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Abstract—We present a method for repairing topological errors on solid models in the form of small surface handles, which often arise

from surface reconstruction algorithms. We utilize a skeleton representation that offers a new mechanism for identifying and measuring

handles. Our method presents two unique advantages over previous approaches. First, handle removal is guaranteed not to introduce

invalid geometry or additional handles. Second, by using an adaptive grid structure, our method is capable of processing huge models

efficiently at high resolutions.

Index Terms—Topology repair, skeleton, thinning, octree.
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1 INTRODUCTION

WITH the advance of data acquisition techniques, we
have witnessed a boom of high-resolution 3D data in

recent years. Although many surface reconstruction meth-
ods are capable of generating watertight surfaces from these
data, the resulting models may still exhibit topological
errors in the form of small handles such as those shown in
Fig. 1a. These high-frequency topological features may
unnecessarily increase the complexity of the model and
make it unsuitable for subsequent processing tasks such as
mesh simplification, mesh parameterization, and physical
computation.

Our goal is to remove small handles on the surface of a
solid model so that a low-genus model can be prepared for
further applications. To be able to process large models
with complex errors, which are typical in today’s surface
reconstruction problems, we particularly desire the follow-
ing properties:

. Discriminative. The method should be able to
differentiate between big and small handles.

. Robust. Removal of existing handles should not
introduce invalid geometry or additional handles.

. Efficient. The method should handle huge models
at high resolutions within reasonable time and
memory.

Unfortunately, to the best of our knowledge, none of the
current topology repair methods satisfy all of our require-
ments. In particular, it is difficult for mesh-based or existing
volumetric methods to guarantee that removing a handle
does not introduce a new handle. Furthermore, the time and
space consumption of traditional methods are typically

high for processing large models due either to operations
that require the full mesh resolution or to the reliance on a
uniform volumetric grid.

In this paper, we introduce a new volumetric approach
of topology repair that meets all of the three requirements.
Our method converts an input solid into a volume grid and
thins the volumetric model to a skeleton so that the task of
detecting handles is reduced to identifying cycles on the
skeleton. Using topology-preserving morphological opera-
tions, the modified skeleton with cycles removed grows
back into the model with the corresponding handles
removed. Both thinning and growing are performed on an
adaptive grid structure for efficient processing of large
models. In addition, our method allows the selective
removal of small handles by computing and utilizing a
thickness measure on the skeleton.

Contributions. We present a robust and efficient solu-
tion for topology repair. Our method consists of concep-
tually simple steps and possesses two advantages over
existing techniques:

1. Unlike previous mesh-based or volumetric ap-
proaches, our method is guaranteed to remove
handles without introducing additional ones via
skeleton modification and topology-preserving mor-
phological operations.

2. Although previous volumetric methods rely on a
uniform grid structure, our method operates on an
adaptive octree grid and is capable of processing
huge models at very high resolutions (for example,
4; 0963) in minutes.

2 RELATED WORK

2.1 Skeletons

Skeletons are compact medial representations that describe
the shape and connectivity of a 3D object [1]. In contrast to
skeletonization methods based on Voronoi diagrams [2], [3]
and distance transforms [4], [5], iterative thinning excels as
an efficient easy-to-implement technique for generating
topology-preserving skeletons of volumetric images (see an
excellent survey in 2D in [6] and a 3D introduction in [7]).
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Given a solid represented as a set of 3D grid points, each
thinning iteration removes points in the outmost layer of
the set. The key of topology preservation lies in identifying
simple points [8] whose removal would not alter the
topology of the solid. Unfortunately, existing thinning
methods rely heavily on the use of a uniform grid because
it is convenient to identify simple points on such a grid,
which limits these methods to relatively low resolutions
that are often insufficient for capturing the topology of large
models.

2.2 Topology-Controlled Surface Reconstruction

This class of methods [9], [10], [11], [12] is designed to
reconstruct isosurfaces from volumetric data with a known
topology type. Starting with an initial solid with the correct
surface topology, these methods grow (as opposed to thin)
the solid in a topology-preserving manner. Although such
methods have been effective in reconstructing topological
spherical cortical surfaces from magnetic resonance ima-
ging (MRI) data, application to other topologies is difficult,
as these methods require a priori knowledge of the desired
topology, as well as the geometry of the initial solid.

2.3 Mesh-Based Topology Repair

The first class of methods for repairing the topology of a
given surface performs surgeries directly on the polygonal
mesh. Representative work includes the method of Fischl
et al. [13], which inflates a reconstructed cortical surface
into a sphere and removes handles by identifying and
deleting overlapping triangles on the inflated sphere. Using
the concept of �-hulls, El-Sana and Varshney [14] achieve
controlled simplification of CAD models by identifying
small tunnels and surface concavities as regions not
accessible to a sphere of user-specified radius rolling on
the surface. Also in a controlled manner, Guskov and Wood
[15] employ a surface-growing technique that identifies and
removes small handles completely contained in a mesh
neighborhood of a given size.

