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Data Driven Grasp Synthesis using Shape Matching
and Task-Based Pruning
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Abstract—Human grasps, especially whole-hand grasps, ar Query Object
difficult to animate because of the high number of degrees o
freedom of the hand and the need for the hand to conform Hand Pose p
naturally to the object surface. Captured human motion data Database
provides us with a rich source of examples of natural grasps Matches
However, for each new object, we are faced with the problen H ﬁ
of selecting the best grasp from the database and adapting it t
that object. This paper presents a data-driven approach to gasp SHAPE MATCHING
synthesis. We begin with a database of captured human grasp AND CLUSTERING
To identify candidate grasps for a new object, we introduce & u
novel shape matching algorithm that matches hand shape t
object shape by identifying collections of features having similar TASK-BASED
relative placements and surface normals. This step returns man; PRUNING
grasp candidates, which are clustered and pruned by choosing th
grasp best suited for the intended task. For pruning undesirable li
grasps, we develop an anatomically based grasp quality measu Best Grasps for Task

specific to the human hand. Examples of grasp synthesis ai
shown for a variety of objects not present in the original databas.
This algorithm should be useful both as an animator tool for

posing the hand and for automatic grasp synthesis in virtual Fi9: 1. Grasp synthesis as a shape matching problem. Offlieeyiser
environments. creates a database of hand poses. Online, a user or a praggdsnd query—

a three-dimensional model of the object to be grasped. Theesimapching

Index Terms— Grasp synthesis, hands, shape matching, grasp system searches the database to find the hand poses that bestimeaquery
quality. object. Representative hand poses for this example are shotre middle
of the figure. The poses displayed are from a grasp of a mousslygar,

and a lightbulb (left to right). Finally, unacceptable grasare pruned from

consideration and the best grasps are chosen using a qomdityc tailored
|. INTRODUCTION to the desired task.

NIMATED characters in games and virtual environments
must be able to interact with their world in a realistic
way. One requirement is the ability to grasp objects in order
to manipulate them. If a grasp is not carefully constructed,
may appear impossible or awkward. In fact, the anatomical
complexity of the human hand makes it challenging to pose
the hand in ways that appear natural.
The problem of posing the human hand in a natural way

can be addressed by making use of a database of succeddgyf- Hand pose for the mouse grasp. The figure shows contatsp
n the hand and object, and contact normals on the objectcsuriiéote that

0
grasps. Eyen though th_e hand has a large number of deg_reetﬁeoi side surface of the hand contains a great deal of infiilsmabout the
freedom, it takes on a similar shape in many grasps, and it maype of the mouse. If similar features can be found on a nevetpijenay

be easy to find an example grasp that is a good match to f§epossible to use the same grasp for the new object.

current problem. This paper presents a data driven algorith

for selecting hand poses to grasp an object in a natural way. ] ]

The key insight presented in this paper is that when a gra%‘%Ch example grasp a _se_t of representative contact p0|d_ts an
database is available, grasping can to a large extent Uedrezgormals% If we find a similar arrangement qf contact points
as a shape matching problem (Figure 1). As intuition for Wr@nd normals on the surface of a different object, then we may
shape matching may be an effective way to select a grasp fr8f aPle to reuse the same hand pose to grasp the new object.
a database, consider Figure 2, which shows the hand pose 6P €x@mple, the mouse grasp is used in the leftmost image
grasp of a mouse. The shape of the inside surface of the hihdhe middle row of Figure 1 to hold the spray bottle.

gives us a great deal of information about the shape of theShape matching is commonly used in other fields—
mouse. We represent this shape information by extractorg fr €x@mples include object recognition in computer vision [1]

The authors are affiliated with the School of Computer Scief@negie 1specifically, the contact points are selected by hand frorisaete set of
Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 153890. Email: possibilities each time the user enters a new grasp into ttabdase. Normals
[liyingus@gmail.com] [jfu] nsp @ cs.cmu.edu] are obtained by taking the normal from the closest point orobject surface.
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and example-based retrieval of geometric models in compute Il. BACKGROUND

graphics [2]. However, the use of shape matching for graspagorithms for grasp synthesis that consider complex hand
synthesis _presents_some new challenges. First of _aII, the hginematics are typically procedural or rule-based [6], [8],
surface gives us _mformatlon about iny a portion of thm, [10], [11], [12]. These systems involve treating all jart
surface of the object. Because of this, global measures gt object as a primitive shape (e.g., box, cylinder, spher
shape such as overall volume and p'rinciple directions danfgr \which a grasp synthesis strategy is available. This gy

be used to match the shape of the inner surface of the haads,phorted by classifications and taxonomies of observed
to the shape of the object. This problem also arises in thgman grasps [13], [14], [15]. However, creating a rule-

vision community—where there may be only partial shagg,seq grasping system based on these classificationse®quir
information available from range scans, for example. Irséhog gignificant amount of skill on the part of the designer, and i

circumstances, discriminative local features are typ;aaxted may not always be clear how to fit irregularly shaped objects
to compensate for the absence of global shape informatig, 5 given classification system. Our goals in this paper ar
(.g., [3]). Discriminative local features are local regoof 5 reqyce the knowledge and tuning required of the algorithm
three-dimensional geometry (curves, corners, angleg, ttt designer by (1) making use of a grasp database to capture
are useful for distinguishing one shape from another. Hewevyariation in hand shape both across and within families of
in ;hape matghm_g for grasp synthesis, our Iocgl features @rasps, and (2) developing a grasp synthesis algorithm that
typically not discriminative. They generally consist oftact 4jiows an appropriate grasp to be selected from the database
patches that are nearly planar and ellipsoidal in shape. fSsed on object geometry and task definition.

such, they are not helpful for distinguishing between diffé  paia driven grasp synthesis has been used by Pollard and
grasped objects or different hand shapes. Zordan [16], who automatically construct a controller for

In this paper, we present a novel algorithm that allows us #@SPing by fitting control setpoints from measured human
overcome the problem of partial shape information that do8%2MPle grasps and similarly by Kry and Pai [17], who create
not contain discriminative local features. The main ideaime  97@SPing controllers to match measured stiffness in medsur
our approach is to randomly generate a set of global shdjf1d-object interactions. However, in both cases, thepgras
features from the contact points and normals representing¥41N€sis algorithms cannot form appropriate controlfers
grasp. These features are global in the sense that theyreapip/ects that differ substantially from those objects in the

arrangements of contacts with respect to one another. [/3tabase. The work in the current paper could be combined

similar collection of features can be located on an objefith that in [16] or [17] to create a more robust and flexible

surface, then we hypothesize that the hand shape may mali@sPing system. In other data-driven work related to gnagsp

this object surface and attempt to find alignments of the hafif<oura and Singh [18] use a data driven approach to animate
to the object that achieve the desired overall arrangemient'ge nand for guitar playing. They use a database of human
contacts and normals. We tailor our solution to the domain 8f2SPS 1o filter results produced using an inverse kinesiatic
grasp synthesis by making use of shape features that Conf%{gpnthm so that a natural coupling between joint angles is

contact normal information, which is important for gragpin €XPressed. _
Data driven approaches are now quite popular for tasks

