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Geometry-aware Bases for Shape Approximation

Olga Sorkine, Daniel Cohen-Ox¥lember, IEEE Dror Irony, and Sivan Toledo

Abstract—We introduce a new class of shape approx- semi-regular connectivity, are based on wavelet repre-
imation techniques for irregular triangular meshes. Our sentations or subdivision surfaces [3]-[6].
method approximates the geometry of the mesh using a  Mesh simplification techniques aim to approximate a
linear combination of a small number of basis vectors. The given shape with as few vertices or triangles as possible,

basis vectors are functions of the mesh connectivity and _ , . : . . .
of the mesh indices of a number ofanchor vertices. There while keeping the error of the approximation, in some

is a fundamental difference between the bases generatedg'ven metric, Iower.thar? a prescr.|bed tolergnce. A d!ﬁgr—
by our method and those generated by geometry-oblivious €Nt class of approximation techniques retains the original
methods, such as Laplacian-based spectral methods. Inconnectivity of the given mesh and approximates only
the latter methods, the basis vectors are functions of the its geometry [7]-[9]. Karni and Gotsman [7] introduce
connectivity alone. The basis vectors of our method, in a spectral method where the mesh is approximated by
contrast, are geometry-awaresince they depend on both reconstructing its geometry using a linear combination
the connectivity and on a binary tagging of vertices that of a number of basis vectors. The basis is derived
are “geometnczlly w;:pogtagt“f.m theh gg/ep mesh (e.g.t,) from the spectral decomposition of the Laplacian matrix
extrema). We show that by defining the basis vectors to € associated with the mesh connectivity [10]. Chou and

the solutions of certain least-squares problems, the recon- M 3 de th i fth h USi ¢
struction problem reduces to solving a single sparse linear eng [8] encode the geometry of the mesh using vector

least-squares problem. We also show that this problem can duantization of the displacement coordinates. Based on
be solved quickly using a state-of-the-art sparse-matrix an analysis of the spectral basis of the Laplacian, Sorkine
factorization algorithm. We show how to select the anchor et al. [9] introduce a method where the quantization
vertices to define a compact effective basis from which an is applied to the geometry vector transformed by the
approximated shape can be reconstructed. Furthermore, | aplacian operator.
we develop an incremental update of the factorization of Laplacian-based methods are attractive for mesh pro-
the least-squares system. This allows a progressive schemeqqing  since they benefit from the powerful set of tools
where an initial approximation is incrementally refined by from Iinéar algebra and signal processing. The eigenvec-
a stream of anchor points. We show that the incremental X . C
update and solving the factored system are fast enough to tors of.the mesh LapIaCIan matrix Car_‘ be V'e_Wed as an
allow an on-line refinement of the mesh geometry. extension of the Fourier transform basis functions for the
irregular connectivity case, and the eigenvalues represent
the frequencies [7], [11]. The spectral basis is readily
defined on the given irregular mesh and does not require
altering the input representation. In addition to geometry-
|. INTRODUCTION compression applications [7], [12], spectral properties
L i . have been studied for the design of fairing filters and
HAPE approxmatlon IS an |mportaqt problem Ir}‘nodeling tools [11], [13], mesh watermarking [14] and
omputer graphics and CAGD. Reducing the amoupt o via parameterization [15].
of data needed to represent a specific shape is Oftef, yever, together with their appealing properties, one
necessary for modeling, eff|C|en_t storage and ransMixy st bear in mind that pure Laplacian-based methods are
sion Of_3D models. Irregular trla_ngle meshes are t ometry-oblivious, since the basis vectors are functions
predominant means of representing shapes, and in Cthe connectivity alone. It is possible to use the

last decade there has been a vast amount of work og i Laplace-Beltrami operator (see, e.g., [16]),
mesh simplification techniques [1]. These techniques Swever, its construction requires heavy use of the
closely related, and can be regarded as descendantg,oky, yaometry, which is not practical for compression

knot removal techniques developed for spline curves apg,ications. Our nevgeometry-awaramethods derive
surfaces [2]. Other approximation techniques, suited fgfe b4 hoth from the mesh connectivity and limited ge-
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Fig. 1. Reconstruction of mesh geometry using geometry-aware bases. A geometry-aware basis function is centered arouadchoertain
vertex of the mesh. The locations of the anchors used in reconstruction in the second left figure are marked by red spheres.

