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ESPP: Efficient Sector-based Charging
Scheduling and Path Planning for WRSNs with

Hexagonal Topology
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Abstract—Wireless Power Transfer (WPT) is a promising technology that can potentially mitigate the energy provisioning problem for
sensor networks. In order to efficiently replenish energy for these battery-powered devices, designing appropriate scheduling and
charging path planning algorithms is essential and challenging. Whilst previous studies have tackled this challenge, the conjoint
influences of network topology, charging path planning, and energy threshold distribution in Wireless Rechargeable Sensor Networks
(WRSNs) are still in their infancy. We mitigate the aforementioned problem by proposing novel algorithmic solutions to efficient
sector-based on-demand charging scheduling and path planning. Specifically, we first propose a hexagonal cluster-based deployment
of nodes such that finding an NP-Complete Hamiltonian path is feasible. Second, each cluster is divided into multiple sectors and a
charging path planning algorithm is implemented to yield a Hamiltonian path, aimed at improving the Mobile Charging Vehicle (MCV)
efficiency and charging throughput. Third, we propose an efficient algorithm to calculate the importance of nodes to be used for
charging duration decision-making and prioritization. Fourth, a non-preemptive dynamic priority scheduling algorithm is proposed for
charging tasks’ assignments and scheduling. Finally, extensive simulations have been conducted, revealing the significant advantages
of our proposed algorithms in terms of energy efficiency, response time, dead nodes’ density, and queuing processing.

Index Terms—wireless rechargeable sensor networks, wireless sensor networks, hexagonal-clustering, scheduling, wireless power
transfer, path planning;

✦

1 INTRODUCTION

IN the rapid growth of the Internet of Things (IoT), appli-
cations from personal electronics to industrial machines

and sensors connect wirelessly to the internet, covering
a wide variety of use cases in various environments and
serving diverse requirements. Wireless Sensor Networks
(WSNs) [18] in conjunction with IoT enables distributed
measurements across vast physical systems to effectively
analyze everything from rain forests and river deltas to
health and safety and from smart home to smart city. Usu-
ally, the sensory measurements are reported to the cloud
through IoT-enabled gateways for further data analytics.
One of the most important applications of WSN is in the
Smart Grid, which is increasingly finding new ways to
measure and communicate the flow of electricity throughout
the grid to enable efficient, reliable service. The movement
towards intelligent power promises does not only improve
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delivery, but it also offers cost-effeteness through improved
infrastructure maintenance and a better understanding of
consumption patterns.

Nodes [14] are energy-constrained and usually deployed
in areas where battery replacement or recharging is difficult
and risky. It is even more impractical and impossible to pro-
vide a power lines to power these devices. Many solutions
have been proposed including energy harvesting [6, 16] col-
lectors such as large solar panels and wind generators. But
energy harvesting still infeasible solution since it does not
provide sufficient energy in most environments. Moreover,
the size and cost of the harvester impose a larger node size
and high cost.

Recently, Wireless Power Transfer (WPT) [15, 19] has
gained so much popularity after the experimental realiza-
tion by Kurs et al. [7] it has been proved experimentally
that a total of 60W electrical power can be transferred
between two magnetically coupled coils over an air gap
of 2m with 40% efficiency. WPT is a promising solution
for energy provisioning [17] since the electrical energy can
be transmitted from a power source to an electrical load
across an air gap using induction coils. WPT provides more
convenience, robustness, and greater accessibility to harsh
environments. UAVs carrying WPT transmitter can easily
log into a variety of risky places in risky situations.

Employing WPT in real-world applications still requires
more research investigation not only deploying MCV/UAV
carrying high-capacity battery but also charging requests
handling, task scheduling algorithms, path planning algo-
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rithms, and queuing analysis. For most existing research
in WRSN, researchers have mainly focused on the offline
charging scheduling schemes in which the charging of indi-
vidual nodes is carried out in a periodic and deterministic
manner. Due to the uncertainty in both the energy demand
and supply indicates, existing periodic charging solutions
may suffer from non-negligible performance degradation
[3].

For optimal efficiency in wireless power delivery, a
feasible scheduling algorithm and optimal path planning
algorithm are required. The charging tasks scheduler aims to
achieve objectives such as maximizing charging throughput
and minimizing the waiting time, latency, and response
time. In practice, these objectives often conflict (e.g. energy
efficiency versus response time). Thus a scheduler must im-
plement an appropriate compromise depending on the sys-
tem’s objectives. Finding a schedulable algorithm that can
guarantee that all nodes are charged before their deadline is
infeasible or even NP-hard due to the velocity constraints of
the mobile charge vehicles. Moreover, scheduling without
path planning has the potential of wasting network re-
sources. Due to the MCVs speed constraints, minimizing the
traveling cost is an essential objective. Since the traveling-
cost is directly proportional to the length of the charging
path, the shortest Hamiltonian path is definitely regarded as
an efficient and optimal traveling solution. A charging task
is said to be schedulable if only if can be charged before its
deadline. In other words, the mobile charger should respond
faster to avoid the nodes’ deadlines.

A better understanding of the network topology also
plays a significant role in scheduling and path planning.
The objective is not only finding the shortest Hamiltonian
path but also considering the importance of the nodes (i.e.,
the nodes with higher degree centrality). For hexagonal-
clustered-based topology, the importance of the nodes fol-
lows the negative exponential distribution, in which importance
of the nodes diminishes as we move to higher layers within
the cluster.

Motivations and Contributions: Despite previous stud-
ies have made significant efforts to tackle the aforemen-
tioned constraints, the influences of network topology,
charging path planning, and energy threshold distribution
on scheduling are not conjointly addressed. This motivates
us to re-investigate and take a deep insight starting from the
underlying network topology perspective to path planning
and scheduling. For addressing these problems, we pro-
pose Efficient Sectored-based Charging Scheduling and Path
Planning (ESPP), including the following contributions:

1) We propose a hexagonal-clustered-based network
topology for WRSN, and develop a mathemati-
cal model for network deployment and planning.
Moreover, our study proposes a cluster construction
algorithm for nodes’ deployment, and a Hexagonal-
based low-cost connection algorithm for topology
construction aiming at providing a strongly con-
nected network and improving network perfor-
mance and resource allocation.

2) To gain control over charge request arrivals and
provide a traveling path mechanism such that im-
proving the MCV efficiency and minimizing queu-

ing storage, this study proposes an energy thresh-
old distribution in which nodes of importance are
assigned higher threshold values(i.e., priority) to be
charged earlier. To assign energy-threshold values,
an O(ω logω) online (dynamic) assign-threshold
algorithm is proposed. Moreover, an adaptable
charging-time distribution based on the traffic in-
tensity and node’s importance is promoted to fully
or partially charge nodes aiming at minimizing
the dead nodes density. The importance-identification
algorithm is proposed to make the nodes identify
their workload in advance.

