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Efficient Example-Based Painting and
Synthesis of 2D Directional Texture

Bin Wang, Wenping Wang, Huaiping Yang, and Jiaguang Sun

Abstract—We present a new method for converting a photo or image to a synthesized painting following the painting style of an
example painting. Treating painting styles of brush strokes as sample textures, we reduce the problem of learning an example painting
to a texture synthesis problem. The proposed method uses a hierarchical patch-based approach to the synthesis of directional
textures. The key features of our method are: 1) Painting styles are represented as one or more blocks of sample textures selected by
the user from the example painting; 2) image segmentation and brush stroke directions defined by the medial axis are used to better
represent and communicate shapes and objects present in the synthesized painting; 3) image masks and a hierarchy of texture
patches are used to efficiently synthesize high-quality directional textures. The synthesis process is further accelerated through texture
direction quantization and the use of Gaussian pyramids. Our method has the following advantages: First, the synthesized stroke
textures can follow a direction field determined by the shapes of regions to be painted. Second, the method is very efficient; the
generation time of a synthesized painting ranges from a few seconds to about one minute, rather than hours, as required by other
existing methods, on a commodity PC. Furthermore, the technique presented here provides a new and efficient solution to the problem
of synthesizing a 2D directional texture. We use a number of test examples to demonstrate the efficiency of the proposed method and

the high quality of results produced by the method.

Index Terms—Digital painting, example-based painting, painting style, artistic filter, painting systems, simulation, image
segmentation, Gaussian pyramid, texture synthesis, directional texture, nonphotorealistic rendering.

1 INTRODUCTION

DIGITAL painting involves the use of computers to assist
or automate the process of painting. Some existing
methods for digital painting simulate the characteristics of
an artistic medium, while others attempt to automatically
create paintings by simulating artistic processes or results
[10]. Here, we consider the problem of example-based
painting.

This problem can be formulated as follows. (Refer to
Fig. 1.) Given two images as input, an example painting A’
whose style is to be simulated and an image (often a photo)
B, the task is to produce as output a synthesized painting B'
which has the same contents of B but has the painting style
of A'. We also call B the source image and B’ the synthesized
image. Some variants of this problem have been considered
before [7], [9], [13], [18].

Among the existing methods for learning the style of an
oil painting, the best results are produced by the approach
of image analogies proposed in the seminal work of
Hertzmann et al. [18]. But, the image analogies (IA) method
is rather slow since it is pixel-based—it normally takes a
few hours to generate a synthesized painting on a PC.

We present a new method that shortens the synthesis
time greatly—our method takes less than one minute and,
often, only a few seconds to generate a synthesized painting
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of size 512 x 512. For example, the image in Fig. 1c
(size 800 x 600 pixels) was generated by our method in
six seconds. Moreover, the paintstrokes generated by our
method can be made to follow a direction field determined
by the shapes of regions in the painting.

The basic idea of our method is as follows: The user
specifies in the example painting one or more small blocks
of sample textures that best represent the distinct styles to
be simulated. Then, to better represent and communicate
shapes and objects, we segment the image B to be
synthesized according to the contents of the source
image B and define a direction field in each segmented
region. Finally, we use a hierarchy of texture patches,
assisted with image masks, to synthesize directional
textures in each segmented region to form the final
synthesized painting; a hierarchy of patches of different
sizes used to achieve a balance between computational
efficiency and the need for ensuring a smooth representa-
tion of changing texture directions and image masks are
used to resolve irregular region boundaries. Through the
quantization of texture direction, we are able to use
preprocessing and Gaussian pyramids to further speed up
the texture synthesis process.

2 RELATED WORK

A large number of papers on digital painting and texture
synthesis have been produced and we will review only
those directly related to our work. Painterly rendering is an
active research topic in NPR (nonphotorealistic rendering).
Some early successful efforts include [12], [33]. Some recent
work includes [11], [17], [23], [29], [31].

Example-based rendering has also been studied for
different forms of artistic drawing. Freeman et al. [9]
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(@) (b)

(c)

Fig. 1. The source image (a) (Photo credit: Superstock Images) is converted to the synthesized painting (c) having the style of the example painting
(b). (@) B: a source image. (b) A’: an example image and user-selected stroke textures. (c) B': a synthesized image.

generate line drawings using the best linear combination of
training lines to fit input lines. Hamel and Strothotte [13]
capture the drawing style of a 3D model and reuse it to
render another 3D model by extracting and applying a
nonphotorealism-template. Jodoin et al. [22] use a curve
segment as the basic element in learning the hatching style
of a given example based on Shannon’s N-gram approach
and Efros and Freeman’s [7] and Efros and Leung’s [8]
texture synthesis model. Hertzmann et al. synthesize oil
paintings by example using the framework of image
analogies [18] and transfer the style of one 2D curve to
another using a similar framework [19]. Note that none of
the above methods represents painting styles as sample
textures and uses efficient texture synthesis techniques to
solve the example-based painting problem with changing
brush stroke directions. We present a solution to this
problem in this paper.