Our shape matching algorithm is extremely successful such as reaching, kicking, and locomotion (e.g., [19], [10]
that it returns a large number of candidate grasps. Howevi20]). In particular, Yamane and colleagues [21] make use of
many of these grasps are not appropriate for the desired tasdlatabase to obtain full body posture for characters treat ar
(e.g., lift the object to place it on a shelf). To obtain a &ng grasping and moving objects. However, these systems often
best grasp, or a small set of candidate grasps to presenwitwk by identifying poses that match constraints such as end
the user, we cluster the results and then prune them usingffector position. Extending this approach to work for non-
grasp quality metric. For effective pruning, we develop aato trivial grasps is challenging due to the large amount of @cint
grasp quality measure that compares the ability of the hahdtween the hand and object. This difficulty motivated us to
to apply forces to the grasped object to those forces needamuhsider an alternative approach based on matching the shap
to accomplish the task. Our model of grasp quality capture$the inner surface of the hand to the geometry of the object.
anatomical features of the human hand (e.g., the fact that
flexprs are stronger than extensors) and distinguishe$$;ra}§‘_ Shape Matching Background
having a good arrangement of contacts over the object surfac

from those that do not. Shape matching algorithms have been studied for re-

lated applications such as example-based retrieval okthre
Portions of this work have appeared separately in [4imensional objects from databases and object identiicati
and [5]. In this paper, we bring the ideas of shape matchifigm range scans. (See [22], [1], [23] for surveys of techai
and task-based quality metrics together into a single syfte in these fields.) Most of these techniques, however, canmot b
humanlike grasp synthesis. Specifically, we add a refinemeuplied directly to our problem, because they assume proble
algorithm to the shape matching portion of the algorithm tcharacteristics that are not applicable here. Some tegbsiq
achieve solid contact with the object, and we present mawy nesquire information about the entire surface of the two slsap
results and observations from evaluating the resultingpgra that are to be compared, either to measure global featuges (e
based on the intended task. [22]) or to compare probability distributions of featuresd.,
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[2]). We have only partial information about shape ava#abl

fr_om_the han_d pose. Some techniques require dense and SHAPE ATCHING AND CLUSTERING
discriminative information about local features, such ay ime

available from range images in cluttered environments.,(€.Qey Selected

[24], [25]). The shape information associated with the hant!™*| “”“Hiﬁi‘p“ii‘iﬁ'"gHA.i';‘;ffem Hc.fsiiing _.| Reiﬁiien‘kﬁi

pose has very uninteresting local features: locally flatacn

patches with their normals. Finally, some techniques requi

registration / alignment of objects or feature correspoede Fig. 3. Br:OCk ?iagram of thfe hsha;?e m:;tching and ?usteringim?fdouhr
. . . stem. The online portion of this algorithm contains fourmeteps: find the

for ex_ample to bl..llld histograms chara(-:te.rlzmg the_ spaﬁ nd poses that seem likely matches to this object, find gagdnaénts of

occupied by the object [26]. We have agriori way to align these poses to the object surface, cluster the results oaatlyl refine poses

the query object to a hand pose. to conform to the object surface.

For the shape matching portion of this paper, we combine

and modify ideas from two bodies of work. First, we take

inspiration from work on shape descriptors that randomRjausible tendon layout and muscle force capability olstin
sample a global shape function (e.g., [2], [27]). An exampfés'ng measurement results from the biomechanics litexatur
of a global shape function is the probability distributioh o N€ €Ore of our algorithm involves computing maximum
distances between pairs of points on an object surface [$]rc€ that can be applied to a grasped object. When developing
A descriptor for this shape function could be computed H!S portion of the algorithm, we drew heavily upon work
randomly sampling pairs of surface points and recording th@" OPtimizing contact forces and analyzing force capasjt
distances. Such a descriptor is useful because it gives YN as [51], [52], [53], [46], [54], [55], [39], [40].

information about how points on the surface are distributed

with respect to one another. We adapt the shape descriptors Ill. SHAPE MATCHING AND CLUSTERING

used in previous work to provide more detailed information Figure 3 shows a block diagram of the shape matching and
about the relative orientations of contact normals, whigh Elustering portion of our system. The input to the system is a
important for grasping. geometric description of an object—the query object. The firs
Second, we take inspiration from work on partial matchingtep of the algorithm is to compute a collection of featuhes t

In particular, we use a representative descriptor tecten{tie., will be used to match the object against different hand poses
a nearest neighbor search) to determine whether hand pasgand pose database is available, and a similar feature set
features can be found in the query object (e.g., [3], [28]¢ Whas been computed for each hand pose. There are then four
modify this technique so that the descriptors are not based@ain steps to the algorithm: (1) find the best hand poses to
local features but instead are based on a sample of a glokgitch the query object by comparing object features to hand
shape function. We also introduce a weighting term to ca@ptusose features, (2) align these poses to the object geometry
the intuition that some features are more important thaersth g obtain a set of possible grasps, (3) cluster results into a
few representative grasps, and (4) refine each representati
hand pose to conform to object geometry. The output of this

portion of the system is a set of candidate grasps that véh th

Research on grasp quality measures has primarily beemi sorted and pruned based on effectiveness for the intended
the field of robotics. Within robotics, a great deal of resbar (55K (Section IV).

has focused on selecting good points of contact on the object

surface (e.g., [29], [30], [31], [32], [33], [34], [35], [36

[37], [38], [39], [40], [41], [42], [43]). This research, haver, A- A Feature Set for Grasps

makes the assumption that contact points are identical andrhis section describes the feature set used for shape com-

independent, which is a very poor approximation to the dctysarison. Our goal in choosing a feature set is to find a

mechanical constraints of the human hand [5]. representation of object geometry that will allow us to glyic
Quality metrics that include mechanical constraints faletermine whether a given grasp can be matched to some

robot hands and parallel manipulators have been investigaportion of the object surface. In particular, we would liket

(e.q., [44], [45], [46], [47], [48], [49], [50]). However,lgp- feature set to capture important information about thetivela

soidal metrics such as force manipulability ellipsoidsm@st configurations of contact positions and contact normalfién t

commonly considered. Ellipsoidal metrics may be approgriagrasp.

