
Comparing Simplification and Image-Based
Techniques for 3D Client-Server

Rendering Systems
W. Pasman and F.W. Jansen, Member, IEEE

Abstract—A mathematical model is presented for comparing geometric and image-based simplification methods. Geometric

simplification reduces the number of polygons in the virtual object and image-based simplification replaces the object with an image.

Our model integrates and extrapolates existing accuracy estimates, enabling the comparison of different simplification methods in

order to choose the most efficient method in a given situation. The model compares data transfer and rendering load of the methods.

Byte size and expected lifetime of simplifications are calculated as a function of the desired visual quality and the position and

movement of the viewer. An example result is that, in typical viewing and rendering conditions and for objects with a radius in the order

of one meter, imposter techniques can be used at viewing distances above 15 meters. Below that, simplified polygon objects are

required and, below one meter distance, the full-resolution virtual object has to be rendered. An electronic version of the model is

available on the web.

Index Terms—Real-time rendering, dynamic geometry simplification, imposters, resource load, thin client, mathematical model.

�

1 INTRODUCTION

VARIOUS geometric and image-based simplification tech-
niques, such as simple imposters [65], [42], meshed

imposters [69], [16], and simplified polygon models [66]
have been developed to adapt the complexity of a scene to
the available bandwidth and capacity of the rendering
engine and network. These simplification and imposter
techniques often preserve, for a given viewpoint, crucial
aspects of the objects, such as contour and front image,
while sacrificing geometric accuracy for other viewpoints.
This introduces the notion of lifetime for the simplified
representation: As the viewpoint changes, the visual
distortion will grow and will run the simplification
obsolete. The representation then will have to be refreshed
or replaced with another form of geometric simplification.

We assume that the rendering and simplification are

separated and can be characterized as a server-client

architecture, where the server holds the complete scene

model database and supplies the rendering client with a

scene description of reduced size with the appropriate level

of detail. This simplified scene can be rendered in real time

while making as few sacrifices to the image quality as

possible. A similar client-server setup can be found in web-

based systems where the data transfer capacity and latency

of the communication link, as well as the temporal validity

of parts of the model, impose additional constraints on the

model complexity [8], [32]. Our focus is on thin clients, such

as mobile phones and mobile augmented reality systems

[72], where it is essential to manage the CPU, memory, and

communication load on the client. Nevertheless, our model
also applies to fat-client setups. We will restrict the object

representations to single-resolution meshes with multi-
resolution textures in order to avoid excessive complexity
in the modeling.

Intuitively, simple imposters are cheapest to transmit
and render and remain correct relatively long if the object is
far away. But, for nearby objects, the viewpoint changes

relatively rapidly and quickly outdates the imposter. In that
case, a simplified polygon object is preferable. For objects at

moderate distance, the meshed imposter seems to be the
most appropriate. See Fig. 1. Shade et al. [68] suggests a

similar use of various simplification methods.
Our purpose is 1) to compare the different simplification

methods and 2) to select the appropriate representations

dynamically given limited resources. For this, we present a
model for these simplification methods that relates the load

on the communication link and the load on the rendering
engine to the visual accuracy.

We start with a discussion of previous work. In Section 3,

we give an overview of our approach and list the
assumptions we made. In Section 4, we derive distortion
formulas for the various simplification methods. These

formulas are inverted in Section 5 to estimate the required
number of polygons and the size of the textures given a

desired accuracy. These sizes can then be converted into a
byte size. The communication load is then estimated by

dividing the estimated byte size by the planned lifetime of
the virtual objects. In Section 6, results are plotted for the

various simplification methods to compare the load on the
communication link and on the rendering engine. A partial
validation of the model is given in Section 7. Conclusions

are summarized in Section 8.

226 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 2, APRIL-JUNE 2003

. The authors are with Delft University of Technology, Mekelweg 4, 2628
CD Delft, The Netherlands.
E-mail: W.Pasman@twi.tudelft.nl, F.W.Jansen@cs.tudelft.nl.

Manuscript received 11 Dec. 2000; revised 11 Feb. 2002; accepted 18 May
2002.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number 113279.

1077-2626/03/$17.00 � 2003 IEEE Published by the IEEE Computer Society

2 PREVIOUS WORK

2.1 Latency in Thin-Client Rendering Architectures

This section reviews latency issues with respect to thin-
client architectures. Latency is the time lag between the
moment the user changes his viewpoint and the moment
the images for his new viewpoint are actually presented to
him. Latency is a problem with many virtual reality (VR)
and augmented reality (AR) applications as it will cause
incorrect placement and floating of virtual objects, and may
even cause simulator sickness. For VR, latencies of 60 to
150 ms are very noticeable [1] and, for car driving, 30 ms
seems the maximum [51]. Prediction has been used to
alleviate these problems [5]. However, such predictions give
acceptable results only when the predicted time is very small
and problems become worse as headsets become lighter and
the user can move around less encumbered. With AR, the
latency requirements are even tighter as displacements
between real and virtual objects can be observed directly.
The definitive answer to resolving latency problems seems to
be to adjust the rendering pipeline architecture to allow low
latency rendering [49], [54], [60].

Regan and Pose [60] inserted five frame buffers instead
of the usual single frame buffer between the rendering
engine and display. Each of the five buffers has its own
rendering rate, ranging from 3.75 to 60 Hz, and the virtual
objects are assigned to the appropriate buffer according to
their refresh requirements. The buffers contain an image
which completely surrounds the viewer, enabling quick
generation of images for new viewing directions. The
currently visible part from each of the buffers is merged
in real time during display scan-out, giving latencies in the
order of a few microseconds only. Although a very clean
solution, this approach heavily increases the amount of
display memory required and the number of pixels to be
drawn into the buffers and the low latency is reached only
when the viewpoint rotates, but not when it translates as
well. Furthermore, this approach still requires the client to
have the full, unsimplified virtual objects available for
rendering, posing high loads on the network connection.

An extreme form of thin-client rendering architecture is a
mobile AR system, where the user is wearing a see-through
display that receives its information over a wireless link
[72], [56]. Here, the constraints are extremely severe: AR
requires a latency of less than 10 ms between a change of
viewpoint and the refresh of the display [54], [6], [51].

Moreover, the mobile link has a limited bandwidth
(2-10 Mbit/s), which may fail now and then, and introduces
by itself a latency of approx. 100 ms. Finally, the client
should be lightweight and low-power, which limits the
possibilities for local storage and processing.

In a distributed rendering system, a latency requirement
of less than 10 ms can only be met with a latency-layered
structure. A first coarse approximation is rendered instan-
teously in the client which is then successively refined with
additional information from the backbone. In [35], an
approximate image is rendered using a coarse polygon
model and its appearance is then improved by sending
additional texture information from the backbone. A similar
approach is presented in [43], where a first approximation is
derived by warping the old image for the new viewpoint.
The image is then corrected with an incremental image
update sent by the backbone. Although these methods mask
the visual effects of the network latency, the extra rendering
effort in the client increases the overall latency within the
client itself.

Fig. 2 shows the structure that we chose for our mobile
AR system [72]. This structure aims to provide the client
with the appropriate simplifications in time, without
sacrificing image quality. The server holds the model
database and compiles the scene graph every second into
a viewpoint dependent representation. With a new view-
point estimate based on vision tracking, obtained a few
times per second, the simplified scene graph is further
adapted and compiled into a display list. This display list
and the associated imposter textures are then transferred to
the mobile unit and repeatedly rerendered for new view-
point estimates based on inertial tracking.

To keep the latency below 10 ms, the client generates image
parts just ahead of the display’s raster beam. The display is
subdivided into four horizontal slices and the image for each
slice is rendered with a new viewpoint (every 4 ms). In this
way, we can use conventional polygon rendering hardware
to render approximately 350 texture-mapped polygons with
a maximum latency of 10 ms [54], [55].

2.2 Choices Concerning Scene Simplification

Various methods have been proposed to simplify objects in
a virtual scene (Fig. 3). The simple imposter [65], [3], [42],
[19], [67], also called billboard in VRML [73], replaces the
object or a group of objects with a single image. The meshed
imposter [69], [16], [15], [61], sometimes called textured
depth mesh [2], also consists of a single image, but now the
image is mapped onto a depth mesh that roughly
approximates one side of the object. The simplified polygon

PASMAN AND JANSEN: COMPARING SIMPLIFICATION AND IMAGE-BASED TECHNIQUES FOR 3D CLIENT-SERVER RENDERING SYSTEMS 227

Fig. 1. Various simplification methods are most effective at different

distances.

Fig. 2. Latency layered rendering system.

object is a full 3D approximation of the original 3D object,
but with fewer polygons. The image with depth (IwD) [48],
[43], [44] is a single image where each image pixel has a
separate depth value. Finally, the layered depth image
(LDI) [68], [44] is an extension on the IwD, where each pixel
stores multiple color/depth pairs.

Often, the image is placed on a billboard rotating only
around the vertical axis in order to keep it facing as well as
possible toward the observer [73]. We use a more general
simple imposter that can rotate about two axes, which is
perfectly aimed at the observer at each refresh, but does not
rotate between refreshes [65].

