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Abstract—Curved cross-sections extracted from medical volume images are useful for analyzing nonplanar anatomic structures such

as the aorta arch or the pelvis. For visualization and for performing distance measurements, extracted surface sections need to be

adequately flattened. We present two different distance preserving surface flattening methods which preserve distances according to a

user-specified center of interest and according to user-specified orientations. The first method flattens surface sections by preserving

distances along surface curves located within planes having a user specified constant orientation. The second method flattens

surfaces along curves located within radial planes crossing the center of interest. We study and compare the properties of the

two flattening methods by analyzing their distortion maps. Thanks to a multiresolution approach, we provide surface flattening at

interactive rates, allowing users to displace their focus point while visualizing the resulting flattened surface. These distance preserving

flattening methods provide new means of inspecting curved cross-sections extracted from medical images.

Index Terms—Visualization, anatomic structures, curved sections, surface extraction, distance preserving surface flattening,

interactive multiresolution flattening.
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1 INTRODUCTION

IN the context of medical imaging, medical specialists
often need to inspect anatomic structures having a curved

geometry, such as the pelvis or the aorta. Existing tools
allow them to extract planar slices of any orientation
traversing a structure of interest from a volume image.
However, a planar slice may, for instance, not include a
complete longitudinal section of a tubular curved structure
such as the aorta. The extraction of curved cross-sections
[10], [16] offers a new way of visualizing and inspecting
curved anatomic structures. In addition, curved surfaces
may easily follow structures made up of several branches
such as the aorta with its three outgoing arteries (Fig. 2c) or
the vena cava crossing the atrium cavity (Fig. 2d).

Textured curved surfaces may be visualized by their
projections onto the viewing plane. However, such projec-
tions show some surface parts and may hide other surface
parts. Surface flattening offers an alternative way of
visualizing a surface section [5], [10] by enabling the
visualization of all surface parts within a single planar
image. However, in the general case, surface flattening
introduces metric and angular distortions. In medical
imaging applications, an important objective is the ability
to carry out measurements for detecting anatomic abnorm-
alities. Therefore, the flattening algorithms should be
conceived so as to provide a global view of the surface
and, at the same time, enable distance measurements on the
flattened surface.

In this paper, we present two different distance preser-
ving surface flattening methods which preserve distances
according to user-specified orientations. They have similar
properties as known cartographic projections (Section 6).
The first flattening method (Section 4) preserves distances
along curves located at the intersection between the surface
and planes of constant orientation specified by the user. The
second algorithm (Section 5) preserves distances along
curves located within radial planes crossing a center of
interest (focus point). These flattening algorithms also
minimize the metric and angular distortions in the
proximity of the focus point.

We discuss the respective advantages and drawbacks of
the two surface flattening methods by comparing their
distortion maps (Section 6). We also introduce a multi-
resolution flattening method (Section 7) enabling surfaces to
be instantly flattened. Users may therefore interactively
move the center of interest within the surface section and
observe the resulting changes in the flattened image.
Finally, we show that flattened surface sections may be
used to carry out measurements for medical purposes
(Section 8).

2 PREVIOUS RESEARCH

Surface flattening enables professionals to visualize and
inspect surfaces extracted from medical volume images. A
simple but widely used technique is curved planar reforma-
tion, i.e., the extraction and flattening of a developable ruled
surface [7], [3], [10]. Several ruled surfaces may be extracted
and put in relation to one another [9], [10], for example, for
visualizing a section of a complete vascular tree within a
single planar image. These techniques have the drawback of
introducing discontinuities at the junction of two different
ruled surfaces. Moreover, they do not allow following highly
curved and large structures such as the pelvis.

In the context of magnetic resonance images, Haker et al.
[5] propose a technique for flattening the brain surface.
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They create a conformal mapping between the surface of
interest and a disc. The method has also been applied to the
3D visualization of colon CT images [6]. However, con-
formal mappings, while preserving angles, create large
unpredictable metric distortions.

Mlejnek et al. [12] present a flattening method for the
interactive thickness visualization of articular cartilage. The
method iteratively flattens triangles starting from a focus
point while trying to minimize area distortions.

Other researchers addressed the problem of surface
flattening in the context of texture mapping [2], [17], [18] or
in the more general context of parameterization of
3D meshes [4]. However, most of these methods introduce
surface cuts. For anatomic surface visualization, surface
cuts are problematic since continuous surface sections are
needed in order to provide an understanding of the
relationships between the different anatomic structure
elements. In addition, these texture mapping or surface
parameterization methods do not try to preserve distances
on the flattened surface.