for robotic hands, which are typically highly symmetrical. We begin with an oriented point representation for both

However, the human hand has strong asymmetries, suchttes hand pose and the object geometry. The feature sets are

the large difference between strength of the flexors and eemputed from these oriented point representations.

tensors [5]. To account for these asymmetries, we introduceThe oriented point representation for the query object is

a quality metric that more accurately models anatomicabmputed by randomly sampling points on the object surface.

constraints such as maximum available muscle force and thar point sampling, we use the algorithm outlined in [2],

specific tendon layout of the human hand. Our algorithmhich randomly selects points on the surface of a triangdlat

is unique in using a fast algorithm (linear programming) tobject that are unbiased with respect to the surface area of

compute a grasp quality metric that includes a biologicalbhe triangulated mesh. We use a fixed number of samples per

B. Grasp Quality Background
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Fig. 4. We compute a three-dimensional feature value for pinsoints
on the object or hand surface. This feature value consistheoflistancel
between points, and the anglés and 62 between the surface normals and
the line passing through both points.

n2
b)

unit area (100 sample points per square centimeter in our 22
eXpe”ments)' Normals at those points are determined ba%%dS. Considering distanceonly (a 1D feature), all three contact pairs look
on local surface geometry. the same. Considering distandeand the relative angle between normals

For the hand pose the oriented point representation is n2 (a two-dimensional feature), pairs b and c look the same. Tiezth

’ . imensional feature illustrated in Figure 4 allows us toidgtish between

complete set _Of contact points _and normals taken from thgse three situations. This discriminatory power is impartar grasping,
grasp. Each time a new grasp is added to the database, béwause it is important to be able to balance forces and terapgliied to
relevant contact points are selected by hand from a discrétgobiect through combinations of contacts.

set of typical contact points that represent the contaathest

on the hand surface that are commonly used in grasping. We 30. -

select from a set of 38 total potential contact points disted _,SE#P ol
over the inner surface of the hand and the side of the index gZO\ O 43
finger. Some of these points can be seen indicated on the S X
surface of the hand in Figures 2, 6, and 7, for example. The =10 \

normals for each of these contact points are taken from the ol
nearest point on the surface of the grasped object. Thegsteare 3>\\/
point on the object surface is approximated as the nearest 1 .
neighbor from the oriented point representation computed f
the object.
A variety of considerations drove our particular choice of
a feature set that differs from those already available & th
shape matching literature. First, global features canret b
computed due to the sparse shape information available from
hand pose. For example, aligning the “center of mass” of the
hand pose with the center of mass of the object would not
make sense. Second, local feature information is not helpfu
here, as regions of contact between the hand and object are theta2 (rad) 0 0 ! thetal (rad)
typically devoid of discriminatory features such as edges,
corners, and areas of high curvature. Third, features tieat &ig. 6. (Top) Feature set for the softball. This figure shobsdf the features
important are ot necessarily those that are visuallymalie  Jci/a% U5 1 our S, Boll, Ll Peeur < othae pse &
visually discriminative as discussed by Shilane and cgliesa, pose. (Bottom Right) Hand shape for the softball grasp.
for example [56]. Instead, we want to capture how contact
points and normals are distributed relative to one another i
three-dimensional space, because this arrangement afatentthe purposes of stable grasping (Figure 5). Higher-dinograsi
is what allows us to create a solid grasp. features would likely have even more discriminatory power,
Because of these considerations, we develop a feature gt increasing feature dimensionality would also add to the
based on random samples of pairs of contact points, and emmputational complexity of the algorithm and make it more
include distance and normal information about each sampleifficult to visualize feature sets.
pair. Specifically, we store for each pair of contact points a Example feature sets are shown in Figure 6, which illustrate
three-dimensional value that includes the distance be&twedeature sets for a softball and for the hand pose when the
the points and the angles formed between the surface nloand is grasping the softball. Note that although the harse po
mals and the line passing through those points (Figure #@ature set is more sparse than that of the softball, it captu
This feature value is similar to that used by Ohbuchi arits overall shape very well.
colleagues [27], but contains an extra dimension to locateFor good discriminatory power, we require that these featur
the normals relative to the line between the contact poirgets differ substantially for different objects. As one rapée,
(not just relative to each other). We considered this to Bégures 7 show the feature sets for a book and for a grasp of
the feature set of minimal dimension to distinguish betweehat book. In this example, note that the feature set for #melh
contact arrangements that have very different properties pose captures only a portion of the information contained in

theta1 (rad)
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The representative descriptor approach is designed for com
paring a partial shape such as that obtained from a rangeesimag
to a complete shape (a geometric model). The quality of the
match is based on the average distance from features in the
partial shape to their nearest neighbors in the completeesha
In this case, we compute distance from hand pos®object
j. This distancel; ; is expressed as follows, where Table |
contains notation for this section.

1 C(P;)

Ei;= i) ; Dist(Pi,, — NN(Qj, Pix)) (1)

Dist(x) = [d? + %02 + a202] ? )

“ The first expression is just distance from each featurehand
- posei to its nearest neighbor on objegt averaged over all
& hand pose features; . The distance metri®ist is designed
to provide a reasonable weighting between linear and angula
values. In our case, we uge= 1 cm/rad.

Fig. 7. (Top) Feature set for the book. This figure shows 1% effeatures Although initial results were promising, this distance ex-

actually used in our system. (Bottom Left) Feature set fortthed pose in PreSSi(—_)n was not good enough. In particular, it would some-
this grasp. This figure shows half of the features availatiimfthe hand pose. times identify matches that were unacceptable because the

(Bottom Right) Hand pose for the book grasp. object lacked certain key features (e.g., a place to put the
thumb for the book grasp). To address this problem, we

1
theta2 (rad) 0 0 thetal (rad)