tant features of the surface and leads to compact anterpolatory anchors, but the principle is the same).
efficient representation of the mesh geometry. FigureThe smoothness of a function is defined in a discrete
illustrates the reconstruction using such basis vectormnner using the connectivity of the mesh. Specifically,
on a 2D curve example. The bottom row shows thee require that the position of a vertex deviates as little
meshes reconstructed using geometry-aware bases. aspossible from the average of its neighbors in the mesh.
locations of the anchors are marked by small dots. Thtese definitions result in smooth basis functions that
reconstructed mesh passes close to the original locatiane easy to combine into an approximation that attains
of the anchor points, which enables good approximati@pecific values at the anchors. Furthermore, a fast sparse
of such features as the tips of the bird’'s wings and taieast-squares solver with updating capability allows us
For comparison, reconstruction of this mesh using &a efficiently recover a representation of the shape from
analogous number of spectral basis vectors misses the coefficients of the linear combination.
the features. This behavior is evident in large as well asA number of recent papers have shown that the
in small scale. connectivity of the mesh often encodes some useful in-
It should be noted that explicit computation of the bdermation about the geometry of the shape that the mesh
sis vectors is, generally speaking, too expensive for larggpresents [17], [18]. Isenburg et al. [17] reconstruct a
meshes. Geometry representation using the Laplac&rape from the connectivity by a non-linear optimization
eigenbasis [7] requires finding a partial spectral decomt a uniform edge-length criterion. In [18] it was shown
position of a large symmetric matrix. This computatiothat augmenting the connectivity with a few well-placed
is too expensive to be applied in practice to anything banchors significantly increases the geometric value of the
small meshes. information encapsulated in the connectivity alone. The
The method that we present here avoids explidtast-squares system that is used to reconstruct the so-
computation of the underlying basis. Instead of directgalled LS-mesh in [18] is essentially the same system
representing the geometry by the coefficients of tikat arises from our basis vectors. In this paper, we fully
linear combination of the basis vectors, we reduce tkegplore the application of geometry compression, both
reconstruction problem to solving a sparse linear lea$iteoretically and experimentally. Progressive compres-
squares system, as explained in Section Il. State-of-tisen is made possible thanks to the proposed algorithm
art least-squares solvers make the solution efficient ahét quickly augments the existing representation with
enable reconstruction of the mesh as a whole. new anchors without fully solving the least-squares re-
construction system again. We rigorously analyze the
underlying basis vectors, which provides a theoretical
framework for studying this type of approximation ap-
The proposed geometry-aware representation ofpeoaches.
shape is a linear combination bfbasis functions, which  The effectiveness of adding anchors with geometric
are vectors that assign a real value to each vertexioformation was used earlier in [9] to reduce the low-
the mesh. The basis functions are an implicit functidinequency error caused by quantization of the differential
of the connectivity of the mesh and of the indices afoordinates of the mesh. There, a linear least-squares
k vertices that we calhnchors Each basis function is system was solved to reconstruct the mesh geometry
selected so that it fulfils the following conditions in thdrom a quantized differential representation, and the
least-squares sense: it attains the valuat one of the work focused on the analysis of the visual impact of
anchors an@ at the other anchors, and it is the smoothe#fiie quantization error. In our case, the mesh vertices
among all the functions that satisfy these requiremerds not hold any geometric information — it is entirely
(we also propose a slightly different definition for strictlencapsulated in the basis functions.

A. Overview
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A mesh functioris a real vector that assigns a value
4 to each vertex in the mesh. Basis functionis simply a
mesh function, and basisis a set of basis functions that
spansR™, wheren is the number of vertices in the mesh.
The coordinates of the vertices, say thecoordinates,
—~— are a mesh function that expresses the location of the

vertices inR3 as a linear combination of the functions
of the standard basiswhose functions assigh to one
vertex and0 to all the others. The coordinates can also

be expressed as a linear combination of other basis
functions.

/ The bases that we use, like Laplacian-spectral bases,
can be constructed by solving a series of minimization
problems. This construction is perhaps not the most
natural one for Laplacian-spectral bases, but it is the most

_ natural for our bases. Let us describe this construction
for the well-known Laplacian-spectral bases first. The

6 geometry-aware vectors 45 geometry-aware vectorsCompinatofif'le Lapla.cian. O_f a me.sh is thex n sym-
metric positive semi-definite matrik = D — A, where

= (a;;) Is the adjacency matrixaf; = 1 if vertices

Fig. 2. Reconstruction of the swallow curve (simple closed pat (a”) J y (7 !

using different bases. The top row shows reconstruction using _de are nelghbors andij =0 0therW'Se? and) is the
Laplacian eigenvectors, which are the discrete Fourier basis functidi@gonal matrix whoseéth entry on the diagonal equals
in this case. The bottom row displays reconstruction with geometjhe valency (degree) of vertex

aware basis vectors. The reconstructed mesh is shown in black, Wh'leGiven the Laplaciar of the mesh, the first Laplacian-
the original mesh is tinted in blue. The geometry-aware bases better

approximate the features of the shape, on large as well as on sreRECtral ba:SiS function, is the function th?.t minir_niZés
scales. ||Luy || subject to|ju;|| = 1. The next basis function,

is the one that minimizel§Lu,|| subject to||ug|| = 1 and
to uy L uy. In generalu, minimizes||Luy|| subject to
The main contributions of this paper include eﬁicierﬂukn =1 and touy L spafuy,...,u;_;}. The func-
algorithms for producing a geometric approximation afons uy, are the eigenvectors df sorted by the eigen-
a shape and for recovering the approximate shape frg&lues. The minimization problems above favor smooth
the compact representation. Our algorithms are basediis functions, because the transformations Lx as-
several advanced computational linear algebra tools: &lgns to each vertekthe difference between; and the
ability to control the conditioning of the Ieast-squaregverage of its neighbors, multiplied by the number of
problems that we solve, the ability to solve them quicklyleighbors_ Thereforey; is the smoothest vector iR,
and the ability to quickly add anchors by updating fhe constant vecton, is the smoothest mesh function
sparse factorization of an augmented Laplacian matr'm.thogona| tou;, and so on. The first functiom; is