Mesh-based methods have the advantage that topology
changes only involve local modification of the geometry.
However, there are two typical drawbacks: First, the
removal of existing handles directly on the mesh may
introduce invalid geometry in the form of self-intersections.
Second, it is computationally expensive to identify handles
directly on a large mesh, for example, by surface inflation

[13], by computing and intersecting �-prisms of triangles
[14], and by exploring a surface neighborhood that can be
potentially large for identifying long and thin handles [15].
Note that optimizations can be performed to dramatically
speed up the detection of small handles, as proposed in a
recent work by Attene and Falcidieno [16].

2.4 Volumetric Topology Repair

The second class of methods, to which our method belongs,
removes surface handles by modifying a volume represen-
tation of the input model. In a simple approach, Nooruddin
and Turk [17] applied opening and closing operations on
the volume to remove small surface handles. However,
these global morphological operations may create addi-
tional handles in areas away from the existing ones. In a
more targeted approach, the method of Wood et al. [18]
detects each surface handle as a cycle in the Reeb graph of
the isosurface extracted using the Marching Cubes method
[19] and performs handle removal by filling a disklike
volume inside the shortest geodesic loop corresponding to
each cycle. Still, the main problem with this hybrid
approach, as commented by the authors, is the possible
introduction of new handles due to the loop-filling
operation. In addition, the removal of each handle requires
rebuilding the Reeb graph on a uniform grid, which can be
time consuming for a large number of handles. The
detection of the shortest geodesic loops on big handles
can also be expensive.

Our method is most closely related to the graph-based
approach of Shattuck and Leahy [20] and Han et al. [21].
Both methods encode the topology of the solid (instead of
the surface) as a graph and remove handles by breaking
cycles in the graph. Using topology-preserving morpholo-
gical operations, handle removals are guaranteed not to
introduce new handles. However, both methods involve
complex graph generation and analysis that are restricted to
uniform grids. In particular, the construction of the Reeb
graph in [20] is based on axes-aligned sweeping, whereas
handle removal using the graph in [21] requires nontrivial
connectivity analysis to identify “hidden” handles within
each graph node. In contrast, our skeleton representation of
the solid is simple enough to compute on an adaptive grid
and allows for easy identification of surface handles of
different sizes.
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Fig. 1. Topology repair on a spiderweb model: (a) The original genus-75 model reconstructed from point sets with many small and entangled
handles. (b) Topology repair removes all erroneous handles except for the 17 major Web holes.
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Recently, a multiresolution solution was proposed by
Szymczak and Vanderhyde [22], which applied topology-
preserving carving operations to extract isosurfaces with the
desired genus. This method, however, provides no direct
means for controlling the size of the handles to be removed.
In addition, the removal operation is limited to filling
tunnel-like handles and, hence, may result in modifying a
much larger volume than necessary. In comparison, our
handle removal is guided by an accurate measure of handle
sizes and allows for both tunnel filling and ring cutting (see
the removal of the two handles in Fig. 6e).

3 METHOD OVERVIEW

To avoid introducing an invalid geometry (for example,
self-intersections) as a result of topology repair, we
represent an input model as an implicit volume. The
surface of the model, represented as the isosurface on the
volume, partitions the volume into the object (for example,
interior) and the background (for example, exterior). To
remove surface handles, our method involves three
conceptually simple steps, as illustrated in Fig. 2:

1. Thin the object into a skeleton that preserves the
topology of the object (Fig. 2b).

2. Remove cycles in the skeleton by computing the
spanning tree of the graph defined by the skeleton
(Fig. 2c).

3. Grow the modified skeleton to form a new object
that preserves the topology of the skeleton (Fig. 2d).

Intuitively, a cycle in the skeleton corresponds to a
ringlike handle on the original surface, and removing the
skeleton cycle has the effect of “cutting” the ring at the
location where the cycle is cut (see Figs. 2c and 2d). In our
method, removing one skeleton cycle is guaranteed to cut
exactly one surface handle without introducing additional
handles (unlike mesh-based [13], [14], [15] or previous
volumetric [17], [18] handle removal methods). Further-
more, we can associate the skeleton with a thickness
function, which allows the user to control the size of
handles to be removed and allows each ring to be cut at its
thinnest location.

The above steps can be applied to both the object and the
background. When applied to the background, a cycle in
the background skeleton corresponds to a tunnel-like
handle on the original surface, and removing a skeleton
cycle results in “filling” of the tunnel. Like cutting, filling is
guaranteed not to introduce additional handles, and tunnels
can be selectively filled based on their sizes.

4 VOLUME REPRESENTATION

Before presenting the main algorithms, we first introduce
an adaptive volume representation on which the algorithms
will be performed.

