
EWA Splatting

Citation
Zwicker, Matthias, Hanspeter Pfister, Jeroen van Baar, and Markus Gross. 2002. EWA Splatting.
IEEE Transactions on Visualization and Computer Graphics 8(3): 223-238.

Published Version
doi:10.1109/TVCG.2002.1021576

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4138240

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:4138240
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=EWA%20Splatting&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=cf597e51b1c3caf243cfc56025d611be&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

To appear in the Proceedings of IEEE Visualization 2001

EWA Volume Splatting

Matthias Zwicker ∗ Hanspeter Pfister † Jeroen van Baar† Markus Gross∗

Abstract
In this paper we present a novel framework for direct volume ren-
dering using a splatting approach based on elliptical Gaussian ker-
nels. To avoid aliasing artifacts, we introduce the concept of a re-
sampling filter combining a reconstruction with a low-pass kernel.
Because of the similarity to Heckbert’s EWA (elliptical weighted
average) filter for texture mapping we call our technique EWA vol-
ume splatting. It provides high image quality without aliasing arti-
facts or excessive blurring even with non-spherical kernels. Hence
it is suitable for regular, rectilinear, and irregular volume data sets.
Moreover, our framework introduces a novel approach to compute
the footprint function. It facilitates efficient perspective projection
of arbitrary elliptical kernels at very little additional cost. Finally,
we show that EWA volume reconstruction kernels can be reduced
to surface reconstruction kernels. This makes our splat primitive
universal in reconstructing surface and volume data.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing Algorithms; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism.

Keywords: Volume Rendering, Splatting, Antialiasing.

1 Introduction
Volume rendering is an important technique in visualizing acquired
and simulated data sets in scientific and engineering applications.
The ideal volume rendering algorithm reconstructs a continuous
function in 3D, transforms this 3D function into screen space, and
then evaluates opacity integrals along line-of-sights. In 1989, West-
over [18, 19] introduced splatting for interactive volume rendering,
which approximates this procedure. Splatting algorithms interpret
volume data as a set of particles that are absorbing and emitting
light. Line integrals are precomputed across each particle sepa-
rately, resulting in footprint functions. Each footprint spreads its
contribution in the image plane. These contributions are compos-
ited back to front into the final image.

We introduce a new footprint function for volume splatting algo-
rithms integrating an elliptical Gaussian reconstruction kernel and a
low-pass filter. Our derivation proceeds along similar lines as Heck-
bert’s elliptical weighted average (EWA) texture filter [4], therefore
we call our algorithm EWA volume splatting.

EWA volume rendering is attractive because it prevents alias-
ing artifacts in the output image while avoiding excessive blurring.
Moreover, it works with arbitrary elliptical Gaussian reconstruction
kernels and efficiently supports perspective projection. Our method
is based on a novel framework to compute the footprint function,
which relies on the transformation of the volume data to so-called
ray space. This transformation is equivalent to perspective pro-
jection. By using its local affine approximation at each voxel, we
derive an analytic expression for the EWA footprint in screen space.
The rasterization of the footprint is performed using forward differ-

∗ETH Zürich, Switzerland. Email: [zwicker,grossm]@inf.ethz.ch
†MERL, Cambridge, MA. Email: [pfister,jeroen]@merl.com

encing requiring only one 1D footprint table for all reconstruction
kernels and any viewing direction.

Our splat primitive can be integrated easily into conventional
splatting algorithms. Because of its flexibility, it can be utilized
to render rectilinear, curvilinear, or unstructured volume data sets.
By flattening the 3D Gaussian kernel along the volume gradient we
will show that EWA volume splats reduce to surface splats that are
suitable for high quality iso-surface rendering.

The paper is organized as follows: We discuss previous work
in Section 2. Next, we review a typical volume rendering pipeline
and the volume rendering equation in Section 3. Specifically, we
elaborate how the volume rendering equation is computed by typi-
cal splatting algorithms. In Section 4, we present our EWA volume
rendering framework. We start by analyzing the aliasing problem
due to improper sampling of the output function resulting from vol-
ume rendering. In a next step, we introduce the EWA resampling
filter, which integrates an arbitrary elliptical Gaussian reconstruc-
tion kernel and a Gaussian low-pass filter. Our derivation is based
on the local affine transformation of the volume data such that the
reconstruction kernels can be integrated analytically. Furthermore,
we show how the EWA reconstruction kernels can be continuously
adapted from volumes to surfaces in Section 5. Finally, Sections 6
and 7 discuss our implementation and results.

2 Previous Work
The original work on splatting was presented by Westover [18]. Ba-
sic splatting algorithms suffer from inaccurate visibility determina-
tion when compositing the splats from back to front. This leads
to visible artifacts such as color bleeding. Later, Westover [19]
solved the problem using an axis-aligned sheet buffer. However,
this technique is plagued by disturbing popping artifacts in anima-
tions. Recently, Mueller and Crawfis [14] proposed to align the
sheet buffers parallel to the image plane instead of parallel to an
axis of the volume data. Additionally, they splat several slices of
each reconstruction kernel separately. This technique is similar to
slice-based volume rendering [2, 1] and does not suffer from pop-
ping artifacts. Mueller and Yagel [15] combine splatting with ray
casting techniques to accelerate rendering with perspective projec-
tion. Laur and Hanrahan [7] describe a hierarchical splatting algo-
rithm enabling progressive refinement during rendering. Further-
more, Lippert [9] introduced a splatting algorithm that directly uses
a wavelet representation of the volume data.

Westover’s original framework does not deal with sampling rate
changes due to perspective projections. Aliasing artifacts may oc-
cur in areas of the volume where the sampling rate of diverging
rays falls below the volume grid sampling rate. Swan et al. [17] use
a distance-dependent stretch of the footprints to make them act as
low-pass filters. This antialiasing method is closely related to EWA
volume splatting, and we will discuss it further in Section 7.