We also provide evidence that the new method compagggays the same, while the shapes of the rest depend on
favorably with spectral methods, both in terms of comhe topology of the mesh.

pression ratios for a given approximation error and in
terms of running times. The paper explores the theofy Relaxed geometry-aware bases
of augmenting the connectivity with geometric data, in Our basis also solves a series of minimization prob-
search for a better understanding of shapes in gendeshs, but they are chosen in a geometry-aware manner.
and approximation of irregular meshes in particular. Given a set ofc vertex indicesl < ai,as,...,a; < n,

the ith functionv; in our basis minimizes

6 spectral basis vectors 45 spectral basis vectors

Il. GEOMETRY-AWARE BASES
ILvill® + [ D w?l(vi)a; = OF +&?[(vi)a, — 112
Most of the techniques for approximating and encod- j#i
ing mesh geometries represent the geometry as a Iineqr _ _ _
combination of basis functions. In this section we present Ve use the following notation. Vectors are denoted by upright

e . . . Bold letters, e.g.x, and their elements are denoted by italic letters,
the specific basis functions that we use and explain WRY, ... Al the vectors in this paper are column-vectors and all the

this basis is effective. norms are2-norms.
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The equality follows from the linearity of the minimum-
norm solution to least-squares problems. The coefficient
matrix L of this least-squares problem hast k rows
andn columns. The significance of this expression is that
¥y it shows that we can reconstrugtfrom V' without any
] R | reference to the basis vectdrs Thus, assuming w.l.0.g.
) (a;) o ) that (a1, as, ..., a;) = (1,2,..., k), we reconstruck by

) _ _ _ simply finding the vector that minimizes the norm of
Fig. 3. Geometry-aware basis functions on a 1D domain. The mesh

here is a simple closed path with 274 vertices. Plot (a) displays the i T i | ]
five basis functions corresponding to a set of five anchors; (b) shows L 0
the first five basis functions out of a 20-anchor basis. I ‘
Tl wa : (1)
The interpretation of this minimization problem is the wIgxk | 0 " :
following. The basis functiony; minimizes the sum of L i | wer |

two terms. The first term is the non-smoothnessvin - gince 1. is typically very sparse, this least squares can
and the second is the deviationwffrom given values in pa golved very quickly even when is large. It should
the & mesh locationsy;. . .., ay, which we callanchors e noted that the reconstruction is not interpolatory at
These values areata; and0 atay, j # i. Thereforev; he given values on the anchors — it only approximates
tries simultaneously to be smooth everywhere, to be larg in a least-squares sense.
at a;, and to vanish on all the other;’s. The weightu  There are at least three categories of constraints that
controls the impact of the anchors. Our algorithms nevge can apply to the anchors. The method that we pre-
use basis functions other than the fiksfthe number of sented above charges a quadratic penalty for deviations
anchors), so there is no point in characterizing them  from x at the anchors. We can use different weights
(Formally, all completions of this set @f functions t0 @ for these penalties and for the smoothness penalties.
basis ofR™ are equivalent for our algorithms.) ~ Another option is to use box constraints, which require
Figure 3 shows five geometry-aware basis functioggat 7, lies within a box centered around,, [19]. The
on a mesh consisting of a simple path. On this mesdigorithmic issues in this approach are more complex
the first Laplaagn-spectral b§13|s functions are Simp{ian in the other approaches, so we have not pursued
low-frequency sines and cosines. The geometry-awgf€The third approach is interpolatory; it requires that
functions are also fairly smooth, but most of thelga, = z,,. This is the limiting case of the two other

“energy” is concentrated near a single anchor. Bagipproaches. We explain this approach next.
functions for largerk are less smooth, because the

anchors get closer to each other, forcing the functiops An interpolatory scheme

to attain values near and nearl within short Intervals. e ¢an create slightly different geometry-aware bases
Intuitively, a few geometry-aware functions should allo

. : forcing the basis functions to attain prescribed values
us to approximate smooth mesh functions whose eXtreg{aspecific mesh locations. Given a sekofertex indices

are at or near the anchors more accurately than a f?v% ar ap < n, the ith function w; in the basis
geometry-oblivious Laplacian-spectral functions. mmimi’zes [!LWZH éubject to(w;)a, = 1 ;nd (wi)a, = 0
We express approximations of mesh functions usingf(?r i ! I