4.1 Motivation

Our volume representation is motivated by the need to
analyze and modify the topology of a solid using its
skeleton. As we shall see in Section 5, our topology analysis
and operations require models, as well as their skeletons, to
be represented as 3D cellular complexes, which consist of
points (0D), edges (1D), faces (2D), and cells (3D). In
particular, each edge connects two points, each face is
enclosed by a ring of edges, and each cell is enclosed by an
envelope of faces. For example, the darkened points, edges,
and faces in each grid in Fig. 2 form a cellular complex in 2D.

To represent a cellular complex on a volumetric grid, we
need to be able to tag each grid element (for example, point,
edge, face, and cell) that belongs to the complex. Note that
merely storing signs at grid points, as in traditional volume
representations, is not sufficient: The edge connecting two
points that belong to a cellular complex may not, itself, be
part of that complex (see the highlighted region in Fig. 2c).
Even the more advanced representation [23] restricts
tagging to just points and edges.

4.2 Representation

We begin with an octree structure to support the efficient
processing of large models at high grid resolutions. We
additionally associate each minimal grid element of the
octree with a þ=� sign. Here, a minimal element is the one
that does not contain any smaller elements of the same
dimension (for example, a minimal edge contains no
smaller edges on the grid). For convenience, we shall drop
the prefix “minimal” hereafter. We call the new volume
representation an Extended Signed Octree (ESO).

To facilitate thinning, both object and background must
assume the form of a cellular complex. The object V in an
ESO G is defined as the set of all positive elements in G.
Note that not every ESO yields an object that is a cellular
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Fig. 2. Two-dimensional illustration of handle removal using skeletons.
(a) The original object (darkened points, edges, and faces) and the
isosurface (solid lines). (b) The skeleton of the object. (c) The modified
skeleton consisting of a spanning tree of (b) (removed edges are
highlighted). (d) The new object grown from the modified skeleton (c),
resulting in the removal of handles.
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complex: A positive edge containing a negative point
violates our previously stated definition that an edge in a
cellular complex must contain two points of the complex.
As a result, we further require that, in a valid ESO grid, each
positive element must contain only positive elements of
lower dimensions.

Unlike the object, the set of all negative elements on a valid
ESO is not a cellular complex. To this end, we consider the dual
of a valid ESO gridG, denoted as Ĝ, which consists of points,
edges, faces, and cells topologically dual to the cells, faces,
edges, and points onG. In addition, each element in Ĝ is given
the sign of its dual element in G. Geometrically, points in Ĝ
are located at the centroids of their corresponding cells on the
primal grid G.1 A 2D illustration of a portion of an ESO grid
and its dual are shown in Figs. 3a and 3b. As such, we define
the background V as the set of negative elements in the dual
grid Ĝ (shown as dimmed elements in Fig. 3b). Since each
negative element of a valid ESO is only shared by negative
elements of higher dimensions, by duality, every negative
element in Ĝ contains only negative elements of lower
dimensions. Therefore, V is also a cellular complex.

Finally, we note that symbols G, Ĝ, V , and V all refer to

the same volume representation. In particular, any changes

to the object V involve flipping the signs of some grid

elements in the primal grid G, hence affecting the signs in

the dual grid Ĝ and the composition of the background V .

In addition, we note that
^̂
G ¼ G and V ¼ V .

4.3 Operations

4.3.1 Constructing ESO

A valid ESO grid can be easily converted from a traditional
octree grid, where signs are stored at grid points, by
retaining existing signs while assigning positive signs to
edges, faces, and cells that contain only positive points. The
initial octree grid can be obtained either directly from a
volume image (for example, MRI data) or from a polygonal
mesh using scan-conversion routines. In this paper, we use
the PolyMender software [24], which is capable of producing
a watertight solid model from arbitrary polygonal soups.

4.3.2 Extracting the Isosurface

To construct the isosurface of an ESO grid G, we extend the

Dual Contouring algorithm [25], which was designed for

octrees with signs only at grid points. In particular, we

consider a composite grid, denoted as ~G, that overlays

G with its dual Ĝ, as shown in Fig. 3c. Each point in ~G

corresponds to an element in G, as well as its dual element

in Ĝ. Recall that Dual Contouring proceeds by first creating

one vertex for each grid cell that is nonempty (that is,

containing grid points with different signs), followed by

creating one polygon for each nonempty grid edge. The

isosurface extraction on G proceeds similarly in two steps:

1. Create one vertex for each pair of a positive point and
a negative cell that contains the point (such a pair
corresponds to a nonempty cell in ~G).

2. For each pair of a positive N-D element � and a
negative ðN þ 1Þ-D element � that contains � (such a
pair corresponds to a nonempty edge in ~G), create
one polygon connecting vertices created for each
pair of a point contained by � and a cell containing �.