Additional care has to be taken if the 3D kernels are not radially
symmetric, as is the case for rectilinear, curvilinear, or irregular
grids. In addition, for an arbitrary position in 3D, the contributions
from all kernels must sum up to one. Otherwise, artifacts such as
splotches occur in the image. For rectilinear grids, Westover [19]
proposes using elliptical footprints that are warped back to a cir-
cular footprint. To render curvilinear grids, Mao et al. [10] use

To appear in the Proceedings of IEEE Visualization 2001

stochastic Poisson resampling to generate a set of new points whose
kernels are spheres or ellipsoids. They compute the elliptical foot-
prints very similar to Westover [19]. As pointed out in Section 4,
our technique can be used with irregular grids to efficiently and ac-
curately project and rasterize the elliptical splat kernels.

We develop EWA volume splatting along similar lines to the
seminal work of Heckbert [4], who introduced EWA filtering to
avoid aliasing of surface textures. We recently extended his frame-
work to represent and render texture functions on irregularly point-
sampled surfaces [21]. Section 5 will show the connection between
EWA volume and surface splatting.

3 Preliminaries
3.1 The Volume Rendering Pipeline
We distinguish two fundamental approaches to volume rendering:
backward mapping algorithms that shoot rays through pixels on the
image plane into the volume data, and forward mapping algorithms
that map the data onto the image plane. In the following discus-
sion, we will describe a forward mapping technique. Mapping the
data onto the image plane involves a sequence of intermediate steps
where the data is transformed to different coordinate systems, as
in conventional rendering pipelines. We introduce our terminology
in Figure 1. Note that the terms space and coordinate system are
synonymous. The figure summarizes a forward mapping volume
rendering pipeline, where the data flows from the left to the right.

viewing
transformation

projective
mapping

volume classification,
shading and integration

viewport
transformation

volume
data set

output
image

object
space

camera
space

ray
space

screen
space

viewport

Section 3.2Section 4.4Section 4.3

Figure 1: The forward mapping volume rendering pipeline.

As an overview, we briefly describe the coordinate systems and
transformations that are relevant for our technique. The volume
data is initially given in object coordinates. To render the data from
an arbitrary viewpoint, it is first mapped to camera space using the
viewing transformation. We deal with the effect of this transforma-
tion in Section 4.3. The camera coordinate system is defined such
that its origin is at the center of projection.

We further transform the data to ray space, which is introduced
in Section 3.2. Ray space is a non-cartesian coordinate system that
enables an easy formulation of the volume rendering equation. In
ray space, the viewing rays are parallel to a coordinate axis, facili-
tating analytical integration of the volume function. We present the
transformation from camera to ray space in Section 4.4; it is a key
element of our technique. Since its purpose is similar to the pro-
jective transform used in rendering pipelines such as OpenGL, it is
also called the projective mapping.

Evaluating the volume rendering equation results in a 2D image
in screen space. In a final step, this image is transformed to view-
port coordinates. Focusing on the essential aspects of our tech-
nique, we are not covering the viewport transformation in the fol-
lowing explanations. However, it can be easily incorporated in an
implementation. Moreover, we do not discuss volume classification
and shading in a forward mapping pipeline, but refer to [13] or [20]
for a thorough discussion.

3.2 Splatting Algorithms
We review the low albedo approximation of the volume rendering
equation [5, 12] as used for fast, direct volume rendering [19, 6, 13,
8]. The left part of Figure 2 illustrates the corresponding situation
in 2D. Starting from this form of the rendering equation, we discuss
several simplifying assumptions leading to the well known splatting
formulation. Because of their efficiency, splatting algorithms [19,

13] belong to the most popular forward mapping volume rendering
techniques.

We slightly modify the conventional notation, introducing our
concept of ray space. We denote a point in ray space by a column
vector of three coordinates x = (x0, x1, x2)

T . Given a center of
projection and a projection plane, these three coordinates are inter-
preted geometrically as follows: The coordinates x0 and x1 specify
a point on the projection plane. The ray intersecting the center of
projection and the point (x0, x1) on the projection plane is called a
viewing ray. Using the abbreviation x̂ = (x0, x1)

T , we refer to the
viewing ray passing through (x0, x1) as x̂. The third coordinate x2

specifies the Euclidean distance from the center of projection to a
point on the viewing ray. To simplify the notation, we will use any
of the synonyms x, (x̂, x2)

T , or (x0, x1, x2)
T to denote a point in

ray space.

λ x̂ ξ,

ξ

ξ

1 gjqj x̂()–
k 1

Figure 2: Volume rendering. Left: Illustrating the volume render-
ing equation in 2D. Right: Approximations in typical splatting al-
gorithms.

The volume rendering equation describes the light intensity
Iλ(x̂) at wavelength λ that reaches the center of projection along
the ray x̂ with length L:

Iλ(x̂) =

Z L

0

cλ(x̂, ξ)g(x̂, ξ)e−
R ξ
0 g(x̂,µ) dµ dξ, (1)

where g(x) is the extinction function that defines the rate of light
occlusion, and cλ(x) is an emission coefficient. The exponential
term can be interpreted as an attenuation factor. Finally, the prod-
uct cλ(x)g(x) is also called the source term [12], describing the
light intensity scattered in the direction of the ray x̂ at the point x2.