3) To find the shortest Hamiltonian charging path in
hexagonal-based topology, an efficient heuristic al-
gorithm applied to each sector aiming at improving
MCV traveling efficiency is presented. To avoid
back-forth problem occurred in the MCVs due to
preemption-based scheduling, the study presents
Non-preemptive dynamic priority scheduling al-
gorithm for MCVs and a centralized assignment
greedy algorithm in the BS for charging tasks
scheduling and assignments.

4) To the best of our knowledge, we are the first who
consider the importance of nodes and develop an
importance-identification algorithm which is a useful
figure of merit in WRSN that gives us a clear in-
sight about the important nodes those who carry
heavy workload in the network that can help opti-
mize the performance and efficiency of the network.
Moreover, we are the first who develop an online
energy-threshold distribution algorithm which used
to configure the threshold without the need for man-
ual setting of the energy threshold. Additionally, the
ability to configure the threshold without manual
intervention could save time and resources for net-
work engineers.

The rest of this paper is organized as follows. Section 2
briefly reviews the literature. Section 3 presents the prelim-
inaries behind this work. Section 4 explains our proposed
methods. The experiments and discussions are explained in
Section 5. Finally, Section 7 concludes this work. Note that
this work has a supplementary file, and the figures, tables,
and algorithms with underlined labels are cross-referenced
from the supplementary file.

2 RELATED WORK

Charging scheduling schemes can be classified broadly
based on three criteria: system architecture, charging trajec-
tories accessibility, and the amount of energy to be transferred.
Due to space constraints, the related work has been moved
to the supplementary file.

Unlike the aforementioned studies, we consider the
impact of the network topology on the scheduling, path
planning, and network lifetime. Moreover, the importance
of the nodes indicates their influential effect on the net-
work. For future network growth, an adaptable network
topology, dynamic scheduling algorithms, and online path
planning algorithms are urgent and not addressed in the
aforementioned related studies. Throughout this work, we
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propose a hexagonal-clustered-based topology and analyt-
ical model for nodes deployment and network planning
through well-defined algorithms and equations. For optimal
path planning, such that a shortest Hamiltonian path, each
cluster is sliced into multiple sectors through an O(K.ψ.Ns)
algorithm, then for each Hamiltonian path an online energy
threshold assignment algorithm is proposed to preserve the
path. The importance of a node gives us a clear insight
about its influential impact on the network, to have prior
knowledge about overloaded nodes importance-identification
with O(ωlogω) algorithm is proposed. Finally, charging
tasks assignments and further scheduling algorithms are im-
plemented in BS and MCVs respectively to provide hybrid
centralized-distributed scheduling schemes.

3 PRELIMINARIES

Network model and problem statement are the main pre-
liminaries for constructing the algorithms proposed in this
work. Note that the most frequent notations or symbols
used in this article are given in TABLE 2 in the supplemen-
tary file.

3.1 Network Model

The network is modeled as an indirect graph Gs = (S,E),
consisting of two sets S and E. The vertices set S denoting
stationary sensor nodes distributed over a region of area A.
The edges set E denotes the connections between the nodes.
Nodes are embedded with a Wireless Power Transfer (WPT)
receiver and a rechargeable battery. There is a fixed base
station BS for data collection, charging tasks assignments,
and depot for MCV battery recharging or replacement. We
assume that there areK MCVs to handle the charge requests
assigned from the BS and located in close proximity to
BS. Each MCV travels at a constant speed denoted by vmc
to wirelessly charge the nodes. MCVs are carrying WPT
transmitter, with energy transfer rate ϵ. Fig.1 shows the
proposed network model in ESPP.

3.2 Problem Statement

We consider a single cluster WRSN with ψ layers, and K
MCVs, the cluster is sliced into K sector(s) denoted as
κi, 1 ≤ i ≤ K , and each sector is assigned a single MCV. To
improve the MCV efficiency and reduce the response time
a Hamiltonian path-finding algorithm should be applied to
each sector such that finding a path Wi with the objective
of minimizing traveling-cost.Therefore, we formalize the
path planning problem as objective optimization problem
where keeping the traveling-cost as minimum as possible,
Moreover, taking node’s importance Ω as problem constraint.

argmin

 ∑
∀vi∈Wi

Dist(vi, vi+1)


s.t. :

Dist(vi, vi+1) ≤ tr,∀vi, vi+1 ∈Wi

Ω(vi) >Ω(vi+1),∀vi, vi+1 ∈Wi

(1)

Where Dist(vi, vi+1) denotes the Euclidean distance be-
tween nodes vi, vi+1, and Ω(vi) denotes the importance of
vi. More details are explained in Section 4.2.

We consider scheduling problem of a task set Γ =
{τ1, . . . , τn} consisting of n charging-tasks on a set M =
{MCV1, . . . ,MCVk} consisting of K MCVs. We assume
Non-Preemptive (NP) scheduling. We consider each task
has a deadline Di which represents the time a node should
be charged before Di to avoid irreparable influence on
network performance.

The worst case response time Ri of a task τi is the
longest possible time from the release of a charge task until
it reaches the corresponding node. Thus, the task τi is said
to be schedulable if and only if Ri ≤ Di, and task set Γ
is schedulable if and only if ∀iRi ≤ Di. Based on these
assumptions, we want to determine if we can guarantee that
Γ = {τ1, . . . , τn} is schedulable under these considerations.
More details are explained in Section 4.6.

4 OUR PROPOSED SCHEME

The proposed system is shown in Fig.2; mainly gives an
overview of this section, and is summarized by the follow-
ing five steps:

1) In order to provide a strongly connected network,
the hexagonal-clustered-based network topology is
proposed for nodes’ deployment. Algorithm 1 is
used to construct a single cluster hexagonal topol-
ogy, and Algorithm 2 is used to construct the con-
nection links between the nodes taking into account
the connection cost and routing. Moreover, finding
a Hamiltonian path in hexagonal-based tessellations
is NP-Complete [2, 4], making MCV efficiency, and
response time optimizations more feasible and ac-
cessible.

2) For dynamic scheduling policy adaptation, and de-
termining the appropriate amount of charging en-
ergy, the importance of each node gives us an insight
about the network core nodes (nodes of essentials),
the Algorithm 3 is used to make each node iden-
tify its importance which will be used later during
scheduling and charging process.

3) For a given K mobile charger vehicles, each clus-
ter is sliced into K-sectors, and a single MCV is
assigned to each sector. For each sector, a charging
path planning algorithm, outlined by Algorithm 4,
is applied to produce a Hamiltonian charging path.

4) Since our proposed wireless charging scheme is
on-demand (online), where the nodes send charge
requests when their residual energy falls into a pre-
defined threshold, maintaining the optimal charging
path is infeasible due to the random arrivals of
charge requests. For this reason, we propose an
energy-threshold function which is applied to the
Hamiltonian charging path to preserve its validity.
In order to make each node identifies its threshold,
Algorithm 5 is employed with time complexity of
O(ωlogω).