Although Dual Contouring guarantees producing a

crack-free isosurface, applying the above algorithm in a

valid ESO further ensures a manifold output (see proof in

the Appendix). To reproduce geometry details, each vertex

created in the first step for a point-cell pair is located at the

cell’s representative vertex. The representative vertex of a

nonempty octree cell is obtained during an ESO construc-

tion either from scalar values at grid points or by sampling

polygonal geometry (provided by PolyMender [24]). If a

representative vertex does not exist (for example, in a newly

created nonempty cell after topology repair), the vertex

associated with the point-cell pair is temporarily located

halfway between the point and the cell centroid. A

postprocessing step is then applied to smooth these

temporary vertices using iterative averaging [26].
Isosurface extraction can be implemented as tree

traversals on the ESO grid. We utilize the recursive

procedures proposed in [25], which visit each grid element

together with leaf cells sharing the element in one octree

traversal. Using these procedures, Step 1 is performed in

one traversal of all grid points and Step 2 is performed in

another traversal of all grid points, edges, and faces. Details

of the procedures can be found in [25].

5 HANDLE REMOVAL

Given an input model represented as an ESO grid G, our

method removes handles on the isosurface of G in three

steps: thinning, skeleton cycle removal, and growing.

Performing these steps on the object V results in cutting

ringlike handles, whereas performing the same steps on the

background V results in filling tunnel-like handles.
We first describe how each step is performed on the

object V , although the same algorithms are equally applied

to the background V . We next show that these steps result

in the robust removal of existing handles without introdu-

cing additional handles. Finally, we discuss efficient

implementations of the algorithms on the octree.
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Fig. 3. (a) A primal ESO grid G. (b) The dual grid Ĝ. (c) The composite

grid ~G constructed by overlaying G with Ĝ and the isosurface (solid

lines). In (a) and (b), positive grid elements are darkened and negative

elements are dimmed.

1. For completeness, the outside of the root node of the primal octree is
represented as a cell element in G with infinite size, whose dual in Ĝ is a
point at infinity.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on January 4, 2009 at 11:30 from IEEE Xplore.  Restrictions apply.



5.1 Algorithms

5.1.1 Thinning

The skeleton of the object is obtained by thinning, which
iteratively removes elements from the object boundary. To
carry out topology operations on the resulting skeleton in
subsequent steps, thinning should yield cellular complexes
that preserve the topology of the original object. In addition,
the thinning procedure should admit efficient implementa-
tion for processing large models.

To this end, we first introduce the concept of simple
elements and their witnesses.

Definition 1. An N-D element � in a cellular complex V is
called simple with respect to V if � is contained in exactly
one ðN þ 1Þ-D element � of V. In particular, � is called the
witness of �.

At each step of thinning, we remove a simple element
together with its witness from the object. We call the
removal of such a pair a simple removal. The thinning using
simple removals is illustrated in Fig. 4, where a simple edge
and its witness face are removed first, followed by a
sequence of simple removals, each deleting a simple point
and its witness edge. The thinning stops when no more
simple elements can be found (for example, a single point is
not a simple element based on Definition 1).

Note that, after each simple removal, the remainder of
the object is still a valid cellular complex. In addition,
performing a simple removal requires only counting the
number of ðN þ 1Þ-D elements sharing an N-D element,
which can be implemented efficiently using recursive walks
on the octree grid (see Section 5.3).

5.1.2 Skeleton Cycle Removal

The skeleton generated by thinning may consist of points,
edges, and faces. Let SV be the skeleton of V . We consider
the skeleton graph whose edges are isolated edges (that is,
edges with no incident faces) on SV , denoted as ISV , and
whose nodes are connected components in the remainder
SV n ISV . Note that, when the skeleton SV contains only
points and edges, the skeleton graph is SV itself. Observe in
the 2D example in Fig. 2b that each cycle in the skeleton
graph lies centered in a ringlike handle of V .

Ideally, we would like to identify small handles and to
“cut” open a handle ring at its thinnest location. To this end,
we shall associate a thickness value at each isolated skeleton
edge, which measures the cross-section area of the object at
that edge (discussed next). Given the thickness-weighted
skeleton graph, we compute the complement of the
maximum spanning tree (or spanning forest if c½SV � > 1) of
the skeleton graph and denote E as those edges in this
complement whose thickness value falls below a user-
specified threshold ". Removing E from the graph only cuts

those cycles whose minimum thickness is smaller than ",
and the cuts (that is, E) take place at the thinnest portion of
each cycle (see Fig. 2c). Accordingly, the modified skeleton
S0V is computed as S0V ¼ SV n E.

Generating Sets. To explain the thickness measure, we
first introduce the generating set W ½e� of an isolated edge e in
the skeleton SV . Formally, W ½e� 2 V is defined as the
minimum set so that V nW ½e� is a cellular complex and
thinning V nW ½e� yields SV n feg. Intuitively, W ½e� is a solid
“slice” of the object such that removing the edge e from the
skeleton is the same as removing the slice W ½e� from the
object and applying thinning. Note that the generating sets
are related to stable manifolds in a flow complex [27].
Although the latter relies on a smooth euclidean distance
function, the former is defined by an iterative thinning on a
discrete grid.