Texture synthesis has been an active research topic in the
recent years [2], [16]. Earlier methods based on the pixel-
based approach include [1], [8], [14], [18], [35], [37], [38],
[39], [41] for texturing either a 2D image or a surface.

Xu et al. [40] introduce the patch-based approach, which
has proven much faster than pixel-based methods. They
select square patches of a uniform size randomly from the
sample texture and alpha-blend the overlapping parts of
adjacent patches to form a synthesized texture. Efros and
Freeman [7] improve Xu et al. [40] by stitching together
similar texture patches along a minimum error boundary
and use their method to transfer a sample texture to form a
synthesized image resembling a target image or photo, with
the aid of a correspondence map. Liang et al. [25] extend Xu
et al. [40] by finding the patch in the overlapping region
which most closely resembles the adjacent patches already
synthesized and compositing them using feather blending.
This method gains real-time performance by using several
speedup techniques to find the best-matching patch. All
existing patch-based methods for 2D texture synthesis are
fast but are limited to patches of a uniform size and a fixed
direction. In this paper, we develop a fast method using a
hierarchy of patches of different sizes to synthesize textures
with varying directions.

Patch-based methods have also been proposed for
texturing a surface [27], [32]. Soler et al. [32] use triangular
patches for texturing a mesh surface, using Fast Fourier
Transform to speed up the search for a best-matching patch.
A straightforward application of these methods to synthe-
sizing 2D directional textures is conceivable, but would be
relatively inefficient.

3 OUTLINE OF ALGORITHM

Given a source image B and an example painting A’,
our method synthesizes a painterly rendering B' of B
with the style of A’. The image B’ starts as a blank
image and is “painted” as the algorithm proceeds to
form the final synthesized painting. Our method has the
following main steps:

1. Painting style selection: The user specifies in the
example painting A’ one or more small blocks, called
sample textures, which contain the painting styles that
he/she wants to simulate (Fig. 1b).

2. Preprocessing: Let 1),75,...,7}; denote sample
textures selected in Step 1. The direction of a sample
texture, defined as the average direction of brush
strokes contained therein, is quantized to be one of
24 discrete directions, i.e., with the angle increment
being 360°/24 = 15°. For each sample texture 7;, we
precompute and store 24 rotated copies of it. Each
copy is stored in a Gaussian pyramid for accelerat-
ing the search for the best-matching patch, as
required in Step 5 below.

3. Segmentation and direction assignment: In order to
use different styles and different brush stroke
directions to represent shapes and objects in the
synthesized image, we segment the source image B
into regions R;,Rs,..., R, of relatively uniform
color and luminance, which in turn induce their
corresponding regions R}, R;, ..., R/, in the synthe-
sized image B'. We then define a direction field on B/,
that is, a texture direction (i.e., brush stroke direc-
tion) is assigned automatically to each pixel of B’
according to the shape of the region that contains
that pixel. This direction is also called a pixel
direction, for short.

4. Painting style assignment: Assign a sample texture
T; (i.e., a style of brush strokes) to each segmented
region of the synthesized image B'. This assignment
can be done automatically based on luminance
similarity or by user hints.

5. Texture synthesis: The image B’ is partitioned into a
hierarchy of square cells of different sizes, with each
cell to be synthesized by one or more square texture
patches of the same size (see Section 6 for details). A
cell in a segmented region R of B’ is synthesized
using a texture patch taken from the sample texture
T; assigned to R’1 A patch from Tj is rendered into B’
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with its color and luminance modulated by the color
and luminance of the corresponding pixel of the
source image B and with its direction following the
direction field of B'.