5) For the charging tasks scheduling, Algorithm 6 is
used, which is a non-preemptive (NP) algorithm
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proposed to avoid the back-forth problem that oc-
curs due to multiple preemptions. The BS is re-
sponsible for charging tasks assignments for MCVs
based on sector ID such that the nodes in a given
sector are only charged by the MCV assigned to that
sector. For further scheduling and decision-making,
an extra priority-based scheduling algorithm is pro-
posed for the MCVs.

The details of these steps are presented in the following
subsections.

4.1 Network Deployment & Planning

Hexagonal tessellation offers many characteristics that make
it a suitable candidate for our network planning. In hexag-
onal tessellations, all adjacent nodes are separated by a dis-
tance of tr, where tr denotes the length of the edge of each
regular hexagon. Each sensor node can communicate with
nodes that are closer than a threshold R. Since, in a regular
hexagonal tessellation, all nodes are tr apart from their
neighbors, choosing tr ≤ R will satisfy the connectivity
constraint. Hexagonal tessellation is optimal from the per-
spective of network coverage, as it represents the Delaunay
graph of a centroidal Voronoi partition. When considering
communication cost, hexagons require a minimum number
of connections, three instead of six or four

We consider a farming field scenario of an area A for
applications such as smart irrigation, and precision agricul-
ture network. We assume that all nodes are homogeneous
with a maximum transmission range Tr . A cluster refers
to a group of nodes with a central station (i.e. BS) that
are interconnected and coordinated to operate as a unit.
A layer refers to a collection of nodes that are equidistant
from the BS. In this context, the distance from the BS to
any node in the ith layer remains constant, implying that all
nodes within a given layer are positioned at the same radial
distance from the BS.

The area covered by a cluster, as defined in Eq.(2) is a
function of the transmission distance of the sensor node Tr
and the number of layers per cluster ψ.

A =
ω∑
i=0

3
√
3t2r
2

= (ω + 1)
3
√
3t2r
2

(2)

Then the number of layers that can cover a region of area A
is given in Eq.(3).

ψ ≈

√
8A

√
3

T 2
r

6
(3)

The cluster size ω denotes the number of nodes in the cluster
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and given in Eq.(4).

ω = 6

ψ∑
i=0

i = 6
ψ(ψ + 1)

2
= 3(ψ)(ψ + 1) = N +K + 1 (4)

The number of sensor nodes in ith layer is given in Eq. (5).

N
(i)
ψ = 6i, 1 ≤ i ≤ ψ (5)

The BS is initially located in the cluster center at (xk, yk),
then the location of the sensor node vn at (xn, yn) at row
rn, column qn, and layer Ln in the hexagonal tessellation is
given in Eq. (6).

xn =xk + (tr(qn
√
3 +

√
3

2
rn)), (6)

yn =yk + (tr(rn
3

2
))

tr =
Tr√
3

Ln =
√
r2n + q2n + rnqn

The node vn is characterized by a tuple in geometry space
(xn, yn, rn, qn, Ln, Tr). There are 2ψ rows, and 2ψ columns
in a single cluster with ψ layers. More details about network
deployment and planning are provided in the supplemen-
tary file.

4.2 Node’s Importance Identification
The importance of the node vi, denoted by Ω(vi), is an
influential metric that reflects the influential impact of a
node on the network, it is related to eigenvector centrality
[11] which measures the importance of a node based on the
importance of its neighbors. Nodes with high eigenvector
centrality are considered to be important if they are con-
nected to other important nodes in the network [1]. The
eigenvector centrality of a node is thus proportional to the
sum of the eigenvector centralities of its neighbor nodes
[12]. Similarly, in ESPP, the importance of the node is the
sum of the importance of its neighbors. The higher the
importance of a node is, the more important the node is in
the network. Conversely, if the importance of a node in the
network is closer to 0, that indicates the node has less contact
with other nodes. Calculating the importance gives us a clear
insight about the traffic load that a certain node will carry.
This numerical value can be used for path planning and
charging scheduling such that nodes with higher importance
are assigned higher priorities to be charged prior to those
with lower importance. Suppose that node vi has |Vn| edges.
If one of those edges is connected to node vi, then vi will
pass on 1/|Vn| of its importance to vj . The importance
ranking of vi is then the sum of all the contributions made
by nodes connected to it. That is if we denote the set of
nodes connected to vi by Vn, then the importance Ωs(vi) of
vi is given in Eq. (7).

Ωs(vi) =
1

ω

∑
∀vj∈Vn

Ωs(vj) (7)

To determine the importance of a node, we first need to
know the importance of all the nodes connected to it. It is a

network-recursive process that requires traversing through
the network and determining the importance of each node.

To do that, we propose Algorithm 3 which is a broadcast-
free algorithm used to determine the importance of the nodes
with time complexity O(ω logω). Initially, the BS instanti-
ates an assign-importance packet denoted as Ip according to
the format {src, dst,Ω, dir}. To maintain network addresses
of adjacent nodes, we consider that addresses are temporally
stored in a queue denoted asQn and the vix denotes a parent
of vi. Each node vi ∈ S selects a node vj from its queue
Qn to which it sends Ip. When the queue is empty such
that |Qn| = 0, the node sends back the packet to its vix.
This procedure continues until traversing back to the BS
which has no parent vix = ∅ which is where the algorithm
terminates.

Let Ωψ(i) denotes the total importance of the nodes in ith
layer, then

Ωψ(i) = Ωψ(i+ 1), 0 ≤ i ≤ ψ (8)

Ωψ(i) =
∑

∀vk∈Vi

Ωs(k) (9)

For Vi = Vψ, i = ψ, |Vψ| = 6ψ, then ∀vi ∈ Vψ → Ωs(i)→ 1.
In other words, the edge nodes (i.e. nodes in the last layer)
have average importance of 1

ω .

Algorithm 3 Node’s importance-identification algorithm

1: Input: Ip packet, Qn a queue of nodes connected to vi
2: The initial importance value of vi Ω0 = 1 ;
3: if vix = ∅ then
4: vix ← Ip.src;
5: end if
6: Remove Ip.src’s node from Qn;
7: if Ip.dir = 1 then
8: Ω0 ← Ip.Ω+ Ω0;
9: Ω(vi)← Ω0;

10: end if
11: if |Qn| = 0 then
12: Ip.Ω← Ωs(n);
13: if vix ̸= ∅ then
14: Ip.src← vi;
15: Ip.dst← vix;
16: Ip.dir ← 1;// backward
17: Send Ip to vix;
18: end if
19: Return;
20: end if
21: vj ← Dequeue node from Qn;
22: Ip.dir ← 0;// forward
23: Ip.Ω← 1;
24: Send Ip to vj ;

Note that Algorithm 3 runs only once after network
initialization or when topological changes occur in the net-
work. Because after calculating the importance of the node,
it is stored in the node ( e.g in its EEPROM or in any
non-volatile storage). More detailed illustrations are in the
supplementary file.



IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2023 6

4.3 Sector-based assignment & Charging Path Plan-
ning

Charging Path planning plays a critical role in WRSN since
it’s not only used to improve the MCVs’ efficiency but also
can provide high responsivity (low response time) which
accordingly increases the charging throughput, minimizes
the dead nodes density, and prolongs the network lifetime.
MCVs usually take much time to travel for charging the
nodes due to their limited speed. Since our topology is
hexagonal-based tessellation, finding a Hamiltonian path
is NP-Complete [8] we make use of this inherent topology
Hamiltonicity property to improve the MCV efficiency and
reduce the response time. In ESPP, a sector refers to a group
of nodes within a specific angular range such as (ϕs, ϕe). In
a sector-based assignment, the cluster is partitioned into K
sectors, and each MCV is assigned to a single sector aiming
at optimizing resource allocation.

Let κ = {κ1, . . . , κk} denote a set of sectors in the cluster.
Each κi ∈ κ is characterized by (ϕs, ϕe) which calculated
using Eq.(10).

ϕis =
2π(i)

K
(10)

ϕie =
2π(i+ 1)

K

The BS is located in (xk, yk), the angle between vn located
in (xn, yn) and the BS is given in Eq.(11)

ϕ(BS, vn) = tan−1(
yk − yn
xk − xn

) (11)

A node vi belongs to a sector κi if and only if(
ϕis ≤ ϕ(BS, vi) ≤ ϕie

)
and can only be charged by an

MCV assigned to that sector such that both have a com-
mon sector id. In order to minimize the response time
and improve the MCV efficiency, a heuristic path plan-
ning algorithm that yields a feasible path p such that
min

(∑
∀vi∈p dist(vi, vi+1)

)
is essential. For hexagonal-

tessellation, a path planning algorithm considers the an-
gle of view in which how the standing person in
close proximity to the BS views the sector. Mainly,
there are three types of paths diagonal-based, row-based,
and column-based. The path is diagonal if and only if(
(ϕis + ϕie) mod 2π < π

)
, and the path is said to be row-

based if
(
(ϕis + ϕie) mod 2π = π

)
otherwise the path is

column-based, path type is given in Eq.(12). Algorithm 4
produces a Hamiltonian path for each sector in which the
MCV travels to each node exactly once starting from a node
with higher importance and terminating at a node with lower
importance (e.g. any nodes in last layers) with avoiding edge-
intersection (Eulerian path). Fig.4 of the supplementary
shows a single cluster with five layers and six sectorsK = 6,
and a path planning algorithm is applied to each sector.

ptype(ϕ
i
s, ϕ

i
e) =


diagonal-based (ϕis + ϕie) mod 2π < π

row-based (ϕis + ϕie) mod 2π = π

column-based (ϕis + ϕie) mod 2π > π
(12)

For a cluster with ψ layer and K sector, The number of

nodes in a sector is given in Eq.(13).

Ns =
3(ψ + 1)(ψ)

K
(13)

The area covered by a sector is given in Eq.(14)

As =
Ns∑
i=0

3
√
3.t2r
2

= (Ns + 1)
3
√
3t2r
2

(14)

The set of nodes in sector κi V
(κ)
i = {v1, . . . , vn}, then Vκi

a charging-path planning algorithm given in Algorithm 4
applied.

Algorithm 4 Charging path planning algorithm

1: Input: S, K ;
2: Output: W ′ = {w′

1, . . . , w
′
k};

3: for k = 1 to K do
4: w′

k ← ∅;
5: ptype ← Call Eq.(12)(ϕis, ϕ

i
e);

6: for j = 0 to 4ψ do
7: w′

j ← ∅;
8: if ptype = diagonal-based then
9: w′

j ← ∀vn ∈ S : (rn + qn = j) & κvn = i;
10: w′

j ← order w′
j by rn;

11: else if ptype = row-based then
12: w′

j ← ∀vn ∈ S : rn = j & κvn = i;
13: w′

j ← order w′
j by qn;

14: else if ptype = column-based then
15: w′

j ← ∀vn ∈ S : qn = j & κvn = i;
16: w′

j ← order w′
j by rn;

17: end if
18: if j mod 2 = 0 & |w′

j | ≠ 0 then
19: w′

j ← reverse w′
j ;

20: end if
21: if |w′

j | ≠ 0 then
22: w′

k ← w′
k ∪ w′

j ;
23: end if
24: end for
25: W ′ ←W ′ ∪ w′

k;
26: end for
27: return W ′

The Algorithm 4 works as the following, given a set of
nodes S in a cluster, and K sector as an input. In Line 5,
we calculate the azimuth angles of a sector κi using Eq.(10),
then figuring out the path type from Eq.(12). In Line 8, 11,
and 14, checking out the path type. In Line 9, mapping
∀vn ∈ S : (rn + qn = j) & κvi = i nodes such that
the condition (rn + qn = j) & κvi = i is satisfied
which yields a set of diagonal nodes in the sector i, the
resulting map-set w′

j is then ordered by rn since rows with
small indices have greater importance Ω, the same procedure
applied to other path types except for column − based,
the map-set is ascendingly ordered by qn as in Line 16.
For inter-layer transition and node’s importance constraint,
the path is interchanged on even-layers as outlined in Line
19. The output Hamiltonian paths w′

k ∈ W ′ satisfy that
∀vi, vi+1 ∈ w′

k∀w′
k ∈W ′ the Dist(vi, vj+1) = tr.

In order to preserve the charging path for on-demand
charging scheme for each sector, a threshold function F(w′

k)
is applied to the set w′

k ∈ W ′, then ∀vi ∈ w′
k an assign-
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threshold function is applied such {fth : i → eith∀vi ∈
w′
k, 0 ≤ i ≤ |w′

k|} using Algorithm 5. After applying
the threshold kernel function to the path, the resulting
energy threshold set {e(1,k)th , . . . , e

(n,k)
th } ensures that e(1,k)th >

e
(2,k)
th > . . . > e

(n,k)
th ,∀w′

k ∈W ′. Intuitively, if e(i)th > e
(j)
th and

Ω(vi) > Ω(vj), then vi will send a charge request before vj .
We assume the assign-threshold kernel function Fth as

in Eq.(15).

Fth(i, k) = β0 + β1 exp

(−1
2

(
i

α|w′
k|
)2
)

(15)

Where β0, β1 and α are kernel parameters. Then the energy
threshold of vi in sector κk is given in Eq.(16).

e
(n,k)
th = emaxFth(n, k), β0 ≤ Fth(n, k) ≤ β1 (16)

4.3.1 Path Planning Correctness Proof
In order to prove the correctness of the path plan-
ning algorithm and preserve the global charging path
in ESPP, let a Hamiltonian path P

(k)
h = {v1, . . . , vn} in

sector κk, after applying the threshold algorithm, the
energy threshold for the nodes follows the pattern
e
(1,k)
th > e

(2,k)
th > . . . > e

(n,k)
th , and importance of the nodes

such that Ω(v1) > · · · > Ω(vn), ∀vi ∈ P (k)
h sends charge

request in the sequence v1 . . . vn. The arrival time fol-
lows the sequence ta(i, k) < . . . < ta(n, k), and the waiting
time tq(i, k) > . . . > tq(n, k), if nodes {vi, vj , . . . , vm} in
the charging queue, the tq(vi) > tq(vj) > · · · > tq(vm), then
according to the assigned priority in Eq.(39) to each corre-
sponding charging task, the MCV will schedule the tasks
and travel through the path {vi, vj , ..., vm}which intuitively
by contradiction proves path preservation for on-demand
charging scheme.

