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Topological Segmentation in Three-dimensional Vector Fields

Karim Mahrous, Janine Bennett, Gerik Scheuermann, Bernd Hamann, and Kenneth I. Joy

Center for Image Processing and Integrated Computing
Computer Science Department
University of California, Davis

Abstract

We present a new method for topological segmentation in steady
three-dimensional vector fields. Depending on desired properties,
the algorithm replaces the original vector field by a derived seg-
mented data set, which is utilized to produce separating surfaces
in the vector field. We define the concept of a segmented data set,
develop methods that produce the segmented data by sampling the
vector field with streamlines, and describe algorithms that gener-
ate the separating surfaces. This method is applied to generate lo-
cal separatrices in the field, defined by a movable boundary region
placed in the field . The resulting partitions can be visualized using
standard techniques for a visualization of a vector field at a higher
level of abstraction.

1 Introduction

Classical approaches for bivariate vector field segmentation are
based on constructing the separatrix structure of a field – a set of
curves in the plane – defining regions that behave qualitatively sim-
ilarly [8, 14, 17]. Separatrices are usually generated by computing
the critical points in the domain of the vector field, determining the
types of these critical points, and using numerical methods to trace
streamlines originating from so-called “originators” in the field, see
[8]. These streamlines form separatrices that segment the field into
regions of similar topological behavior.

Unfortunately, similar techniques have not been developed for
three-dimensional vector fields. Most visualization techniques for
three-dimensional flow fields concentrate on streamline and stream-
surface representations, however these techniques do not give a
clear illustration of the field’s topological behavior. More sophis-
ticated techniques use streamline analysis to extract features of the
field , such as attachment and separation lines on a boundary sur-
face. However, separatrix methods have been unavailable for the
analysis of three-dimensional fields. Two basic problems have pre-
vented these studies: First, there are few critical points in three-
dimensional fields, and second, the numerical marching methods
to trace characteristic stream surfaces are difficult to implement
and can create substantial numerical errors. In general, visualiza-
tion and classification of three-dimensional fields continues to be
an open problem.

The method presented in this paper is similar to those that gener-
ate separatrix structures in two-dimensional vector-fields: focusing
on segmentation of the data set based on topological structure. The
algorithm is a two-step process that partitions a vector field into re-
gions of topologically similar flow. First, we sample the vector field
using streamlines, and replace the original data by a “segmented”
data set . Second, a segmentation algorithm generates separating
surfaces in the field. We utilize a “local separatrix” concept intro-
duced by Scheuermann et al. [18], which augments the separatrices
generated from critical points with “local separatrices” originating
from the boundary region of the data set. By segmenting the bound-
ary region into “inflow” and “outflow” regions, a local separatrix is
the streamline generated from a point on the boundary where the

Figure 1: Separation of flow in a complex two-dimensional vector
field from Scheuermann et al. [18]. Note the separatrices origi-
nating from points of tangential flow on the boundary rectangle.
This greatly enhances the visualization of the topological flow in
the field.

flow is tangential, see Figure 1. In this way, the algorithm generates
a complete separation of the field into regions of similar flow.

We utilize this concept to define a segmentation of a three-
dimensional vector field into regions bounded by local separatrices.
By manipulation of a “boundary box” in the field, we can create
separating surfaces that define regions of similar flow depending on
inflow/outflow regions on the boundary of the box. This allows us
to place a box in the field and generate separatrices throughout the
field, which can be visualized to determine characteristic features
of the field.