4 PROCESSING PAINTING STYLES AS SAMPLE
TEXTURES FROM A’

To select a style of brush strokes, the user needs to manually
specify one or more rectangular blocks of sample textures in
the example painting that he/she thinks represent the
painting styles to be simulated (Fig. 1b). Some care should
be taken in defining the sample textures. First, a block
should include only one sample texture (i.e., one group of
brush strokes of similar size and shape); otherwise,
different types of brush strokes will be interleaved in the
synthesized image, giving unsatisfactory results. Second, a
block of sample texture should be bigger than the size of a
typical brush stroke in order to avoid producing fragmen-
ted strokes in the synthesized image. Since a sample texture
is a group of brush strokes, it is typically anisotropic. We
use the algorithm of Tamura et al. [34] to compute the
direction of a sample texture, which is the average direction
of brush strokes contained in the sample texture.

To speed up patch searching, we quantize texture
directions to 24 discrete angles, ie., i x 15°, 1 =0,1,...,23.
This quantization enables us to precompute and store
24 different rotated copies of a sample texture. We therefore
merely need to search for a patch in one of the precomputed
rotated copies of the sample texture. By exploiting
symmetry about the coordinate axes, memory space can
be saved by storing only six rotated copies of a sample
texture image. A similar strategy of preprocessing textures
is also used in [32].

5 PROCESSING OF SOURCE IMAGE B

5.1 Segmentation of Source Image

The basic structures in a painting of a scene are defined by
objects in the scene and these structures are determined by
the colors, styles, and directions of brush strokes in different
parts of the painting. We use the mean-shift method [4] to
segment the source image into regions of relatively uniform
color and luminance, which in turn induce a segmentation
of the synthesized image B/, through the pixel-wise one-to-
one correspondence between B and B'. We then use these
segmented regions to assign styles and directions of the
brush strokes so as to best represent and communicate the
shapes present in the final synthesized image B'.

5.2 Assignment of Sample Textures to Segmented
Regions

It is desirable to assign painting styles (i.e., sample textures)
to different regions efficiently or automatically. This can be
done in two ways. The first possibility is to use luminance
similarity, assigning to a region a sample texture that is
closest to it in mean luminance. Alternatively, the user can
provide some hints by manually assigning sample textures
to some regions. Then, an unassigned region will get the
same sample texture as an assigned region that is closest to
the unassigned one in mean luminance. This saves the user
the trouble of manually assigning sample textures to a large
number of regions.
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Fig. 2. The brush stroke direction at a pixel p is set to be the direction of
a pixel ¢ on the medial axis nearest to p.

5.3 Computation of Paint Stroke Direction
Appropriately defined brush stroke directions can help
make a synthesized painting look less artificial. There are
several possible ways of defining brush stroke directions
across the synthesized image B'. A simple treatment is to
assign the same direction for all pixels in a region; this
direction can be a user-specified direction or the main
direction of the region’s shape [24]. This treatment is easy to
implement and has proven effective for small regions or
elongated regions with a distinct main direction. However,
for large regions, such as the one shown in Fig. 2, it is better
to use a varying stroke direction following the medial axis
to reflect the shape of the region. (Note that the medial axis
is known to communicate shape information effectively
[28].) To this end, we first compute the medial axis of a
region R, assign to each pixel ¢ on the medial axis a
direction along the medial axis curve at ¢, and then set the
stroke direction at each pixel p of the region R to be the
direction of the pixel ¢ on the medial axis that is closes to p.
See Fig. 2.

The medial axis of a region is also used by Gooch et al.
[11] to place stroke brushes. Although there exist many
algorithms for medial axis computation, extracting the
medial axis from a region with an irregular boundary is a
tricky task. As pointed out in [11], the thinning algorithm is
too sensitive to the boundary noise and tends to produce
undesirable spurs along the medial axis. The distance
transform does not preserve the connectedness of the
medial axis and often leads to double lines. Therefore,
these two algorithms are used in combination in [11]; the
distance transform is first used to find the medial axis and a
thinning algorithm is then applied to remove double lines
from the medial axis.

We adopted the method used in [11] with some
modifications and improvements. We first apply the
Euclidean Distance Transform (EDT) [6] to a region R to
obtain the distance field of R. (This EDT algorithm is very
fast; it takes only two passes to produce a distance map for
all the regions in the segmented image.) We then compute
the distance gradient vector at each pixel of R from the
distance field. It is observed that, for a region R defined in
2D Euclidean plane E?, a point z on the medial axis R is
characterized by that there exist two points x; and z; in any
open neighborhood of « such that the gradient vectors at x;
and z, are opposite to each other. Hence, for our case where
the region R is defined in the discrete 2D image plane, we
regard a pixel p as a pixel on the medial axis of R if the
largest angle difference among all the gradient vectors of
the eight neighboring pixels of p is greater than a certain
threshold a;s. Our tests show that satisfactory results are
produced in most cases by setting a); = 0.77.
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(a) (b) (© (d)

Fig. 3. An example of medial axis computation. From left to right: (a) the
original segment, (b) the medial axis extracted by Gooch et al.’s method,
(c) the medial asix extracted by our method, and (d) its associated
direction field.