Other simplification mechanisms exist, but they are less
relevant for thin-client rendering systems. We do not
consider light fields and volume models because of their
heavy resource usage. We further exclude viewport-remap-
ping [60], image morphing [77], [34], and image inter and
extrapolation [13], [45] because we assume 3D rendering
capabilities to be available in the client and rerendering a
meshed imposter from a new viewpoint is of the same
complexity as warping one viewport image (see our
discussion in Section 6.2), while warping is less accurate.

2.3 Types of Error Metrics

To estimate the rendering and communication load given a
certain target quality, we need an error metric that rates the
quality of simplified objects. The metric will be used to
determine which simplification method is best in which
situation, to control the simplification (pre)process, and to

use the optimal level of detail given the size and importance
of the object and the varying distance to the viewer. Most
metrics available are designed to optimize the resulting
images for human perception. Two types can be distin-
guished: image-based and geometry-based error metrics.

2.3.1 Image-Based Metrics

Image-based analyses have mainly been developed in the
last 10 years for rendering systems aiming at maximally
realistic images. The importance of various image parts is
estimated from their contrast, color, and other properties
[31], [7] and this importance is used to allocate resources.
Resources can be accurately targeted by estimating the
reduced contrast sensitivity of the human system for objects
in motion [79], high background illumination levels, high
spatial frequencies, and high contrast levels [59].

Unfortunately, these advanced image-based analyses
developed for ray tracing can not yet be used for real-time
rendering. First, these techniques are still too CPU intensive
to apply in real time, usually it takes seconds to minutes for
analysis of the scene alone (e.g., [38]) and a lot of further
processing is required to get a single image or a general
simplification of the object. Furthermore, in real-time
interaction, the user will probably put more attention to
objects he is working with and is less guided by the spectral
properties of the objects in his surroundings. Finally, real-
time rendering requires careful deployment of the available
resources in order to have an acceptable image ready within
the constraints set by the system and the user and strict

228 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 2, APRIL-JUNE 2003

Fig. 3. A number of scene simplification methods. From top left, in clockwise order: the original object, simplified polygon object, meshed imposter,

IwD, and simple imposter.

resource scheduling is usually not an issue with ray-tracing
techniques.

There have been a few attempts to use image-based
metrics for real-time rendering. Horvitz and Lengyel [31]
proposed using a model of perceptual degradation caused
by rendering simple imposters that are affinely warped for
the final rendering (sprites) with fewer resources and a
model predicting on which sprite the attention of the user
is. However, in the prototype implementation [71], every
aspect of perceptual-based rendering is absent. Lindstrom
and Turk [38] estimated the impact of simplification by
comparing the simplified polygon object and the original
object rendered from multiple sides. Luebke and Hallen [39]
presented a model based on geometric estimations and did
a more thorough analysis estimating changes in the image
with respect to contrast and spatial frequencies. However,
this approach ignores textures. The most promising step
toward using image-based analysis for real-time rendering
seems to analyze textures in a preprocessing step and to
estimate their effect in the final rendering [18].

2.3.2 Geometry-Based Metrics

The most basic geometric distortion measure is the
Euclidean distance between the simplified and the original
surface. Usually, this metric is expressed relative to the
object’s size; we refer to this as relative distortion. Several
variants exist, using the mean or maximum distance and
Hausdorff, Fretchet, or Minkowski distance [74]. But, we
are not aware of results indicating which one is best for
predicting task performance.

Estimating the worst-case screen space errors (visual

distortion) from the geometry of the objects [28], [36], [40],
[78] is more optimized for human perception and more
appropriate for measuring quality in a complete scene.
Cohen et al. [14] also estimate texture error on the basis of
geometry.

Considering a moving viewpoint and a limited time and
bandwidth to adapt the geometric representation and to
refresh the image caches and imposters, it is crucial to have
a formula for the life span of the different objects in the
scene. Shade et al. [67] calculate a spherical region around
the current viewing position which guarantees a minimal
angular discrepancy between the real and imposter position
of an object. With an estimated trajectory for the moving
viewing position, a lower bound on the number of frames is
calculated for which the cache will remain valid. In [10], a
similar life span is estimated, but progressive meshes are
used to allow a more flexible caching of the geometry. In
both approaches, however, no tradeoff between imposters,
IwD, LDI, and simplified polygon object is made.

With a number of polygon simplification methods, the
amount of simplification attainable is limited for objects
containing many separate parts and holes. Even when
objects are clustered and holes filled, the practical gain with
polygon simplification is moderate. For instance, Garland
and Heckbert [24] show, for a human foot model containing
many holes, that the accuracy reachable with a certain
polygon quotum can only be doubled, in optimal cases
tripled, when using clustering as compared to normal
polygon simplification.

Imposter methods seem more efficient with respect to
grouping issues. Usually, a separation is made between the
nearby geometry, represented as full or simplified polygon
models, and far geometry, which is represented by simple
or meshed imposters. However, current approaches have
focused on only one type of imposters and do not provide
an explicit error measure and cost function to switch
between the different representations. For simple imposters,
Schaufler and Stürzlinger [65] estimate the worst-case
visual distortion from the object’s bounding box, viewing
parameters and observer’s change in viewing position.
Other derivations for simple imposters [67], [19], [42] are
similar. None of these estimations determine the optimal
position to place the imposter, but assume the imposter is
placed at the center of the object. For meshed imposters,
Decoret et al. [16] derive distortions due to overlap of
imposters in order to find an optimal assignment of objects
to imposters. They adopt Schaufler and Stürzlinger’s
formulas, but it seems that this will result in far too
pessimistic error estimations.

2.4 Error Metrics Compared

There are a number of image distortions that are hard to
capture with geometry-based metrics, although they can be
visually disturbing.

An important point is the effect of polygon simplification
on attributes attached to vertices and faces: These have to be
interpolated appropriately when the vertices and faces are
shifted around or removed [25], [30]. Error measurements
by Hoppe on color attributes suggest that the attribute
distortions behave in a similar way with respect to the
number of polygons as the geometry distortions. Garland
and Heckbert [25] indicate that, theoretically, the distortions
for texture attributes are expected to be lower than color
attributes because minimizing texture distortion requires
only an additional u and v parameter to be minimized in
error, while, for color attributes r, g, b, and, optionally,
transparency, parameters have to be minimized. The
approach of Cohen et al. [14] guarantees a maximum visual
error derived from geometric arguments and seems the best
answer to this problem.

For imposters, geometry-based metrics fail to capture the
effect of visibility gaps [43], [16] and rubber-sheet distortion
[57], [45]. There are a number of techniques to alleviate such
gap problems: interpolating pixels to fill the gap [45], [44],
[43], warping and overlaying multiple meshed imposters or
images with depth [16], [47], [57], calculating the missing
pixels in the server [43] or using layered depth images
instead of images with depth. But, again, their impact on
task performance is unknown. For our model, we will
ignore these problems.

Watson et al. [75], [76] did comparisons of both metrics
with respect to task performance. They measured the time it
takes humans to name a simplified object, human prefer-
ences, and similarity ratings with the original object. They
found that, for drastic simplifications [75], both the metric
by Bolin and Meyer [7], MSE, and maximum 3D distance
are a reasonable predictor for the naming time. A later
study with moderate simplifications [76] showed that
Metro’s mean, max, and mean square error measurements
[11] are good at predicting the similarity rating and

PASMAN AND JANSEN: COMPARING SIMPLIFICATION AND IMAGE-BASED TECHNIQUES FOR 3D CLIENT-SERVER RENDERING SYSTEMS 229

preference. However, all these metrics are quite bad at
predicting naming times, the best being a correlation of
30 percent reached both with Metro’s mean, MSE, and Bolin
and Meyer’s metric.

Concluding, it is unlikely that image-based error
metrics will be the basis of error metrics for real-time
rendering in the coming years. Both metrics have only
limited value for the actual task performance. We feel
that other information available at the geometry and
application level, such as task knowledge, user goals, and
preferences, could be used to improve task-related
predictions. Thus, we will focus on geometric distortions
for our model. In the following subsections, geometric
error metrics are discussed in more detail.

2.5 Error versus Rendering Resources

Many polygon simplification methods try to minimize
geometric distortion [66], [62]. Accurate accumulation of the
distortion from each simplification step is potentially
expensive, but, for instance, Garland and Heckbert [24]
made an efficient approximation using quadrics. To model
the typical errors with these simplification methods,
Funkhouser and Séquin [23] proposed formulas to model
the relative distortion and rendering costs as a function of
the number of faces, vertices, and pixels for rendering.
These are discussed in more detail in Section 4.1.

Progressive meshes [27], [20] are an efficient way to store
a series of simplifications of an object with decreasing
relative distortion. Combining geometric error measures
with progressive meshes allows us to efficiently select the
proper geometry for some viewing distance. In order to
optimize for viewing direction and field of view, local
refinement of meshes is required. For terrain models,
various methods were proposed [37], [29], [40], and gains
of 100� on the amount of polygons and 10� on the
amount of texture were reported [37]. For more arbitrary 3D
models, extending the progressive mesh to a progressive
mesh tree is essential in order to enable efficient local
refinement and this also enables handling of other geo-
metric factors such as surface normals and silhouette,
corners and surface discontinuities [28], [78], [40].