Given a three-dimensional vector field and a rectangular bound-
ary box B, we define a local separatrix as a stream surface within B
that is tangent to the boundary of B. The algorithm generates these
local separatrices by creating a derived “segmented” data set by
sampling the original vector field with streamlines. These stream-
lines terminate either on the boundary or at a critical point. The
general idea is to assign a different characteristic marker (or prop-
erty) to each critical point in the field, and to each contiguous inflow
or outflow region of the boundary of B – i.e., regions bounded by
lines where the flow is tangential on the boundary of B. Streamlines
are initiated at points throughout the data set and traced until they
either reach the boundary of B or come arbitrarily close to a critical
point. Each of the streamlines is then marked appropriately. We ap-
ply the marker information to a vertex of the data set by considering



streamlines that lie close to the vertex and assigning markers from
these streamlines to the vertex. For example, given a point p on
streamline S that has marker k, if p lies in tetrahedron T , then we
can examine the vertices of the tetrahedron to see which is closest
to p. If the closest vertex contains an m-tuple (m1, m2, ..., mm),
then we increment mk. Most vertices will have only one non-zero
marker incremented, as most of them will not have local separatri-
ces passing near them. However, some will have multiple markers
present.

The m-tuple of markers for each grid vertex is “normalized”
to generate a m-dimensional barycentric coordinate tuple at each
vertex. This resulting field where each point is associated with a
barycentric coordinate tuple is called a segmented data set. We uti-
lize “material interface” methods to calculate the boundaries be-
tween the regions, using a clipping procedure in barycentric space.
The result is a set of local separatrices in the field, separating the
flow field according to the inflow and outflow regions of the bound-
ary.

The separating surfaces generated by this method are local sep-
aratrices (much like those drawn by Dallmann [4]) of the field de-
fined by the critical points and the field boundary. The user can use
a slicing tool (or other technique) to browse through the separatri-
ces, locating vortices and other features.

Section 2 describes work related to streamsurfaces, separatrices
and vector fields. Section 3 defines the concept of a segmented data
set, and discusses methods to find the separating surface between
segments. Methods to sample three-dimensional vector fields and
convert them to a segmented data set are given in Section 4. Im-
plementation details of the algorithm are discussed in Section 5 and
results of the use of this method are given in Section 6.

2 Motivation and Related Work

Classical approaches used for bivariate vector field segmentation
are difficult to extend to three-dimensional fields. Two-dimensional
fields are characterized by their critical points. Classification of
these points, and segmentation by separatrices completely char-
acterizes the flow in the two-dimensional case. However, three-
dimensional vector fields can be arbitrarily complex, may not con-
tain critical points (e.g., the NASA delta wing [10]), and may con-
tain complex features that are very difficult to visualize.

Current three-dimensional vector field visualization techniques
are based mainly upon streamline and streamsurface generation [8,
14]. These techniques use the definition of the vector field to trace
massless particles through the field, tracking their progress by link-
ing them in lines (streamlines) or surfaces (streamsurfaces). Level
sets [22] have been used to enhance streamline generation. How-
ever, the most important segmentation method for vector fields is
the generation of separatrices. Separatrices are streamsurfaces that
separate the flow. Scheuermann et al. and others [17, 18, 19, 20, 24]
have done research in this area for two-dimensional examples, but
little has been done for three-dimensional fields [16].

Other methods of automatic vector field visualization have been
proposed that adequately visualize certain features of the data set.
However, many of these methods focus on finding certain phenom-
ena within the vector field [4, 7, 8, 10, 11] without attempting to
address the partitioning of vector fields based on global topological
surfaces. Other techniques to visualize three-dimensional fields [9]
also have difficulty in representing topological behavior.

Van Wijk’s method [21] creates implicit stream surfaces by cal-
culating streamlines at all grid points. This method assigns values
to the stream lines in a region of interest, defining a scalar function
that is constant on streamlines. This allows one to obtain stream-
surfaces as isosurfaces of this scalar function.

Our method to generate local separatrices [18] is similar to that
of Van Wijk as we also sample the vector field using streamlines.

Figure 2: The “property space” three-simplex in the case m =
4. The figure illustrates a three-dimensional projection of the 3-
simplex with an embedded tetrahedron.

We use this sampling to develop a segmentation of the field, effec-
tively replacing the original vector-field information. In this derived
representation, the vertices each have an associated barycentric co-
ordinate tuple that represents the “probability” that the local sepa-
ratrix is close to the vertex. The local separatrices, which are sep-
arating surfaces defined by the barycentric coordinate tuples, are
generated by a material-interface generation algorithm, similar to
that of Bonnell et al. [2]. The output of the algorithm are local
separatrices in the field that separate the vector field into regions of
similar flow.