After finding all the pixels on the medial axis, we run a
thinning algorithm to remove double lines, if there are any, to
obtain a “leaner” medial axis. Our tests show that this method
produces satisfactory results; for example, the disconnected-
ness of the medial axis computed by our method is much less
of a problem than the result produced by the method of [11],
as shown in Fig. 3. Once the medial axis is obtained, each pixel
g on the medial axis is assigned the direction along the medjial
axis at ¢. This direction is computed as the main direction of
the set S of pixels that are both on the medial axis and in a
“disk” of radius r centered at the pixel ¢ (see Fig. 2). The main
direction of a set of points S is computed as the eigenvector
associated with the largest eigenvalue of the covariance
matrix of S [24].

Finally, we use the EDT algorithm to compute the
distances of all pixels of the region R from its medial axis
curve. Because of the incremental nature of the EDT
algorithm, it can easily be adapted to find, for each pixel p
in the region R, the pixel ¢ on the medial axis that is nearest
to p. Then, the brush stroke direction at pixel p is set to be
the direction of the pixel ¢. See Fig. 2 for illustration. Finally,
a direction field thus obtained is made smoother by
applying a Gaussian filter. The last step of our algorithm
bears some similarity with the orientation field computation
method presented by Hausner [15], which computes the
minimum distance of a point from a prespecified curve
using a Z-buffer algorithm.

The brush stroke directions computed above enhance the
visual appearance of a synthesized painting for large
segmented regions with a distinctive shape feature, but
appear to make little difference for small regions. Hence, to
strike a balance between the visual appearance and
computational efficiency, we use the directions based on
the medial axis only for regions containing over M = 1,000
pixels; for a smaller region R, the main direction of R is
assigned to all pixels of R.

6 DIRECTIONAL TEXTURE SYNTHESIS FOR B’

6.1 Procedure of Texture Synthesis

In this part, we explain the procedure and acceleration
techniques for synthesizing directional textures in a
segmented image. There are three main steps in this
process.

1. Decompose the image B’ into regular cells, with each
cell of the same size as the largest patch size
specified (typically 32 x 32).

2. Recursively subdivide each cell into four smaller
cells of equal size until the directions of pixels
belonging to the same region in every cell do not
differ from each other by a prespecified tolerance;

Fig. 4. The cell C crossing a boundary is synthesized by superimposing
two cells C; and (5, with the aid of image masks.

this is called the direction constraint. This step
produces a hierarchy of cells of different sizes.

3. Synthesize each cell by compositing patches of
different sample textures contained in that cell. All
cells are synthesized in the depth-first order, with
the cells at the same level visited from bottom to top
and left to right.

Since the brush strokes in the same patch are required to
have approximately the same direction, an abrupt change of
texture direction might cause a cell to be subdivided in
order to satisfy the direction constraint. We set the smallest
cell size to be 4 x 4 pixels, and subdivision is applied only
to cells of size larger than 4 x 4 pixels. The subdivision of a
cell is terminated if and only if the cell satisfies the direction
constraint or its size is 4 x 4.

For a cell crossing a region boundary, one might also
want to recursively subdivide it into smaller cells such that
each cell belongs to one region. But, this would produce too
many small cells near region boundaries. We therefore use
image masks to assist in synthesizing a cell crossing a
boundary, without resorting to cell subdivision. The basic
idea is illustrated in Fig. 4. The cell C in Fig. 3a contains
pixels from two regions R; and R, corresponding to
sample textures 7 and 75, respectively. We may think of C
as obtained by superimposing a cell C; of texture 7 and a
cell Cy of texture 75, with the aid of image masks, as shown
in Fig. 3b and Fig. 3c. We now need to check C; and C;
separately to see if they need to be subdivided to satisfy the
direction constraint.