- B et
set of k anchors and the coefficients= (ci, ..., cx) Given the indices of thek anchors and the coef-
of the correspondingk geometry-aware funCt'Onsficients c of the basis functiongwi,...,wy) =W,

v :_(Vl’_' .+, vi). Given this representqﬂon_?f the aPthe approximationkx can be reconstructed as follows.
proximation, we reconstruct the approximatigrin the We use the equation, — ¢ to eliminatez, from
V a; — 1 a;

standard basis by solving a single least-squares Mifif, gystem. This effectively deletes colunanand row
mization problem, n+ a; from the coefficient matrix., (wherew = 1) and

changes the right-hand side. After all these equations are
} = eliminated, the resulting coefficient matrixhasn rows

k
% = argmin{ ||Lx||* + Zw2|xa7 — ¢l
x andn — k£ columns. To reconstruct the unknown values

i=1
zj,j ¢ {a;}, we solve the least-squares problem

k
- Zcm:vC min || Lx — (= L., {a€) || -
=1 x o
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Combining the minimizer with the known values Ill. THE PROGRESSIVE SCHEME

Ta, = ¢; Yields the approximation One of the best aspects of relaxed geometry-aware

. bases is that we can quickly improve the approximation

%= Zciwi — We . as soon as the location of additional anchors becomes
P known. This allows a client to display a rough approx-
imation as soon as the location of a few anchors is

The coefficient matrixi, of this least-squares problenf€Ceived from a server or retrieved from storage.
is smaller and sparser thah. so in general it will When the locations of additional anchors become

be even easier to solve the least-squares problem tfgwn to the client, it can produce a more accurate
reconstructss. approximation by updating the system with the new
The main disadvantage of this basis, compared to twéormatlon. The following system is solved:
relaxed basigv;}, is that adding interpolatory anchorsj
is computationally more expensive than adding least-
squares anchors; we explain this issue below, in Seghere L., is the updated system matrix comprised of
tion lll. When a large weightv is used for the anchorsthe previousL, and additional rows for the new anchors
in the relaxed scheme, the solution effectively becomeg, 1, ..., axim; cxs1,---,ckrm denote the new coef-
very close to interpolatory. See Figure 4 that visualizéigients. The key to utilizing additional anchors is an
the influence of differenw’s. efficient updating scheme to a sparse factorizatiod.of
The system (1) can be solved using a sparse Cholesky
factorization of the normal equationg,”L = RTR,
C. Approximating mesh functions whereR is sparse and upper triangular. The factorization
is done once, for an initial set of anchors. Suppose that
So far we have seen the basis functions and hewe now add an anchoti, . This adds a row tol,
to reconstruct an approximation given the indices @ihd addsw? to the ar,1th diagonal element of.TL.
the anchors and the coefficients of the basis function® reconstruct the new approximation, we need a new
We now turn to the question of how to generate thholesky factorization of. L.  L,..,. Fortunately, we can
coefficientsc = (ci,...,¢;)" given a mesh functiox ypdate the previous factorization in time proportional to
and a set, . ..,a of anchors. the number of nonzeros iR. Furthermore, the update
Perhaps the best way to definds by requiring that does not modify the nonzero structure Bf only the
the approximationk = Vc or x = Wec of a mesh numerical values of its entries.
function x be as close as possible, in tRenorm, to We updateR as follows. We essentially eliminate the
x. That is, to require that minimizes|[Vc — z|| or single nonzero in the new row i using a series of
|[We —z|| (depending on the basis used). Solving theggivens rotations that we perform on that row and on
systems is potentially expensive. A naive way to computews of R. The first rotation is performed on row, ,
these optimalc’s is to computeV or W explicitly, of R and annihilates the,_ ;th element in the new row.
by solving the least-squares problems that define th&tiis, however, introduces nonzeros to several elements in
columns, and then to solve the dense k least-squares the new row, elements with column indices greater than
problem. Note that to reconstrugt= Vc or x = We, aq;,;. We then eliminate the nonzero element with the
we do not use an explicit representationlofor 1. smallest column index in the new row, say indexising
For interpolatory geometry-aware bases, another nat-Givens rotation on row of R. The Givens rotation
ural way to choose is by settinge; = z,,. This ensures never modifies the nonzero structure of rows i)
that x coincides withx at the anchors. The-norm of because the next row that we update is always the parent
the errorx — x is likely to be higher than if we definein the elimination tree of.” L of the previous row. Since
c so as to minimize the error, but now the error ise updateR using a series of orthogonal transformations
concentrated away from the anchors. It turns out th@he Givens rotations) and since the addition af’ato
settingc; = x,, works well even for relaxed geometry-the diagonal ofL” L only improves its conditioning, the
aware base¥ . Employing large weightsy( — oo) on updating process is always numerically stable.
the relaxed anchors effectively makes the relaxed schem®ur incremental update method can be viewed as
interpolatory, while maintaining the advantage of tha special case of the general algorithm proposed by
updating capability (see Section Ill). In practice, we s@&avis and Hager [20]. Due to the specific structure of
w = 10n. the change inZ, the update in our case is particularly

T
newX — (len; WCly. .. ,WCk,OJCk+17 v 7wck+m) )
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w=1.0 w =10.0 w = 100.0 interpolatory reconstruction