Based on the thinning process, which reduces V to SV ,
we present a recursive construction for the generating sets:

W ½�� ¼ f�g [
[

�2P ½��
ðW ½�� [W ½s½���Þ; ð1Þ

where � 2 V is any N-D element, P ½�� 2 V is the set of all
ðN þ 1Þ-D elements containing �, and s½�� is the element
removed together with � in a simple removal (that is, a
simple element of which � is the witness or the witness of �)
when thinning V to SV .

To show that (1) meets our definition of a generating set,
we first observe that V nW ½�� is a cellular complex for any
�. This is because any element in V containing an element in
W ½�� belongs to W ½��. In addition, for an isolated edge e, all
elements in W ½e� but e are paired in simple removals.
Hence, V nW ½e� can be thinned to SV n feg using the same
sequence of simple removals, except those in W ½e�, that
reduce V to SV . Finally, the construction contains only the
necessary elements and, hence, W ½e� is minimal.

Measuring Handles. Observe from (1) that the dimensions
of elements in the generating set W ½e� are not smaller than
that of e (that is, 1). Accordingly, its dual elements ^W½e� in the
dual grid Ĝ contain only points, edges, and faces. As the
generating setW ½e� forms a solid slice of the object V , its dual

^W½e� forms a cross-section surface of V that “cuts across” the
isolated edge e. Fig. 5b shows a 2D example, where the dual
of each generating set forms a cross-section curve.
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Fig. 4. Thinning using simple removals. Each simple removal (indicated

by an arrow) removes a simple element � and its witness �. Thinning

terminates (far right) when no more simple elements can be found.

Fig. 5. (a) The original object V . (b) The skeleton SV with thickness

values (red for thin and blue for thick) and the dual elements of

generating sets ^W½e� (black cross-section curves) at each skeleton

edge e.
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The thickness at an isolated edge e, denoted as w½e�, is

therefore defined as the area of this cross-section surface
^W½e�. The construction of W ½e� in (1) gives a recursive

evaluation of w½e�:

w½e� ¼ A½e� þ
X

�2P ½e�
w½s½���; ð2Þ

where A½e� denotes the area of the dual face of e in the

dual grid Ĝ, and w½s½��� evaluates to zero if s½�� is not an

edge. To compute A½e�, we triangulate the dual face of e

using the midpoint of e when the face is not planar. Fig. 5

demonstrates the thickness measure on a skeleton com-

puted from a 2D object. Observe that w½e� adapts well to

object thickness at various locations.

5.1.3 Growing

The final step “grows” the modified skeleton S0V back into a

new object. Instead of reversing the thinning process, which

is a global operation, we take a different local approach. Let

E be the edges removed from the original skeleton SV , that

is, E ¼ SV n S0V . We simply subtract the generating sets

associated with edges in E from the original object V . The

new object is thus computed as V 0 ¼ V n
S
e2E W ½e�.

5.1.4 Cutting and Filling Handles

The above three steps can be applied to either the object V

or the background V , with the effect of either cutting the

ringlike handles or filling the tunnel-like handles. We

illustrate results of cutting and filling using a simple two-

holed torus in Fig. 6. Specifically, we let the user specify two

different thresholds " and ". We first cut rings on V that are

thinner than ", creating a modified object V 0, and, next, fill

tunnels on V 0 that are narrower than ". Observe in Fig. 6

that, due to the use of our thickness measure, each cutting

and filling always takes place at the thinnest location of a

ring or the narrowest location of a tunnel.

5.2 Robustness of Handle Removal

Let M be the isosurface on the input ESO grid and M 0 be the

isosurface on the modified ESO grid after performing

thinning, skeleton cycle removal, and growing. Here, we

show that M 0 has exactly m fewer handles than M, where m

is the number of cycles removed from the skeleton graph.
Using Euler’s formula, the number of handles on a closed

manifold isosurface M is computed by its genus g½M�:

g½M� ¼ c½M� � �½M�=2; ð3Þ

where c and � are the number of connected components

and the Euler characteristic. The Euler characteristic of a 3D

cellular complex V is defined as the alternating sum:

�½V� ¼ k0½V� � k1½V� þ k2½V� � k3½V�;

where ki½V� enumerates the number of points, edges, faces,

and cells in V for i ¼ 0; 1; 2; 3 [28] (surface M can be

considered as a special cellular complex with no cell

elements).
The robustness of our method is built upon the following

equalities that relate the topology of M to that of the

object V and the background V (see proof in the Appendix):

c½M� ¼ c½V � þ c½V � � 1;