The common method to trigger the refresh of imposters
is to set a threshold on their geometric distortion [65], [67].
More advanced, for each precomputed LOD, the costs and
benefits of rendering can be compared [23], [42], [46].
Typically, this cost/benefit ratio is used to maximize the
possible quality within a certain rendering budget, for
instance, to keep a certain frame rate. Funkhouser and
Séquin [23] showed that, in general, this optimization
problem is NP-complete and they propose a greedy
algorithm to reach a point at least 50 percent from the
optimum. Maciel and Shirley [42] extend this model for
scene graphs, but run in problems estimating the optimum.
Mason and Blake [46] came with a practical approximation
to solve the resource scheduling problem for scene graphs.
Aliaga and Lastra [3] used a similar benefit/cost ratio.
Although their tradeoff is dynamic, the different simplifica-
tion levels are fixed during preprocessing and the meshed
imposters are preconstructed based on an octree cell
subdivision.

So far, no work is known to us that directly links the

visual accuracy to the rendering and communication load

and, at the same time, allows us to select the most

appropriate simplification method and level. Most pro-

posed techniques require a large set of precomputed object

representations. This seems suboptimal for imposters as the

number of possible positions will be large compared to the

number of actual viewpoints during walkthroughs and,

hence, there will be a mismatch between the actual

viewpoint and the viewpoints used for rendering the

imposters. Instead, our model assumes dynamically up-

dated imposters, which assures that the imposter exactly

fits the requirements, which in turn should result in a

longer lifetime of the new imposter and a lower commu-

nication load.

3 OVERVIEW AND ASSUMPTIONS

For our model, we will derive a formula that estimates the

load on the communication link for the different simplifica-

tion methods. The formula will be modeled as a function of

the radius r of the object, the distance d from the viewer to

the object, the maximum acceptable visual distortion D, and

the available number of polygons N.
As discussed, the model will be based on the visual

distortion as estimated from the maximum geometric

distortion. We chose to use the standard and freely

available Metro tool [11] to measure the one-sided Hausdorf

distance between the reference and simplified surface. Both

the mean and maximum distance will be discussed.

Relative distortion will be expressed as a fraction of the

object’s bounding sphere radius and will be referred to as

Drel, all other distortions D (with or without subscript) refer

to the visual distortion in radians.
The formulas will be constructed in a number of steps:

1. Estimate the distortion of an object. We estimate the
visual distortion D of a rendering of an object of
radius r, which was simplified to N polygons, where
the front side of the virtual object is at distance d and
the object is viewed at an angle � from the optimal
viewpoint vopt (Fig. 4). The optimal viewpoint is
especially relevant for imposters and images with
depth: It is the center of projection from which the
imposter is generated. It is called optimal viewpoint
because the simplified object will be rendered
undistorted when the user stands at that viewpoint.

2. Invert the distortion formulas. Inverse formulas are
constructed, to estimate the required number of

230 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 2, APRIL-JUNE 2003

Fig. 4. The circle indicates the object with radius r Optimal viewpoint vopt
is at distance d from the object’s surface. Current viewpoint v is at angle �

from vopt.

polygons N given a maximum visual distortion and
the required lifetime of the simplified objects.

3. Estimate texture size. Estimate the size of the
textures from the object size and distance, the
maximum acceptable visual distortion, and the
required lifetime.

4. Calculate communication link load. Convert the
number of texture pixels and polygons into a
number of bytes and divide the total number of
bytes by the lifetime to find the communication load.

The entire model and numerous figures are available for
Mathematica and in HTML and can be found on the
Internet: http://graphics.tudelft.nl/~wouter/publications/
model.

3.1 Assumptions

Numerous assumptions are needed to enable comparison of
the effects of all parameters on the final image quality.
Many assumptions may look somewhat arbitrary or over-
simplified. We chose to keep it simple in order to keep
overall complexity of the model as low as possible. More
future research is required in order to determine which
simplifications need refinement and in which cases.

Several estimations, interpolations, and extrapolations
will be done, considering partial results from the literature.
These will be discussed where introduced. Here, we discuss
the more general assumptions.

Distortion caused by latency due to head movements
and viewpoint changes will be separated from static
geometric scene distortion. Strictly, latency also causes
geometric distortion, but realistic latencies introduce such
tremendous distortions, even at moderate head movement
speeds, that all other distortions become negligible. Even
latencies as low as 10 ms [54] may cause visual distortions
in the order of degrees with moderate head movements.

Often, the distortions of frontal and side view can be
estimated accurately, but it has to be estimated for in-
between positions. As it seems reasonable to assume that
the distortion will not grow rapidly when close to the front
view, we use a sinusoidal function to model this.

For several calculations, the size of the virtual object
matters. To simplify matters, we assume a basically
spherical object, looked at from the outside. This does not
mean that we cannot handle large objects, but it means that
large objects have to be split into several smaller objects. We
will discuss neither how such splits can be done nor the
impact of such splits on performance. Instead, we assume
that the accuracy of the rendering of the entire scene is
reached if all parts that the scene consists of (or is split into)
are rendered with sufficient quality.

For meshed imposters, we will ignore rubber sheet
distortions and, for images with depth, we ignore visibility
gaps. This will result in slightly optimistic distortion values
for such simplifications.

To account for missing back faces of imposters, simple
area weighing will be used. Ignoring missing parts seems
just as unfair as using 100 percent distortion in case parts
are lacking.

Virtual objects are assumed to be triangle-based indexed
face sets. This choice was made to allow use of the many

existing tools and estimations from literature and because it
fits with our low-power approach for wearable augmented
reality [72].

For rendering, perfect bitmap caching is assumed,
although it is not clear how feasible this is in practice. It
might be necessary to insert some constant overhead factor,
but this seemed not essential for our model.

In order to model the walking behavior of the observer, it
is assumed that he will nicely walk around virtual objects as
he would walk around normal objects.

4 DISTORTION DUE TO SIMPLIFICATION

This section estimates the distortion that the various
simplification methods introduce. Formulas are derived
for polygon simplification, simple and meshed imposters,
images with depth, and layered depth images.

4.1 Polygon Simplification

When curves are plotted for the relative distortion against
the number of polygons on a log-log scale (Fig. 5), it shows
that most objects have a relatively large linear part.
Garland’s QSlim simplification software [58] was used to
simplify the objects and Metro [11] was used to calculate the
distortions. These curves usually have a slant of �45�,
which indicates that the curve behaves roughly as
Drel ¼ k=N , where k is some constant. A heuristic model
in [23] also proposes this formula, but only for flat shaded
objects, while suggesting Drel ¼ k=N2 for gouraud shaded
objects. However, their formulas are more focused on
appearance than on geometric distortion.

This result can be given theoretical support, as follows.
Fig. 6 shows a cross-section of a part of the surface and two
approximations. The rough approximation has a maximum
distortion e. The four smaller surfaces of the finer approx-
imation of the same area have a maximum distortion e0. The
figure shows only a cross-section of the surface, but, on a
2D surface, we now would have four subfaces replacing the
large surface.

From the figure, we can see that s ¼ r cos 2�,
e ¼ r� s ¼ r� r cos 2� ¼ rð1� cos 2�Þ, and

e0 ¼ r 1� cos �ð Þ:

We get, for the distortion ratio,

e0

e
¼ r 1� cos �ð Þ
r 1� cos 2�ð Þ ;

which converges quickly to 1/4 if � ! 0. Thus, if we
quadruple the number of polygons N, the distortion Drel

gets four times as small. This amounts to the equation
Drel ¼ k=N . To estimate k, Fig. 5 also shows the lines Drel ¼
k=N for a few k. When using the mean relative distortion,
k ¼ 1 seems a good estimate for surface models such as the
cow and the bunny, while k increases if the object has many
fine details, is built from several smaller objects, or is filled
with objects instead of being only a surface, as is shown
dramatically by the tree’s curve. For the maximum relative
distortion, k = 10 is a reasonable estimate for simple models.
The maximum distortion curves are more irregular than the
mean distortion curves. The maximum distortion curve

PASMAN AND JANSEN: COMPARING SIMPLIFICATION AND IMAGE-BASED TECHNIQUES FOR 3D CLIENT-SERVER RENDERING SYSTEMS 231

should be used for the guaranteed-quality mechanism used
in the model presented in this paper, but we expect that the
mean distortion curves will be better indicators of the global
quality of the object and therefore can be used in our model
when a minimum quality is required for the average
appearance only.

To convert a relative distortion to a visual distortion, we
multiply with the angle the full object subtends in the
observer’s field of view, 2 arctanðr=dÞ, which gives, for the
visual distortion of simplified polygon objects:

Dpolygon simpl ¼ 2k arctanðr=dÞ=N:

4.2 Viewpoint Dependent Polygon Simplification

The model presented here focuses on contour preservation
as the human visual system is highly sensitive to distortions
at the contours [33], while details in the front face and
highlights can also be suggested by adding a texture to the
object. Gu et al. [26] even proposed clipping simplified
renderings with a smooth contour, to improve the sub-
jective quality impression. Luebke and Erikson [40] mention
1 percent relative distortion when only the back faces of a
sphere are simplified, for a total of 3,388 triangles, while 1
percent silhouette error and 20 percent internal error is
reached with 1,950 triangles. From this, we estimate that the
front view relative distortion is half the distortion of a
viewpoint independent simplification with the same
amount of polygons, while the side view will have 10 times
higher distortion. We assume that the distortion will grow
sinusoidally between optimal (� ¼ 0) and worst (� ¼ 90)
viewpoint: We scale up the function 0:5� 0:5 cos 2� to start

at 0.5 and to end at 10 and multiply this with Dpolygon simpl.