We first check C). As all of its pixels in R, satisfy the
direction constraint, a patch of the same size from texture 7}
will be found and pasted onto the cell C. Next, we check
the cell C, and find that its pixels belonging to R, do not
satisfy the direction constraint. C; is therefore subdivided
into four smaller cells, «, 3, v, and ¢ (Fig. 4c). At this level of
subdivision, some of these four cells contain no pixels in the
region R (i.e., o ) and others contain only pixels meeting
the direction constraint (i.e., 3, 7, and 6); thus, we terminate
cell subdivision and use three patches of the same size but
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Fig. 5. The procedure of finding the best-matching patch.

possibly different directions to fill in the cells 3, v, and ¢ (see
Fig. 4e). Finally, with the aid of image masks, the
synthesized cells C} and C; are superimposed to yield the
synthesized cell C (Fig. 4f).

A cell may contain pixels from different segmented
regions. The region boundaries in a cell are rendered
precisely through the use of image masks, instead of using
cell subdivision. In order to represent the smooth variation
of the directional field, the number of texture rotations
should be large enough and the patch size should be small
enough. An adequate number of texture rotations make it
possible to accurately approximate the arbitrary orientation
of the directional field, while small-sized patches are
needed to capture a localized radical direction change of
the directional field. In our experiments, we find that
24 discrete angles and a minimum patch size of 4 x 4 pixels
are sufficient for satisfactorily accommodating the change
of texture direction in most cases.

The procedure of searching for a best-matching patch in
a rotated copy of a sample texture is similar to that used in
[25], except that we use two-level Gaussian pyramids for
acceleration. This procedure is explained in Fig. 5. Fig. 5a
shows a source image B. Fig. 5b shows a direction field of
the segmented image B'. Fig. 5e shows two sample textures
to be applied. The three white cells in Fig. 5a have already
been synthesized and a patch is now to be found to

Sample
Texture

Gaussian
Pyramid
A

Gaussian
Pyramid
B

Gaussian

Pyramid & .
C P
Q‘ﬁ"g [ ] P
Gaussian
Pyramid
D

Fig. 6. Gaussian pyramids for acceleration.

synthesize the green cell (Fig. 5a). Fig. 5¢ is a zoom-in view
of Fig. 5a. Let Ez, denote the L-shaped boundary strip of a
candidate patch Bj, and let FE,,, denote the corresponding
L-shaped boundary strip of the union of the three white cells.
The boundary strip Ep, of the best-matching candidate B,
should minimize its difference with F,,,. Setting the width of
boundary strip Ep, to be four pixels was found, in [25], to
work well as abalance between quality and speed. We also set
this width to be four pixels in our experiments. Fig. 5d shows
the blend between the best-matching patch B, with the
already synthesized texture. Fig. 5f is the final synthesis result
following the direction field in Fig. 5b.

6.2 Acceleration by Gaussian Pyramid

We use two-level Gaussian pyramids [3] to speed up the
search for the best-matching patch. We choose the Gaussian
pyramid instead of the three acceleration techniques
recommended by Liang et al. [25] (i.e., Optimized KD-tree,
Quad-tree pyramid, and PCA) because the Gaussian
pyramid consumes less memory than those methods. Our
experimental results confirm that the use of Gaussian
pyramids speeds up patch searching by 5 ~ 10 times. Note
that the Gaussian pyramid is also used in the pixel-based
texture synthesis methods in [18], [38], but in a way
somewhat different from ours.

Fig. 6 shows a collection of two-level Gaussian pyramids
used to represent rotated copies of a sample texture. A two-
level Gaussian pyramid stores a sample texture, or a rotated
copy, at the high level and a low-resolution version of the
sample texture at the low level. The low-level copy (size
n x n) has only half the resolution of the high-level copy
(size 2n x 2n) and it is obtained from the latter by applying
a 3 x 3 Gaussian filter. We may therefore assign a patch of
size k x k at the low level to correspond to four patches of
size 2k x 2k at the high level.

In search of the best-matching patch from a sample
texture, we first construct the low-resolution version of the
L-shaped boundary region £, (see Fig. 5¢c). With a relaxed
matching error tolerance, we use the low-resolution version
of Ey, to find up to 10 low-resolution candidate patches of
the best-matching patch in the low level of a Gaussian
pyramid. We then get, at the high level, the candidate
patches (40 at most) corresponding to the low-resolution
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Fig. 7. The synthesized image B’ has the luminance variation of the
sample texture A’ but the color of the source image B.

candidate patches and choose among them the one with the
smallest matching error with E,, as the best-matching
patch B;.