D database size= number of hand poses introd h t iaht feat | highly if
2 set of features for hand pose Introauce a S_C eme 0 welg eature va U?S more_ Ignly 1
P r featurek of hand pose, represented asl 01 03] they are relatively plentiful on the grasped object andtredly
Q: set of features for objeat rare in other hand poses. The weighted distance from hand
Qi k featurek of objects osei to obiecti is
C(F;) count of features for hand pose P ) J
C(Qs) count of features for objeat 1 C(P;)
NN(A,b) | nearest neighbor tb in feature setd Y = — wi . Dist(P: . — NN(OQ... P 3
o weights angular vs. linear terms in features “ T w; C(Py) I; ok (P (@, Pik)) ()
TABLE | where the normalizing term; is the sum of all weights for
DEFINITION OF TERMS USED TO DESCRIBE THE SHAPE MATCHING hand pose:
ALGORITHM. C&)
Wi = Z Wi,k (4)
k=1

and the weight for featuré of hand pose is computed as
the feature set for the book. Yet this information is suffitie
matchCount(Q;, P; i) 5)

to distinguish this grasp from the softball grasp. T
The number of feature values to calculate is a practical T Xy (matchCount (B, Py )
consideration for the algorithm. We compute feature valughe numerator of this equation is a count of the number of
for all pairs of points on the hand surface. For the object, Wenes a feature similar taP; ;. is found on objecti, where
compute feature values for randomly selected pairs of poimdhject; is the object that was originally grasped using hand
on the object surface. A sampling of 1000 features per umjgsei. The denominator contains a count of the number of
centimeter of surface area has worked well for the sizes afshes a feature similar tdP ;, is found in any of the other
types of objects in our database. The point pairs from whigfand poses in the database. In other words, is high when
features are computed are drawn in an unbiased manner frigy@ feature is relatively common on the grasped object and/o
the original set of points computed at the time the object w@gen it is uncommon in other hand poses. It is important
converted to an oriented point representation. to note that when computing the value in the numerator, we
check only the portion of the object surface relevant fos thi
grasp. For example, if a person was grasping a handle to a
pitcher, only features on that handle would be relevant. The
We compare a hand pose and a query object using theartion of an object relevant to the grasp is selected by the
feature sets. For a matching hand pose, we expect all featuiser during construction of the grasp database (Figure 16).
present in the hand feature set to appear in the object &eaturWe can make a Bayesian argument for this weighting func-
set, while the converse is not generally true. We therefege uion. Let P(pose;) indicate the probability of encountering the
a representative descriptor approach for evaluating ahmatwrrent hand posé Let P( feature; 1) indicate the probability
[28][3]. of encountering the current featuf® . Then the probability

B. Matching Hand Pose to Object
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Fig. 8. It is not enough to identify matching hand poses. We ralsst find €1

an alignment of the hand pose to the object surface.

. ; Tgr Fig. 9. A single triangle is used to find a candidate set ofrmlignts of hand
that hand poseis a gOOd match for Objegt based on flndlng pose to object surface. This alignment triangle is createnh fthree contact

the current feature”; ;, on object; can be expressed as points selected from the hand pose.

P(feature; i|pose;)P(pose;)

P(feature; i) ©

P(pose;|feature; i) =

hand pose as shown in Figure 9. The alignment triangle is
In weighting termw; x, we estimateP( feature; x|pose;) by manually defined as a specific triple of contact points foheac
counting the number of times the feature appears on thgnd pose at the time the grasp is added to the database. The
object originally grasped using this hand pos&pose;) can primary goal in selecting an alignment triangle is to previd

be considered uniform and we ignore (feature; ) iS early rejection of unlikely matches; in practice, we simply
estimated by counting the occurrences of that feature der geject one of the largest possible triangles from the ctsitac

hand poses. _ _ _ that made up the grasp.
The functionmatchCount used in computing weight; ;. For the alignment triangle, we compute edge lengthand
can be expressed as follows: anglesy; between the normals; and the triangle normat .
Cc(A) Randomly sampled triangles from the object surface are then
matchCount(A,b) = Z isMatch(Ag,b) (7) tested for a match to the alignment triangle. Matching tries
k=1 must have edge lengths within valgeand angles within value
with €y, Wheree, = 0.5 cm ande, = 0.5 rad in our experiments.

(1) gizgjk : Z; z Z set of triples of points that can be constructed from thenoeie
k - point representation of the objeétAll matching triangles are

A match is counted if the distance between correspondingcorded and passed on to the next step.
features is less than a valdeln our experimentse is set to 2) Pruning Poor TransformsOnce a number of candidate
10% of the maximum distance between features in the hafgnsforms are generated using the alignment triangleh eac
pose under consideration. of these transforms is examined to test whether it represent

During runtime, pose selection proceeds as follows. Givenplausible grasp. For an alignment to be plausible, it must
a new objecD, features of that object are extracted and valugeet two conditions. The first condition is that all desired
Eg ; is computed for each hand pogén the database. Thosecontact points must be present in the new grasp. To check this
poses with the lowest values 6F; ; are identified as candidatecondition, all contact points are first transformed by ahgn
poses and passed on to the pose alignment, clustering, g corresponding triangles, and the pose is checked to see

We check the alignment triangle against a randomly gengrate
isMatch(Ag,b) = { } (8)

refinement algorithms described in the next section. whether there are good matches for all contact points on the
object surface. For each contact point, its nearest neighivo
C. Pose Alignment, Clustering, and Refinement the surface of the object is identified by selecting the dbse

Once a hand pose is selected from the set of candidateqnt from the object’s oriented point representation. T tiee
must be aligned to the object shape. The goal of the alignm&Rtire transfor_m is d|scard_ed if the distance from the adnta
process is to find a transformation to be applied to the haR@iNt to the object surface is greater than valyeor the angle
pose so that the contact points in the hand pose are brou@ﬁ'twee” the contact n_ormal and the object surfaC(_a normal is
into correspondence with points on the object having simildréater than value,, with ¢; = 1 cm ande, =1 rad in our
normals (Figure 8). Our alignment process has three paf&Periments. N _

First, we narrow the set of transforms by identifying good The _seconq .condltl.on that must be met is that_there are
alignments for a single triangle from the hand pose. Then, f80 Major collisions with the object surface. For this test, a
each of these candidate transforms, we check all other ctong@MPpling of points representing the entire inner surface of
points from the hand pose, discarding transforms that resul the hand are transformed and checked for penetration ieto th
a poor match for any one of those contacts. Finally, we dus@bjectlsurface. For collision che_cking, we use_ the samefset o
and refine the results. The next paragraphs provide moré.det38 Points that represent potential contact points on thel han

1) Finding Candidate Transformstn the first step of the Surface (Section Ill-A). If penetration exceeds a threshtiie

alignment process, coordinate transforms are collected by

finding gOOd matches between a triple of points from thez'” our experiments, we check as many alignment triangles as trer
ect features. Specifically, each pair of oriented pothtst were used to

: : . . oD
hand. pose and_ triples of points on the object. V_Ve 'nd'cagéate a feature for shape matching is joined with a thirddoenly selected
an alignment triangle formed by three contact points on tlpeint on the object surface to form a test triangle.
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alignment is rejected. We used a thresholdl déf cm in our o
experiments.