3 Segmented Data Sets

Suppose we are given a data set based on an unstructured tetra-
hedral mesh, and an associated set of “properties” c1, c2, ..., cm.
For each vertex p in the data set, we associate an m-tuple α =
(α1, α2, ..., αm), where αi is the fraction of property ci present (or
“valid”) at p. We assume that 0 ≤ αi ≤ 1, for i = 1, ..., m, and∑m

i=1 αi = 1. We will call data sets of this kind segmented. A seg-
mented data set is thus one where each vertex p has an associated
barycentric coordinate tuple α.

Müller [13] and Nielson and Franke [5] defined methods to find
the separating surface in an unstructured tetrahedral data set when
each vertex is associated with a particular “type” (i.e., exactly one
of the αi values is one for each vertex). Their methods follow the
principle of the marching-cubes algorithm of Lorensen and Cline
[12], generating a separating surface within each tetrahedron.

Bonnell et al. [2] have solved a more general problem that treats
the output from multi-fluid Eulerian hydrodynamics calculations.
In their application, grid cells contain fractional volumetric infor-
mation for each of several fluids, where each cell C of a grid S has
an associated m-tuple (α1, α2, ..., αm) that represents the portions
of each of m fluids in the cell. By considering a “dual grid,” Bon-
nell et al. associate the m-tuples with vertices of the dual grid and
develop a method that finds a (crack-free) piecewise two-manifold
separating surface approximating the boundary surfaces between
the various fluids. Given m fluids, the method can potentially cal-
culate m − 1 separating surfaces for each tetrahedron.

Following the principles established by Bonnell et al. [2], we
consider a 3-simplex (tetrahedron) T in an unstructured three-
dimensional grid containing m properties. Each vertex is of the
form (p, α), where p represents the Euclidean coordinates of the



vertex, and α = (α1, α2, ..., αm) is the associated barycentric co-
ordinate tuple. To determine the possible segment boundaries in T ,
the barycentric coordinate tuples associated with the vertices of T
are mapped into a tetrahedron Tα in an (m − 1)-simplex in “prop-
erty space.” This (m − 1)-simplex has m vertices, where the kth
vertex is associated with a barycentric coordinate that has a value
of one in the kth component, and zeros in the remaining compo-
nents. We construct a Voronoi diagram in the (m − 1)-simplex,
using the vertices of the simplex as the Voronoi points, and calcu-
late the intersections of the 3-simplex Tα with the Voronoi cells in
the (m−1)-simplex. These intersections define barycentric coordi-
nates that are used to calculate intersections in the Euclidean-space
coordinates of T . Triangulating these coordinates defines the sepa-
rating surface(s) in T . Executing this method for each tetrahedron
of an unstructured simplicial grid will define the separating surfaces
of the properties c1, c2, ..., cm.

In the case of a tetrahedron with four properties, it is sufficient to
assume that each vertex of T has an associated barycentric coordi-
nate tuple α = (α1, α2, α3, α4), where α1+α2+α3+α4 = 1, and
αi ≥ 0. By considering the 3-simplex having vertices (1, 0, 0, 0),
(0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1) in property space, a partition
of this simplex into Voronoi cells can be defined. The boundaries
of these cells are bounded by the faces of the 3-simplex and six
(m−2)-dimensional hyperplanes, defined by the set of α such that
(i) α1 = α2, (ii) α1 = α3, (iii) α1 = α4, (iv) α2 = α3, (v)
α2 = α4, and (vi) α3 = α4. The 3-simplex, resulting Voronoi
partition, and an embedded tetrahedron are shown in Figure 2.