Fig. 4. The effect of different weights on the relaxed scheme. The first three columns display the reconstruction with the relaxed scheme
using the same set of anchors, with different weights. The rightmost column shows the reconstruction using the interpolatory scheme. Close-
up on the ear is shown in the bottom row; the red spheres denote the position of the anchor vertices in the original mesh. As the weight of
the anchors grows, the reconstruction approaches to being interpolatory.

efficient. More specifically, Davis and Hager show howf an update operation than was given by Davis and
to update the Cholesky factdt when an arbitrary row Hager. They show that the cost of an update operation
is added or removed froni. Our algorithm solves ais proportional to the number of nonzeros i that
special case of this general update/downdate problesane being modified. The same is true in our algorithm.
the case of adding a row with a single nonzero. IHowever, in our case we can argue that under a rea-
the general case, the nonzero structure fmight sonable assumption, the number of modified nonzeros
change, and so does its elimination tree. These changes is proportional ton, the size of the mesh; in most
require a sophisticated algorithm to take care of sparsibases,n is much smaller than the number of nonzeros
Furthermore, since&k can fill as a result of an updatejn R. Suppose that a mesh can be embedded on the
the cost of a series of updates can be hard to predsdrface of a body with bounded genus (that is, without
In contrast, in our case the nonzero structure /©f many holes). Then the mesh has excluded minors, which
and the elimination tree do not change, so the pathplies that it has aO(y/n) approximately-balanced
in the elimination tree from the vertex, ., to the vertex separator [21]. Once separated, the same holds
root gives the sequence of elimination operations thatr the parts. The separators form a tree, and the path in
must be performed. This special case is consideralbhe elimination tree from row,,; to the root is also a
simpler. Another difference between the algorithm gdath in this separator tree. The number of nonzeras in
Davis and Hager and ours is that we use orthogorthht is modified is at most the sum of the squared sizes
Givens rotations to eliminate the new row in whereas of the separators on this path, which is at most
they use nonorthogonal operations. As a consequence, 2 2
our algorithm performst floating-point operations per (C\/ﬁ)2+ (C (2/3) ”) + (C\/ (2/3)? ”) + <
nonzero in R that is modified, and their algorithm
performs only2 per modified nonzero. Using fast Givens
rotation in our algorithm would bring the two algorithmfor some constant that depends on the genus. Note that
to the same cost per modified nonzero, but due to tf@ such meshes, the total number of nonzerosiims
insignificance of the update costs, we did not implemefXn log n), so the update only modifies a small fraction
such an approach. In short, our algorithm is, essential®y, them. In particular, the update is much cheaper than
a special case of [20]. But in our case, much of thgolving a single least-squares problem with the computed
machinery developed in [20] is not needed. factor R.
In the graphics literature, updating linear systems of

Since three-dimensional meshes typically have smafjuations due to changes of boundary conditions was
vertex separators, and due to the special structure of aiso performed by James and Pai [22]. However, they
updates, we can provide a tighter bound on the caste the capacitance-matrix approach, where a change

< 1.8c2n7
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of rank s in the original system matrix require9(s®) capability for the interpolatory scheme, as discussed in
operations for update. This type of approach is n&ection Illl. To reconstruct an approximation from an
efficient when it comes to incremental updates, since timtial set of anchors, the client needs to compute the
update has to be applied to the original factorization sparse factorization of (the connectivity is supposed to
the first L. Thus, the cost would be cubic in the totabe already known) and to solve for the mesh functions
number of added anchors. x, y andz. When more anchors become known, the fac-
In general, updating a sparse factorization with arbiierization is updated and we solve fery, z again. The
trary constraints can be both expensive and unstable. Ramning times of these key ingredients are summarized
example, updating the factorization of the interpolatoiip Table |. The factorization is the most costly part, and
scheme is probably more difficult than updatifyto is computed only once; the update and solve times are
accommodate additional relaxed anchors. However, itvsry small. We have used the direct solvers provided by
easy to add relaxed anchors to a factorization of dAUCS [24]. All our experiments were carried out on a
interpolatory basis. What is important is what kind 02.4 GHz Pentium 4 machine.
constraint we add, not how the original factorization was The compressed representation consists of the indices
produced. Therefore, we only employ relaxed anchoo$ the chosen anchors and the basis coefficients, which

update, which is guaranteed to be stable. are the locations of the anchor vertices in the original
model. The coefficients are uniformly quantized, and all
IV. SELECTING ANCHORS the data is encoded using an arithmetic encoder. How-

ever, since the locations and the indices of the anchors
governed by two factors: the condition number bf are scattered across the mesh,_entropy—encodlng typlgally
does not further reduce the size of the representation.

and the angle betweer and spafvy, ..., vi}. The Thus, roughlyklogn bits are needed to represent the
first factor depends on the location of the anchors in . . e
. Indices of thek anchors an@kq bits for the coefficients,
the topology of the mesh, and is independent of th . o .
) z, where ¢ is the guantization level. Note that since our

geometry of the shape. It is proven thatis well-

- : : ) .scheme favors smooth reconstructions, the approximated
conditioned if, loosely speaking, no vertex is too far (in .
shapes do not suffer from “jaggies” effects that would

terms of mesh edges) from an anchor, i.e., if the anchors o .
are well-distributed across the mesh graph. Theoreti 5 caused by quantization afl the z,y,  coordinates.
' %e usedq between 10 to 12 bits.