3) Pose Clustering:At the end of the alignment process,
there may be many possible grasps available for a single
hand pose and object. These grasps are automaticallyredste
for use in the next stage of the algorithm. We use K-means
clustering [57], with the number of clusters selected usirey
criterion proposed in Krzanowski and Lau [58]. Clustering
was performed on the transformation used to align the hand
pose to the object surface. We experimented with a variety
of different subspaces that can be formed from this transfor
mation, including using Euler angles or quaternions for the
orientation of the hand, and found that for our problem the
most intuitive results were produced when clustering in the
nine-dimensional space representing the rotation portibn Fig. 10. Example of a task expressed as a set of wrenches thatbeus

. . . . exerted on the object. In this case the wrenches are puresfooche applied
the transformation matrix ("e" we formed a nine-dimenalo through the object center of mass, such as might be requiredpioogt the
vector from the 3x3 rotation matrix of each transformatiod a object against gravity.
performed clustering in the resulting nine-dimensionalcs).

We did not consider translation of the hand during clustgrin

and we found that the results were still intuitive for thedgp consider the difference between placing a bowl on a highf shel
of objects in our database. If objects are more complex, t mand holding a pitcher to pour water. In the first case, it may be
be important to consider translations as well as rotations. fine to support the object from the bottom only, as the expkecte

4) Pose Refinemen©ne grasp from each cluster (the grasfPrces are primarily to support the object against gravitghe
closest to the cluster mean) is selected for further primgss second case, however, a secure grasp of the handle is needed
In particular, we refine the grasp to remove collisions arf@ support the pitcher at different orientations as it ipég
obtain more exact contact locations. We use a local refinemé&y pouring. Similarly, a sander is grasped differentlynfra
algorithm for this purpose. Jacobian based inverse kiriematdrill because of the different forces that must be applied to
(e.g., [59]) is used to iteratively eliminate collisions mdints support the tool and to perform the intended task.
inside the surface and achieve contact for points that arewhen developing a grasp quality measure for the human
outside the surface. In both cases, contact points are mo¥&d, we must consider the fact that the ability of our hand to
toward their nearest neighbors on the object surface. Thegwly forces is different for different force directionshig is
nearest neighbor points are selected from the object'simie caused by the asymmetric structure of the hand mechanism.
point representation. The are selected once, at the beginnror example, the flexors of the human hand are typically much
of the iterative process, and are not changed. We found tis&onger than the extensors. Thus, our grasp quality mistric
keeping these points fixed resulted in more natural lookiftsed on a biomechanically plausible estimate of the hand’s
results. In addition, we impose joint limits on the hand t@bility to apply forces, so that task requirements and hand
avoid unnatural poses. Finally, if a contact is too far aleghe capabilities can be compared in an equitable manner.
object surface at the start of the iterative process, wenassu
that it is not likely to sucqessfully make contact, and we donp Grasp Quality
attempt to move that point to the surface. These choices were

made to avoid unnatural hand poses, but one side effecttis tha!© COMPUte a quality metric that considers both task re-

in some cases not all desired contacts are actually achievd@rements and hand abilities, we need to quantify these two
For this reason it is especially important to use a qualityrime Variables.

to prune and rank grasps resulting from the pose alignmentl) Task RequirementsA force-based task can be repre-
clustering, and refinement processes. sented generally as a set of wrenches that must be exerted on

the object, where a wrench is a six-dimensional vector of
forces f and torques:

IV. TASK-BASED PRUNING

After shape matching and clustering, a small number of w = [ i ] 9)
candidate grasps remain. Some of these grasps may be inap-
propriate for the intended task. They may fail to support the
object securely, for example, or the main power of the graspWe represent a task as the set of wrenchgsi=1,...
may be aligned in the wrong direction for the task. which are the extreme points of the convex hull that bounds
For our system, we choose a force based grasp qualitye space of wrenches required for the task as in [40] [41].
measure to prune and rank candidate grasps. In other worHisis set of extreme wrench requirements can be user defined
the quality of a grasp is computed by comparing the forceghen the task requirement is known to the user. For example,
that can be achieved by a grasp to the forces required fegure 10 shows the task definition used in some of our
a task. For intuition on a force-based grasp quality measuexperiments. This example task consists of pure forces that
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Tj (joint torque)

(applied wrench)
T = _zmij pi,maxa-I
(joint axis) !

Pimax (max muscle force)

a (muscle activation level) Fig. 13. Finally, we need the mapping from contact forces twde and

torques applied to the object.

Fig. 11. This figure shows the mapping from muscle activativel&eto
joint torques.

fi

(contact forceoma“ moment arm) I_:inally we can map the c_onta_ct forces to wrenches on the
\ \T'; (joint torque) object using the grasp matri@ (Figure 13):

d T =Tk xfi) - d W =G, (12)
(joint axis) k I 7 7

G = ( R31 R32 R3 ) ’ (13)

Fig. 12. There is also a well-defined mapping from contactesno joint ° o5 om

torques. For a static grasp, these joint torques must matcttigxhose

generated by muscle activation (Figure 11). 0 —Tok. Tok,
Ry, = Tok, 0 —Tok, ) (14)

_Toky Tok, 0

the hand should be able to apply easily to the grasped object. _
These forces correspond, for example, to supporting thecobjWheremis the number of contacts amgh=[rox, 7ok, Tok.]”
against gravity when it is vertical or at a relatively smaigte IS the grasp map moment arm for tké contact.
from vertical. Torque requirements could be added to thie tas
without changing the algorithm. 3) Grasp Quality as OptimizationTo take both the hand
2) Hand capabilities: To compute the hand capabilitiesgrasp ability and the task requirement into account, we con-
we start from an anatomical human hand model. The detagigler the following grasp quality metric:
of the hand model are described in the Appendix. Given [
anatomical details derived from the biomechanics litegtu Q= min W,Z =1,..,1t (15)
we can estimate the maximum forces that can be transmitted !
from muscles through tendons to joints to contact points amdere w; .. is the maximal wrench that can be applied to
finally to be applied to the object. the object in the directioin This minimum ratio between the
To compute the set of wrenches that the hand can applfasp’s wrench capability and the task requirement can be
to a grasped object, we need the following equations. Afiterpreted as a safety index of how strong the grasp is when
anatomical parameters for these equations can be foundcinmpared to the most difficult task requirement. Figure 14
the Appendix, along with their original references. shows examples ab; ., andt; in various directions. Note
that this is in the 6D wrench space amgl,,, ., andt; are all 6D
vectors. However, the key computation to be performed iequi
First, the joint torques generated by the tendons due somple: repeatedly identify the maximal wrenaf ., that
muscle activation can be computed as follows (Figure 11): can be applied by the hand to the object in a given direction
7, = MPa, (10) defined by a task vectat.

