batch size as well
as embedding size from {32, 64, 128, 512} and learning rate
from {0.01, 0.005, 0.001, 0.0005} in turns. The scope of « in
the residual layer ranges from 0.1 to 0.9 with the step of 0.1.
We present the evaluation results on Digg in Fig. 6.

Batch Size. The proposed model performs better with big-
ger batch size. When the batch size is too small, such as 32,
the model is more likely to be overfitted to the training data.
Embedding Size. Our model has better performance with a
smaller embedding size on Digg. HyperINF reaches the
best performance about Hit@50 when the embedding size is
32. In comparison, HyperINF performs almost the same or
even worse about Hits@l, MRR@5, and MRR@50, with
embedding size greater than 64.

Learning Rate. For learning rate, the model performs the
best about Hit@50 when the learning rate is small enough,
like 0.0005. Similarly, HyperINF has better performances
from the metrics of Hits@1, MRR@5, and MRR@50, when
the learning rate is 0.005. In this case, the performance only
slightly declines about Hits@50.

o of Residual Layer. As o gets larger, the performance of
HyperINF shows a trend of rising first and then becoming
stable with slight fluctuation on the whole. As shown in
Fig. 6d, it performs better with « varying from 0.5 to 0.8,
and the best performance is reached when « equals 0.5 on
Digg dataset. Based on these observations, we set batch
size, embedding size, learning rate, and « as 128, 64, 0.005,
and 0.5 for training HyperINF on Digg dataset. A suitable
combination of hyper-parameters can help the model have
better performance and generalization ability.
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Fig. 7. The comparison of average running time (s) and GPU usage (%)
on Digg dataset.

4.6 The Comparison of Time and Memory Efficiency
To study time and memory efficiency, we compare the aver-
age running time per epoch and GPU usage of HyperINF
with other baselines. To be specific, we test the average run-
ning time with a batch size of 128 and embedding size of 64
during 50 epochs. The GPU usage is tested with batch and
embedding sizes of 32 and 64 since SNIDSA runs out of mem-
ory (OOM) with the batch size of 128. The results on Digg
dataset are presented in Fig. 7. It is observed that HyperINF
costs relatively more time per epoch while the GPU utiliza-
tion is comparatively low. By contrast, DyHGCN costs less
time than the proposed model since the dynamic model is
still constructed within the diffusion cascade. Since Hyper-
INF considers the dynamics of user preference in the global
view, the interactive graph is relatively bigger than the het-
erogeneous graph built by DyHGCN. So the training time is
a bit longer. It is also noticed that Deepdiffuse and SNIDSA
have a higher demand for GPU, and SNIDSA even runs
OOM with the batch size larger than 64. The rest models
have less GPU usage, and HyperINF consumes the least
memory of GPU. Overall, HyperINF costs a little more time
with low GPU usage and achieves high performance.

5 CONCLUSION AND FUTURE WORKS

For information diffusion prediction, we propose dual-
channel hypergraph neural networks with a sequential
framework, denoted by HyperINF. We construct the user
interactive hypergraph and diffusion interactive graph to
model the users’ interactions in a more realistic and com-
plex scenario. In the user channel, we build sequential user
interactive hypergraphs and apply the hypergraph convolu-
tion networks on each hypergraph to learn the dynamic
user representation. We capture the cross-diffusion rela-
tions in the diffusion channel by utilizing the weighted
graph neural networks on the diffusion interactive graph.
Then, we combine the user static user embedding, dynamic
user embedding from the user channel, and diffusion
embedding from the diffusion channel with a fusion layer.
For further prediction, we introduce the social structure
information with the diffusion graph neural networks. In
the end, the model outputs the forecast result through a
softmax layer. We conduct extensive experiments, and the
evaluation results show the effectiveness of our proposed
model. In addition, we evaluate the time and memory
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efficiency. The results show that the proposed model is a
practical framework with much less memory consumption
and a little more computation time.

In the paper, we mainly focus on diffusion prediction at
the micro-level. The extension of the proposed framework
into popularity prediction at the macro-level is also worthy
of further study. Meanwhile, if content features of the post
are available, it can be incorporated as the input of the diffu-
sion channel and further improve the model’s generalization
ability. Besides, it is the most challenging and significant to
study a more explainable diffusion prediction model. Last
but not least, since there are many complicated application
scenarios for information diffusion models, the exploration
of the energy-efficient framework also needs to be consid-
ered seriously.
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