4.4 Energy Threshold
The Energy threshold value of the node eth determines at
what time a node vi will send a charge request. It plays
a critical role in the charging process and other charging
factors. The Algorithm 5 optimizes the ESPP algorithm

TABLE 1: ASSIGN THRESHOLD PACKET FORMAT

src dst type n Ns α β0 β1

by efficiently traversing the network to configure energy
thresholds for nodes based on a predetermined distribution
such as Eq.(16). This results in three main benefits:

Reduced Queue Length: Intelligent configuration of en-
ergy thresholds ensures a more even distribution of nodes
sending charge requests, leading to shorter queues and
reduced waiting times at the MCVs. Decreased Miss Rate
of Charge Requests: An even distribution of energy thresh-
olds minimizes the chances of multiple nodes reaching the
energy threshold at once, ensuring fewer missed charge
requests due to congestion and timely energy provisioning.
Time Efficiency: The Algorithm’s structured approach avoids
the resource-intensive broadcasting method, saving time
and network resources in configuring energy thresholds.
Ultimately, these enhancements increase the efficiency and
reliability of the ESPP algorithm by allowing the network

Algorithm 5 Online-Energy threshold configuration algo-
rithm

1: Input: type = 1, Ns = |wk|, α, n = 0, β0, β1;
2: initialize the algorithm in the BS
3: packet← Format packet based on Table 1;
4: vfirst ← Dequeue node from Qn;
5: packet.src← BS;
6: packet.dst← vfirst;
7: Send packet to vfirst;
1: In the receiving node vi or BS;
2: Input: packet;
3: Extract input fields from packet;
4: n← packet.n field;
5: if flag ̸= 1 then
6: Set threshold based on Eq. (16);
7: vix ← packet.src;
8: flag ← 1;
9: packet.n = n+ 1;

10: end if
11: Remove packet.src node from Qn if exists;
12: if |Qn| = 0 then
13: if parent ̸= ∅ then
14: Send packet to vix;
15: end if
16: Return;
17: end if
18: vnext ← Dequeue node from the Qn;
19: packet.src← vi;
20: packet.dst← vnext;
21: Send packet to vnext;

to respond more dynamically and effectively to the energy
needs of individual nodes.

4.5 Charging Model with Multiple MCVs

In ESPP on-demand charging scheme, sensor nodes continu-
ously keep track of their residual energy enr when the energy
reaches a configured threshold enth such enr ≤ enth∀vn ∈ S,
a charge request is sent to the BS for pre-scheduling and
assignments. In the BS, the collected requests are distributed
over K MCV based on sector id. The charge request packet
is based on the format in Table.2 containing its location
(xn, yn), residual energy enr ≤ enth, estimated energy con-
sumption rate Ec, and its importance Ωs is used for estimat-
ing charging duration, priority, and other useful informa-
tion. The sector id of the vn is obtained using Eq.(10), and
Eq.(11).In ESPP, the charging is a hybrid charging scheme

TABLE 2: CHARGE REQUEST PACKET FORMAT

xn yn enr Enc Ωs

in which the charging duration depends on the traffic(e.g.
number of charge requests in the queue of a certain MCV)
and the importance of the node. Let w′

k = {v1, v2, ..., vi} be
a set of sensor nodes in sector κk, where |w′

k| denotes the
number of sensor nodes in that sector. Each vn ∈ w′

k has an



IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2023 8

energy threshold value e(n,k)th given by Eq.(16). The residual
energy e(n,k)r of vn at a given time t is given by Eq.(17).

e(n,k)r = emax − tEc (17)

Without loss of generality, a node vn ∈ w′
k will send a charge

request when e(n,k)r = e
(n,k)
th , then the Eq.(17) is rewritten in

Eq.(18), where treq(n, k) denotes the charge request time of
node vn in sector k.

e
(n,k)
th = emax − treq(n, k)Enc (18)

We assume negligible transmission time such that the re-
quest arrival time is ta(n, k) = treq(n, k). Substituting the
e
(n,k)
th given in Eq.(16) in Eq.(18), then the arrival time

distribution of charge requests is given in Eq.(19), where
π1 = ( 1−β0

En
c

), and π2 = β1

En
c

.

ta(n, k) =
enmax − e(n,k)th

Enc

=
enmax(1− Fth(n, k))

Enc

= emax

(
π1 − π2 exp

(−1
2

(
n

α|w′
k|
)2
))

(19)

Suppose if successive nodes demand a charge service at
epochs ..., ta(n, k), ta(n + 1, k), ..., and if u(n) denotes the
inter-arrival time ta(n + 1, k) − ta(n, k), then the random
variables .., u(n), u(n + 1), ... are statistically independent
and enjoy the same arbitrary distribution ∂ta(n,k)

∂n [5]. Then
the inter-arrival time distribution of charge requests is given
in Eq. (20).

u(n, k) =
emaxπ2n

(α|w′
k|)2

exp

(−1
2

(
n

α|w′
k|
)2
)

(20)

The average inter-arrival time of charge request denoted as
δ is given in Eq. (21).

δk =

(
emaxπ2α

(α|w′
k|)3

) |w′
k|∑

n=0

n exp

(−1
2

(
n

α|w′
k|
)2
)

(21)

The average arrival rate of charge requests, denoted by
λ̂a(k), is the reciprocal of the average inter-arrival time
δ(k). In other words, it is the expected number of charging
requests that arrive per unit time, from the sector, κk is given
in Eq. (22) and measured in request per second, and the
arrival rate of charge requests in the cluster of K sector is
given in Eq.(23).

λ̂a(k) =
1

δk
(22)

λ̂a =
K∑
k=1

1

δk
=
K

δk
(23)

The arrival rate λ̂ of charge requests at a given time t is
given in Eq.(24).