�½M� ¼ 2�½V � ¼ 2�½V �:
ð4Þ

The key observation from (3) and (4) is that the number

of handles on the isosurface M depends entirely on the

Euler characteristic and connected components of the object

V and background V , that is,

g½M� ¼ c½V � þ c½V � � 1� �½V � ¼ c½V � þ c½V � � 1� �½V �: ð5Þ

To confirm our hypothesis that g½M 0� ¼ g½M� �m, where

m is the number of cycles removed from the skeleton graph,

we only need to show that the three-step topology repair

increases �½V � (or �½V �) by m while preserving both c½V �
and c½V � (without loss of generality, each step is demon-

strated on V ):

1. Thinning. A simple removal is in fact equivalent to
an elementary simplicial collapse in algebraic topol-
ogy [29], which preserves the homotopy type of a
3-manifold. Letting SV be the skeleton of V after
simple removals, we have

�½SV � ¼ �½V �; c½SV � ¼ c½V �; c½SV � ¼ c½V �: ð6Þ

2. Skeleton Cycle Removal. By computing the spanning
tree of the graph of SV , the modified skeleton S0V
preserves the connectivity of SV while removing as
many isolated edges as the cycles removed from the
graph:

�½S0V � ¼ �½SV � þm; c½S0V � ¼ c½SV �; c½S0V � ¼ c½SV �:
ð7Þ

3. Growing. By definition of generating sets, thinning
the new object V 0 yields the skeleton S0V . Combining
(6) and (7), we have

�½V 0� ¼ �½V � þm; c½V 0� ¼ c½V �; c½V 0� ¼ c½V �: ð8Þ
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Fig. 6. Removing handles on a two-holed torus. (a) The original object.
(b) and (c) Cutting the top ring. (d) and (e) Filling in the bottom tunnel.
Edge thickness on the skeletons is shown from red (small) to blue (big).
Black spheres at the ends of the skeleton in (d) are topologically the
same point in the dual grid Ĝ that is dual to the outside cell of the primal
grid G.
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5.3 Implementation

5.3.1 Thinning

Thinning of the object V is performed on an ESO grid in an
iterative manner. During each iteration, we make two octree
traversals. In the first traversal, we mark every positive point,
edge, and face that is simple by Definition 1. In the second
traversal, we visit each marked element � and, if � is still
simple at the time of visit, invert the sign of both � and its
witness. The two traversals simulate the peeling of elements
on the outmost layer of V . Thinning terminates if no simple
elements are found in the first octree traversal. In our
implementation, we use the recursive procedures detailed
in [25] for efficient traversing of octree grid elements.

Note that thinning of the background V can still be
performed using octree traversals on the primal gridG based
on the following observation: The dual of an N-D negative
element �, denoted as �̂ in Ĝ, is simple with respect to V if �
contains exactly one ðN � 1Þ-D negative element � in G.

5.3.2 Handle Measurement

We compute the thickness measure w½e� for each isolated
skeleton edge eduring thinning by slightly modifying the two
octree traversals described above. Note that a positive face
may be the witness of more than one simple edge. To obtain a
minimal thickness measure, in the first octree traversal, we
associate a face f with the minimal w½e� of all simple edges e
that f contains. In the second traversal, we invert the signs of a
simple edge e and its witness face f only if w½e� equals the
minimal value stored at f , and we update the thickness
measure on the remaining edges of f using (2).

5.3.3 Growing

Growing involves only local modifications of the original
object using the generating sets. To construct the generating
sets using (1), we maintain pointers that track the simple
elements from their witnesses during thinning. Note that
growing typically takes negligible time due to the small
proportion of the handles relative to the entire volume.

6 RESULTS

We first perform handle removal on a synthetic tree model
with genus 18 in Fig. 7. Observe that the weighting of

skeleton edges using our thickness measure correctly
identifies the thinnest portion of each ringlike handle to
be cut and the narrowest portion of each tunnel-like handle
to be filled. In addition, handle removals result in only local
modifications of the volume, and the geometry away from
the modification sites is preserved.

Fig. 1 shows how our method differentiates handles of
various sizes and removes complex handles in a robust
manner. The spiderweb model shown on the left is
reconstructed from a noisy point cloud and contains
75 handles, many of which are small. Entangling rings
and tunnels are shown in the close-up views. By performing
filling with an appropriate threshold, all handles but the
17 main “holes” of the spiderweb are removed, and no
additional handles are created.

We demonstrate our method on large scanned models in
Figs. 8 and 9. The Happy Buddha, Asian Dragon, and
Michelangelo’s David (reconstructed at 2 mm resolution)
are processed, respectively, at octree depth 10, 11, and 12,
equivalent to a grid of size 1;0243, 2;0483, and 4;0963. To the
best of our knowledge, the topology repairs at the latter two
resolutions have not been reported before. Note, in
particular, that the original Asian Dragon mesh from the
Stanford 3D Scanning Repository contains a self-intersection
where the horn penetrates into the head. Mesh repair using
PolyMender results in a number of topological handles at
that location (see Fig. 8b). Our method removes all handles
and separates the horn from the head (see Fig. 8c).