Specifically, a tetrahedron T in an unstructured simplicial grid
contains k properties if there are k indices i1, i2, ..., ik, such that
the associated barycentric coordinate tuple α = (α1, α2..., αm) of
each vertex of T has the property that αi = 0 for i �= i1, ..., ik. In
the k-property case, a tetrahedron T has an associated tetrahedron
Tα in a (k − 1)-simplex in property space. The (k − 1)-simplex
is partitioned into Voronoi cells whose boundaries consist of the
faces of the (k−1)-simplex and the

(
k
2

)
hyperplanes defined by the

equations αi = αj , where 1 ≤ i < j ≤ k.
Intersections in the property space (m−1)-simplex can be found

by a straightforward clipping procedure. Suppose that an edge of
Tα with endpoints α(1) and α(2) crosses the hyperplane defined by
α1 = α2. If α is the intersection point, we can compute r such that

α = (1 − r)α(1) + rα(2).

If the first two coordinates of α are equal, then the first two coordi-
nates of (1 − r)α(1) + rα(2) are also equal. Thus,

(1 − r)α
(1)
1 + rα

(2)
1 = (1 − r)α

(1)
2 + rα

(2)
2 ,

which allows us to calculate r directly. (See Hanson [6] for sim-
ilar methods.) We utilize a “clipping and capping” algorithm that
allows us to iteratively clip against each Voronoi boundary, capping
the resulting clipped object at each stage. In this way, the clipped
object is always convex, and the capping procedure is straightfor-
ward. The polygons of Tα determined by the clipping algorithm
are then used to define polygons in the Euclidean coordinates of T ,
which represent the segment boundaries in T .

4 Segmenting Vector Fields

Given a vector field defined over a three-dimensional simplicial
grid, we use streamlines to sample the vector field to create a seg-
mentation of the field. The segment boundaries of this field will
be approximations of the local separatrices. We first mark all crit-
ical points with a unique value (property), and identify and mark
all connected inflow regions of the boundary. These marks are the

Figure 3: The inflow/outflow areas of the boundary box in a tornado
data set. The terminating tetrahedra with inflow faces are colored
red, and the ones with outflow faces are colored blue. The termi-
nating tetrahedra that have regions of tangential flow are colored
green. Note the circles on the top and bottom of the box boundary.
These outline the center vortex of the tornado on the boundary of
the box.

property values of the field. We then sample the field using stream-
lines, tracing each streamline backward (see [22]) until it reaches
either a critical point, or a boundary. Each streamline is associated
with a unique marker considering its origin. Next, we transfer the
marker information to the vertices, creating barycentric coordinate
tuples at the vertices. By applying the segmentation algorithm of
Section 3, we generate the local separatrices of the field.

4.1 Marking Boundary Cells

Streamlines terminate at the boundary of the data set, or at a critical
point. Tetrahedra lying on the boundary or tetrahedra that contain
critical points are called terminating tetrahedra. When streamlines
encounter a terminating tetrahedron, a marker is assigned to the
streamline. Two types of terminating tetrahedra exist: internal and
external. Internal terminating tetrahedra contain critical points [18].
External terminating tetrahedra have one or more triangular faces
on the domain boundary. There exist three classifications of bound-
ary triangles on an external terminating tetrahedron: A boundary
triangle is either an inflow triangle, an outflow triangle, or it has
a area of tangential flow. A boundary triangle is an inflow trian-
gle if each vector �v1, �v2, and �v3 associated with the vertices of the
triangle satisfy

�vi · �n > 0

where �n is the inward face normal of the boundary triangle. Simi-
larly, a boundary triangle is an outflow triangle if

�vi · �n < 0.

If neither property holds, then the face contains points that have
tangential flow.