6.3 Rendering a Painting Style

Luminance variation is an important characteristic of brush
strokes of an oil painting. Therefore, when rendering a
patch of a sample texture from the example painting A’ onto
the synthesized image B’, the luminance variation of the
sample texture is preserved and the color of the rendered
patch is determined by the color of the corresponding pixel
of the source image B. In this way, we obtain a synthesized
image B’ that has the color contents of the source image B
and the painting style of the example painting A’. Fig. 7
illustrates this operation of obtaining a synthesized result.

(©

Using the YIQ color space, we transfer luminance
variation and color as follows: Let Y (') be the luminance
of a pixel V' in the synthesized image B'. Let Y(da’) be the
luminance of a pixel ¢’ in the example painting A’, where '
is to be mapped to the pixel V. Let us be the mean
luminance of a sample texture in A’ and pp_p be the mean
luminance of a region R in B which contains the pixel b
corresponding to . Then, Y'(b') is computed by

Y(V') = k(Y (d) — pa) + po_nr, (1)

where £ is a constant. Setting x = 1 makes the synthesized
image inherit the luminance variation of the example
painting. Smaller or larger values of x can be used to lessen
or strengthen the luminance variation of brush strokes in
the synthesized image. Setting k =op/os yields the
formula used in [18] for luminance remapping, where op
and o4 are the luminance standard deviations of B and 4/,
respectively. Another possibility is to use the formula
Y () =6 (d) — pa) +Y(b) to make the synthesized re-
sult also depend on the luminance variation of the source
image. For all the examples shown in this paper, Figs. 11
and 12 were generated using (1) and all the other examples
were generated using Y (V') = k(Y (a') — par) + Y (D).

7 EXPERIMENTAL RESULTS

In this section, we present some synthesized images
generated by our method. We set x = 1.0 for illuminance
mapping defined by (1) for all the following examples,
except that we set x = 1.2 for Fig. 8c. As for the parameters
in Comaniciu-Meer’s segmentation algorithm [4], we used

()

Fig. 8. (a) Vincent Van Gogh'’s Portrait of Camille Roulin. (b) A direction field of Taidi following the medial axis. (c) Taidi painted in a style learned from
(a) (r = 1.2, size 256 x 256, generated in six seconds). (d) An aloe image (size 416 x 320). (e) A direction field following the medial axis. (f) The aloe
image painted in a style learned from (a) (x = 1.0, generated in 15 seconds).
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Fig. 9. (a) An oil painting by Suhuo (http://www.suhuo.com). (b) Van Gogh’s Starry Night above the Rhone. (c) A source image The Barn (size
576 x 480) (photo credit: Corbis Images). (d) The Barn painted in a style from (a) (x = 1.0, generated in six seconds). (€) The Barn painted in a style

from (b) (x = 1.0, generated in five seconds).

the default values (spatial bandwidth = 7, color bandwidth
= 6.5, and minimum region = 100) and produced acceptable
segmentation in all the following examples, except that we
set spatial bandwidth to 11 and color bandwidth to 5 for
Fig. 13b.

Fig. 8a is Vincent Van Gogh’s Portrait of Camille Roulin.
The three blocks shown in Fig. 8a are the selected sample
textures and the red line segments indicate the orientations
of the sample textures. Fig. 8b is the direction field of a Taili,
which is a traditional symbol of the oriental culture,
following the direction of the medial axis (see Section 5).
Fig. 8c is the corresponding synthesized image (size
256 x 256), which was generated in six seconds. The timings
for all the test examples presented in this paper were taken
on a PC with a 2GHz CPU.

Fig. 8d is another source image, with its segmentation
and direction field shown in Fig. 8e; here, the direction field
also follows the medial axis of each region. Fig. 8f is the
final synthesized image (size 416 x 300), which was
generated in 15 seconds.

Next, we show an example in which two synthesized
images are generated from the same source image by
following two different painting styles. Fig. 9a and Fig. 9b
show two example paintings of different styles. Fig. 9a is an
oil painting by Su Huo, a Chinese artist (http://www.
suhuo.com) and Fig. 9b is Vincent Van Gogh’s famous oil
painting Starry Night above the Rhone. Fig. 9c shows a source
image. Fig. 9d and Fig. 9e are the painterly renderings
generated by our method from the same source image
(Fig. 9¢), with their painting styles following those of Fig. 9a

and Fig. 9b, respectively. The main direction is used for
defining the direction field for each region for generating
Fig. 9d. A fixed horizontal direction is used across the entire
image for defining the direction field for generating Fig. 9e.
The synthesized painting Fig. 9e resembles the synthesized
image generated by the Image Analogies method [18] from
the same example image and source image. However, we
note that our method took only five seconds to generate
Fig. 9e (size 576 x 480) on a PC with a 2GHz CPU, while the
Image Analogies method [18] used a few hours on a PC with
a 1GHz CPU to generate a similar result.