λ̂(t) =
t

δk
(24)

The busiest-hour time tmax is defined as the time in which
the queue length of a given MCV will reach its maximum

value given in Eq.(25).

tmax(k) = π2emax

(
1− exp

(−1
2

(
|w′
k| − 1

α|w′
k|

)2
))

(25)

Assume that, a set Vr ⊂ S = {v1, v2, ..., vr} of requesting
nodes. Each node vn ∈ Vr sent a charge request, these
requests are sector-based distributed through an assignment
algorithm over a set M = {MCV1,MCV2, ...,MCVk} of
MCVs. Each MCV estimates the residual energy of each
node according to Eq.(26).

e
′n
r = enr − (tq(n)Ec) = enth − (tq(n)Ec) (26)

We consider a non-preemptive on-demand charging scheme
where each MCVk ∈ M will continue to charge the node
without interruption. This may cause energy depletion for
some nodes, especially in dense networks. To mitigate that,
a Traffic-based Partial Charging scheme (TPC) is proposed
which considers the workload of the corresponding MCV
with a charging parameter denoted as η which can be tuned
to balance the average energy efficiency vs dead nodes den-
sity. Unlike, preemption-based partial charging where lower
priority tasks can be preempted when higher priority tasks
arrived causing back-forth problems for the MCV. In ESPP,
preemption is prohibited and the charging time is adaptable
according to node’s importance Ωs(n), the estimated average
inter-arrival rate of charge request per each sector δk and the
queue length λ. The time required to charge vn ∈ S when λ
available charge requests is given in Eq.(27).

Tcharge(n, λ) =

(
emax − e

′n
r

ϵ

)
e−ηλ (27)

η =
1

1 + 3.Ωq log δ(k)
(28)

Ωq =
∑
∀i∈Q

Ωs(i) (29)

WhereQ denotes the charging queue. The maximum energy
capacity EMCk

max of MCVk ∈ M must satisfy condition in
Eq.(30), assuming that the energy consumed in traveling
given as Emcc measured in J/m. Due to the hexagonal-
tessellation, the Hamiltonian path produced by Algorithm
4, and the priority assigned to each task, then ∀vn ∈ vr the
distance between D(vn, vn+1) = D(MCVk, vn) = tr .

EMCk
max (λ) ≥

λ∑
n=0

(Entravel + ϵ.Tcharge(n, λ− n)) ; (30)

≥
λ∑
n=0

((n+ 1)trE
mc
c ) +

λ∑
n=0

(
emaxe

−η(λ−n)
)

≥ (λ+ 1)(λ+ 2)trE
mc
c

2
+
emax(1− e−η(λ+1))

1− e−η
where Entravel is the energy needed to travel to vn.

ηmcv = lim
η→0

EMCk
max (λ) = (λ+1)emax+

(λ+ 1)(λ+ 2)trE
mc
c

2
(31)

η′mcv = lim
η→∞

EMCk
max (λ) = emax +

(λ+ 1)(λ+ 2)trE
mc
c

2
(32)

The estimated average energy obtained by all nodes can be
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calculated by Eq.(33).

E(λ) =
ϵ

λ+ 1
·
λ∑
n=0

Tcharge(n, λ− n) (33)

=
emax
λ+ 1

(1− e−η(λ+1))

1− e−η
The service time ts(n) of a given charge request from vn is
given as ts(n) = Tntravel+Tcharge(n, λ), and the total service
time ts required to complete a task set of λ size is given in
Eq.(34).

ts(λ) =
λ∑
n=0

(Tntravel + Tcharge(n, λ− n)) (34)

=
λ∑
n=0

(n+ 1)tr

vmc
+

λ∑
n=0

emax
ϵ

e−η(λ−n)

=
tr(λ+ 1)(λ+ 2)

2vmc
+

(
emax
ϵ

(1− e−η(λ+1))

1− e−η

)

ηts = lim
η→0

ts(λ) =
(λ+ 1)emax

ϵ
+
tr(λ+ 1)(λ+ 2)

2vmc
(35)

η′ts = lim
η→∞

ts(λ) =
emax
ϵ

+
tr(λ+ 1)(λ+ 2)

2vmc
(36)

The nth arriving request must wait tq(n) in the queue to
obtain the service, the waiting time of two successive charge
requests is given in Eq. (37).

tq(n+ 1, λ) = tq(n, λ− 1) + ts(n, λ− 1)− u(n) (37)

and u(n) is the inter-arrival time between nth and (n+1)th
charge request.

4.6 Charging Tasks Scheduling in ESPP
Scheduling is the process of assigning charging tasks over a
set of MCVs. The charging scheduling framework proposed
in ESPP is depicted in Fig.5 of the supplementary file. Let
M = {MCV1, . . . ,MCVk} denote mobile charge vehicles,
and Γ = {τ1, . . . , τn} denotes a set of charging tasks arrived
in the BS. Each MCVk ∈ M is assigned to a single sector
denoted as κi. We consider that each τi ∈ Γ is characterized
by (vi, statusi, Ti, κi, Ri, Di, Ci) tuple where vi denotes the
requesting node, statusi denotes the status of task, Ti is the
arrival time of τi, κi denotes the sector which vi belongs to,
Ri is the response time, Di is the deadline of the task, and
Ci = T itravel + Tcharge is the worst case service time. The
task τi is said to be schedulable if and only if Ri ≤ Di, and
task set Γ is schedulable if and only if ∀τi ∈ ΓRi ≤ Di.

The task has four statuses and changed in each phase, 1)
created the task τi is said to be created when it is inserted
into the queue, the creation time (arrival time) ta(i) = Ti.
2) assigned the task τi is assigned when the τi is assigned to
the MCV such that κMCV

i = κi, tx(i) denotes the assigned
time. 3) released when the MCV starts the execution of the
task by traveling to Si, trel(i) denotes the release time of
τi. 4) completed when the MCV completes the execution of
the task (charging + traveling), tcomp(i) = Ci denotes the
time the task τi completes. The assignment Algorithm 6 is

used to assign charging tasks to the MCVs, The algorithm

Algorithm 6 Assign charging tasks algorithm implemented
in BS

1: Input: Γ,M ;
2: for Each MCVk ∈M do
3: Γt ← ∀τi ∈ Γ : κi = κMCVk

i ;
4: for Each τi ∈ Γt do
5: if τi is schedulable with MCVk & τi.status ̸=
assigned then

6: Assign τi to MCVk;
7: Update τi status← assigned;
8: end if
9: end for

10: Release tasks assigned to MCVk;
11: end for

6 works as follows, given two sets: the tasks set Γ, and a
set of MCVs M as inputs. In order to maintain the charging
path the algorithm group the tasks as in line 3 such that
tasks with the same sector id compared to MCV sector id are
grouped together. In line 5, check if the task τi is schedulable
with MCVk such that Ri ≤ Di. In lines 6,7, assign the
schedulable tasks to their corresponding server(MCV) and
update their status respectively.

Algorithm 7 Scheduling algorithm proposed in MCV.