whereP is diag(P; ;a2 P2 mazs -+ Prmaz)s Wherepi,max is

the maximum force that can be generated along teridon We note that maximizing the applied wrench in a given
Matrix M contains joint moment arm information and convertgdirection can be efficiently solved as a linear optimization
tendon forces to joint torques. Paramedés annx1 vector of problem. Leta; = |wima:| be the value we wish to
activation levels, ranging from 0 (inactive) to 1 (at maximu maximize (Figure 14). In other words, our objective is

force), forn tendons. o
maximize («;) (16)

. Lets; = -4 be the unit direction vector fap; 4., as shown
Then when the hand grasps an object, we can also map frc?_m:s I1t:1] :

o . igure 14.
the contact forces to the joint torques as follows (Figurg 1£ gure

We can specify the following equality constraints for our
T =J"f, (11) problem:
wheref is a 3nx1 vector of contact forces witlm as the G 0 Q;
number of contacts, and’ is the contact Jacobian, which N T f =0 a7)
L o J' —-MP
maps contact forces to joint torques.

a
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5 /

o

Q=14

@ (®)

Fig. 15. (a)Friction cone. (b) Friction pyramid. The contémice must fall

Q= (W, o || _ @ —14 within the friction cone/pyramid.
1l 2

Fig. 14. Example ofw; mq. andt; on directioni in 6D force / torque
(wrench) space. The outer convex hull is the grasp’s capahkihd the inner
convex hull is the task requirement.

The first row ensures that the applied wrer@lf is in the

desired direction. Specifically, the applied wrench mustagq
a;s4, wWhich by definition isw; ... The second row ensures @_ 7 )
zero acceleration at the finger joints by equating torques @
produced by tendon activatiom{Pa) to those required to Fig. 16. (Right) Silhouettes of the 17 objects in our databdse highlighted

generate the contact force$’(f).> Note that this equation is “partial objects” show the regions of those objects thateagrasped to form

very similar to that in [46], extending that work to includghe hand pose database. (Left) New objects that were noteirdétabase
tendon activation levels were used as query objects to test our algorithm. Specificadlycreated four

L. . . ueries pictured from top to bottom as (1) the entire surfgeemetry of a
To take the friction between the finger and the object &fouthwash bottle, (2) the entire surface geometry of a spragebd3) a

the contact points into account to ensure that the objecs dgertion of the surface of a sander, and (4) a portion of théasarof a spray
not slip, we first approximate the Coulomb friction cone witf3otle- Figure 21 shows results from these four queries.
a friction pyramid to keep the system linear (Figure 15). In

practice, we use a friction pyramid having four sides (i.€gjg e 16 are test objects that were not a part of the database
defined by four hqlfplanes), as shown in the figure. Let tr@rasps of the 17 objects in the database were captured using a
r}o.rmals _Of the friction pyramid halfplangs m?’“,' where Vicon optical motion capture system using the skeleton rhode
j is the index of the contact p'omt and is thg mplex Of, described in the Appendix. Geometric models for the objects
the halfplane. _NOW we can define the followmg_ 'nequ_a“%ere created manually for each of the objects grasped. For
constraints which ensure that contact forces remain WHln o, 0p pang pose, contact points were identified manually by
friction cones at the contact points: selecting from a discrete set of contact points on the hand
ng-f;<0  j=1,....m; k=1,....h (18) surface, and the normals at those contact points were @ltain
i , by taking the normal from the closest point on the object
wherem is the number of contact points ahds the number ¢, t5ce.
of halfplanes in each friction pyramid. . In terms of the standard grasp hierarchy (e.g. [15]), our
To compute the grasp quality metric in Equation 15, Wg§atanase focuses on power grasps, because these grasis tend
perform the optimization problem defined in Equations 18,y e g Jarge number of contacts between hand and object. The
through 18 fori=1, ..., t, setting || wima. [|= a; at the end  yarapnase includes power sphere and cylinder grasps fartsbje
of each optimization step, and taking the minimW of a variety of sizes and having a variety of differences from
as our quality metric. the primitive shapes. For example, the grasp of the lightbul
is more like a cone grasp than a cylinder grasp, and the drill
handle has a roughly ellipsoidal cross section. In somepgras
V. THE GRASP DATABASE such as the phdonhe anbc_i remote control grazp,ffthe thug;)I Ic_JIoes
. . - t wrap around the object in opposition to the fingers, i
ha\xje lllustrate our results W'th.a database con5|st|r_19 of iéﬁ%ng the main axis of the object. The database also contains
poses obtained from motion capture data. Objects tha

were grasped to form the database are shown in silhouettegri‘;’j}Sps of flat objects—a book and a CD case-where the object

the right hand portion of Figure 16. The objects on the left &mkes contact at many places on the fingers and has a single
area of contact on the thumb.

3A more complete analysis would consider the distinction betwsets of
contact forces that can be resisted by the hand and thoseahdie actively VI. RESULTS
applied. In our experiments and in most practical graspswbeséts of forces . L .
are identical and the constraint equations in Equation &%afficient. Please Results are presented to illustrate the discriminativeqrow
see [5] for more detail. of our features, to show the effectiveness of the shape match
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mouse-17 mouse-17
remote control-16 . remote control-16
phone-15 V phone-15
gun-14 gun-14
drill-13 drill-13
water bottle-12 L{ water bottle-12
2] light bulb—11 2 light bulb—11
S coke bolte-10] 7 S coke bole-10 %
o) | o)
o cp-9 ) o cD-9
£ book-8 ] £ book-8
& milk jar—7 | || & milk jar—7 A
jelly jar -6 . jelly jar -6 .
mug»s\ . mug-5 .
sauce jar—4‘ .@ sauce jar-4 .
small ball-3 E small ball-3
baseball-2 [} pasebai-2| ||
softvall-1 [Ji softvall-1 i
12 3 45 6 7 8 9 1011 12 13 14 15 16 17 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17
Unweighted Poses Weighted Poses

Fig. 17. Evaluation using thenweighteddistance metridz; ; (Equation 1). Fig. 18. Evaluation using thereighteddistance metricZ!”. (Equation 3).
All hand poses in the database are compared to all of the sbiectvhich  All hand poses in the database are compared to all of the sbjectvhich
grasps were collected. Darker colors indicate lower vahfeE; ;, or closer grasps were collected.

matches. A perfect discriminator would have black boxes ordiahgonal and

white everywhere else.