Now we assume that the extinction function is given as a
weighted sum of coefficients gk and reconstruction kernels rk(x).
This corresponds to a physical model where the volume consists of
individual particles that absorb and emit light. Hence the extinction
function is:

g(x) =
X

k

gkrk(x). (2)

In this mathematical model, the reconstruction kernels rk(x) reflect
position and shape of individual particles. The particles can be ir-
regularly spaced and may differ in shape, hence the representation
in (2) is not restricted to regular data sets. We substitute (2) into (1),
yielding:

Iλ(x̂) =
X

k

�Z L

0

cλ(x̂, ξ)gkrk(x̂, ξ)

Y
j

e−gj
R ξ
0 rj(x̂,µ) dµ dξ

�
. (3)

2

To appear in the Proceedings of IEEE Visualization 2001

To compute this function numerically, splatting algorithms make
several simplifying assumptions, illustrated in the right part of Fig-
ure 2. Usually the reconstruction kernels rk(x) have local support.
The splatting approach assumes that these local support areas do
not overlap along a ray x̂, and the reconstruction kernels are or-
dered front to back. We also assume that the emission coefficient
is constant in the support of each reconstruction kernel along a ray,
hence we use the notation cλk(x̂) = cλ(x̂, x2), where (x̂, x2) is in
the support of rk. Moreover, we approximate the exponential func-
tion with the first two terms of its Taylor expansion, thus ex ≈ 1−x.
Finally, we ignore self-occlusion. Exploiting these assumptions, we
rewrite (3), yielding:

Iλ(x̂) =
X

k

cλk(x̂)gkqk(x̂)

k−1Y
j=0

(1 − gjqj(x̂)) , (4)

where qk(x̂) denotes an integrated reconstruction kernel, hence:

qk(x̂) =

Z
R

rk(x̂, x2) dx2. (5)

Equation (4) is the basis for all splatting algorithms. Westover [19]
introduced the term footprint function for the integrated reconstruc-
tion kernels qk. The footprint function is a 2D function that speci-
fies the contribution of a 3D kernel to each point on the image plane.
Integrating a volume along a viewing ray is analogous to projecting
a point on a surface onto the image plane, hence the coordinates
x̂ = (x0, x1)

T are also called screen coordinates, and we say that
Iλ(x̂) and qk(x̂) are defined in screen space.

Splatting is attractive because of its efficiency, which it derives
from the use of pre-integrated reconstruction kernels. Therefore,
during volume integration each sample point along a viewing ray
is computed using a 2D convolution. In contrast, ray-casting meth-
ods require a 3D convolution for each sample point. This provides
splatting algorithms with an inherent advantage in rendering ef-
ficiency. Moreover, splatting facilitates the use of higher quality
kernels with a larger extent than the trilinear kernels typically em-
ployed by ray-casting. On the other hand, basic splatting methods
are plagued by artifacts because of incorrect visibility determina-
tion. This problem is unavoidably introduced by the assumption
that the reconstruction kernels do not overlap and are ordered back
to front. It has been successfully addressed by several authors as
mentioned in Section 2. In contrast, our main contribution is a novel
splat primitive that provides high quality antialiasing and efficiently
supports elliptical kernels. We believe that our novel primitive is
compatible with all state-of-the-art algorithms.

4 The EWA Volume Resampling Filter
4.1 Aliasing in Volume Splatting
Aliasing is a fundamental problem of any rendering algorithm, aris-
ing whenever a rendered image or a part of it is sampled to a discrete
raster grid, i.e., the pixel grid. Aliasing leads to visual artifacts such
as jagged silhouette edges and Moiré patterns in textures. Typically,
these problems become most disturbing during animations. From
a signal processing point of view, aliasing is well understood: be-
fore a continuous function is sampled to a regular sampling grid, it
has to be band-limited to respect the Nyquist frequency of the grid.
This guarantees that there are no aliasing artifacts in the sampled
image. In this section we provide a systematic analysis on how to
band-limit the splatting equation.

The splatting equation (4) represents the output image as a con-
tinuous function Iλ(x̂) in screen space. In order to properly sample
this function to a discrete output image without aliasing artifacts, it
has to be band-limited to match the Nyquist frequency of the dis-
crete image. In theory, we achieve this band-limitation by convolv-
ing Iλ(x̂) with an appropriate low-pass filter h(x̂), yielding the

antialiased splatting equation

(Iλ ⊗ h)(x̂) =

Z
R2

X
k

cλk(η)gkqk(η)

k−1Y
j=0

(1 − gjqj(η))h(x̂ − η) dη. (6)

Although Iλ(x̂) is formulated as a continuous function in (4), in
practice this function is evaluated only at discrete positions, i.e., the
pixel centers. Therefore we cannot evaluate (6), which requires that
Iλ(x̂) is available as a continuous function.

However, we make two simplifying assumptions to rearrange the
integral in (6). This leads to an approximation that can be evaluated
efficiently. First, we assume that the emission coefficient is approx-
imately constant in the support of each footprint function qk, hence
cλk(x̂) ≈ cλk for all x̂ in the support area. Together with the
assumption that the emission coefficient is constant in the support
of each reconstruction kernel along a viewing ray, this means that
the emission coefficient is constant in the complete 3D support of
each reconstruction kernel. In other words, we ignore the effect of
shading for antialiasing. Note that this is the common approach for
antialiasing surface textures as well.

Additionally, we assume that the attenuation factor has an ap-
proximately constant value ok in the support of each footprint func-
tion. Hence:

k−1Y
j=0

(1 − gjqj(x̂)) ≈ ok (7)

for all x̂ in the support area. A variation of the attenuation factor
indicates that the footprint function is partially covered by a more
opaque region in the volume data. Therefore this variation can be
interpreted as a “soft” edge. Ignoring such situations means that
we cannot prevent edge aliasing. Again, this is similar to rendering
surfaces, where edge and texture aliasing are handled by different
algorithms as well.

Exploiting these simplifications, we can rewrite (6) to:

(Iλ ⊗ h)(x̂) ≈
X

k

cλkokgk

Z
R2
qk(η)h(x̂− η) dη

=
X

k

cλkokgk(qk ⊗ h)(x̂).

Following Heckbert’s terminology [4], we call:

ρk(x̂) = (qk ⊗ h)(x̂) (8)

an ideal resampling filter, combining a footprint function qk and a
low-pass kernel h. Hence, we can approximate the antialiased splat-
ting equation (6) by replacing the footprint function qk in the origi-
nal splatting equation (4) with the resampling filter ρk. This means
that instead of band-limiting the output function Iλ(x̂) directly, we
band-limit each footprint function separately. Under the assump-
tions described above, we get a splatting algorithm that produces
a band-limited output function respecting the Nyquist frequency of
the raster image, therefore avoiding aliasing artifacts. Remember
that the reconstruction kernels are integrated in ray space, result-
ing in footprint functions that vary significantly in size and shape
across the volume. Hence the resampling filter in (8) is strongly
space variant.