And, again, a conversion is required from relative to visual

distortion, giving, for the visual distortion of viewpoint

dependent simplified polygons,

Dvpt dep simpl ¼
2k arctanðr=dÞð21� 19 cos 2�Þ

N
;

for �90 	 � 	 90.

4.3 Simple imposters

For simple imposters, the distortion depends on the

placement of the imposter. The optimal placement and the

resulting distortion will be calculated.
To find the maximum visual distortion when rendering

simple imposters, we take the point pf on the front face and

a point pb on the back face of the original object as far as

possible from the imposter surface (Fig. 7), as parallax shifts

depend on the distance from the projection plane. The

imposter is at distance dimp from the viewer, the surface of

the original object at distance d. For convenience, we set

ef ¼ dimp � d and eb ¼ d þ 2r� dimp, where r is the object’s

radius.
For simplicity, we assume that the center of projection,

which is the optimal viewpoint vopt, is on a line through pf
and pb and, therefore, both points are projected to p0 on the

232 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 2, APRIL-JUNE 2003

Fig. 5. Mean and maximum relative distortion. Cow from [58]. Tree and House (Maybeck Studio) from [4]. Buddha and Bunny from [70]. Knot is a

pipe bent into a three-dimensional lissajour figure.

Fig. 6. Cross-section of an object (solid line), an approximatation with

one surface (dashed), and an approximation with four surfaces (two

stippled lines).
Fig. 7. Visual distortion � caused by movement of viewpoint away from
the optimal viewpoint.

imposter. Theoretically, in some cases, off-axis projection is
an option for creating the imposter image, especially if the
original object is essentially flat, but the discussion is out of
the scope of this paper. The observer keeps a constant
distance dimp from the imposter. � is the angle between vopt
and the actual viewpoint v, relative to the point p0. Now, we
can derive the visual distortion �:

�f ¼ arcsinðef sinð�Þ=dfÞ
�b ¼ arcsinðeb sinð�Þ=dbÞ
� ¼ maxð�f ; �bÞ:

Fig. 8 shows �f and �b as a function of the distance to the
imposter plane, for a setting with d ¼ 5 m, � ¼ 25�, and
r ¼ 9 m. With the imposter at a five meter distance, the
object’s front side would coincide with the imposter plane
and there will be no distortion in the front of the object. At a
distance of 23 m, the object’s back side will coincide with
the imposter plane. The relative distortion is the maximum
of the two distortions, which is minimal where �f ¼ �b. As
can be seen, the optimal imposter distance is not in the
center of the original object (which would be at 14 m), but
closer to the viewpoint. This is also intuitively correct as the
back side of the object is less visible and smaller than the
front face.

Solving the equation �f ¼ �b gives

�minðd; r; �Þ ¼ if � ¼ 0 then 0 else

arcsin
cos�

2
ðr�dþS�2r cos �Þffiffi

2
p ffi

d2þdrþrðrþSÞ�ðdðrþSÞþ2rð2rþSÞÞ cos �þ2rðdþ2rÞ cos2 �
p

� ���� ���;
where

S ¼
ffi
dþ rð Þ2�4r2 cos �þ 4r2 cos2 �

q
:

The back of the object is not displayed on the imposter and,
because the imposter is flat, even looking from the side
results in 100 percent visual distortion or � ¼ 2 arctanðr=dÞ:
the angle in the field of view that the original object covers.
But, the formula we derived only calculates the maximum
distortion of objects depicted on the imposter and does not
estimate the distortion of not rendered parts. To account for
this, we add the front and back face distortions, weighted
with the area they cover on the screen, using a weighing
formula

D ¼ Dbackface 1� cos 2�ð Þ=2þDfrontface 1þ cos 2�ð Þ=2:

We then get for the total visual distortion of simple
imposters, assuming optimal placement of the imposter:

Dsimple imposter ¼
1� cos 2�

2
2 arctan

r

d

� �
þ 1þ cos 2�

2
�min d; r; �ð Þ:

Imposters with a simple texture map cannot handle

changing lighting conditions such as moving lamps. This

problem can be alleviated by using bump maps, but then it

is probably better to use an IwD to get higher accuracy with

the same transmission load.

4.4 Meshed Imposters

A meshed imposter can be seen as a polygon object with

only the front faces available. Therefore, the distortion in

the front faces is comparable with a simplified polygon

model with double the number of polygons, but with an

additional sin � term because the texture is optimized for

the optimal viewpoint: Dfront ¼ 2 arctanðr=dÞk=ð2NÞ sin �.

Again, we have no backfaces. Area weighing as with the

simple imposter gives

Dmeshed imposter ¼ ðð1� cos 2�Þ

þ ð1þ cos 2�Þk=ð2NÞ sin �Þ2 arctan r

d

� �
:

4.5 Images with Depth

If the texture is sampled appropriately, layered depth

images don’t have any distortion in the front faces. As with

meshed imposters, there are rubber sheet and visibility gap

problems, but we ignore these. Again, the main source of

distortion is the missing back face. Thus, we get, for the

visual distortion of images with depth:

DIwD ¼ ð1� cos 2�Þ arctanðr=dÞ:

The distortion probably is worse as side faces are

represented quite roughly, but it is hard to model this

accurately.

4.6 Layered Depth Images

As discussed in the previous work section, LDIs can solve

visibility gap problems in side views. But, an LDI does not

seem suited for rendering backfaces, given a practical

average number of pairs per pixel of 1.24 [68] and the need

for six LDIs to allow viewing from arbitrary viewpoints

[50]. The side faces will still be modeled quite roughly due

to limits on the number of color+depth pairs per pixel. So,

we estimate the distortion equal to the distortion of images

with depth.

5 CONVERSION OF THE DISTORTION FORMULAS

5.1 Inversion of the Formulas

Now that we have estimated the distortion as a function of

—among others—the number of available polygons, we can

invert these formulas to find the number of required

polygons given the maximum acceptable visual distortion

D (Table 1). The maximum acceptable visual distortion can

be determined by the application, user, or scene designer,

and it makes sense also to stay below the maximal

resolution of the user’s display.

PASMAN AND JANSEN: COMPARING SIMPLIFICATION AND IMAGE-BASED TECHNIQUES FOR 3D CLIENT-SERVER RENDERING SYSTEMS 233

Fig. 8. Visual distortion introduced by simple imposters of a point in front

and back of the object.

5.2 Integration of Lifetime

The formulas did not yet account for the minimal lifetime of

the simplified object T. Assuming an observer walking with

speed v, the observer can approach the object down to d�
vT meter if he started at distance d. If the observer can come

very close to the object, the distortion will go to infinity, no

matter how many polygons we spend on the object.

Therefore, we set a minimum distance MinDist and, if the

observer could come closer, we use the minimum distance

as the basis for further distortion requirements.
The angular distance the observer can walk around the

object � needs more attention. If the observer has time T to

walk around, he can walk a distance W ¼ vT . If the

observer starts at MinDist, we find � ¼ W=ðrþMinDistÞ.
If the observer is closer than MinDist from the object’s

surface, we also use this formula, to avoid excessive

refreshes. If the observer cannot reach the surface of the

object within time T, we get � ¼ arcsinðW=ðdþ rÞÞ. If the

observer can reach MinDist within time T, we need a

combination of these formulas (Fig. 9). We calculate the

distance to the side of the object

dside ¼
ffi
rþ dð Þ2� rþMinDistð Þ2

q
¼

ffi
d�MinDistð Þ dþMinDistþ 2rð Þ

p
and we then get for the maximum � reachable within time T:

� ¼
d 	 MinDist) W=ðrþMinDistÞ

W > dside)
arcsinðdside=ðdþ rÞÞ
þðW � dsideÞ=ðrþMinDistÞ

W 	 dside) arcsinðW=ðdþ rÞÞ:

8>>><
>>>:

5.3 Conversion to Byte Size

To estimate the data size of a conventional polygon model,

we assume that each polygon is a triangle with three

vertices. A minimum of four vertices per model will be

used. If we assume an average indexed faceset, each vertex

is reused six times. Each vertex consists of three position

coordinates, three normal coordinates, and two texture

coordinates. Putting it all together, we get

bits ¼ polygons bits per faceþ 3
 bits per vertex
vertex reuse rate

� �
;

where vertex reuse rate ¼ 6. Using current mesh compres-

sion techniques, such as difference coding, quantization,

and entropy coding [52], [63], [17], we need four to six bits

for each of the vertex and texture coordinates. Using a

limited set of 4,096 normal directions [17], we need only 12

bits for the normals. This gives a worst-case total of 5
 6þ
12 ¼ 42 bits per vertex. For coding the connectivity,

Rossignac [63] presented an algorithm compressing to two

bits per triangle. Together with Pajarola [52], he presented a

version supporting progressive meshes using 3.7 bits per

triangle. We conservatively set bits per face ¼ 4 as we will

consider incremental transport of the meshes. Plugging in

those values gives the formula bits ¼ 25 polygons.
Polygon objects can also be transmitted incrementally.

To estimate the byte size of such an incremental format, the

difference is used between the byte sizes of the equivalent

nonincremental polygon model at the current distance and

the worst-case reachable distance.