Fig. 10a is Emil Nolde’s painting, Autumn Sea VII
(http:/ /www.artchive.com/artchive/N/nolde.html).
Fig. 10d shows a synthesized image of the source image
Fig. 1a following the painting style of Fig. 10a with the
direction field being the main direction for each segmented
region. Fig. 10e shows another synthesized image of the
same source image, also following the painting style of
Fig. 10a, but with the direction field (shown in Fig. 10b)
being based on the medial axis for each segmented region. It
is evident that the brush strokes of the latter image using
medial-axis-based directions demonstrate much less un-
desirable periodicity than the former using the main
direction. The generation of Fig. 10d and Fig. 10e took 8
seconds and 55 seconds, respectively. Fig. 10g shows
another example of a synthesized painting of the source
image in Fig. 10f, following the style of Fig. 10a and with the
direction field determined by the medial axis for each
region (shown in Fig. 10c). Fig. 10g was generated in
56 seconds.
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(d)

)

Fig. 10. (a) Emil Nolde’s Autumn Sea. (b) A direction field of Fig. 1a following the medial axes of segmented regions. (c) A direction field of (f)
following the medial axes of segmented regions. (d) A synthesized painting of the source image Fig. 1a, with the brush stroke directions following the
main direction (kappa = 1.0, size 800 x 600, generated in eight seconds). (e) A synthesized painting of the same source image with the brush stroke
directions following the direction field shown in (b) (generated in 55 seconds). (f) Another source image (size 672 x 512). (g) A synthesized painting of
the source image in (d) with the bursh stroke directions following the direction field shown in (c) (x = 1.0, generated in 56 seconds).

In general, we observe that defining the brush stroke
directions based on the medial axis produces better results,
but requires longer time than using the main direction to
define the brush stroke directions; the processing time for
the former case is normally less than one minute for an
image of size 512 x 512. Longer processing time is required
when the direction field is given by the medial axis because

more small-sized texture patches are generated in the
texture synthesis process in order to accommodate the
varying directions of the brush strokes.

Besides oil paintings, our method is applicable to other
types of artwork as well, including watercolor, pastel, and
engraving, as will be illustrated below. Fig. 1la is a
watercolor [5]. Fig. 11d and Fig. 1le are the respective
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(d)

(e)

Fig. 11. (a) A watercolor painting. (b) A source image The Bridge size (992 x 744). (c) Another source image The flower (size 800 x 600). (d) The
Bridge painted in the style of watercolor (x = 1.0, generated in 14 seconds, with the brush stroke directions following the region main direction).
(e) The flower painted in the style of watercolor (x = 1.0, generated in 4 seconds, with the brush stroke directions following the medial axis direction).

synthesized images of the source images in Fig. 11b and
Fig. 11c, following the painting style of Fig. 1la. The
generation of Fig. 11d and Fig. 11le took 14 seconds and
40 seconds, respectively.

Fig. 12a is a pastel artwork [30]. Fig. 12d and Fig. 12e are
the respective synthesized images of the source images in
Fig. 12b and Fig. 12¢ [26], following the painting style of Fig.
12a. Fig. 12d and Fig. 12e were both generated in eight
seconds and their visual appearance is comparable to that
of the results synthesized by the Image Analogies method
[18] from the same source images (available from http://
www.mrl.nyu.edu/projects/image-analogies /pastel.html).
Horizontal brush stroke directions are used in Fig. 12d and
Fig. 12e for making the comparison with the results
generated by the IA method.

Fig. 13a is an example engraving artwork. Fig. 13b is a
source image, with its segmented image shown in Fig. 13c.
Fig. 13d is the synthesized image (size 384 x 576), generated
in one second. This result compares favorably in visual
appearance with the result generated by the Image Analogies
method [18] (available from http://www.mrl.nyu.edu/
projects/image-analogies/dorotea.html). Again, for com-
parison with the IA method, a fixed direction is used to
define brush stroke directions in Fig. 13d.

Our method can also be applied to synthesizing a
directional texture, provided that a sample texture and a
direction field are given. Fig. 14 shows three synthesized
images of directional textures (size 512 x 512), with their
corresponding sample textures and direction fields. The
generation of each of these images in Fig. 14 took 15 seconds.
These examples suggest the potential application of our
method in vector field visualization.