Swan et al. presented an antialiasing technique for splatting [17]
that is based on a uniform scaling of the reconstruction kernels to
band-limit the extinction function. Their technique produces simi-
lar results as our method for radially symmetric kernels. However,
for more general kernels, e.g., elliptical kernels, uniform scaling

3

To appear in the Proceedings of IEEE Visualization 2001

is a poor approximation of ideal low-pass filtering. Aliasing arti-
facts cannot be avoided without introducing additional blurriness.
On the other hand, our method provides non-uniform scaling in
these cases, leading to superior image quality as illustrated in Sec-
tion 7. Moreover, our analysis above shows that band-limiting the
extinction function does not guarantee aliasing free images. Be-
cause of shading and edges, frequencies above the Nyquist limit
persist. However, these effects are not discussed in [17].

4.2 Elliptical Gaussian Kernels
We choose elliptical Gaussians as reconstruction kernels and low-
pass filters, since they provide certain features that are crucial for
our technique: Gaussians are closed under affine mappings and con-
volution, and integrating a 3D Gaussian along one coordinate axis
results in a 2D Gaussian. These properties enable us to analytically
compute the resampling filter in (8) as a single 2D Gaussian, as
will be shown below. In this section, we summarize the mathemat-
ical features of the Gaussians that are exploited in our derivation in
the following sections. More details on Gaussians can be found in
Heckbert’s master’s thesis [4].

We define an elliptical Gaussian GV(x − p) centered at a point
p with a variance matrix V as:

GV(x− p) =
1

2π|V| 12
e−

1
2 (x−p)T V−1(x−p), (9)

where |V| is the determinant of V. In this form, the Gaussian is
normalized to a unit integral. In the case of volume reconstruction
kernels, GV is a 3D function, hence V is a symmetric 3× 3 matrix
and x and p are column vectors (x0, x1, x2)

T and (p0, p1, p2)
T ,

respectively. We can easily apply an arbitrary affine mapping u =
Φ(x) to this Gaussian. Let us define the affine mapping as Φ(x) =
Mx+ c, where M is a 3× 3 matrix and c is a vector (c0, c1, c2)

T .
We substitute x = Φ−1(u) in (9), yielding:

GV(Φ−1(u) − p) =
1

|M−1|GMVMT (u − Φ(p)). (10)

Moreover, convolving two Gaussians with variance matrices V and
Y results in another Gaussian with variance matrix V + Y:

(GV ⊗ GY)(x− p) = GV+Y(x − p). (11)

Finally, integrating a 3D Gaussian GV along one coordinate axis
yields a 2D Gaussian GV̂, hence:

Z
R

GV(x− p) dx2 = GV̂(x̂ − p̂), (12)

where x̂ = (x0, x1)
T and p̂ = (p0, p1)

T . The 2 × 2 variance
matrix V̂ is easily obtained from the 3 × 3 matrix V by skipping
the third row and column:

V =

0
@ a b c

b d e
c e f

1
A⇔

�
a b
b d

�
= V̂. (13)

In the following sections, we describe how to map arbitrary ellip-
tical Gaussian reconstruction kernels from object to ray space. Our
derivation results in an analytic expression for the kernels in ray
space rk(x) as in Equation (2). We will then be able to analytically
integrate the kernels according to Equation (5) and to convolve the
footprint function qk with a Gaussian low-pass filter h as in Equa-
tion (8), yielding an elliptical Gaussian resampling filter ρk.

4.3 The Viewing Transformation
The reconstruction kernels are initially given in object space, which
has coordinates t = (t0, t1, t2)

T . Let us denote the Gaussian re-
construction kernels in object space by r′′k (t) = GV′′

k
(t − tk),

where tk are the voxel positions in object space. For regular vol-
ume data sets, the variance matrices V′′

k are usually identity ma-
trices. For rectilinear data sets, they are diagonal matrices where
the matrix elements contain the squared distances between voxels
along each coordinate axis. Curvilinear and irregular grids have
to be resampled to a more regular structure in general. For exam-
ple, Mao et al. [11] describe a stochastic sampling approach with a
method to compute the variance matrices for curvilinear volumes.

We denote camera coordinates by a vector u = (u0, u1, u2)
T .

Object coordinates are transformed to camera coordinates using an
affine mapping u = ϕ(t), called viewing transformation. It is de-
fined by a matrix W and a translation vector d as ϕ(t) = Wt+d.
We transform the reconstruction kernels GV′′

k
(t − tk) to camera

space by substituting t = ϕ−1(u) and using Equation (10):

GV′′
k
(ϕ−1(u) − tk) =

1

|W−1|GV′
k
(u − uk) = r′k(u), (14)

where uk = ϕ(tk) is the center of the Gaussian in camera coordi-
nates and r′k(u) denotes the reconstruction kernel in camera space.
According to (10), the variance matrix in camera coordinates V′

k is
given by V′

k = WV′′
kWT .

4.4 The Projective Transformation
The projective transformation converts camera coordinates to ray
coordinates as illustrated in Figure 3. Camera space is defined such
that the origin of the camera coordinate system is at the center of
projection and the projection plane is the plane u2 = 1. Camera
space and ray space are related by the mapping x = m(u). Using
the definition of ray space from Section 3, m(u) and its inverse
m−1(x) are therefore given by:0

@ x0

x1

x2

1
A = m(u) =

0
@ u0/u2

u1/u2

‖(u0, u1, u2)
T ‖

1
A (15)

0
@ u0

u1

u2

1
A = m−1(x) =

0
@ x0/l · x2

x1/l · x2

1/l · x2

1
A , (16)

where l = ‖(x0, x1, 1)
T ‖.