In cartography, flattening of the sphere is the central
problem. Many different cartographic projections exist [13]
which each have their specific properties. For instance, the
Mercator projection is conformal, the orthographic projec-
tion preserves distances on the parallels of latitude, and the
Sanson projection preserves distances on the parallels of
latitude and on the central meridian.

The surface flattening methods presented here have
similar goals to the methods for cartographic projections.
They try to preserve distances along certain orientations
and minimize distortions around a point or a curve of
interest. They can therefore be seen as an extension of
cartographic projections from the sphere to more general
curved surfaces.

In the present contribution, we extend the parallel planes
surface flattening method presented in [16] by providing a
multiresolution approach allowing users to interactively
modify the center of a region of interest. We also present a
new distance-preserving radial planes flattening method
where metric distortions (Section 6) grow as a function of
the distance from the center of the region of interest.

3 CURVED SURFACE CONSTRUCTION

Let us describe the construction of a Coons surface used for
extracting curved cross-sections. Given n boundary cubic
splines specified by the user, varying along the u parameter,
two other boundary cubic splines are constructed which
pass through the extremities of these n curves (Fig. 1, red
curves). The resulting system of boundary curves is
interpolated by Coons patches [8, pp. 371-382]. Starting
with the n curves specified by the user, we can construct
n� 1 Coons patches by carrying out, for each patch, the
following interpolation:

P ðu; vÞ ¼ ðP ðu; 0Þ; P ðu; 1ÞÞ
f0ðvÞ
f1ðvÞ

� �

þ ðP ð0; vÞ; P ð1; vÞÞ
f0ðuÞ
f1ðuÞ

� �

� ðf0ðuÞ; f1ðuÞÞ
P ð0; 0ÞP ð0; 1Þ
P ð1; 0ÞP ð1; 1Þ

� �
f0ðvÞ
f1ðvÞ

� �
;

ð1Þ

where P ðu; 0Þ, P ðu; 1Þ, P ð0; vÞ, and P ð1; vÞ are the para-

metric representations of the boundary curves and where fi
are blending functions. By choosing cubic Hermite poly-

nomials [8, p. 379] as blending functions, the resulting patch

set yields a C1 continuous parametric surface.

Fig. 2 presents examples of curved surfaces traversing

anatomic structures, projected onto the view plane. They

were created thanks to an interactive applet allowing users

to accurately specify surface patch boundary curves across

the 3D volume image of the Visible Human [16]. Fig. 2a

shows a surface passing through the left hand. Fig. 2b

shows a surface passing through the sternum, the costal

cartilages, and the ribs. Fig. 2c shows a surface passing

through the aorta, the subclavian, the carotid, and the

brachiocephalic arteries. These arteries are not coplanar.

Fig. 2d shows a surface passing through the vena cava

superior, the atrium cavity, the vena cava inferior, and

several noncoplanar outgoing veins.

4 PARALLEL PLANES FLATTENING

Parallel planes flattening preserves distances along trajec-
tories located at the intersection between planes of a
specified orientation and the surface [16]. Thanks to parallel
planes flattening, medical specialists can easily measure a
distance within a structure or between two structures along
a trajectory located within a plane of constant orientation.

First, the user selects a point P0 ¼ P ðu0; v0Þ on the
surface S as the center of his region of interest. Then, a
plane orientation H is chosen by the user according to the
desired orientation along which distances should be
preserved. The system then chooses the parametric curve
Cu0
fu ¼ u0; 0 � v � vmaxg (or Cv0

depending on the plane
orientation)1 on surface S as the reference curve along
which angular distortions are to be minimized (Fig. 3a).

By discretizing the surface for equally spaced values of u
(separated by a constant step size �u, see Section 7), we
obtain a set of curves Cu with u ¼ const. For each sample
point Mj of the initial curve Cu0

, the plane Hj of orientation
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Fig. 1. Construction of a curved surface.

1. To avoid degenerate cases where a part of an isoparametric curve is
parallel to the plane, we choose the set of isoparametric curves whose main
orientation makes the smallest angle with the plane’s normal vector.