5.4 Required Texture Size

For the estimation of the number of polygons, we assumed

a constant polygon size over the entire object, which was

determined using the smallest reachable distance d. For the

textures, we want a more accurate estimation as the textures

are so much larger than the polygon data. As long as the

observer stays far from the object, we can simply divide the

angular size of the object by the maximum visual distortion

to get the number of pixels to be spent in one dimension on

the object and, squaring this value, we get the number of

pixels required for the front face of the object:

FarTextureSizeðdÞ ¼ 2 arctanðr=dÞ
D

� �2

:

234 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 2, APRIL-JUNE 2003

TABLE 1
Number of Polygons Required to Reach Visual Distortion Requirement D

The minimum N is set to 4 except in the last row.

Fig. 9. Maximum angular distance the observer can walk around the

object �. Thick black: the walking path. Thick gray: boundary of the

object.

Again, if the observer could reach the surface of the
object, we would need an infinitely high resolution and we
use MinDist instead.

If the observer comes close to the minimum distance and
walks around the object, we want to refresh only parts of the
object and not the entire object. For instance, if he is walking at
a speed of 1 m/s in front of a 20 m wide building and the
lifetime of the simplified version of the virtual building was
planned to be three seconds, we may want a texture with only
three meters of high resolution instead of the full 20 meters.
As an approximation to this behavior, we use the FarTex-
tureSize equation only if the observer cannot reach the
minimum distance. If the lifetime T is enough for the observer
to reach the minimum distance MinDist, we prepare for the
worst case where the observer would go as quickly as possible
to the object and then scan its surface from this closest
distance. Because we can’t predict in which direction he
will scan the surface, we have to prepare a texture area
following from the distance the observer can walk along
the surface of the object: dnear ¼ W � ðd�MinDistÞ.
Actually, we have to prepare more because the observer
can see more of the object than only the pixel in front of
him. To avoid difficult mathematics, we make some
approximations.

When the observer can walk a distance dnear along the
object’s surface, he can scan dnear=ðrþMinDistÞ radians of
the surface, corresponding to an area

scanareaðdnearÞ ¼
Z dnear=ðrþMinDistÞ

0

2(r2 sin �d�

¼ 2(r2ð1� cosðdnear=ðrþMinDistÞÞÞ:

Of course, the area is at most the full sphere, 4(r2. To
find the number of pixels corresponding to this area, we
have to divide this area by the area of a single pixel at the
smallest viewing distance, which is ðMinDist tanDÞ2,
giving

scanpixelsðdnearÞ ¼ scanareaðdnearÞ=ðMinDist tanDÞ2:

But, the observer can see more than the pixels straight
under him. To account for this, we use a slightly higher dnear
as if the observer had more time to scan the surface:
vispixelsðdnearÞ ¼ scanpixels dnear þ d0; rð Þ. The extra dis-
tance d0 is chosen such that the equation connects smoothly
to the FarTextureSize equation at dnear ¼ 0. Solving
vispixelsð0Þ ¼ FarTextureSizeðMinDistÞ gives

d0ðrÞ ¼ ðrþMinDistÞ

arccos 1� 2

(

Mindist arctanðr=MinDistÞ tanDÞ
r D

� �2
 !

:

Combining all this and plugging in the lifetime T and
observer speed v, we get

TextureSizeðr; v; T Þ ¼
vT > d�MinDist : vispixelsðvT � ðd� < MinDistÞÞ

else : FarTextureSizeðd� vT Þ:

�

This is both including front and back face and is in
pixels. Fig. 10 illustrates the texture size as a function of the

life time and the distance to the object. The number of pixels
still has to be multiplied with the number of bytes per pixel,
which varies from three (RGB), four (RGBA), to five
(RGBA+Depth). The IwD uses RGBAD. For the LDI, we
use 1.24 RGBAD+1 as 1.24 is a practical depth of an LDI [68]
and we need one extra byte per pixel to indicate the number
of layers per pixel.

Especially for imposter methods that need frequent
refresh, there will be a strong temporal coherence between
the textures. Therefore, MPEG-like video compression
methods [41], [9] can be exploited effectively to compress
the textures. Current MPEG compression can reach compres-
sion factors up to 75:1. For the other methods—IwD, LDI, and
polygon simplification methods (both incremental and
nonincremental)—refresh rates will be typically quite low
and jumpy. We expect a JPEG variant will be more effective
here, with typical compression ratios of 20:1 [12], [61].

5.5 Communication Link Load

To find the average communication link load, we divide the
model size as found in the previous sections by the
lifetime T, incorporating the probability that a model
refresh is really required. The user can move in six
directions (three degrees of freedom and two directions
on each axis), but only a few of these directions actually
require updating of the polygon model. We have to refresh
a polygon model (either normal or incrementally coded)
only if the observer gets closer to the model, a probability of
1/6. All other models, including the viewpoint dependent
polygon simplification, have to be refreshed also when the
observer moves around the object, a probability of 5/6.

6 RESULTS

In this section, results on the communication link load and
CPU and memory usage are plotted and discussed.

6.1 Results on the Communication Link Load

Fig. 11 shows the results for an object size r ¼ 1 m and a
maximal acceptable visual distortion D ¼ 1 mrad, which is
approximately the size of a pixel on a 640 � 480display with
a field of view of 40� � 35�. MinDist is 0.2 m, the observer
speed v ¼ 1 m=s and the object complexity k ¼ 5 in all
examples in this section. Incremental transport of the full
polygon objects gives on average the lowest transport costs.

PASMAN AND JANSEN: COMPARING SIMPLIFICATION AND IMAGE-BASED TECHNIQUES FOR 3D CLIENT-SERVER RENDERING SYSTEMS 235

Fig. 10. Uncompressed texture size as a function of the lifetime T and

the distance to the object d. Distortion D ¼ 0:004 rad, object size

r ¼ 0:5 m, v ¼ 0:7 m=s, and MinDist ¼ 0:2 m.

Thus, our model predicts that the added costs for the larger
mesh complexity are compensated by the lower refresh costs.

Without such incremental transport, simplified polygons
perform worse, in which case imposters can help save
transport costs. The imposter models break down at some
distance because the distortion due to the missing back face
gets too large and, for simple imposters, also because of
their flatness. The ridge in the polygon distortion model is
caused by the possibility of the observer reaching the object,
making it necessary to transfer the texture of the complete
3D model. If we aim at a lifetime of one second, this
particular setting shows that a polygon model is necessary
for distances below 15 meters to reach the required visual
distortion. Simple imposters can be only at large distances,
50 meter and further.

For larger models, the imposters are less effective. If we
increase the object radius to 10 m, the meshed imposter,
IwD, and LDI can be used at distances higher than 30 m;
simple imposters give too high distortions up to at least
100 m. With very short lifetimes, a meshed imposter can be
used at small distances because the observer’s speed
around a large object is relatively smaller than around a
big object, but the gain compared to a simplified polygon
model is small.

If this can be considered a typical situation, the
communication load is not a real argument to use imposters
at large distances. However, the number of polygons in
imposters is usually much smaller than polygon objects
with comparable distortion and, in case of tight polygon
budgets, it is attractive to switch to simpler models as soon
as possible.

Fig. 12 shows what happens if we use at most 500 polygons
for the simplified model. The incremental polygon and
simplified polygon methods now break down at distances
smaller than 30 m because the distortion requirement
cannot be reached with the given amount of polygons.
The viewpoint dependent simplification improves this
range to down to 10 meters. In such a situation, the
imposter and LDI methods offer an advantage.

Clearly, polygon-limited cases introduce situations
where certain distortion targets cannot be reached. If a
rendering is still required, quality has to be reduced. By
accepting higher visual distortions (D ¼ 0:1), but still
requiring high texture quality (with D ¼ 0:001 as before),
the simplified polygon models could still be used at smaller

distances (Fig. 13), while the textures at least suggest low
distortions. Of course, when lower geometry distortion is
acceptable, the imposters can also be used at smaller
distances.

6.2 CPU and Memory Load

We did a similar analysis of CPU and memory load, using a
complexity analysis of currently available algorithms. But,
we can summarize the results without such an analysis:

1. For the imposter and polygon models, the memory
required in the client is dominated by the texture
size and, thus, follows directly from the estimated
texture sizes.

2. The textures should be at a resolution closely
matching the final projected size on the display if
we want to have a close to 1 pixel visual distortion.
Then, the load on the texture memory (number of
bytes accessed per second) is determined by the area
covered by the virtual objects. Assuming perfect
caching, each pixel is read only once from texture
memory and, therefore, the memory load for the
various methods is different only because of the
varying number of bytes for RGB, RGBA, RGBAD,
and layered RGBAD pixels. For images with depth, a
hybrid, 2-stage rendering method has been devel-
oped [68], [64], but this requires storage of inter-
mediate images and therefore gives a higher
memory load.

3. To compare the CPU load involved in the rendering,
it suffices to realize that the main bulk of calculations

236 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 2, APRIL-JUNE 2003

Fig. 11. Average load on the communication link. Maximum distortion

D ¼ 0:001 and object size r ¼ 1 m. Incrementally transported simplified

polygon objects are shown transparent to expose underlying layers.

Fig. 12. As Fig. 11, but now the number of polygons N is limited to 500.