Unfortunately, these mappings are not affine, so we cannot apply
Equation (10) directly to transform the reconstruction kernels from
camera to ray space. To solve this problem, we introduce the local
affine approximation muk of the projective transformation. It is
defined by the first two terms of the Taylor expansion of m at the
point uk:

muk (u) = xk + Juk · (u − uk), (17)

where xk = m(uk) is the center of a Gaussian in ray space. The
Jacobian Juk is given by the partial derivatives of m at the point
uk:

Juk =
∂m

∂u
(uk). (18)

In the following discussion, we are omitting the subscript uk, hence
m(u) denotes the local affine approximation (17). We substitute
u = m−1(x) in (14) and apply Equation (10) to map the recon-
struction kernels to ray space, yielding the desired expression for
rk(x):

rk(x) =
1

|W−1| GV′
k
(m−1(x) − uk)

=
1

|W−1||J−1| GVk(x − xk), (19)

4

To appear in the Proceedings of IEEE Visualization 2001

x2

û

u2

1

l

uk

xk

Figure 3: Transforming the volume from camera to ray space. Top:
camera space. Bottom: ray space.

where Vk is the variance matrix in ray coordinates. According
to (10), Vk is given by:

Vk = JV′
k JT

= JWV′′
kWT JT . (20)

Note that for uniform or rectilinear data sets, V′
k has to be com-

puted only once per frame, since V′′
k is the same for all voxels

and W changes only from frame to frame. However, since the
Jacobian is different for each voxel position, Vk has to be recal-
culated for each voxel. In the case of curvilinear or irregular vol-
umes, each reconstruction kernel has an individual variance matrix
V′′

k . Our method efficiently handles this situation, requiring only
one additional 3 × 3 matrix multiplication. In contrast, previous
techniques [19, 11] cope with elliptical kernels by computing their
projected extents in screen space and then establishing a mapping
to a circular footprint table. However, this procedure is computa-
tionally expensive. It leads to a bad approximation of the integral
of the reconstruction kernel as pointed out in [15, 17].

As illustrated in Figure 4, the local affine mapping is exact only
for the ray passing through uk or xk, respectively. The figure is
exaggerated to show the non-linear effects in the exact mapping.
The affine mapping essentially approximates the perspective pro-
jection with an oblique orthographic projection. Therefore, parallel
lines are preserved, and approximation errors grow with increasing
ray divergence. However, the errors do not lead to visual artifacts
in general [15], since the fan of rays intersecting a reconstruction
kernel has a small opening angle due to the local support of the
reconstruction kernels.

A common approach of performing splatting with perspective
projection is to map the footprint function onto a footprint poly-
gon in camera space in a first step. In the next step, the footprint
polygon is projected to screen space and rasterized, resulting in the
so-called footprint image. As mentioned in [15], however, this re-
quires significant computational effort. In contrast, our framework
efficiently performs perspective projection by mapping the volume
to ray space, which requires only the computation of the Jacobian
and two 3 × 3 matrix multiplications. For spherical reconstruction
kernels, these matrix operations can be further optimized as shown
in Section 6.

u2
r'k(u)

rk(x)

û

uuukkk

xk xkx̂k x̂k

xk2 xk2

Figure 4: Mapping a reconstruction kernel from camera to ray
space. Top: camera space. Bottom: ray space. Left: local affine
mapping. Right: exact mapping.

4.5 Integration and Band-Limiting
We integrate the Gaussian reconstruction kernel of (19) according
to (5), resulting in a Gaussian footprint function qk:

qk(x̂) =

Z
R

1

|J−1||W−1| GVk(x̂− x̂k, x2 − xk2) dx2

=
1

|J−1||W−1|GV̂k
(x̂ − x̂k), (21)

where the 2 × 2 variance matrix V̂k of the footprint function is
obtained from Vk by skipping the last row and column, as shown
in (13).

Finally, we choose a Gaussian low-pass filter h = GVh(x̂),
where the variance matrix Vh ∈ R

2×2 is typically the identity
matrix. With (11), we compute the convolution in (8), yielding the
EWA volume resampling filter:

ρk(x̂) = (qk ⊗ h)(x̂)

=
1

|J−1||W−1| (GV̂k
⊗ GVh)(x̂ − x̂k)

=
1

|J−1||W−1| GV̂k+Vh(x̂ − x̂k). (22)

5 Reduction from Volume to Surface Re-
construction Kernels

Since our EWA volume resampling filter can handle arbitrary Gaus-
sian reconstruction kernels, we can represent the structure of a vol-
ume data set more accurately by choosing the shape of the recon-
struction kernels appropriately. For example, we can improve the
precision of isosurface rendering by flattening the reconstruction
kernels in the direction of the surface normal. We will show below
that an infinitesimally flat Gaussian volume kernel is equivalent to a
Gaussian surface texture reconstruction kernel [21]. In other words,
we can extract and render a surface representation from a volume
data set directly by flattening volume reconstruction kernels into
surface reconstruction kernels. Our derivation is illustrated in Fig-
ure 5.

5

To appear in the Proceedings of IEEE Visualization 2001

(u0, u1)

u2 x2

(x0, x1)

3D viewing transformation integration

11/s

s ∞

(u0, u1)

u2 x2

(x0, x1)

2D to 3D parameterization 3D to 2D projection

1

2D to 2D compound mapping

object space camera space screen space

Figure 5: Reducing a volume reconstruction kernel to a surface re-
construction kernel by flattening the kernel in one dimension. Top:
rendering a volume kernel. Bottom: rendering a surface kernel.

We construct a flattened Gaussian reconstruction kernel in object
space by scaling a spherical Gaussian in one direction by a factor
1/s, hence its variance matrix is:

V′′ =

0
@ 1 0 0

0 1 0
0 0 1

s2

1
A .

A scaling factor s = 1 corresponds to a spherical 3D kernel. In the
limit, if s = ∞, we get a circular 2D kernel.

To render this reconstruction kernel, we first apply a 3D trans-
formation matrix W, which may contain arbitrary modeling trans-
formations concatenated with the viewing transformation. Then we
use the local affine approximation of Equation (17) to map the ker-
nel to ray space. The variance matrix V of the reconstruction kernel
in ray space is computed as in (20). We introduce the matrix T3D

to denote the concatenated 3D mapping matrix T3D = JW and
write V as:

V = JWV′′WT JT = T3DV′′T3DT

.