bounds on the condition number df, as well as a ) . . .
) . . o The results of approximations using varying numbers
practical algorithm for choosing an initial set of anchors : A
22 ) of basis vectors are shown in Figures 1 and 6. One can
to condition L, can be found in [23]. The second factor .
. . observe that the main features of the models, such as
depends on the interaction between the the geometry 0

. ) . extruding parts, are captured in the very early stages
the given shape and the basis functins. . ., vi. of the progressive scheme (i.e. with a small number of

We use an iterative greedy heuristic to reduce the . )
) basis vectors). We have compared our results with the
angle betweerx and spafivy,...,vy}. Given a set of

. method of Karni and Gotsman [7]. The spectral basis
anchorsay, . ..,a;_1, We compute an approximatiag

of the given shape and find the vertex on whicHiffers of the T“eSh I__apIaC|an [7] is a natural candl_date for
comparison with our geometry-aware bases, since both
most fromx. That vertex becomes the next anchgy, . -
. : . compression methods preserve the mesh connectivity,
Since we try to approximate at least three mesh functions,. . . .
: o unlike the compression schemes that require semi-regular
using the same anchors (the mesh function in three space . :
r.eineshlng [3]-[6]. We have carried out such a compar-

dimensions), we actually select the vertex whose spacllsa?n; however, it is limited to small meshes only. As

3D location in the approximated shape has the large . :
o : o . iscussed above, the spectral method requires computing
geometric distance to its location in the original mesh, : . I . )
) . ; ..a partial eigendecomposition of the Laplacian, which
The above incremental selection scheme is well suited'.. ) ,
. . IS time- and space-consuming. We usedamMAB’s
for progressive transmission of the mesh geometry: the : ) . )
L Igs function to find the first several eigenvectors of
server sends the anchors to the client in the same or

in which they were chosen by the greedy algorithm some submeshes of tiéamel model (see Figure S).
y y 9 y a9 " Computation of the first 1000 eigenvectors of a mesh

with 3220 vertices took about 4 minutes on a 2.4 GHz

V. REsuLTS machine with 2 GB or RAM. The computation used

We have tested our shape approximation method orre than 1 GB of RAM, and indeed, on a similar
several 3D models. We report results only for the relaxedachine with only 1 GB of RAM, the computation

geometry-aware bases due to lack of efficient updatitmpk about 20 minutes due to paging. Computing the

The norm of the approximation errdfx — x| is
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TABLE |
RUNNING TIMES IN SECONDS OF THE DIFFERENT COMPONENTS OF SOLVING THE LINEAR LEASSQUARES SYSTEMSFactor STANDS
FOR THE FACTORIZATION TIME OF THE NORMAL EQUATIONS MATRIX SolvelS THE TIME OF SOLVING FOR A SINGLE MESH FUNCTION
BY BACK-SUBSTITUTION; Average updates THE AVERAGE TIME SPENT ON UPDATING THE FACTORIZATION BY ONE RELAXED ANCHOR
(THE NUMBERS IN PARENTHESES DENOTE THE RANGE OF ANCHOR AMOUNTS OVER WHICH THE AVERAGE WAS COMPUTERMVorst-case
STANDS FOR THE LONGEST UPDATE TIME OBSERVED OVER THE UPDATES OF THE PREVIOUS COLUMN

| Model | # vertices] Factor| Solve | Average update (rangg)Worst-case|
Camel hump 13347 0.031] 0.002] 0.00007 (1-1000 0.0002
Camel mouth 3210| 0.101] 0.006| 0.0002 (1-3000 0.0003
Camel leg 3220] 0.121] 0.006| 0.0002 (1-3000 0.0004
Camel head 11381 0.503| 0.029| 0.0010 (1-10000 0.0013
Pig 28747 1.558] 0.065] 0.0020 (1—-28000 0.0032
Camel 39074 2.096] 0.073] 0.0021 (1—-39000 0.0034
Feline 49864 | 2.750| 0.110| 0.0025 (1—49000 0.0034
Max Planck 100086| 7.713] 0.240| 0.0110 (1-100000 0.0120
Igea 134345] 11.826| 0.444| 0.0200 (1-130000 0.0215

first 1000 eigenvectors of a mesh representing the enfirerforms only slightly better.

head of the camel, with 11,381 vertices, took about It should be mentioned that to alleviate the computa-
21 minutes on the 2 GB RAM machine. On largetion problem of the spectral basis, Karni and Gotsman [7]
meshes, the eigenvector computation simply failed dpeopose to partition the mesh into patches, each of small
to lack of memory. For example, we were not ablenough size to make its spectral decomposition feasible.
to compute more than about 5000 eigenvectors of thetheir subsequent work, Karni and Gotsman [12] use
11,381-vertex mesh, even on a machine with 2 GB RANIxed bases, derived from 6-regular connectivity patches.
We note that MTLAB's eigs function uses a state-of-However, partitioning the mesh is prone to visible dis-

the-art sparse eigensolver calledPAcK [25], which is continuity artifacts along the boundaries between the
implemented in Fortran. Thus, this performance is netbmeshes, similar to the blocking artifact in JPEG

due to MATLAB s interpreter and nor to a poor choice oencoding. We emphasize that our method is computation-
algorithm; it is essentially the inherent cost of computinglly efficient while it achieves nearly equal performance

eigenvectors. in terms of compression ratios.