1: Input: Γ a charging tasks set;
2: Γ′ a priority queue;
3: for Each τi ∈ Γ do
4: Pi ← Calculate the initial priority from Eq.(38);
5: Γ′ ← Γ′ ∪ {(τi, pi)};
6: end for
7: while Γ′ ̸= ∅ do
8: τ̂i ← Select the task with highest priority from Γ′;
9: v̂i ← τ̂i.vi;

10: Travel to the v̂i;
11: Calculate the estimated charging time from Eq.(27);
12: Charge v̂i;
13: Notify BS that τ̂i has completed;
14: Update tasks’ priorities based on Eq.(39);
15: end while

The Algorithm 7 is a type of scheduling algorithm based
on dynamic priority scheduling in which the priorities are
initially calculated during the task assignment and updated
after any task completion. It aims to adapt to dynamically
changing progress and to form an optimal configuration in
a self-sustained manner. Moreover, directing the schedul-
ing policy to an actively plausible path which intuitively
improves the MCV efficiency. In the algorithm, the tasks Γ
assigned from BS are enqueued in a priority queue Γ′ in
the MCV. In Lines 3-6, a priority is initially assigned to each
task and calculated from Eq.(38) forming a set of charge
tasks denoted as Γ′ = {(τ ′1, P1), . . . , (τ

′
n, Pn)}. According

to the scheduling policy, the task with highest τ̂i is served
prior to those with lower priority as outlined in Line 8.
Each MCVk will travel to charge the node (denoted as v̂i)
with the corresponding highest task τ̂i. The time required to
travel to a node v̂i is obtained by T̂travel =

Dist(MCVk,v̂i)
vmc

,



IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2023 10

where vmc denotes the travelling velocity of corresponding
MCV. The charging time with λ = |Γ′| requests is given in
Eq.(27).

Pn =
Ω(n)

D(MCk, vn)
(38)

When a charging task is completed, the MCV will send a
notification packet to the BS to alter τ̂i status as in Line 13.
The MCV will update the priorities associated with each
task in the priority queue as outlined in Line 14 such that
∀(τi, Pi) ∈ Γ′ → ∀(τi, P ′

i ) ∈ Γ′. The new priorities are
calculated from Eq.(39).

P ′
n =

tq(n)Ω(n)

E′n
r D(MCk, vn)

(39)

The response time of a task τn denoted as Rn is the
possible time from the release of the charge task until the
time the MCV arrives at the corresponding node. Thus, the
utilization of a charge task τn denoted as Un is given in
Eq.(40), and the total utilization of a charge task set Γ is
given in Eq.(41).

Un =
Cn
u(n)

=
Tntravel + Tcharge(n, λ)

u(n)
(40)

U =
1

K

λ∑
n=0

Cn
u(n)

=
1

K

λ∑
n=0

Tntravel + Tcharge(n, λ− n)
u(n)

(41)

4.7 Algorithms Complexity
The time complexity of the node’s importance-identification
algorithm and Online-Energy threshold configuration al-
gorithm in Algorithm 3, 5 is O(ω · logω). While it’s
O(K · 4ψ · ω logω) for path planning Algorithm 4 More
details of the proposed algorithms’ time complexity analysis
are in the supplementary file.

5 SIMULATION AND RESULTS

This section is devoted to the performance evaluation of our
proposed ESPP scheme. Extensive experimental simulations
have been performed. Our simulation code can be found
on 1.The simulation parameters are listed in Table 3. More
details on the simulation are provided in the supplementary
file.

5.1 Experimental Results
We compared our proposed ESPP scheme with both mTS
[9] and NPDC [13] in terms of queue length, response time,
average energy, and the density of dead nodes.

5.1.1 Queue Length
The queue length refers to the number of charge requests
(or tasks) waiting in an MCV’s queue for charging service.
The queue length can be measured in terms of the number
of tasks or the amount of time that a charging task spends
waiting in the charging queue. It is an important metric in
WRSN as it helps to determine the performance of a queuing
system in the network. If the queue length is too long, it may

1. https://github.com/NanoSoft774849/WRSN

TABLE 3: SIMULATION PARAMETERS

Parameter Value
Number of layers ψ 13
Number of sensor nodes N 546
Number of MCVs K 10
Number of sectors 10
Sensor node energy (emax) 100J
Energy consumption of vn Enc 0.01-0.04J/s
Mobile charger Energy Emc 12KJ
Mobile charger speed 5m/s
Sampling time 160− 320 sec
Energy per packet Epacket 0.001J/packet
α 0.45
β0 5%
β1 35%
Tr 50m

indicate that the system is not able to handle the incom-
ing charging requests efficiently, which can result in long
waiting time and a decrease in the network lifetime. Queue
length is affected by various parameters as the arrival time
distribution of charge requests, and the service time. From
Eq.(19), we notice that the arrival time of charge requests
depends on the energy threshold function Fth parameters
(β0, β1, α, |wk|), and the energy consumption Ec. And from
Eq.(34), we notice that service time depends on the MCV
speed vmc and charging time parameter η. Unlike mTS,
our scheme ESPP introduces a mechanism to control the
arrival rate of charge requests using the energy threshold
distribution. Unlike both NPDC and mTS, our scheme ESPP
solves the MCV speed constraint by introducing a path
planning algorithm, both of these solutions make the our
scheme ESPP performing better in terms of queue length.
From Fig. 3(a), we notice that ESPP achieves a much shorter
queue length than those of mTS and NPDC because of the
two solutions proposed in ESPP to minimize the queue
length. We conclude that ESPP has promising results in
terms of queue length which increase the overall charging
efficiency.

5.1.2 Average Energy
The average energy efficiency is the average energy ob-
tained after charging the nodes in the network. There
are many parameters that affect the average energy such
as charging rate ϵ, MCV’s speed vmc, charging duration,
scheduling algorithm, and path planning policy. In ESPP,
the average energy depends on the traffic which adapts the
charging time to minimize the dead nodes’ density.

From Eq.(33), we notice that in order to maximize the
average energy, minimizing the queue length by controlling
the arrival time of charge requests is essential. As previously
mentioned in Subsection 5.1.1, ESPP outperforms mTS and
NPDC in terms of queue length due to the proposed solu-
tions which have not only a positive impact on the queue
length but also on the average energy.

Fig.3(b) shows the energy efficiency of ESPP is more
stable and increases with time. The average energy effi-
ciency of ESPP is higher than that of NPDC and mTS.
An overall intuitive reason is not only due to the path
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planning and scheduling algorithms but also due to the
energy threshold distribution proposed in ESPP. Hence, we
conclude that ESPP achieves a promising average energy
efficiency extending the lifetime of the network.

5.1.3 Density of Dead Nodes

The density of dead nodes indicates the number of ex-
hausted nodes during a given time duration. Fig.3(c), dur-

ing the busiest hour time the density of dead nodes of
three algorithms are relatively high due to the configured
residual energy at the simulation startup. Then, gradually,
the density of the ESPP algorithm converges to 0 while
others the density fluctuates between 20-50. The density of
ESPP is always lower than those of NPDC and mTS. The
highest density of ESPP, NPDC, and mTS are 14.65%, 20%,
and 45.78%, respectively. We conclude that ESPP can ensure
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Fig. 6: (a) The throughput at vmc = 5m/s, (b) The throughput at vmc = 10m/s, and (c) The throughput at different speeds
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Fig. 8: (a) Theoretical Vs simulation arrival time, (b) Traffic per layer, and (c) Charging threshold at different values of α

fewer dead nodes, which is beneficial for long-term stable
operations of the network, and our objective is achieved.