Hence, the elements vij of V are given by:

v00 = t200 + t201 +
t202
s2

v01 = v10 = t00t10 + t01t11 +
t02t12
s2

v02 = v20 = t00t20 + t01t21 +
t02t22
s2

v11 = t210 + t211 +
t212
s2

v12 = v21 = t10t20 + t11t21 +
t12t22
s2

v22 = t220 + t221 +
t222
s2

,

where we denote an element of T3D by tij .
We compute the 2D Gaussian footprint function by integrating

the reconstruction kernel. According to (13), its 2D variance ma-
trix is obtained by skipping the third row and column in V. As
s approaches infinity, we therefore get the following 2D variance

matrix V̂:

V̂ =

�
t200 + t201 t00t10 + t01t11

t00t10 + t01t11 t210 + t211

�
. (23)

Conveniently, the 2D variance matrix can be factored into a 2D
mapping T2D , which is obtained from the 3D mapping matrix by
skipping the third row and column:

V̂ = T2DT2DT

=

�
t00 t01
t10 t11

��
t00 t10
t01 t11

�
. (24)

Let us now analyze the 2D mapping matrix T2D. First, we need
an explicit expression for the Jacobian J of the projective mapping.
Using (15) and (18), it is given by:

J =

0
@ 1/u2 0 −u0/u

2
2

0 1/u2 −u1/u
2
2

u0/l
′ u1/l

′ u2/l
′

1
A , (25)

where l′ = ‖(u0, u1, u2)
T ‖. With T3D = JW, we use the first

two rows of J and the first two columns of W to factor T2D into:

T2D =

�
1/u2 0 −u0/u

2
2

0 1/u2 −u1/u
2
2

�0
@ w00 w01

w10 w11

w20 w21

1
A ,

where wij denotes an element of W. This can be interpreted as a
concatenation of a 2D to 3D with a 3D to 2D mapping, resulting in
a compound 2D to 2D mapping similar as in conventional texture
mapping [3]. We illustrate this process schematically in Figure 5
and more intuitively in Figure 6. The first stage is a parameteriza-
tion of a 3D plane. It maps a circular 2D texture kernel onto a plane
defined by the two vectors (w00, w10, w20)

T and (w01, w11, w21)
T

in 3D camera space, resulting in an ellipse. The second stage is an
oblique parallel projection with an additional scaling factor 1/u2,
which is the local affine approximation of the perspective projec-
tion. Finally, combining the projected ellipse with a low-pass filter
as in Equation (8) yields a texture filter that is equivalent to Heck-
bert’s EWA filter [4]. This is the same result as we derive in [21].
We compare splatting with volumetric kernels and splatting with
surface kernels in Section 7.

2D to 3D parameterization 3D to 2D projection

2D to 2D compound mapping

(u0,u1,u2)
T

camera space

(w00,w10,w20)
T

(w01,w11,w21)
T

2D texture kernels

Figure 6: Rendering surface kernels.

6 Implementation
We implemented a volume rendering algorithm based on the EWA
splatting equation. Our implementation is embedded in the VTK
(visualization toolkit) framework [16]. We did not optimize our
code for rendering speed. We use a sheet buffer to first accumulate
splats from planes in the volume that are most parallel to the pro-
jection plane [19]. In a second step, the final image is computed

6

To appear in the Proceedings of IEEE Visualization 2001

by compositing the sheets back to front. Shading is performed us-
ing the gradient estimation functionality provided by VTK and the
Phong illumination model.

We summarize the main steps which are required to compute the
EWA splat for each voxel:

1: for each voxel k {
2: compute camera coords. u[k];
3: compute the Jacobian J;
4: compute the variance matrix V[k];
5: project u[k] to screen coords. x_hat[k];
6: setup the resampling filter rho[k];
7: rasterize rho[k];
8: }

First, we compute the camera coordinates uk of the current voxel k
by applying the viewing transformation to the voxel center. Using
uk, we then evaluate the Jacobian J as given in Equation (25). In
line 4, we transform the Gaussian reconstruction kernel from object
to ray space. This transformation is implemented by Equation (20),
and it results in the 3 × 3 variance matrix Vk of the Gaussian in
ray space. Remember that W is the rotational part of the viewing
transformation, hence it is typically orthonormal. Moreover, for
spherical kernels, V′′

k is the identity matrix. In this case, evaluation
of Equation (20) can be simplified significantly. Next, we project
the voxel center from camera space to the screen by performing a
perspective division on uk . This yields the 2D screen coordinates
x̂k. Now we are ready to setup the resampling filter ρk according to
Equation (22). Its variance matrix is derived from Vk by omitting
the third row and column, and adding a 2×2 identity matrix for the
low-pass filter. Moreover, we compute the determinants 1/|J−1|
and 1/|W|−1 that are used as normalization factors.

Finally, we rasterize the resampling filter in line 7. As can be
seen from the definition of the elliptical Gaussian (9), we also need
the inverse of the variance matrix, which is called the conic matrix.
Let us denote the 2 × 2 conic matrix of the resampling filter by Q.
Furthermore, we define the radial index function

r(x̄) = x̄T Qx̄ where x̄ = (x̄0, x̄1)
T = x̂ − x̂k.

Note that the contours of the radial index, i.e., r = const. are
concentric ellipses. For circular kernels, r is the squared distance to
the circle center. The exponential function in (9) can now be written
as e−

1
2 r . We store this function in a 1D lookup table. To evaluate

the radial index efficiently, we use finite differencing. Since r is
biquadratic in x̄, we need only two additions to update r for each
pixel. We rasterize r in a rectangular, axis aligned bounding box
centered around x̂k as illustrated in Figure 7. Typically, we use
a threshold c = 4 and evaluate the Gaussian only if r(x̄) < c.
Heckbert provides pseudo-code of the rasterization algorithm in [4].

x-0
x-1x̂k

r(x-) = c

rasterization bounding box

x̂

Figure 7: Rasterizing the resampling filter.