Figure 5 summarizes the comparison results for the
tested small meshes in the form of rate-distortion curves. VI. CONCLUSIONS AND DISCUSSION
Typically, up to 10 - 20% of thes eigenbasis vectors are We have presented a method to approximate the
needed for visually lossless reconstruction. As suggestgbmetry of a shape based on its connectivity and a
by Karni and Gotsman [7], we quantized the spectrabmber of anchor vertices. The “tagging” of the anchors,
coefficients to 14 bits. Stronger quantization leads together with the connectivity, yield a geometry-aware
distortion of the reconstructed shape even when mdrasis that spans a subspace which is close to the given
than 50% of the full basis is used, since quantization ghape. The coefficients that approximate the shape in
the transformed domain behaves differently than quathat subspace are readily given by the spatial location of
tization in the standard basis. The spectral coefficierts®e anchors. Reconstructing the approximated shape only
were compressed with an arithmetic encoder. The ratequires the solution of a sparse least-squares problem.
distortion curves report three error metrics as a functidihe technique is simple and easy to implement given the
of the file size of the compressed geometry: the masequired linear algebra building blocks. The complexities
norm error, thel.? error measured by the Metro tool [26]of the geometry and the connectivity of the irregular
and a simple RMS of distance between the mesh verticagsh are completely hidden by the linear algebra ob-
The graphs show that our method does a better jobjatts, the matrices and the vectors. The efficiency of
terms of the max-norm metric, which is perhaps not suiRe technique stems from the existence of sophisticated
prising because the anchor selection scheme specificéithgar algebra tools, such as sparse-matrix factorizations,
aims at minimizing this norm. As for th&? and simple updating techniques, and so on.
RMS metrics, the two algorithms perform practically the There are a number promising directions for future
same. For th€amelhump mesh, which is fairly smoothwork. One is the relationship between the triangle count
and featureless, the geometry-oblivious spectral methadiuction and geometry encoding [27], [28]. The scheme
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that we presented is not fully progressive, in the senbasis vectors and finding a sparse representation are

that the mesh has always the full connectivity. It wouldonsiderable. In that context, our method can be seen

be desirable to find a way to incorporate geometry-awagie a specific over-complete basis, and as a way to

bases into progressive meshes [29], [30]. generate a sparse representation without resorting to an
Another direction is to study the relation of our basegptimization or search algorithm.

to non-uniform B-spline bases. We can view these bases

along three axes: their orthogonality, their supports, and ACKNOWLEDGMENT
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relatively little data. Therefore, any such method is by

definition ill-posed (many shapes have the same com-
pressed representation). In our case, the data consists of
the indices of the anchors and the values that the shapé D: buebke, B. Watson, J. D. Cohen, M. Reddy, and A. Varshney,
. . -~ Level of Detail for 3D Graphics Elsevier Science Inc., 2002.
attains there. To recongtruct a unique shape fr_om thig] T. Lyche, “Knot removal for spline curves and surfaces,” in
data, one must add a side condition. The condition that Approximation Theory VJIE. W. Cheney, C. K. Chui, and L. L.
we attach is a smoothness condition, that we impose in Schumaker, Eds. Academic Press, Boston, 1993, pp. 207-227.
this irreqular discrete case using the Laplacian matri>£3] M. Lounsbery, T. D. DeRose, and J. Warren, “Multiresolution
: 9 g P *analysis for surfaces of arbitrary topological typACM Trans-
To improve smoothness even further and/or to make the actions on Graphicsvol. 16, no. 1, pp. 34—73, January 1997.
algorithmic challenges more manageable, we can reld& A. Khodakovsky, P. Sctider, and W. Sweldens, “Progressive
the equality constraints at the anchors and replace them gggg’%ﬁgogpr;?if’gs'ﬁroceed'”gs of ACM SSIGGRAPH
with either penalties or box ConStram_tS' This V|ewp0|nt[5] L. Kobbelt, “Discrete fairing and variational subdivision for
would lead to exactly the same algorithms that we have freeform surface designThe Visual Computervol. 16, no.
developed in this paper. | §-4L_P|f- 1:2[15_87 ZO%O-P Seftder. “Fit bdivisi
. s : . Litke, A. Levin, and P. Sclirder, “Fitting subdivision sur-
The smo_othrjess side con(_jltlon that regularizes tH8 faces,” inIEEE Visualization 20012001, pp. 319324,
reconstruction is clearly unsuitable for models that arg;; z. kami and C. Gotsman, “Spectral compression of mesh
not smooth. Our method is, however, suitable for models geometry,” in Proceedings of ACM SIGGRAPH 2Q00uly
with localized sharp features, as long as many anchors 2000, pp. 279-286. _
d in the vicinity of the sh feat Th ] P. H. Chou and T. H. Meng, “Vertex data compression through
are L_’Ise In the vicinity o € sharp features. e repro- vector quantization,JEEE Transactions on Visualization and
duction of sharp features near anchors can be controlled computer Graphicsvol. 8, no. 4, pp. 373-382, 2002.