As we pointed out earlier, our method is applicable to
many but certainly not all painting styles. In general, the

algorithm would fail for paintings whose styles cannot be
represented by directional textures. This is the case for some
oil paintings in which the brush textures are not obvious or
some works by impressionists or post-impressionists in
which brush textures have strong chrominance variations.

Fig. 15 shows a failure example in which we tried to
learn the style of Monet's The Japanese Bridge (http://
www.artchive.com/artchive/M/monet.html). This work
possesses a distinct style; the brush strokes are short and
curved, with a variety of different colors within a brush
stroke. Our framework is incapable of simulating such a
style since we use only the variation of luminance. Further
research is needed to develop a more sophisticated model
to simulate this kind of impressionistic painting.

8 CONCLUSION

We have presented an efficient method for generating a
synthesized painting from a photo or image that possesses
the painting style of a given example painting. The method
treats painting styles as sample textures that the user can
select from the example painting and generates the
synthesized painting using a hierarchical patch-based
approach to synthesize directional textures. A synthesized
painting (size 512 x 512) is typically generated in a time
ranging from a few seconds to one minute, depending on
the complexity of the brush stroke directions used.

Two features of our algorithm contribute to the sig-
nificant speedup over previous work. The first is the use of
a patched-based algorithm for directional texture synthesis.
The second is the use of a small search space for finding the
best-matching textures through the user selection of sample
textures. This allowance of the user specification of painting
styles helps reduce the size of the search space for texture
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Fig. 12. (a) A pastel painting. (b) A source image The Dark Cloud (size 640 x 480). (c) Another source image The Shore (size 640 x 480). (d) The
Dark Cloud painted in the style of pastel by our method (x = 1.0, generated in eight seconds). (e) The Shore painted in the style of pastel by our
method (x = 1.0, generated in eight seconds). Horizontal stroke directions are used for both (d) and (e).

/ /

(b)

<

//

(c) (d)

Fig. 13. (a) An engraving artwork. (b) A source image The Girl’s Face (size 384 x 576) (photo credit: Getty Images). (c) A segmented image of The
Girl’'s Face. (d) The Girl’s Face painted in the style of engraving (x = 1.0, generated in one second, with a fixed stroke direction).

synthesis and, thus, together with the other speed-up painting synthesis time. The resulting superior efficiency
techniques, contributes to the remarkable reduction in makes our method particularly suitable as a tool for
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(a)

Fig. 14. Directional texture synthesis for vector field visualization. (a) A vector field visualized with knitwear texture (size 512 x 512, generated in 15
seconds). (b) A vector field visualized with cane texture (size 512 x 512, generated in 15 seconds). (c) A vector field visualized with engraving texture

(size 512 x 512, generated in 15 seconds).

Fig. 15. A failure example. (a) Monet's The Japanese Bridge. (b) A source image. (c) An unsuccessful synthesis result.

interactive design of digital media. This application is
further enhanced by the flexible user control in selecting the
style of brush strokes and defining brush stroke directions.

Our method is not fully automatic since some user input
and control are needed, such as selecting and assigning
sample textures (i.e., painting styles). Fortunately, these tasks
can be easily performed with a few mouse clicks and they
provide the user with the flexibility to select different styles
that might be found in the same or different example
paintings and use them to synthesize the synthesized
painting.

Apparently, our method does not require, as part of the
input, the original photo A of the example painting A’ as in
the IA method. However, the texture samples selected by
the user from A’ in our method provide similar information
content to that by the original photo A in the IA method for
searching for the best-matching patch or pixel. A notable
difference is that the distance between a square neighbor-
hood in A and a square neighborhood in B is a critical term
in the error metric used in the IA method for searching for
the best pixel candidate, while our method does not involve
such a term but still produces satisfactory results.

We also showed how our method can be used to
synthesize a 2D directional texture following a given
directional field. A possible application of the method is

thus in the area of vector field visualization. For example,
our algorithm may be useful for placing long streamlines
[36], as demonstrated in Fig. 14.

Further research is needed to address the limitations of
our method. Our method synthesizes a painting with the
brush directions being either fixed or being determined by
the media axes of segmented regions. However, artists may
use other brush directions that are not related to the medial
axis. Thus, brush directions should also be considered as an
important aspect of a painting style and should be learned
from an example painting as well. Apparently, learning the
brush direction as part of a style is much harder than
simply capturing and synthesizing the stroke texture.
Another related challenging task is creating scalable strokes
to represent objects, as discussed in [17].
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