7 Results
The EWA resampling filter has a number of useful properties, as
illustrated in Figure 8. When the mapping from camera to ray
space minifies the volume, size and shape of the resampling filter
are dominated by the low-pass filter, as in the left column of Fig-
ure 8. In the middle column, the volume is magnified and the re-
sampling filter is dominated by the reconstruction kernel. Since the
resampling filter unifies a reconstruction kernel and a low-pass fil-
ter, it provides a smooth transition between magnification and mini-
fication. Moreover, the reconstruction kernel is scaled anisotropi-
cally in situations where the volume is stretched in one direction
and shrinked in the other, as shown in the right column. In the bot-
tom row, we show the filter shapes resulting from uniformly scaling
the reconstruction kernel to avoid aliasing, as proposed by Swan et
al. [17]. Essentially, the reconstruction kernel is enlarged such that
its minor radius is at least as long as the minor radius of the low-
pass filter. For spherical reconstruction kernels, or circular footprint
functions, this is basically equivalent to the EWA resampling filter.
However, for elliptical footprint functions, uniform scaling leads
to overly blurred images in the direction of the major axis of the
ellipse.

–1.5

–1

–0.5

0

0.5

1

1.5

–1.5 –1 –0.5 0.5 1 1.5

–1.5

–1

–0.5

0

0.5

1

1.5

–1.5 –1 –0.5 0.5 1 1.5

–6

–4

–2

0

2

4

6

–6 –4 –2 2 4 6

–6

–4

–2

0

2

4

6

–6 –4 –2 2 4 6

–6

–4

–2

0

2

4

6

–6 –4 –2 2 4 6

–1.5

–1

–0.5

0

0.5

1

1.5

–1.5 –1 –0.5 0.5 1 1.5

–2

–1

0

1

2

–2 –1 1 2

–2

–1

0

1

2

–2 –1 1 2

–2

–1

0

1

2

–2 –1 1 2

minification magnification anisotropic
minification-magnification

fo
ot

pr
in

t f
un

ct
io

n
lo

w
-p

as
s

fil
te

r
re

sa
m

pl
in

g
fil

te
r

–2

–1

0

1

2

–2 –1 1 2

–6

–4

–2

0

2

4

6

–6 –4 –2 2 4 60

0. 5

1

1. 5

–1.5 0.5 1 1.5–0.5–1

–0.5

–1

–1.5

S
w

an
's

 r
ec

on
st

ru
ct

io
n

ke
rn

el

⊗

=

Figure 8: Properties of the EWA resampling filter

We compare our method to Swan’s method in Figure 8 (see col-
orplate). The images on the left were rendered with EWA volume
splats, those on the right with Swan’s uniformly scaled kernels. We
used a square zebra texture with x and y dimensions of 1024× 512
in the first row, and 1024 × 256 in the second row. This leads
to elliptical reconstruction kernels with a ratio between the length
of the major and minor radii of 2 to 1 and 4 to 1, respectively.
Clearly, the EWA filter produces a crisper image and at the same
time does not exhibit aliasing artifacts. As the ratio between the ma-
jor and minor radii of the reconstruction kernels increases, the dif-
ference to Swan’s method becomes more pronounced. For strongly
anisotropic kernels, Swan’s uniform scaling produces excessively

7

To appear in the Proceedings of IEEE Visualization 2001

blurred images, as shown on the right in Figure 8 . Each frame took
approximately 6 seconds to render on an 866 MHz PIII processor.

In Figure 9 (see colorplate), we compare EWA splatting using
volume kernels on the left to surface reconstruction kernels on the
right. The texture size is 512 × 512 in x and y direction. Typ-
ically, the perspective projection of a spherical kernel is almost
a circle. Therefore, rendering with volume kernels does not ex-
hibit anisotropic texture filtering and produces textures that are
slightly too blurry, similar to isotropic texture filters such as tri-
linear mipmapping. On the other hand, splatting surface kernels
is equivalent to EWA texture filtering. Circular surface kernels are
mapped to ellipses, which results in high image quality because of
anisotropic filtering.

In Figure 10 (see colorplate), we show a series of volume ren-
derings of the UNC CT scan of a human head (256 × 256 × 225),
the UNC engine (256 × 256 × 110), and the foot of the visible
woman dataset (152 × 261× 220). The texture in the last example
is rendered using EWA surface splatting, too. The images illustrate
that our algorithm correctly renders semitransparent objects as well.
The skull of the UNC head, the bone of the foot, and the iso-surface
of the engine were rendered with flattened surface splats oriented
perpendicular to the volume gradient. All other voxels were ren-
dered with EWA volume splats. Each frame took approximately 11
seconds to render on an 866 MHz PIII processor.

8 Conclusion and Future Work
We present a new splat primitive for volume rendering, called the
EWA volume resampling filter. Our primitive provides high quality
antialiasing for splatting algorithms, combining an elliptical Gaus-
sian reconstruction kernel with a Gaussian low-pass filter. We use a
novel approach of computing the footprint function. Exploiting the
mathematical features of 2D and 3D Gaussians, our framework ef-
ficiently handles arbitrary elliptical reconstruction kernels and per-
spective projection. Therefore, our primitive is suitable to render
regular, rectilinear, curvilinear, and irregular volume data sets. Fi-
nally, we derive a formulation of the EWA surface reconstruction
kernel, which is equivalent to Heckbert’s EWA texture filter. Hence
we call our primitive universal, facilitating the reconstruction of
surface and volume data.

We have not yet investigated whether other kernels besides ellip-
tical Gaussians may be used with this framework. In principle, a
resampling filter could be derived from any function that allows the
analytic evaluation of the operations described in Section 4.2 and
that is a good approximation of an ideal low-pass filter.