H passing through Mj is computed. The intersection points
between Hj and the family of curves Cu (Fig. 3a) provide a
discrete representation of the intersection of the surface S

and the plane Hj [8, pp. 507-508]. The intersection between
the plane and the family of curves Cu is computed
iteratively. In the case of double intersection between the
plane and a curve Cu, the system chooses the intersection
point closest to the previously computed intersection point.
By iterating over all sample points Mj of Cu0

, we obtain a
family of discrete curves Cj. Each discrete curve Cj is
located at the intersection of plane Hj and the family of
curves Cu.

With the new parameterization defined by the family of
curves Cu and the family of curves Cj, the flattening
algorithm is comprised of the following steps:

1. Map the initial curve Cu0
onto a plane by preserving

the geodesic curvature [8, pp. 46-47]2 at each sample

point and by preserving the distance between
points,3 according to [2].

2. Map a curve Cj0 into a straight line C0j0
with cross

angle preservation between Cj0 and Cu0
and

distance preservation between consecutive sample
points of Cj0 .

3. Map each curve Cj into a straight line parallel to C0j0

and passing through M 0
j with distance preservation

between consecutive sample points of Cj.

By construction, this method preserves both the distances
on the reference curve C0u0

and on the transversal lines C0j
(Fig. 3b). The cross angle between Cu0

and Cj0 is also
preserved. The geodesic curvature is preserved along the
reference curve C0u0

. Therefore, metric distortions are
minimized along a band of interest near the curve C0u0

and both angular and metric distortions are minimized in
the proximity of the focus point.

Each facet of the resulting flattened surface is sampled
according to the display grid. The corresponding color
texture is then extracted from the 3D volume image by
nearest neighbor or trilinear interpolation.

Fig. 7 presents the flattened surface passing through the
aorta arch and three outgoing arteries for two different
points of reference. This flattened surface shows the
connections between the aorta and the three outgoing
arteries within a single planar image. Users may interac-
tively drag the reference point to new positions (Section 7).
They may also rotate the distance preservation orientation
by rotating it within the flattened view. Measurements along
the orientation represented by the blue straight lines (Fig. 7)
may then be directly carried out on the flattened image.

5 RADIAL PLANES FLATTENING

When analyzing anatomic structures, one may need to
measure the distance between organ extremities and a point
of reference. This may help, for instance, in detecting
possible abnormalities. Therefore, we propose a flattening
algorithm which preserves distances along trajectories
located within all radial planes around a point of reference
and which minimizes angular and metric distortions in the
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3. Preserving the geodesic curvature along a curve CðsÞ consists of
creating a planar curve C0ðsÞ having a curvature equal to the geodesic
curvature of the original curve at each sample point.

Fig. 2. Display of curved surfaces passing through anatomic structures.

(a) Left hand. (b) Sternum and costal cartilages. (c) Aorta tree. (d) Vena

cava tree.

Fig. 3. Parallel flattening of a curved surface. (a) Original 3D surface.

(b) Flattened surface.

2. The geodesic curvature kg of a curve CðsÞ belonging to a surface S at a
point X is the norm of the projection of its curvature vector at X onto the
tangent plane.



proximity of the focus point. We define a polar coordinate

system on the curved surface centered at the point of

reference P0. Given the surface’s tangential plane at the

reference point and a perpendicular plane through the

reference point, we construct a trajectory on the curved

surface located at the intersection with this perpendicular

plane. This trajectory is mapped into a straight line on the

flattened surface by preserving its length.

With the surface S defined by its parametric equation

P ðu; vÞ and a point of reference P0 ¼ P ðu0; v0Þ on the

surface, we first compute the normal vector at P0,

N0
�! ¼ Pu

�!ðu0; v0Þ � Pv
�!ðu0; v0Þ. We choose a reference

vector Va
�!

on the tangential plane and compute

Vb
!¼ N0

�!� Va
�!

. We establish a local coordinate system

given by vectors Va
�!

, Vb
!

and the reference point P0. For

each V�
!¼ Va

�!
cos �þ Vb

!
sin �, we denote H�, the plane per-

pendicular to the tangential plane, spanned by V�
!

and

N0
�!

. The intersection between the plane H� and the

surface S is computed. In the same way as for parallel

planes flattening, the resulting discrete curve is computed

by intersecting the plane with a series of isoparametric

curves Cui fu ¼ ui; 0 � v � vmaxg or, respectively, Cvi f0 �
u � umax; v ¼ vig1 separated by a constant step size �u or,

respectively, �v [8, pp. 507-508]. By iterating along each

angular orientation �i separated by a constant angular

step ��, we obtain a family of discrete curves C�i (Fig. 4a).