Fig. 13. As Fig. 12, with lower geometric quality D ¼ 0:1, but with the

same texture quality. The incremental polygon curve was removed and

the simplified polygon curve was made transparent to shown the other

curves.

involves the per-pixel perspective calculation. This is
required both for polygon rendering, imposters, and
for depth-per-pixel texture maps such as the image
with depth. Therefore, the rendering loads are
comparable. Some tricks can be used to approximate
perspective mapping with cheaper functions, but
these tricks can be used for all methods we
discussed.

7 VALIDATION

Now we have described a model, how good is it? First, we
would like to repeat that our model is the first, possibly
oversimplified, attempt to model the current simplification
techniques. For instance, we already saw that the formula
D ¼ k=N does not appropriately model nonsurface models
like a tree or a house containing furniture. Also, the ratio of
silhouette to interior polygons that we used was estimated
very roughly, using only results from the literature on a
sphere. It remains to be seen whether our approximations
are sufficient and more elaborate models have to be
developed to come to a more accurate comparison.

For our validation, we used a prototype system [53] that
uses the model to schedule the available resources in the
client to the various virtual objects in the scene. In this
system, many problems have been only partially resolved,
such as latency variations, caching problems, texture
memory limitations, absence of geometry compression,
and lack of texture support for simplified polygon objects.
Furthermore, there are other issues, such as the resource
scheduling, also taking part of the resources. In all, it
probably is dangerous to compare performance results of
the prototype system with our model. It is likely that the
theoretical model will give a more balanced estimate than
measurements on a prototype system as it can be checked
that the same criteria are rigorously applied to all available
methods in a comparable way, which is hard to see in
thousands of lines of code.

However, a part of the question about validation is about
how good the resulting images look on the screen and
whether similar settings with different methods do give
similar-looking images. To answer this, some basic compar-
isons were done and, below, some snapshots and SNR
measurements are presented. Of course, SNR is just as
dubious to assess image quality as is geometric distortion, but
there is no definitive measurement to assess image quality.

To generate a few images for comparison, simple
imposters, meshed imposters, and simplified polygon
objects were rendered with an equal distortion target. The
cow and house model were used (see Fig. 5) because the
cow is very regular and almost perfectly follows the k = 10
line, while the house behaves very irregularly. The cow is
relatively flat and an imposter giving a side view will give
lower distortions than an imposter giving a front view,
when viewed from the same distance from the optimal
viewpoint. Both cases are shown in the figures. Fig. 14a
shows the result for D ¼ 0:02. In the simplified polygon
version, many details get lost, such as the horns of the cow
and window details. Many apparently fine details are still
in the house; this is related to the fact that QSlim does not
optimize for geometric distortion. The simple imposters

look very good, much better, in fact, than the simplified
polygon version, but this is mainly caused by lacking
texture on the simplified polygon version. The geometric
distortion relevant here is a vertical foreshortening, hardly
visible in these static images. A disturbing artifact can be
seen in the roof of the house in the meshed imposter. This is
caused by the grid of the underlying meshed imposter,
which becomes somewhat jumpy at the edge of the house.
There is a light stripe attached to the horn of the cow. This is
because of our relatively naive way to generate the vertices
for meshed imposters, by just sampling a few pixels instead
of a full check of the depths of all pixels. Therefore, in
unfortunate cases, a mesh vertex may be set at the far clip
distance, while there are much closer pixels in one of the
faces containing this vertex. In such a case, part of the mesh
is stretched out toward the far clipping plane. In Fig. 14b,
D ¼ 0:001. With such a low distortion target, distortions are
essentially invisible.

To make a further comparison of the image quality using
geometric distortion, we compared the signal to noise ratio
(SNR) with the geometric distortion (Fig. 15). Here, we use
the mean geometric distortion, again determined with
Metro [11], instead of the maximum distortion, as the
SNR gives a kind of average over the entire image. Note
that a log-scale is used to plot the geometric distortion,
again matching the log-nature of the SNR. Judging from this
figure, the mean geometric distortion has a clear relation to
the SNR.

8 CONCLUSIONS

The intuitive model was affirmed by a theoretical analysis
of the load on the communication link. A first experimental
validation of our model also looks promising. Although we
focused on thin-client systems, our model also applies to
fat-client setups. But, for fat-client setups, additional
analysis may be necessary to estimate the load on the
server as well.

If there is no polygon budget in the client and the
communication load is the main factor for considering
simplification, our model suggests that a combination of
incremental transmission and compression will offer the
lowest communication load. In the presence of a tight
polygon budget, a possible mechanism suggested by our
analysis is to refresh the models at a rate of one hertz, to use
polygon models at distances closer than 15 meters, meshed
imposters between 15 and 50 meters, and simple imposters
at larger distances. Exact switching distances depend on the
size of the virtual object and will, in practice, also be related
to the polygon budget.

In practice, the throughput of the communication link
can vary drastically, especially if a mobile link is used as in
our mobile augmented reality system [72]. The model
assumes that the separate objects are all represented by an
appropriate simplification and we estimated that the
renderings will look acceptable even in case of a temporal
breakdown of the communication link. However, it is not
clear how to incorporate varying link performance in the
model and more research is required to estimate how
important this is and how to model it.

PASMAN AND JANSEN: COMPARING SIMPLIFICATION AND IMAGE-BASED TECHNIQUES FOR 3D CLIENT-SERVER RENDERING SYSTEMS 237

The model as presented here involves a geometric

distortion measure. It remains to be seen whether a

geometric distortion measure is a useful measure in

practice, for instance, to estimate task performance. How-

ever, comparison of the geometric distortion measure with

an SNR measure showed no reason to worry about this

distinction. More accurate measures are probably highly

dependent on the specific task at hand and cannot be solved

at the general level of our model. Instead, we suggest
propagating these issues to the application layer [53].

Our more recent work focused on dynamic simplifica-
tion of a virtual scene and resource allocation, using the
model derived in this paper. Results on this have already
been published [53].

The large textures, required as the observer comes close
to the object, will pose storage, rendering, and transport
problems. Splitting large textures into several smaller ones
is not trivial as this may cause cracks on the polygon
boundaries because of the texture discontinuity [22].
Systems exist to deal with large textures, for instance, SGI’s
clip maps [21], but it is not clear whether it is realistic to use
those on a thin client and what happens with texture
coordinates if the mesh needs to be refreshed.

ACKNOWLEDGMENTS

This work was funded by the UbiCom interdisciplinary
research initiative (DIOC) at Delft University of Technol-
ogy. The authors would like to thank the anonymous
reviewers for their detailed comments on this paper.

REFERENCES

[1] D.G. Aliaga, “Virtual Objects in the Real World,” Comm. ACM,
vol. 40, no. 3, pp. 49-54, Mar. 1997.

[2] D. Aliaga et al., “MMR: An Integrated Massive Model Rendering
System Using Geometric and Image-Based Acceleration,” Proc.
Symp. Interactive 3D Graphics (I3D), pp. 199-206, Apr. 1999,
http://www.cs.unc.edu/~aliaga/publications.html, May 2002.

[3] D.G. Aliaga and A.A. Lastra, “Automatic Image Placement to
Provide a Guaranteed Frame Rate,” Proc. SIGGRAPH, pp. 307-316,
1999, http://www.cs.unc.edu/~aliaga/research.html, May 2002.

[4] DesignWorkshop, Artifice Inc., Eugene, Ore., 1999,http://www.
artifice.com, May 2002.

[5] R. Azuma and G. Bishop, “A Frequency-Domain Analysis of
Head-Motion Prediction,” Proc. SIGGRAPH, pp. 401-408, Aug.
1995, http://cs.unc.edu/~azuma/azuma_AR.html, May 2002.

[6] R.T. Azuma, “A Survey of Augmented Reality,” Presence:
Teleoperators and Virtual Environments, vol. 6, no. 4, pp. 355-385,
1997, http://www.cs.unc.edu/~azuma/ARpresence.pdf, May
2002.

[7] M.R. Bolin and G.W. Meyer, “A Perceptually Based Adaptive
Sampling Algorithm,” Proc. SIGGRAPH, pp. 299-310, July 1998.

[8] A.T. Campbell, “Technical Review: QoS-Aware Middleware for
Mobile Multimedia Communications,” Multimedia Tools and
Applications, vol. 7, nos. 1-2, pp. 67-82, 1998.

[9] ISO/IEC JTC1/SC29/WG11 N, Short MPEG-2 description, http://
garuda.imag.fr/MPEG4/syssite/syspub/index.html, May 2002.

238 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 2, APRIL-JUNE 2003

Fig. 14. (a) Comparison of various simplification methods targeting at

D ¼ 0:02 (10 pixels at the resolution of 640� 480, vertical fov 22:6�).
d ¼ 5; 000, r ¼ 570 (cow) and 984 (house). (b) Now, D ¼ 0:001 (1 pixel at

rendered resolution).

Fig. 15. Comparison of mean relative distortion and SNR. Vertical

placement of SNR and dist curves is arbitrary, chosen such that right

sides of the cow curves match.

[10] J. Chim et al., “Multi-Resolution Model Transmission in Dis-
tributed Virtual Environments,” Proc. ACM Symp. Virtual Reality
Software and Technology, pp. 25-34, 1998, http://www.cs.cityu.
edu.hk/~rynson/pub-cgvr.html, May 2002.