Terminating tetrahedra are marked using two methods: Internal
terminating tetrahedra are detected and marked individually while
boundary external terminating tetrahedra are marked using an area-
growing approach. An unmarked boundary terminating tetrahedron
T is identified and its type is determined. A unique mark is then
generated and assigned to T . The boundary neighbors of T are
identified and inherit the same mark if they have the same boundary
flow characteristic as T . The algorithm progresses with the neigh-
bor boundary tetrahedra until all boundary tetrahedra have been
marked. Figure 3 illustrates the marking process for terminating
tetrahedra on a tornado data set.
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Figure 4: Streamline and Triangle. The points s1 and s2 cause the
markers associated with p1 and p3, respectively, to be incremented.
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Figure 5: Separatrix and Triangle. Points on streamlines on both
sides of the separatrix contribute to the barycentric coordinate tuple
at a vertex. The streamline with marker 1 and the streamline with
marker 2 both contribute to α2, as the points s1 and s2 both lie
closer to p2.

4.2 Segmentation

We sample the flow field using streamlines. As streamlines en-
counter a terminating tetrahedron T , they are assigned the marker
kT associated with T . We then retrace the points that generate the
streamline, and for each point s increment the mkT property stored
at the grid vertex nearest the point s. This is illustrated in Fig-
ure 4. Given a streamline point s in tetrahedron T , we calculate the
barycentric coordinate β of s in T , and increment the mkT property
in the vertex of T that corresponds to the largest component of β.
This is illustrated in Figure 5.

After sampling all streamlines, we normalize the property values
at the vertices of the grid, creating the required barycentric coordi-
nate tuples. The result is a segmented data set.

5 Implementation

The algorithm is straightforward to implement and is based upon
streamline generation and interface construction. However, we
have found that the complexity of vector fields, the size of the data
sets, and the sampling strategy creates a number of issues.

• Due to the fact that a large number of inflow/outflow bound-
ary regions may occur on the boundary, the barycentric co-
ordinates tuples may contain a large number of components.
However, most of the data points will be associated with only
one marker. Several of the data points may be associated with
two markers near the local separatrices, and the case where
three or more markers are present will be rare. Thus we never
store the full barycentric coordinate, but only those compo-

nents of each coordinate that are non-zero. This enables the
algorithm to work with a large number of “properties.”

• Many three-dimensional vector fields have orbits, i.e., closed
streamlines, that never enter a terminating cell, see [25]. In
this case, a separate “property marker” must be used for each
orbit. We have tested several heuristic algorithms to detect or-
bits and have implemented one that correctly identifies orbits
when two-tetrahedron patterns are repeated along a stream-
line. This strategy seems to work well in practice and is illus-
trated in the results below.

• The seed points of streamlines can be calculated in different
ways. A randomized Monte Carlo approach can be used, as
can a stratified sampling approach. In our implementation, we
used an approach that distributes points uniformly throughout
a tetrahedron and this seems to work well.

• To reduce potential numerical errors, the accuracy of the gen-
erated streamlines is carefully monitored in our implemen-
tation (see [15]). Streamline propagation was restricted to a
per-tetrahedron basis, i.e., step size is controlled locally by
considering the size of a tetrahedron.

6 Results

Notes for the editors: We have kept this illustrations large in
this section of the paper for review purposes. The pictures will
be reduced to one or two pages in the final version.

We have tested this algorithm on several scientific data sets. The
initial data set is a circular field, generated over a 10×10×10 grid.
The boundary box is offset to better illustrate the flow. Figure 6
shows the boundary box with outlines of the tangential flow bound-
aries. The inflow boundary faces are shown in red, the outflow faces
in green, and the tangential faces in blue. Figure 7 shows a stream-
line representation of the field, colored by the property markers.
Figure 8 illustrates the results of the segmentation algorithm on this
low-resolution data set.

The second example is a flow field from a simulated tornado.
This data set was generated by Crawfis and Max [3] to illustrate
flow patterns in three-dimensional flow fields. The data set is
64 × 64 × 64. Figure 9 shows the boundary box and the flow
patterns on the faces of the box. Figure 10 shows a side view of
illuminated streamlines (see Zockler et al. [26]) in the tornado flow
field. The faces of the boundary box are again colored to repre-
sent the flow across their faces. Figure 11 illustrates the output of
the segmentation algorithm with a view that corresponds to that of
Figure 10. Notice that the algorithm correctly identifies the funnel.
Figure 12 and Figure 13 illustrate the streamlines and segmented
surface from above.