Each point of the surface may then be represented by the

polar coordinates P ðr; �Þ, where r is the length of the

portion of the curve C�i between P0 and P .
With the polar system defined by the family of curves C�i ,

the radial planes flattening algorithm is comprised the
following steps:

1. The point of reference P0 is mapped onto a point
P 00 ¼ ðx0; y0Þ on the plane.

2. An initial curve C�0
is mapped into a straight line by

preserving the distance between sampled points.
3. Each curve C�i is mapped into a straight line by

preserving the distance between sampled points and
by preserving the angle �� between each consecu-
tive curve C�i .

We take an angle step �� that is sufficiently small (half a

degree) to ensure that the surface may be linearly

interpolated between two consecutive curves C�i and C�iþ1
.

As in the case of parallel planes flattening, each facet of

the resulting flattened surface is sampled according to the

display grid and the corresponding color texture is

extracted from the 3D volume image.
This resulting radial planes polar map is different from a

geodesic polar map [14], [19], where distances are preserved

along geodesic curves originating at the focus point. The

geodesic polar map has the limitation of being applicable

only within a small neighborhood of a given point [11,

pp. 165-168] due to possible mutual intersections of

geodesics.
Fig. 8 shows the surface passing through the aorta tree

flattened according to two different reference points. Radial

planes flattening minimizes the distortions around the focus

point. It also allows users to directly carry out measure-

ments along the orientations of the radial lines on the

flattened image (blue lines, Fig. 8).

6 EVALUATION OF THE FLATTENING METHODS BY

DISTORTION MEASUREMENTS

In order to evaluate the advantages and drawbacks of the

two flattening methods and to provide feedback about

distortion magnitude and orientation, let us introduce

metrics of distortion.
We rely on the distortion metrics described by Sander

et al. [15] and Sorkine et al. [17]. Given a triangle of the

discretized surface, the distortion caused to this triangle is

measured by the singular values of the Jacobian of the affine

transformation S between the original triangle T and the

corresponding mapped triangle T 0 located on the flattened

surface. The singular values �min and �max of the Jacobian

matrix J ¼ SxSy
� �

are the eigenvalues of the matrix J� JT.

The singular values correspond to the largest and smallest

scaling factors. Sander et al. [15] take the root-mean-square

of the two values as the L2 metric and �max as the L1 metric.

Sorkine et al. [17] define the distortion factor

DðT; T 0Þ ¼ max �max;
1

�min

� �
ð2Þ

since stretching and shrinking may be considered the same

for the purpose of measuring geometric distortions. If the

distortion factor DðT; T 0Þ is one, the triangles are isometric

and there are no distortions. We adopt this distortion factor

for our distortion measurements. We also calculate its mean

value over the whole flattened surface. In addition to the

distortion factor, we calculate the eigenvectors V
!

min; V
!

max

of the matrix J� JT corresponding to the singular values

�min; �max. These vectors define the orientations of the

smallest and largest scaling, i.e., the main orientations of

distortions. In order to visualize distortions, we also

compute and display (Figs. 7 and 8, red lines) vectors V
!

corresponding to the main distortion orientations, i.e.,
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Fig. 4. The polar coordinate system on the original 3D surface and the

flattened polar map. (a) Original 3D surface. (b) Flattened surface.



V
!¼

V
!

min if �max <
1
�min

V
!

max if �max � 1
�min

(
ð3Þ

To illustrate the distortions induced by the two flattening
methods, we apply them to a sphere (Fig. 6a). For the
parallel planes flattening method (Fig. 6b), the central
meridian of the sphere is taken as the curve of reference and
the intersection of the central meridian and the equator as
the reference point. The planes passing through the
parallels of latitude of the sphere define the orientation of
distance preservation. For radial planes flattening (Fig. 6c),
we take the north pole as the reference point. For both
flattening methods, only one half of the sphere is flattened.
Fig. 6 presents the distortions maps for the two techniques

with grayscale (Fig. 5) representing distortion factors.
With the parallel planes flattening method, distances are

preserved along each parallel of latitude of the half sphere

as well as on the central meridian. The parallels of latitude

(Fig. 6a) and the central meridian (Fig. 6a) become straight

lines (blue horizontal lines and the blue vertical line, Fig. 6b).