Statistics for each model, including the handle thresh-
olds, are reported in Table 1. The thresholds ð"; "Þ are
specified as the ratio of the area of the cross-section surfaces
to the area of a side of the ESO bounding box. In each
example, the ESO grids are created by first converting from
polygonal formats to an octree grid using the PolyMender
software [24] (timing is reported). Genus is computed on
the isosurface of the ESO grid. All tests are performed on a
3.0 GHz P4 machine with a 2 Gbyte RAM. Note that, even
on a 4;0963 grid, the entire process finishes in less than
20 minutes on a consumer-level PC.

7 DISCUSSION

Here, we further examine the robustness of our algorithm
on solid models with uncommon topologies. In particular,
we examine when the skeleton contains faces besides points
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Fig. 7. (a) A tree model with genus 18. (b) The topologically repaired model with genus 0 using cutting threshold " ¼ 0:01 and filling threshold

" ¼ 0:04. (c) Close-up views of the rings ðr1; r2Þ and tunnels ðh1; h2Þ, where the top row shows the original surface with the modified skeleton and the

bottom row shows the modified surface.
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and edges and show how a particular type of complex
handle is removed with no new handle being introduced.

For all models that we have tested so far, we observed
that the skeletons of the object V and the background V
consist of only points and edges. However, an arbitrary
model may contain convoluted features such as internal
cavities, complements of 3D knots, and the “house-with-
two-rooms” [28], which yield skeletons containing faces
that form closed surfaces. Fig. 10a shows an extreme case
where a two-handled mug has a knotted handle on the
outside and a knot complement on the inside. As a result,
the object skeleton SV contains faces around the knot

complement, whereas the background skeleton SV contains

faces around the knotted handle, as shown in Figs. 10c and

10d. Nevertheless, the skeleton graphs still detect the

handles as graph cycles because each handle reduces to

isolated skeleton edges in either the object skeleton SV or

the background skeleton SV . Combining cutting and filling,

the two handles are removed, as shown in Fig. 10b.2

For each handle detected as a cycle on the skeleton

graph, our method guarantees the removal of the handle
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Fig. 8. Topology repair of the Asian Dragon model at octree depth 11. The input model contains several handles where the horn touches the

head (b), resulting from the geometric repair of the original self-intersecting polygonal model by PolyMender [24]. Close-up looks at the handles site

before and after repair are shown in (c), top and bottom, where the pictures on the right are viewed from inside the dragon head.

Fig. 9. Topology repair of (a) the Stanford Buddha model at octree depth 10, showing a genus-6 and a genus-0 result, and (b) the 2 mm David model

repaired at octree depth 12, showing close-up views of the cut and filled handles.

TABLE 1
Performance Results on Processing Various Models on a Consumer-Level PC with a 3.0 GHz CPU and a 2 Gbyte Memory

Timing excludes I/O during contouring.

2. Although lacking formal proof, we hypothesize that any surface
handle can be detected using the skeleton graph of either SV or SV .
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without introducing new handles. We especially demon-
strate this advantage in removing a blocked handle, as
shown in Fig. 11. The genus-2 torus in Fig. 11a contains a
tunnel inside (as shown in wireframe in Fig. 11c), which
connects to the outside through an outlet at the top. Note
that simply cutting the torus ring at an arbitrary location
will introduce a new handle (that is, the total genus remains
two) due to the presence of the tunnel that “blocks” the cut.
Our method results in filling of the interior tunnel (high-
lighted in Fig. 11d) while cutting the torus ring at the tunnel
outlet, which yields a genus-0 output.

8 CONCLUSION

We present a novel volumetric method for removing
topological errors on solid models in the form of small
handles resulted from surface reconstruction. Our method
is based on computing a skeleton representation using
morphological operations on an adaptive grid structure. For
each handle removed, either by cutting the ring or by filling
the tunnel, our method guarantees not to introduce
additional handles. In addition, large models can be
processed at very high resolutions in an efficient manner.

Our current method has several limitations, and we are
investigating possible solutions as part of our future
research. Despite its advantage over mesh-based methods
in efficiency and robustness, our method requires volu-
metric conversion from input models represented in
polygonal form. In this paper, we used feature-preserving
scan-conversion [24] and isosurfacing routines [25] capable
of accurately reproducing geometric features (for example,
sharp edges and corners) and utilized an octree grid

structure for adaptive representation of high-resolution
polygonal geometry. Nonetheless, the originally mesh
connectivity and fine geometric details may still be lost in
the process. A possible extension is to apply our volumetric
repair only to portions of a mesh that have been identified
to contain topology errors using mesh-based approaches.
This hybrid idea has already been realized in a different
setting for repairing geometric errors on CAD models [30].