5.1.4 Average Response Time
The response time refers to a time interval that starts when
MCV is assigned a charge request from the BS and ends
when the MCV arrives at the corresponding node. As
previously mentioned, the traveling path of ESPP is the

shortest Hamiltonian path; intuitively, ESPP will respond
to requests very quickly. As shown in Fig. 4(a), at first, an
energy threshold function is applied to the path to gain
control over charging requests arrivals. In the beginning, the
response time of mTS algorithm is long due to the massive
arrival of charge requests. We note that ESPP performs a
faster response time. The reason is that, in ESPP, the path
planning is well-designed to minimize the response time.
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We conclude that ESPP gives a promising response time far
better than mTS and NPDC.

5.1.5 Theoretical Vs Simulation Arrival Time
The arrival time (AT) of charge requests depends on the
energy threshold distribution and energy consumption rate.
Fig.8(a) shows ESPP arrival time distribution from the sim-
ulation and the theoretical arrival time distribution. We
notice that the analytical arrival time distribution in Eq.(19)
depends on the energy threshold distribution in Eq.(16). The
Mean Squared Error (MSE) between max-normalized theo-
retical AT and max-normalized simulation AT is 0.00431841,
0.004426536 for Ec = 0.04J/s and Ec = 0.02J/s respec-
tively. The variations in the simulation arrival time shown
in Fig.8(a) are due to that, the nodes in the simulation net-
work send data packets to BS randomly between (160-320)
sec, this randomness imposes different energy consumption
which makes some nodes send charge requests before others
leading to slight variations in arrival curve. We conclude
that the analytical arrival time highly correlates with the
simulation arrival time.

5.1.6 Charging Throughput or Charging Tasks Throughput
The charging throughput denotes the number of charged
nodes during a given period of time. In other words, it refers
to the number of charging tasks completed within a specific
time period. It is a measure of the efficiency of the system.
Figs.6(a),(b) show the charging throughput at different en-
ergy consumption and different MCV speed. Fig.6(c) shows
the average throughput at different Ec and vmc. In these
figures, we notice that the charging throughput is greatly
affected by the MCV speed and energy consumption.

5.1.7 Impact of Low Efficient Nodes
Usually, low-efficient nodes have a great impact on the
charging efficiency [10]. In ESPP, the nodes in the last layers
are usually assigned smaller energy thresholds which intu-
itively means that they will lately send charge requests that
minimize their impact on the charging efficiency. Moreover,
these nodes have low Eigenvector centrality meaning that
less influence on the network lifetime. Fig.8(b) illustrates
the network packets that are either sent or forwarded by the
nodes. It is observable that the number of packets dimin-
ishes as one ascends to the higher layers of the network.

5.1.8 Charging Threshold
The energy threshold dictates the point in time at which
a node will send a charge request. In the ESPP scheme, we
employed an energy threshold distribution as defined in Eq.
(16) and used a network-traverse Algorithm 5 to assign the
energy threshold. Fig. 8(c) illustrates the energy threshold
distribution utilized in ESPP. The distribution is intuitively
derived from the traffic load across various layers, as de-
picted in Fig. 8(b), and is distributed at the sector level to
ensure that nodes that impose higher traffic are assigned a
correspondingly higher energy threshold while nodes with
less contact are assigned lower energy threshold to mitigate
the impact of low-efficient nodes during charging schedul-
ing. Overall, the charging threshold has a great influence
on the charge request arrival rate and consequently on the
queue length and charging process.

5.1.9 Energy Consumption

The energy consumption of the node is a manufacturer-re-
lated parameter, that depends on various aspects such as the
MPU/MCU type, the type of sensors used, and their ADCs.
The energy consumption Ec of the nodes has a great impact
on the charging system such as queue length, throughput,
and average energy. Fig.5(a,b) shows queue length at differ-
ent energy consumption rates and different speeds respec-
tively. Fig.7(a) shows average network energy when dif-
ferent Ecs are used. Fig.6(a,b) shows the charging through-
put with different Ec. The reason is that when nodes con-
sume more energy they send more charge requests which
lead to higher queue length and lower throughput which in
turn affect the network lifetime. One prominent solution is
to use well-designed power management scheduling proto-
cols, such protocols allow the node to enter different power
states, such as sleep or idle, when not in use. This reduces
power consumption and helps to prolong the network life-
time.

5.1.10 Speed Impact of MCV

The speed of the MCV has a great impact on many system
parameters including queue length, charging throughput,
and response time. Fig.5(c) illustrates the impact of speed
on the average queue length( averaged over different mul-
tiple energy consumption Ec and all the MCVs such that
1

4.K

∑K
i=0 λi.) which shows that the higher the speed the

lower the queue length because when the speed is high,
the response time will be smaller and the service rate will
be high which means a smaller number of nodes ( charge
tasks) will be waiting in the queue to be charged. Fig.6(c)
shows the impact of the speed on the charging throughput,
the higher the speed the higher the throughput, that is due
to the fact that the MCVs will need less time to arrive at
the nodes. Furthermore, we noticed that average network
energy increased when the MCVs travel at higher speeds
as shown in Fig.7(b). Overall, the speed of the MCVs has a
great influence on many results and higher speeds promise
less dead nodes’ density and higher network lifetime.

5.1.11 Survival Time

The survival time or the average survival time is a time
measure of how much a network will survive before the
nodes get exhausted. The average survival time is related
to the average obtained energy at a given time divided by
energy consumption. Fig.7(c) shows the network survival
time at different MCV speeds. We conclude that network
survival time is affected by many parameters such as energy
consumption, MCV speed, scheduling, and path planning
algorithms.

6 NODE DESIGN

To prove the feasibility of this work, we have provided the
”Node Design” Section in the supplementary file. We have
concluded that this work and its proposed algorithms can
be implemented in real-world wireless rechargeable sensor
networks.
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7 CONCLUSIONS
In this paper, we have proposed an on-demand charging
scheme for charging sensor nodes in WRSN along with
a hexagonal-clustered-based network topology for nodes’
deployment and network planning. In order to improve
MCV efficiency, we first propose an online importance-
identification algorithm to calculate the importance of each
node in the network which gives us a clear insight into their
influence in the network which we used in path planning
and scheduling. We further propose a heuristic algorithm
that produces a Hamiltonian charging path for each sector
and then applies an energy threshold function to that path
using an online algorithm to maintain the path and gain
control over the charge requests’ arrival rate. Furthermore,
we propose a priority-based scheduling algorithm for task
scheduling and assignment. The accuracy of the analytical
results and the efficiency of the proposed system design
have been verified through extensive simulations. Future
ongoing research is exploring the practical implementation
and deployment challenges associated with using UAVs to
access a variety of risky environments. Additionally, con-
ducting more extensive comparisons with learning-based
algorithms, as well as validating the proposed algorithms
through random distribution of nodes, will be essential
parts of our future work to enhance the generalizability of
the results.
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