Distortions increase with increasing distances from the

central meridian and from the equator. These properties are

exactly those of the Sanson cartographic projection [11, pp. 211-

212], [13]. For the presented reference curve and parallel

planes layout, the Sanson projection and the parallel planes

flattening method are equivalent.

With the radial planes flattening method, distances are
preserved along each meridian of the sphere. The images of
meridians (Fig. 6a, red lines) are straight lines (Fig. 6c, blue
lines) while the images of the sphere’s parallels of latitude
are circles. The distances along parallels of latitude are
preserved near the reference point and are stretched
proportionally to the distance from the reference point.
These properties are exactly those of the azimuthal equidi-
stant projection used in cartography [13]. With respect to the
hemisphere, the azimuthal equidistant projection and the
radial planes flattening method are therefore equivalent.

Let us analyze the proposed distance preserving flatten-
ing methods on a real curved surface. Fig. 7 shows that, for
parallel planes flattening, the main orientation of distortions
(red segments) is orthogonal to the direction of distance
preservation. The distortions are minimally close to the
reference point. With the radial planes flattening method
(Fig. 8), the main orientation (red segments) of distortions is
also orthogonal to the lines of distance preservation
(orthoradial). Near the reference point, the resulting
deformations are negligible. They increase with increasing
distance from the reference point.

With both flattening methods, the distortions are
minimally close to the reference point. However, with
parallel planes flattening, distances are preserved along
one orientation and both distance and geodesic curvature
are preserved along the reference curve. Distortions are
therefore small in the proximity of the reference curve.

Since the distortions increase continuously with the
radial planes method, in case of a very large surface such as
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Fig. 5. Grayscale distortion factors.

Fig. 6. (b) Parallel planes and (c) radial planes flattening of (a) a

hemisphere.

Fig. 7. Distortion map for parallel planes flattening.



a surface passing through the sternum and ribs (Fig. 9), high

distortions may occur (Fig. 9b). In the case of large surfaces,

parallel planes flattening seems to be more appropriate

(Fig. 9a). However, within a small neighborhood around the

point of interest, radial planes flattening generally yields a

locally less distorted flattened image than parallel planes

flattening.

By construction, with the radial flattening method, a
higher curvature around the point of interest yields higher
distortions on other parts of the surface. Flattening of the
hand is shown in Figs. 10a and 10b with the focus point
located within a local flat region and, respectively, in
Figs. 10c and 10d with the focus point located within a
region of high curvature. Clearly, the hand flattened using
the radial planes method (Fig. 10d) shows an elliptical
deformation which yields higher distortions than the hand
flattened using the parallel planes method (Fig. 10c). In both
cases, when the focus point is located on a low curvature
surface part, distortions remain small near the focus point
(Figs. 10a and 10b).

As a further illustration of the two methods, Fig. 11
shows the flattened surface section passing through the
vena cava tree.

7 INTERACTIVE FLATTENING

We integrated the flattening algorithms into a client-server
Web application (Java applet) which offers interactive tools
for inspecting the anatomy of the Visible Human data set
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Fig. 8. Distortion map for radial planes flattening.

Fig. 9. Flattening of a curved surface passing through the sternum and

the ribs with (a) the parallel and (b) the radial planes flattening method.

Fig. 10. Flattening of the same curved surface passing through the left
hand with (a) and (c) the parallel and (b) and (d) the radial planes
flattening methods with two different focus points.



[1]. The client applet displays flattened curved surfaces

extracted from the data set located on the server. Flattened

surface parts are inspected by interactively moving the

focus point on the flattened image. Thanks to a multi-

resolution approach, flattened surface images are displayed

at interactive rates within the online application. We first

compute the flattened surface at a coarse discretization step

when the focus point is moved. When the focus point stops

moving, the flattened surface description is refined by

decreasing the discretization step down to the optimal

discretization. We further reduce the time to produce the

coarse resolution flattened surface by reusing the texture of

the surface computed during the previous flattening step

and by extracting the final texture from the volume data set

located on the server only when the final high resolution

flattened surface is to be displayed.