[11] P. Cignoni, C. Rocchini, and R. Scopigno, “Metro: Measuring
Error on Simplified Surfaces” Computer Graphics Forum, vol. 17
no. 2, pp. 167-174, June 1998. http://vcg.iei.pi.cnr.it/~rocchini,
May 2002.

[12] D. Cline and P.K. Egbert, “Interactive Display of Very Large
Textures,” Proc. IEEE Visualization, pp. 343-350, 1998.

[13] D. Cohen-Or, “Model-Based View-Extrapolation for Interactive
VR Web-Systems,” Proc. IEEE Computer Graphics Int’l Conf.,
pp. 104-112, 248, June 1997.

[14] J. Cohen, M. Olano, and D. Manocha, “Appearance-Preserving
Simplification,” Proc. SIGGRAPH, pp. 115-122, 1998.

[15] L. Darsa, B. Costa, and A. Varshney, “Walkthroughs of Complex
Environments Using Image-Based Simplification,” Computers and
Graphics, vol. 22, no. 1, pp. 55-69, 1998, http://www.cs.umd.
edu/~varshney, May 2002.

[16] X. Decoret, G. Schaufler, F. Sillion, and J. Dorsey, “Multi-Layered
Impostors for Accelerated Rendering,” Proc. Eurographics, Compu-
ter Graphics Forum, vol. 18, no. 3, pp. 61-73, 1999, http://
graphics.lcs.mit.edu/~gs/research/egmmi, May 2002.

[17] M. Deering, “Geometry Compression,” Proc. SIGGRAPH, pp. 13-
20, 1995.

[18] R. Dumont, F. Pellacini, and J.A. Ferwerda, “A Perceptually-Based
Texture Caching Algorithm for Hardware-Based Rendering,”
Proc. Eurographics Workshop Rendering, http://www.graphics.
cornell.edu/pubs/2001 and http://www.graphics.cornell.edu/
~jaf/publications/publications.html, 2001.

[19] P. Ebbesmeyer, “Textured Virtual Walls: Achieving Interactive
Frame Rates during Walkthroughs of Complex Indoor Environ-
ments,” Proc. Virtual Reality Ann. Int’l Symp. (VRAIS ’98), pp. 220-
227, Mar. 1998.

[20] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W.
Stuetzle, “Multiresolution Analysis of Arbitrary Meshes,” Tech-
nical Report #95-01-02, ftp://ftp.cs.washington.edu/tr/1995/01/
UW-CSE-95-01-02.d/UW-CSE-95-01-02.PS.Z, 1995.

[21] G. Eckel, “Cliptextures,” IRIS Performer Programmer’s Guide,
chapter 10, SGI Technical Publications, Silicon Graphics Inc.,
Mountain View, Calif., http://techpubs.sgi.com/library, 1995.

[22] G. Francini, “Surface Texture Estimation of 3D Model Objects,”
Panorama project AC092, http://uranus.ee.auth.gr/~alex/
panorama/deliverables.html, 1998.

[23] T.A. Funkhouser and C.H. Séquin, “Adaptive Display Algorithm
for Interactive Frame Rates during Visualization of Complex
Virtual Environments,” Computer Graphics (SIGGRAPH ’93 Proc.),
pp. 247-254, Aug. 1993.

[24] M. Garland and P.S. Heckbert, “Surface Simplification Using
Quadric Error Metrics,” Proc. 24th Ann. Conf. Computer Graphics &
Interactive Techniques (SIGGRAPH ’97), pp. 209-216, 1997.

[25] M. Garland and P.S. Heckbert, “Simplifying Surfaces with Color
and Texture Using Quadric Error Metrics,” Proc. IEEE Visualiza-
tion ’98, pp. 263-269, 542, http://www.cs.cmu.edu/~garland/
quadrics/quadrics.html, 1998.

[26] X. Gu, S. Gortler, H. Hoppe, L. McMillan, B. Brown, and A. Stone,
“Silhouette Mapping,” Technical Report TR-1-99, Dept. of
Computer Science, Harvard Univ., Mar. 1999, http://research.
microsoft.com/~hoppe.

[27] H. Hoppe, “Progressive Meshes,” SIGGRAPH ’96 Proc., pp. 99-108,
1996, http://research.microsoft.com/~hoppe.

[28] H. Hoppe, “View-Dependent Refinement of Progressive Meshes,”
Proc. SIGGRAPH ’97, pp. 189-198, 1997.

[29] H. Hoppe, “Smooth View-Dependent Level-of-Detail Control and
Its Application to Terrain Rendering,” Proc. IEEE Visualization,
pp. 35-42, 1998.

[30] H. Hoppe, “New Quadric Metric for Simplifying Meshes with
Appearance Attributes,” Proc. IEEE Visualization ’99, pp. 59-66,
Oct. 1999, http://research.microsoft.com/~hoppe.

[31] E. Horvitz and J. Lengyel, “Perception, Attention, and Resources:
A Decision-Theoretic Approach to Graphics Rendering,” Proc.
13th Conf. Uncertainty in Artificial Intelligence (UAI ’97), pp. 238-
249, Aug. 1997. ftp.research.microsoft.com/pub/ejh/dtgraph.ps.

[32] J.H. Kim and A.A. Chien, “Rotating Combined Queueing (RCQ):
Bandwidth and Latency Guarantees in Low-Cost, High-Perfor-
mance Networks,” Proc. 23rd Ann. Int’l Symp. Computer Architec-
ture, pp. 226-236, 1996.

[33] J.J. Koenderink, “What Does the Occluding Contour Tell Us about
Solid Shape,” Perception, vol. 13, pp. 321-330, 1984.

[34] J. Lengyel and J. Snyder, “Rendering with Coherent Layers,” Proc.
SIGGRAPH ’97, pp. 233-242, 1997.

[35] M. Levoy, “Polygon-Assisted JPEG and MPEG Compression of
Synthetic Images,” Proc. SIGGRAPH, pp. 21-28, 1995.

[36] P. Lindstrom, D. Koller, L.F. Hodges, W. Ribarsky, N. Faust, and
G. Turner, “Level of Detail Management for Real-Time Rendering
of Phototextured Terrain,” Technical Report GIT-GVU-95-06,
Georgia Inst. of Technology, Jan. 1995, http://www.cc.gatech.
edu/gvu/people/peter.lindstrom.

[37] P. Lindstrom, D. Koller, W. Ribarsky, L.F. Hodges, N. Faust, and
G.A. Turner, “Real-Time, Continuous Level of Detail Rendering of
Height Fields,” Proc. SIGGRAPH ’96, pp. 109-118, Aug. 1996.

[38] P. Lindstrom and G. Turk, “Image-Driven simplification,” ACM
Trans. Graphics, vol. 19, no. 3, pp. 204-241, 2000, http://
www.gvu.gatech.edu/people/peter.lindstrom/papers.

[39] D. Luebke and B. Hallen, “Perceptually Driven Simplification for
Interactive Rendering,” Rendering Techniques, S. Gortler and
K. Myszkowski, eds., London: Springer-Verlag, 2001, http://
www.cs.virginia.edu/~luebke/publications.html.

[40] D. Luebke and C. Erikson, “View-Dependent Simplification of
Arbitrary Polygonal Environments,” Proc. 24th Ann. Conf. Compu-
ter Graphics & Interactive Techniques (SIGGRAPH ’97), pp. 199-208,
1997.

[41] Moving Pictures Expert Group, “ISO/IEC JTC1/SC29 WG11,”
2000, http://mpeg.telecomitalialab.com.

[42] P.W.C. Maciel and P. Shirley, “Visual Navigation of Large
Environments Using Textured Clusters,” Proc. 1995 Symp. Inter-
active 3D Graphics, pp. 95-102, 1995, http://www2.cs.utah.edu/
~shirley/papers.

[43] Y. Mann and D. Cohen-Or, “Selective Pixel Transmission for
Navigating in Remote Virtual Environments,” Proc. Eurographics
’97, vol. 16, no. 3, pp. C201-C206, 1997, http://www.math.tau.
ac.il/~daniel.

[44] W.R. Mark, “Post-Rendering 3D Image Warping: Visibility,
Reconstruction, and Performance for Depth-Image Warping,”
doctoral dissertation, UNC Computer Science Technical Report
TR99-022, Univ. of North Carolina, Apr. 1999, http://
www.cs.unc.edu/~billmark/research.html.

[45] W.R. Mark, L. McMillan, and G. Bishop, “Post-Rendering 3D
Warping,” Proc. 1997 Symp. Interactive 3D Graphics, pp. 7-16, Apr.
1997, http://www.cs.unc.edu/~billmark.

[46] A.E.W. Mason and E.H. Blake, “Automatic Hierarchical Level of
Detail Optimization in Computer Animation,” Computer Graphics
Forum (Eurographics ’97 Proc.), vol. 16, no. 3, pp. 191-200, 1997.

[47] L. McMillan and G. Bishop, “Plenoptic Modeling: An Image-
Based Rendering System,” Computer Graphics Ann. Conf. Series
(SIGGRAPH ’95), pp. 39-46, 1995.