by the weights of smoothness constraints versus thHel O. Sorkine, D. Cohen-Or, and S. Toledo, “High-pass quantiza-
weights of location constraints tion for mesh encoding,” ifProceedings of ACM/Eurographics

. . . Symposium on Geometry ProcessiAgchen, Germany, 2003.
We believe that this work contributes to a rnor?LO] M. Fiedler, “Algebraic connectivity of graphsCzech. Math.

profound understanding of shapes represented by irreg- Journal vol. 23, pp. 298-305, 1973.
ular meshes. There is a broad spectrum of techniqu&d G. Taubin, “A S(ijgnal Pl[ocessing approach to fair surface de-
. . . sign,” in Proceedings of SIGGRAPH 93995, pp. 351-358.
to S(?IeCt a baSIS_ for effectively representlng geometl[¥2] Z. Karni and C. Gotsman, “3D mesh compression using fixed
ranging from splines and parametric free-form surfaces” gspectral bases;” iGraphics Interface 2001 Canadian Infor-
to wavelet bases for image encoding. Recently, re- mation Processing Society, 2001, pp. 1-8. o
searchers began proposing using over-complete ba$kd. H- Zhang and E. Fiume, "Butterworth filtering and implicit
This techni K basi it 1321 start ith fairing of irregular meshes,” iProceedings of Pacific Graphics
is technique, known as basis pursui [32], starts wi 2003 2003, pp. 502-506.
a large and redundant set of basis vectors, and usegian R. Ohbuchi, A. Mukaiyama, and S. Takahashi, “A frequency-
optimization algorithm to try to find a combination of =~ domain approach to watermarking 3d shape§dmputer
: . : Graphics Forumvol. 21, no. 3, pp. 373-382, 2002.
yery few basis vectors t.hat well app_rommate a glVe[rfs] C. Gotsman, X. Gu, and A. Sheffer, “Fundamentals of spherical
input vector (shape). This can sometimes lead to Very" ,arameterization for 3D meshes” iRroceedings of ACM

sparse representations, but the costs of generating the SIGGRAPH 20032003, pp. 358-363.
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0.045 —5— Spectral L™ error 0.02f —5 Spectral ° error 0.08 —3— Spectral L* error
0.04 —e— Geometry-aware L™ error 0.018 —o— Geometry-aware L error —e— Geometry-aware L” error
—— Spectral RMS error . —— Spectral RMS error 0.07 —— Spectral RMS error |
—— Geometry-aware RMS error || 0.016L —+— Geometry-aware RMS error . —— Geometry-aware RMS error
Spectral L2 (Metro) Spectral L2 (Metro) 0.06 Spectral L? (Metro)
—— Geometry-aware L? (Metro) || 0.014} —«— Geometry-aware L? (Metro) . —— Geometry-aware L2 (Metro) []

R N

\ \ R\ ]
h\> N &\ 200 300 400 500 600 700 800 900 1000 1100 1200 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
S filesize (bytes) filesize (bytes) filesize (bytes)

Fig. 5. Rate-distortion curves for small parts of B@melmodel. The graphs display different error measuf€s:stands fommax; ||p:; — pi||

wherep; = (x:,y:,2:); RMS stands for the root-mean-square geometric distance between corresponding vertices in the original and
approximated modelst.? error was measured using the Metro tool. Our experiments show that the geometry-aware approximation method
is very close to the spectral method in its performance. Tffeerror of our method tends to be smaller, while the error is practically

the same.

Original model, 39074 vertices 100 basis vecters(.01 600 basis vectorg=0.0022 1200 basis vectore=9.8 10—+ 3600 basis vectors;=2.07.10— %

0.5KB (0.10 bits/vertex) 3.3KB (0.69 bits/vertex) 6.7KB (1.40 bits/vertex) 19.8KB (4.15 bits/vertex)

Original model, 49864 vertices 100 basis vecters).0098 500 basis vectors=0.0034 4000 basis vectors=0.0012 9000 basis vectors=7.2-10~

0.6KB (0.09 bits/vertex) 2.8KB (0.46 bits/vertex) 22.2KB (3.65 bits/vertex) 50.1KB (8.23 bits/vertex)

Original model, 100086 vertices 100 basis vecters).0078 1000 basis vectors=0.0027 3000 basis vectors=0.0013 10000 basis vectorsz4.2210~4

0.6KB (0.05 bits/vertex) 6.1KB (0.50 bits/vertex) 18.2KB (1.49 bits/vertex) 60.5KB (4.95 bits/vertex)

Fig. 6. Reconstruction of several models using an increasing number of geometry-aware basis vectors. The sizes of the encoded geometry
files are displayed below the models. The lettaienotes thd.? error value. Refer to Table | for the timings.
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