The considered multiresolution discretization step aims

at speeding up the computation of the intersections

between the surface and the family of, respectively,

parallel planes Hj and polar planes H� (Sections 4 and

5). The surface S is given in parametric form P ðu; vÞ ¼
ðxðu; vÞ; yðu; vÞ; zðu; vÞÞ and the plane in implicit form

fðx; y; zÞ ¼ 0. Their intersection leads to the equation

fðxðu; vÞ; yðu; vÞ; zðu; vÞÞ ¼ 0. To solve this equation, we

set u ¼ ui (or, respectively, v ¼ vj) and find the solutions

v ¼ vk (respectively, u ¼ uk). We repeat this for a series of

equally spaced u values (respectively, v values), resulting

in a set of intersection points P ðui; vkÞ (or, respectively,

P ðuk; viÞ) [8, pp. 507-508]. This is equivalent to the

computation of the intersection between the plane and a

set of isoparametric curves Cui fu ¼ ui; 0 � v � vmaxg or,

respectively, Cvi f0 � u � umax; v ¼ vig, separated by a

constant step size �u or, respectively, �v (Sections 4

and 5). If the set of curves is sufficiently dense, i.e., the

step size is sufficiently small, the resulting set of

intersection points Pui (or Pvi ) provides a piecewise linear

approximation of the intersection between the plane and

the surface. In order to reduce computation times during

the displacement of the focus point, the multiresolution

approach consists in modifying the step size providing

the discrete intersection between one plane and the

surface as well as the step size controlling the number

of intersecting planes. For radial planes flattening, the

number of planes depends on the angular discretization

step size ��. For parallel planes flattening, the number of

planes depends on the discretization step �v along the

reference curve Cu0
(see Fig. 3).

Figs. 12 and 13 give the flattening times (P4 1.7 GHz,

512 Mo Ram) for three different surfaces, with the left hand

(Fig. 10) incorporating eight patches, the aorta (Figs. 7 and

8) comprising four patches, and the sternum and costal

cartiledge surfaces (Figs. 15 and 16) comprising six patches.
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Fig. 11. Flattening of the same curved surface passing through the vena

cava tree with (a) the parallel and (b) the radial planes flattening

methods.

Fig. 12. Parallel planes flattening time as a function of the number of

discretization steps 1=�u per plane intersection for parallel planes

flattening.

Fig. 13. Radial planes flattening time as a function of (a) the number of

discretization steps per plane intersection 1=�u (respectively, 1=�v) and

(b) the number of plane intersections per degree 1=��.



For both flattening methods, the flattening time is propor-

tional to the number of discretization steps used for
computing the discrete intersections between the plane

and the surface. The radial planes flattening time is also
proportional to the number of planes per unit of angle. By

construction, the parallel planes flattening time is also
proportional to the number of planes per unit length.

Since the Coons surface is defined by interpolating the

boundary curves, we compute the optimal step size �uopt
(respectively, �vopt) by recursive subdivision of the step

sizes of each boundary spline curve P ðu; iÞ (respectively,
P ðk; vÞ) until the height of each triangle formed by

three consecutive sample points of the spline curve is
smaller than the data set pixel size. The smallest step size

from all surface patches becomes �uopt (respectively, �vopt).
Regarding the angular step size ��, experience shows that a

step size ��opt ¼ 0:5� results in a high quality flattened
surface.

Experience shows that, in order to provide interactivity
when moving the reference point, it is necessary to display
at least five flattened images per second. With the optimal
step sizes �uopt and �vopt (and ��opt for radial planes
flattening), we measure the time topt to flatten the surface.
For parallel planes flattening, we derive the step sizes �umin

and �vmin yielding the desired interactive flattening time.
Regarding radial planes flattening, experience also shows
that the angular step size �� must be less than six degrees
in order to ensure a sufficiently good quality for the low
resolution surface discretization. We, therefore, first com-
pute the minimal step sizes ��min and �umin (respectively,
�vmin). If the upper bound of �� is reached, we take
��min ¼ 6� and derive the step sizes �umin (or, respectively,
�vmin) yielding the desired interactive computation time
tmax ’ 200 ms. Examples of step sizes, corresponding
number of mesh triangles, and measured computation
times are given in Table 1.

When the center of interest reaches its final position, we
flatten the surface according to the optimal discretization
steps and fill the flattened image with the locally available
texture. We then request the final texture from the server
and generate the final high resolution flattened image.

The differences between the low resolution flattened
surface and the final flattened surface are only significant at

a large distance from the center of interest. Therefore,
during interaction, image quality remains generally high for
most of the surfaces. However, in the case of large and
highly curved surfaces, the computation time may be too
important to ensure both interactivity and high quality.