To achieve interactive frame rates, we are currently investigat-
ing the use of graphics hardware to rasterize EWA splats as tex-
ture mapped polygons. We also plan to use sheet-buffers that are
parallel to the image plane to eliminate popping artifacts. To ren-
der non-rectilinear datasets we are investigating fast back-to-front
sorting algorithms. Furthermore, we want to experiment with our
splat primitive in a post-shaded volume rendering pipeline. The
derivative of the EWA resampling filter could be used as a band-
limited gradient kernel, hence avoiding aliasing caused by shading
for noisy volume data. Finally, we want to exploit the ability of
our framework to render surface splats. In conjunction with voxel
culling algorithms we believe it is useful for real-time iso-surface
rendering.

9 Acknowledgments
Many thanks to Lisa Sobierajski Avila for her help with our imple-
mentation of EWA volume splatting in vtk. We would also like to
thank Paul Heckbert for his encouragement and helpful comments.
Thanks to Chris Wren for his supporting role in feeding us, and to
Jennifer Roderick and Martin Roth for proofreading the paper.

References
[1] B. Cabral, N. Cam, and J. Foran. Accelerated Volume Rendering and Tomo-

graphic Reconstruction Using Texture Mapping Hardware. In 1994 Workshop
on Volume Visualization, pages 91–98. Washington, DC, October 1994.

[2] A. Van Gelder and K. Kim. Direct Volume Rendering with Shading via Three-
Dimensional Textures. In ACM/IEEE Symposium on Volume Visualization, pages
23–30. San Francisco, CA, October 1996.

[3] P. Heckbert. Survey of Texture Mapping. IEEE Computer Graphics & Applica-
tions, 6(11):56–67, November 1986.

[4] P. Heckbert. Fundamentals of Texture Mapping and Image Warping. Master’s
thesis, University of California at Berkeley, Department of Electrical Engineer-
ing and Computer Science, June 17 1989.

[5] James T. Kajiya and Brian P. Von Herzen. Ray Tracing Volume Densities.
Computer Graphics (Proceedings of SIGGRAPH 84), 18(3):165–174, July 1984.
Held in Minneapolis, Minnesota.

[6] P. Lacroute and M. Levoy. Fast Volume Rendering Using a Shear-Warp fac-
torization of the Viewing Transform. In Computer Graphics, Proceedings of
SIGGRAPH 94, pages 451–457. July 1994.

[7] D. Laur and P. Hanrahan. Hierarchical Splatting: A Progressive Refinement
Algorithm for Volume Rendering. In Computer Graphics, SIGGRAPH ’91 Pro-
ceedings, pages 285–288. Las Vegas, NV, July – August 1991.

[8] M. Levoy. Display of Surfaces From Volume Data. IEEE Computer Graphics &
Applications, 8(5):29–37, May 1988.

[9] L. Lippert and M. H. Gross. Fast Wavelet Based Volume Rendering by Accumu-
lation of Transparent Texture Maps. Computer Graphics Forum, 14(3):431–444,
August 1995. ISSN 1067-7055.

[10] X. Mao. Splatting of Non Rectilinear Volumes Through Stochastic Resam-
pling. IEEE Transactions on Visualization and Computer Graphics, 2(2):156–
170, June 1996.

[11] X. Mao, L. Hong, and A. Kaufman. Splatting of Curvilinear Volumes. In IEEE
Visualization ’95 Proc., pages 61–68. October 1995.

[12] N. Max. Optical Models for Direct Volume Rendering. IEEE Transactions on
Visualization and Computer Graphics, 1(2):99–108, June 1995.

[13] K. Mueller, T. Moeller, and R. Crawfis. Splatting Without the Blur. In Proceed-
ings of the 1999 IEEE Visualization Conference, pages 363–370. San Francisco,
CA, October 1999.

[14] Klaus Mueller and Roger Crawfis. Eliminating Popping Artifacts in Sheet
Buffer-Based Splatting. IEEE Visualization ’98, pages 239–246, October 1998.
ISBN 0-8186-9176-X.

[15] Klaus Mueller and Roni Yagel. Fast Perspective Volume Rendering with Splat-
ting by Utilizing a Ray-Driven Approach. IEEE Visualization ’96, pages 65–72,
October 1996. ISBN 0-89791-864-9.

[16] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit. Prentice
Hall, second edition, 1998.

[17] J. E. Swan, K. Mueller, T. Möller, N. Shareef, R. Crawfis, and R. Yagel. An Anti-
Aliasing Technique for Splatting. In Proceedings of the 1997 IEEE Visualization
Conference, pages 197–204. Phoenix, AZ, October 1997.

[18] L. Westover. Interactive Volume Rendering. In C. Upson, editor, Proceedings
of the Chapel Hill Workshop on Volume Visualization, pages 9–16. University of
North Carolina at Chapel Hill, Chapel Hill, NC, May 1989.

[19] L. Westover. Footprint Evaluation for Volume Rendering. In Computer Graph-
ics, Proceedings of SIGGRAPH 90, pages 367–376. August 1990.

[20] C. Wittenbrink, T. Malzbender, and M. Goss. Opacity-Weighted Color Interpo-
lation For Volume Sampling. IEEE Symposium on Volume Visualization, 1998,
pages 431–444. ISBN 0-8186-9180-8.

[21] M. Zwicker, H. Pfister., J. Van Baar, and M. Gross. Surface Splatting. In Com-
puter Graphics, SIGGRAPH 2001 Proceedings. Los Angeles, CA, July 2001.

8

EWA Volume Splatting Swan et al.

Figure 8: Comparison between EWA volume splatting and Swan et al. Top row: 1024 × 512 × 3 volume texture.
Bottom row: 1024 × 256 × 3 volume texture. The image resolution is 400 × 150 pixels.

EWA Volume Splatting EWA Surface Splatting

Figure 9: EWA volume splatting versus EWA surface splatting; 512× 512× 3 volume texture. The image resolution is
500 × 342 pixels.

(a) UNC Head (b) UNC Engine (c) Visible Woman Foot

Figure 10: Semitransparent objects rendered using EWA volume splatting. The skull of the UNC head, the iso-surface
of the engine, and the bone of the foot are rendered with flattened surface splats.