. spray bottle '

w0 Wl e N
B m N

ing, ClUStering, and refinement algorithms, and to dematestr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
. . Weighted P
use of our grasp quality metric. clonedoses

Fig. 19. Test of three new objects against the hand poseatabheentire

. - . objectwas considered. The figure shows weighted results, uBit
A. Discriminative Power of Features ) 9 9 P

We first tested whether our matching algorithm would select
appropriate grasps for the objects used to form the databaseClearly the weighting term adds a great deal to our ability
The motivation behind this experiment is that if our algumt to discriminate between different grasps based on shape.
does not work on the original data, then we must conclud#owever, note that even in Figure 18 some poses / objects
that our feature set is not sufficiently discriminative. show quite similar results. In particular, objects 4, 5, ahd
Figures 17 and 18 show results from this initial experimergroup together, as do objects 8 and 9 and objects 15 and 16.
Figure 17 illustrates results using the unweighted distdii ~ These groupings are not surprising. Objects 4, 5, and 7 are
from Equation 1, and Figure 18 illustrates weighted resul@l medium sized objects of approximately cylindrical shap
using distancel}"; from Equation 3. Hand poses 1 througtObjects 8 and 9 are flat objects (a book and a CD). Objects 15
17 are shown on the x-axis, and query objects 1 through @md 16 are a phone and a remote control, which are likewise
are shown on the y-axis. The list of objects is: grasped in a similar manner. This experiment shows that the
. 1-Softball, 2-Baseball, 3-SmallBall, 4-SauceJar, 3Veighting term used in Equation 3 is effective for pruning
Mug, 6-JellyJdar, 7-MilkJar, 8-LargeBook, 9-CD, 10-SPurious matches.
CokeBottle, 11-LightBulb, 12-WaterBottle, 13-Drill, 14- ] )
BubbleGun, 15-Phone, 16-RemoteControl, 17-Mouse B- Results for Feature Matching on New Objects

So, for example, column 15, row 15 represents the hand pos@Ur second set of gxperiments was to find goqd matches for
from the phone grasp compared to the object geometry of pljects that were not in the dgtabase by comparing the &eatur
phone, and column 10, row 15 represents the hand pose fréfs computed from those objects to the feature sets cothpute
the coke bottle grasp compared to the object geometry of #i@M hand poses. We selected three objects of moderate
phone. All of these results are run with the user highlightincOmPplexity for this experiment: 1-MouthwashBottle, 2-8an

the relevant region of the object to consider. For examyle, fnd 3-SprayBottle. Figures 19 and 20 illustrate results for
the drill geometry, the user selected the handle of the driflese three objects. Figure 19 contains results of segréain
as shown in Figure 16 and other parts of the drill were ndtatches using the entire object geometry. Figure 20 catain
considered. In these two figures, a purely black cell woul@SUlts in a similar format when the user has highlighted
represent zero distance. The diagonal terms are not exad§ portion of the object to be grasped. Only results using
zero due to errors in estimating contact positions from tH¥ighted metricE”; are shown. From these images we can
motion capture data and due to discrete sampling of poirf€e that the feature matchln_g process can reduce the number o
on the object surface. In some cases (e.g., the grasp of gquldate poses to be con5|_dered, especially When thg aser h
mouse and the drill), the motion capture data was quite po#iidicated a portion of the object to be grasped, as in FigQre 2
resulting in less good matches for the original object. &ett o _ )

motion capture technology or post-processing to improve of- Results for Aligning, Clustering and Refinement

estimates of the hand poses in the database would solve thiBased on the similarity matrices in Figures 19 and 20, we
problem. selected the best hand poses for further processing. Specifi
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. spray bottle| y d 7 . . ..
il HE_ - WOEN D
1 2 3 4 5 8

mouth wash|

7 8 9 10 11 12 13 14 15 16 17
Weighted Poses

Fig. 20. Test of three new objects against the hand pose atalonly
a portion of the objecwas considered. The figure shows weighted results,
using Ef]

[ WHOLE OBJECT | PARTIAL OBJECT |
Mouthwash Mouthwash
5-Mug 399 (4) 17-Mouse 0(-)
15-Phone 15 (4) 6-JellyJar 218 (4)
17-Mouse 2(-) 15-Phone 7 (-)
10-CokeBottle | 380 (4) 5-Mug 360 (4)
1-Softball 721 (2) 10-CokeBottle | 11 (4)
Sander Sander
5-Mug 2(-) 1-Softball 31 (4)
4-SauceJar 7() 5-Mug 1()
1-Softball 59 (2) 17-Mouse 0()
SprayBottle SprayBottle
15-Phone 4(-) 15-Phone 0(-)
17-Mouse 13 (4) 13-Drill 0()
6-JellyJar 163 (4) 12-WaterBottle | 243 (2)
11-Lightbulb 13 (3)

TABLE 11
RESULTS FOR THREE NEW OBJECTYLEFT) THE ENTIRE OBJECT
SURFACE WAS USED (RIGHT) A PORTION OF THE OBJECT WAS SELECTED
BOTH ALIGNMENTS AND CLUSTERS(IN PARENTHESEY ARE SHOWN.
HAND POSES WITH8 OR FEWER ALIGNMENTS WERE NOT CLUSTERED

cally, for each hand pose / object pair, we identified cartdida
alignments of hand to object, clustered the results, andegfi
the median pose from each cluster to obtain representative
grasps, which were displayed to the user.

Table Il shows the number of alignments and the number l .
of clusters returned for the three new objects in each of the
conditions tested. For example, the top section of the left
column shows alignments for the mouthwash container when
the entire object was considered. The five best matching hand
poses based on their feature sets were the mug, phone, mouse,
coke bottle, and softball poses. The mug pose resulted in
399 valid alignments with the object surface, which could
be grouped into 4 clusters based on orientation of the hand
pose. When only a portion of the mouthwash container was
considered, the best matching hand poses were from the
mouse, jelly jar, phone, mug, and coke bottle grasps. Aljhou
the mouse grasp was best in terms of its feature set, no valid
alignments could be found on the object surface. In other
words, even though similar features to all pairs of points ifig. 21. Cluster results for four queries presented to ostesy. The left hand

; ion of Figure 16 shows the portions of the object geometwysidered
the grasp could be found on the Obje‘:t surface, none of th(%e'r hese queries. (1) For the entire surface geometry of amash bottle,

matching pairs led to a complete matching grasp. 4 clusters were found using the coke bottle pose. (2) For tiieeesurface

Figure 21 shows some resdlts of the shape matching EE@QEL?Z porton of the suriace of & sander: 4 dlusters weusdassing he
clustering phase. Each collection of images shows all @ustoftball pose. (4) For a portion of the surface of a sprayl&o8 clusters
results where a single hand pose matches the given objeete found using the lightbulb pose.

For example, the top two rows show the median cluster

representative for each cluster matching the coke bottée po

to the mouthwash obiject.
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Fig. 25.