Multiresolution surface flattening enables the system to
compute several flattened images per second and, there-
fore, provides a progressive and continuous deformation
of the flattened surface according to the displacement of
the focus point.

8 CARRYING OUT MEASUREMENTS ALONG

FLATTENED SURFACES

Let us compare different anatomies by measuring distances
on flattened curved surfaces laid out across the same
anatomic reference points. We consider two different
volume data sets. The first data set is the Visible Human
cryosection data set, a 15 GB true color 3D volume [1]
sampled at a resolution of 3� 3� 1 voxels per mm3 on,
respectively, the x, y, and z axis. The second data set is a
100 MB computer tomography volume data set (courtesy of
the University Hospital of Lausanne, Dr. Reto Meuli)
sampled at a resolution of 1� 1� 1=3 voxels per mm3 on,
respectively, the x, y, and z axis. We extract from both data
sets a similar surface defined by the same anatomic
reference points and compare the two resulting flattened
images.

We extract a surface from each data set passing through
the sternum and the costal cartilages. Each surface is
constructed by specifying curve control points at the
two extremities of the intersection between axial slices
and the costal cartilages (Fig. 14). For each costal cartilage
pair, we choose the axial slice which passes through the
external extremities of the costal cartilages.

Parallel planes flattening (Fig. 15) is carried out by
preserving distances along intersections between the sur-
face and axial planes. With both flattening techniques, the
flattened surfaces obtained from the Visible Human and
from the CT images are similar. With parallel planes
flattening (Fig. 15), distances measured along the horizontal
orientation (green lines orientations) may be compared.
With radial planes flattening (Fig. 16), the distances
between the reference point and another structure within
a radial direction (green lines) may be compared. These
measurements may help specialists in characterizing
possible anatomic abnormalities provided that the corre-
sponding anatomic structures having clearly identifiable
anatomic reference points.

A curved surface defined by control points located on
anatomic reference points provides a stable reference frame
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TABLE 1
Examples of Step Sizes, Number of Mesh Triangles, and

Computation Times for Parallel Planes Flattening

Fig. 14. Curve control points at the extremities of the costal cartilages.



for measurements. This may prove to be particularly useful
for following the evolution of dynamically growing
structures such as tumors.

To characterize such an evolution, besides distance
measurements on the flattened surface, medical specialists
may want to measure the perimeter or the area of a
structure intersected by the curved surface. The flattened
view may therefore provide users with a simple means of
performing such measurements. Once a curve following the
boundary of the structure of interest on the flattened surface
has been specified, the corresponding 3D curve on the
original surface may be easily tracked and its length
computed. In the case of a closed curve, the corresponding
enclosed surface area may also be computed.

9 CONCLUSION

We introduce two interactive surface flattening methods for
visualizing curved cross-sections extracted from medical
volume images. These methods enable the interactive
visualization of a flattened curved surface and, therefore,
provide the means for a thorough inspection of anatomic
structures.

Parallel planes flattening preserves distances along the
intersection between parallel planes of constant orientation
and the surface. Radial planes flattening preserves distances
along trajectories located at the intersection between the
surface and radial planes passing through the center of a
region of interest. These distance preserving flattening
methods may enable specialists to establish the differences
between different anatomic morphologies.

We illustrate the properties of the flattening methods by
using distortions maps displaying the intensity and main
orientation of distortions within the flattened surfaces. By
applying the flattening methods to the hemisphere, we
show that they are equivalent to well-known cartographic
projections.

The two proposed flattening methods minimize geo-
metric distortions around the center of a region of interest
located on the surface. In addition, parallel planes flattening
also minimizes distortions along a reference curve inter-
polating between surface patch boundary curve. Thanks to
a multiresolution approach, we flatten the surface at
interactive rates, thereby enabling the real-time displace-
ment of the center of interest. Users may inspect the
different surface parts without noticeable local distortions

by displacing the reference point and observe the contin-
uous deformation of the flattened surface.

The presented methods may provide medical specia-
lists with new tools for visualizing and analyzing
anatomic structures. They may use them for comparing
morphologies or to inspect anatomic structures of
patients. Distance measurements carried out on flattened
surfaces may also help in detecting anatomic abnormal-
ities. The distance preserving real time surface flattening
tools are available online on our Visible Human Website
(http://visiblehuman.epfl.ch). They run within a Java
applet. We invite medical specialists to use them and to
evaluate their possible benefits.
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