The presented handle removal method requires two
passes over the volume, one for cutting handle rings and
one for filling handle tunnels. Although, in each pass, a
handle is always cut at its thinnest place or filled at its
narrowest location, the removal operation may still modify
a larger volume than necessary if cutting is performed
where filling would have resulted in a smaller modification,
or vice versa. To this end, we are currently investigating the
relations between the object skeleton and background
skeleton in order to identify the set of edge removals on
both skeletons simultaneously that would result in mini-
mum total modification to the volume.

Another research direction that we are currently pursu-
ing is the development of a user interface for interactive
topology editing. Note that, in nearly all topology repair
methods (including ours), the decisions regarding what
handles are to be removed, where the removal takes place
along the handle, and how the handle is removed (for
example, cutting or filling) are based purely on some
heuristic measure of handle sizes computed from the
model. Examples of such measures include surface areas
in [15], geodesic loop lengths in [18], and cross-section areas
in this paper. Given different input data, however, any such
measure could possibly fail. In these situations, human
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Fig. 10. Removing handles on (a) a mug with both an outside knot r1 and
an inside knot complement h1; the result is shown in (b). (c) The object
skeleton and (d) the background skeleton each contain surfaces and yet
capture one of the two handles as isolated skeleton edges. (The thick
edges in (d) are topologically identified as the same point on the dual
grid dual to the infinite cell on the primal grid.)

Fig. 11. Removing a blocked handle. (a) and (c) A genus-2 torus

containing a tunnel inside (with an outlet at the top). (b) and (d) Handles

removed by filling the interior tunnel (see red square) and breaking the

exterior torus. Note that no new handles are introduced.
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judgment is often the best (if not only) criteria. We note that
a distinctive advantage of our method over previous work
for user interaction is that the skeleton provides a visual
form for examining and editing topology. It is not hard to
imagine a user interface in which both object and back-
ground skeletons are displayed and users identify handles,
as well as their exact location and means for their removal
conveniently via selecting and removing edges on either
skeleton. Such user interface can also provide new means
for resolving handles besides cutting a thin opening or
filling a thin membrane such as removing an extended
segment of the handle (when a user selects a sequence of
skeleton edges for removal) and approximating small
entangling handles on an otherwise smooth surface using
a single smooth patch.

Finally, we will investigate improved thinning methods
that extend recent level-set techniques [31] on a uniform
grid to ensure a uniform thinning speed on adaptive grids,
which will yield a smoother skeleton, as well as handle cuts,
with less bias toward axes directions. Such thinning
techniques will be useful in general for extracting shape-
preserving skeletons of large models.

APPENDIX

TOPOLOGY PROPERTY OF ESO ISOSURFACE

Proposition 1. Let M denote the isosurface on a valid ESO
grid with object V and background V . Then, M is a crack-
free 2-manifold surface satisfying (4).

Proof.

1. Crack-Free Surface. Applying Dual Contouring,
each edge (or face) on the isosurface is dual to a
nonempty face (or edge) in the composite grid ~G.
Since each nonempty grid face always contains an
even number of nonempty grid edges, each edge
on the isosurface is shared by an even number of
faces, and the surface is closed.

2. Manifold Surface. Consider a nonempty face ~f in
the composite grid ~G. When G is valid, an
element � in G (or dual grid Ĝ) must be positive
(or negative) if some element containing � is
positive (or negative). As a result, positive points
and negative points in ~f always form two edge-
connected components. By duality, the isosurface
edge dual to ~f is shared by two polygons.
Similarly, we can show that the positive points
and negative points in a nonempty cell in the
composite grid ~G always form two connected
components and, hence, the isosurface vertex
dual to the cell is contained in a manifold
neighborhood.

3. �½V � ¼ �½V �. Since each N-D element in the Ĝ n V
is dual to a ð3�NÞ-D element in V , we have
�½V � � �½V � ¼ �½Ĝ�. On the other hand, observe
that Ĝ is constructed by gluing the interior
elements to a single outside point, which topolo-
gically forms a genus-0 surface in 4D. Hence, we
have �½V � � �½V � ¼ �½Ĝ� ¼ 0.

4. �½M� ¼ �½V � þ �½V �. Consider the decomposition

of ~G into nonempty elements ð ~MÞ, elements

containing only positive points ð ~V Þ, and elements

containing only negative points ð~V Þ. Note that

�½V � ¼ �½ ~V � and �½V � ¼ �½~V �. Using Dual Contour-

ing, each N-D element on M is due to a nonempty

ð3�NÞ-D element in ~G; hence, �½M� ¼ ��½ ~M�.
For the same reason that �½Ĝ� ¼ 0, we have

�½V � þ �½V � � �½M� ¼ �½ ~G� ¼ 0.

5. c½M� ¼ c½V � þ c½V � � 1. The connected components

of V and V can be represented as nodes in a

connected acyclic graph where each edge denotes a

connected piece of surface separating an object

component and a background component. The

equality therefore holds by graph theory. tu
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