The third example is from a computational simulation of a spher-
ical argon bubble that is hit by a 1.25 Mach shock in the air. The
bubble is deformed through interaction with the vorticity gener-
ated as the shock passes over the bubble. This data set was gen-
erated at the Center for Computational Sciences and Engineering at
Lawrence Berkeley National Laboratory and has been used in a va-
riety of adaptive mesh refinement methods (see Berger and Colella
[1]). The data set is 128 × 128 × 256 and we illustrate the field
at time step 500. Here the argon bubble has deformed into a shape
with a characteristic “smoke ring.” Figure 14 gives a side view of
illuminated streamlines that represent the field at this time step. The
boundary box is also shown with color coding for the flow over the
faces of the box. Figure 15 shows the result of the segmentation al-
gorithm on this data set. The algorithm correctly identifies the ring
with the vortices due to the turbulence. Figure 16 and Figure 17



Figure 6: The boundary box of the circle data set colored as to the flow of the field across the boundary of the box. Inflow faces are shown in
red, outflow in green, and faces that have tangential flow are shown in blue.

Figure 7: Streamline representation of the flow in the circle data set. Regions are colored based upon sample properties. The orange
streamlines are identified as an orbit by the algorithm. The small regions of red and green streamlines in the lower-left and lower-right regions
of the data set correspond to the separating surfaces seen in Figure 8.



Figure 8: The separating surfaces generated by the algorithm on the circle data set. In this low-resolution example, the ”kinks” are produced
as an artifact of the “marching tetrahedra” algorithm.

Figure 9: The boundary box and the flow patterns on the faces of the box. The inflow faces are shown in red, the outflow faces in green and
the faces with tangential flow are shown in blue.



Figure 10: A side view of illuminated streamlines in the tornado data set. The faces of the boundary box are again colored according to the
flow across the faces. In this illustration, the streamlines that were seeded at the top of the funnel travel downward from the inflow region on
the top of the data set to the outflow regions on the bottom.

Figure 11: The output of the segmentation algorithm on the tornado data set. This illustration is produced using the same viewpoint as
Figure 10.



Figure 12: A top view of illuminated streamlines in the tornado flow field.

Figure 13: A top view of the results of the segmentation algorithm for the tornado data set. This illustration is produced with the same
viewpoint as Figure 12.



Figure 14: A side view of illuminated streamlines representing time step 500 in the argon bubble data set. The boundary box is also shown
with faces colored as to the flow across the boundary of the box. The shockwave is clearly shown.

Figure 15: A side view of the result of the segmentation algorithm on the argon bubble data set. The shockwave (ring) is clearly identified
along with closed surfaces trailing the shockwave due to the turbulence.



Figure 16: A front view of the illuminated streamlines in the argon bubble data set.

Figure 17: A front view of the results of the segmentation algorithm on the argon bubble data set.



Figure 18: A closeup view of the “ring” identified by the segmentation algorithm.



Figure 19: A closeup view of the “ring” identified by the segmentation algorithm.

give a front view of the argon bubble flow field and the results of
the segmentation algorithm. Figure 18 and Figure 19 show closeup
views of the ring identified by the segmentation algorithm.

7 Conclusions and Future Work

We have presented a new algorithm to generate separating surfaces
in three-dimensional vector fields. The algorithm samples the vec-
tor field using streamlines, replaces the original vector field by a
derived segmented data set, and uses the segmented data to gen-
erate the separating surfaces. The algorithm is straightforward to
implement and is applicable to a large number of data sets.

The proposed algorithm could be improved in several ways. Us-
ing knowledge about regions of tangential flow on the boundary
and the critical points, we could seed our streamlines near criti-
cal points [23] and near tangential flow regions [18]. This strategy
avoids processing streamlines away from the local separatrices. We
plan to utilize these techniques to improve the sampling process
and produce an “interactive” data exploration environment for vec-
tor fields. These separating surfaces should also be generalized to
time-varying data.
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