[48] L. McMillan, “An Image-Based Approach to Three-Dimensional
Computer Graphics,” PhD thesis, Univ. of North Carolina at
Chapel Hill, UNC Technical Report TR97-013, 1997, http://
graphics.lcs.mit.edu/~mcmillan/Publications/diss.pdf.

[49] M. Olano, J. Cohen, M. Mine, and G. Bishop, “Combatting
Rendering Latency,” Proc. 1995 Symp. Interactive 3D Graphics,
pp. 19-24 and 204, Apr. 1995, www.cs.unc.edu/~olano/papers/
latency.

[50] M.M. Oliveira and G. Bishop, “Image-Based Objects,” Proc. Symp.
Interactive 3D Graphics (SI3D ’99), pp. 191-198, 1999.

[51] P. Padmos and M.V. Milders, “Quality Criteria for Simulator
Images: A Lterature Review,” Human Factors, vol. 34, no. 6, pp.
727-748, 1992.

[52] R. Pajarola and J. Rossignac, “SQUEEZE: Fast and Progressive
Decompression of Triangle Meshes,” Proc. Computer Graphics Int’l
(CGI 2000), pp. 173 -182, June 2000.

[53] W. Pasman and F.W. Jansen, “Scheduling Level of Detail with
Guaranteed Quality and Cost,” Proc. Web3D Conf., pp. 43-51, Feb.
2002, http://www.cg.its.tudelft.nl/~wouter/publications/
publ.html.

[54] W. Pasman, A. van der Schaaf, R. Lagendijk, and F.W. Jansen,
“Accurate Overlaying for Mobile Augmented Reality,” Computers
& Graphics, vol. 23, no. 6, pp. 875-881, 1999, http://
www.cg.its.tudelft.nl/~wouter/publications/publ.html.

[55] W. Pasman, “Low Latency Rendering,” http://www.ubicom.
tudelft.nl/project/P2/P2.3/P2.3.1.ASP, 1999.

PASMAN AND JANSEN: COMPARING SIMPLIFICATION AND IMAGE-BASED TECHNIQUES FOR 3D CLIENT-SERVER RENDERING SYSTEMS 239

[56] W. Pasman and F.W. Jansen, “Realistic Low-Latency Mobile AR
Rendering,” Proc. Int’l Symp Virtual and Augmented Architecture
(VAA01), pp. 81-92, June 2001, www.cg.its.tudelft.nl/~wouter/
publications/publ.html.

[57] K. Pulli, M. Cohen, T. Duchamp, H. Hoppe, L. Shapiro, and W.
Stuetzle, “View-Based Rendering: Visualizing Real Objects from
Scanned Range and Color Data,” Rendering Techniques ’97 (Proc.
Eighth Eurographics Workshop Rendering), pp. 23-34, 1997.

[58] M. Garland, “QSlim 2.0 [Computer Software],” Univ. of Illinois at
Urbana-Champaign, UIUC Computer Graphics Lab, http://
graphics.cs.uiuc.edu/~garland/software/qslim.html, 1999.

[59] M. Ramasubramanian, S.N. Pattanaik, and D.P. Greenberg, “A
Perceptually Based Physical Error Metric for Realistic Image
Synthesis,” Proc. SIGGRAPH ’99, pp. 73-82, 1999.

[60] M. Regan and R. Pose, “Priority Rendering with a Virtual Address
Recalculation Pipeline,” Proc. SIGGRAPH ’94, Computer Graphics,
Ann. Conf. Series, pp. 155-162, July 1994.

[61] T. Riegel, “Coding of PANORAMA 3-D Sequences,” http://
uranus.ee.auth.gr/~alex/panorama, 1998.

[62] J. Rossignac and P. Borrel, “Multi-Resolution 3D Approximations
for Rendering Complex Scenes,” Modeling in Computer Graphics:
Methods and Applications, B. Falcidieno and T.L. Kunii, eds.,
pp. 455-465, Berlin: Springer-Verlag, 1993.

[63] J. Rossignac, “Edgebreaker: Connectivity Compression for Trian-
gle Meshes,” IEEE Trans. Visualization and Computer Graphics,
vol. 5, no. 1, pp. 47-61, Jan.-Mar. 1999.

[64] G. Schaufler and M. Priglinger, “Efficient Displacement Mapping
by Image Warping,” Proc. 10th EUROGRAPHICS Workshop
Rendering, pp. 175-186, 2000, http://graphics.lcs.mit.edu/~gs/
papers.

[65] G. Schaufler and W. Stürzlinger, “A Three Dimensional Image
Cache for Virtual Reality,” EUROGRAPHICS ’96 Proc., vol. 15, no.
3, pp. 227-236, Aug. 1996, http://www.gup.uni-linz.ac.at/~gs/
research/icache.

[66] W.J. Schroeder, J.A. Zarge, and W.E. Lorensen, “Decimation of
Triangle Meshes,” Proc. SIGGRAPH ’92, pp. 65-70, 1992, ftp://
ftp.cs.cmu.edu/afs/cs/project/anim/ph/paper/multi97/
release/schroede/deci.pdf.

[67] J. Shade, D. Lischinski, D.H. Salesin, T. DeRose, and J. Snyder,
“Hierarchical Image Caching for Accelerated Walkthroughs of
Complex Environments,” Computer Graphics Proc. (SIGGRAPH
’96), pp. 75-83, 1996.

[68] J. Shade, S. Gortler, L. He, and R. Szeliski, “Layered Depth
Images,” Proc. 25th Ann. Conf. Computer Graphics (SIGGRAPH ’98),
pp. 231- 242, 1998.

[69] F.X. Sillion, G. Drettakis, and B. Bodelet, “Efficient Impostor
Manipulation for Real-Time Visualization of Urban Scenery,”
Proc. Eurographics ’97, pp. C207-C218, Sept. 1997, http://www-
imagis.imag.fr/Membres/Francois.Sillion/Papers/Index.html.

[70] Stanford 3D Scanning Repository, “Happy Buddha [Computer
file],”Dept. of Computer Science, Stanford Univ., 1996, http://
www-graphics.stanford.edu/data/3Dscanrep.

[71] J. Torborg and J.T. Kajiya, “Talisman: Commodity Realtime 3D
Graphics for the PC,” Computer Graphics Proc., Proc. SIGGRAPH
’96, pp. 353-363, 1996. www.research.microsoft.com/
SIGGRAPH96/96/Talisman.

[72] UbiCom, “Ubiquitous Communications: Aiming at a New
Generation Systems and Applications for Personal Communica-
tion,”interdisciplinary program (DIOC), Delft Univ. of Technol-
ogy, 2001, http://www.ubicom.tudelft.nl.

[73] Web3D Consortium, “VRML97 International Standard ISO/IEC
14772-1:1997,” 2002, http://www.web3d.org/vrml/spec.htm.

[74] R.C. Veltkamp, “Shape Matching: Similarity Measures and
Algorithms,” 2001, ftp://ftp.cs.uu.nl/pub/RUU/CS/techreps/
CS-2001/2001-03.pdf.

[75] B. Watson, A. Friedman, and A. McGaffey, “Using Naming Tme
to Evaluate Quality Predictors for Model Simplification,” Proc.
ACM Computer Human Interaction (CHI ’00), pp. 113-120, 2000.

[76] B.A. Watson, A. Friedman, and A. McGaffey, “Measuring and
Predicting Visual Fidelity,” Proc. SIGGRAPH 2001, Computer
Graphics Proc., Ann. Conf. Series, pp. 213-220, Aug. 2001, http://
www.cs.nwu.edu/~watsonb/school/publications.html.

[77] G. Wolberg, Digital Image Warping. Los Alamitos, Calif.: IEEE CS
Press, 1990.

[78] J.C. Xia and A. Varshney, “Dynamic View-Dependent Simplifica-
tion for Polygonal Models,” Proc. Conf. Visualization ’96, pp. 327-
334, 1996, ftp://ftp.cs.sunysb.edu/pub/varshney/papers/
av_vd_vis.pdf and http://www.cs.umd.edu/~varshney.

[79] H. Yee, S. Pattanaik, and D.P. Greenberg, “Spatiotemporal
Sensitivity and Visual Attention for Efficient Rendering of
Dynamic Environments,” ACM Trans. Graphics, vol. 20, no. 1,
pp. 39-65, Jan. 2001.

Wouter Pasman received the Master’s degree
in computer science from the University of
Amsterdam, The Netherlands, in 1991. From
1993-1997, he did research on 3D x-ray luggage
inspection at Delft University of Technology, for
which he received the PhD degree in industrial
design engineering in 1997. Between 1997 and
2001, he researched real-time rendering for
mobile augmented reality as part of the UbiCom
project at Delft University of Technology. Cur-

rently, he is doing research in the areas of multimodal interaction and
user-context modeling. His research interests include augmented reality,
quality of service handling, 3D computer graphics, human factors, and
multimodal interaction.

F.W. Jansen obtained the PhD degree in 1987
for work on constructive solid geometry and
spatial subdivision techniques for ray tracing. He
is a professor of computer graphics in the
Department of Information Technology and
Systems at Delft University of Technology. In
1988, he worked for a year at the IBM Watson
Research Center on CSG display algorithms for
graphics hardware. His research interests in-
clude parallel ray tracing, realtime rendering,

augmented reality, and 3D interaction. He is a member of the IEEE and
the IEEE Computer Society

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

240 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 2, APRIL-JUNE 2003

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