Fig. 22. Best hand poses for the spraybottle. The first glagtifulb grasp)
is the best among the five candidates of water bottle and light grasps,
considering the partial spraybottle shape. The next threspg are chosen
from the twelve candidates (phone, jellyjar, and mouse glaspnsidering
the entire spraybottle shape. Among these three graspsigtievid are jellyjar
grasps and the last one is a phone grasp.

Fig. 26. Two softball grasp candidates with different metwatues, caused
by the difference in contact points.

contact the object, which is the primary reason for the poor
performance of this grasp.

We notice that the shape matching algorithm sometimes
cannot achieve the necessary contact points for a statdp.gra
Fig. 23. Best hand poses for the mouthwash bottle. The firspggahone Grasps that cannot be made stable also tend to appear implau-
grasp) is the best among nineteen candidates (phone, jetipjebottle, and  sible, and we would like to remove them from consideration.

mug grasps) considering the partial mouthwash shape. Thewasgrasps ; ; ;
are chosen from the sixteen candidates (phone, mouse, dtkelbaug, and In our system, the grasp candidates havmg this prObIem are

softball grasps) considering the entire mouthwash shape.fifét one is a Screened out by the grasp quality metric. For example, one of

cokebottle grasp and the second one is a softball grasp. the softball candidates for the mouthwash bottle (wholdy on
has contacts on the index, ring, and little finger (shown as th
first grasp in Figure 26.) With the locations of the contacts

D. Results from Task-Based Pruning on the object all at one side of the object, this grasp cannot

We define a task for our experiments as statically graspikg stabilized. As a result, the grasp earns a metric of zero.
the object with the ability to support it against gravity irHowever, another softball grasp candidate (the secondgras
vertical and near vertical orientations (Figure 10). We pata in Figure 26) has an extra contact on the thumb that can apply
the quality metric using this task requirement and choose ttorque to the object to balance the contacts on the otherfinge
best grasps from the grasp candidates obtained from shaje second grasp has a metric of 12.56.
matching and clustering. Figures 22 to 24 show results fr th Another example is given in Figure 27. The first grasp has
spray bottle, mouthwash bottle, and sander. Note that ietheno thumb contact and has a metric of 1.55, while the other
is more than one grasp with a similar, high quality metrit, athree all have thumb contacts and the metrics are 24.3, 13.2,
such grasps are shown. and 13.58, respectively.

We note that some grasps are typically better for a givenBecause of the much stronger flexors in the fingers and
object and some are generally worse. For example, among the wrist, grasps with the palm facing upward, which cause
candidates for the mouthwash bottle (considering the whdhe forces in the y-direction (upward) to be generated by the
object), the mug grasp candidates have very poor perforenaistronger flexors, usually have better performance. For pl@am
with an average metric of 0.602, compared to the phone grdbp last three grasps in Figure 27 are similar phone grasp
of 6.01, mouse grasp of 1.34, cokebottle grasp of 8.065, and
softball grasp of 5.537. Figure 25 shows an example of the
mug grasp. Note that the index finger and middle finger do not

Fig. 24. Best hand poses for the sander. The first two softyaips are
the best among the five candidates (mug and softball graspsjderimg the

partial sander shape. The last grasp is the saucejar ghespest among the
eleven candidates (saucejar, mug, and softball graspsjdeoing the whole Fig. 27. Four phone grasp candidates for the spraybottlel@yhThe metrics
sander shape. are different because of the different contact points ardif@ientation.
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candidates with very similar contact points for the spragfeo and 27). There are two primary reasons for this difficulty.
(whole object), but with different orientations. The firgteo The first is that the set of algorithms we use are threshold
is facing palm-upward and has a metric of 24.3, while theased. For example, if a contact is too far from the surface,
other two are facing palm-downward and the metrics are onlye do not attempt to move it to a surface point. However,
13.2 and 13.58. Of course, other factors such as reaclyabittiere is no one threshold that works in all cases, and althoug
or comfort of the arm may cause the grasps on the right side attempted to set thresholds that produced generally good
of Figure 27 to be preferred over the grasp on the left side &sults, there were still a number of failures, the mosteswe

that figure. of which are shown here. The second reason for difficulty
in achieving desired contacts is that the standard Jacobian
VII. CONCLUSIONS ANDFUTURE WORK based IK algorithm we were using produced highly unnatural

This paper describes a shape matching algorithm for sygrasps in our first implementation (e.g., unnatural twistir
thesizing humanlike enveloping grasps that is inspired Itfe fingers) and we chose to impose stringent joint limits in
work in geometric model matching. We have described arder to avoid these problems. A more satisfying solutioy ma
approach that handles the specific challenges of applyihg obtained by developing an IK algorithm that takes hand
shape matching to grasp synthesis. The availability of on$ynergies into account or formulates the pose refinemekt tas
partial information is handled using a representative digse  as a more general optimization or control problem. Imprgvin
approach, and the lack of good local features is handled te refinement algorithm is a topic of future research.
sampling a global shape function. We introduce a novel dloba Our results show that the shape matching algorithm can find
shape function that emphasizes the relations betweeriveelavery good matches between the hand and the object surface. In
positions and normals of pairs of oriented points and weintrfact, we were surprised at the variety of good matches found
duce a mechanism to weight features relative to one anothising our small database of 17 grasps, even after funcljonal
to improve the discriminatory power of our shape matchingoor grasps were pruned using our quality metric. At present
algorithm. To prune unsuitable matches from consideratiomser must select the desired grasp from among the posstilit
we introduce a grasp quality metric that compares forcess thesented by the system, because some of the grasps appear
can be exerted by the hand to those required for the task. unintuitive. For example, the hand may appear to be grasping

There are several limitations to the current algorithm théte object “backwards” or “upside down.” Objects such as
must be addressed in future work. First of all, our algorithiools with buttons or levers may require customized shape
assumes that the animated hand model is very similar n@tching algorithms that can exploit these features (seg,
the hand of the actor whose motion was originally capturelfliyata et al. [60]), and for a fully automatic system, aspect
If the same joint angles are assumed for a similar hanof, natural grasps other than ability to apply forces must
the database should still represent plausible grasps. ¥owebe taken into account. Much research remains to be done
adapting grasps in the database to extremely different handbetter understand human grasping (e.g., see [61]) and to
kinematics may produce unnatural results. Retargetingpgradevelop algorithms that quantify the “naturalness” of ggas
in the database to different hands while preserving thetitit For example, comfort and reachability of the hand and arm
of the grasp is an interesting topic of future work. pose must certainly be considered.

The algorithm uses a number of sampling steps. The
sampling process is straightforward, easy to implemerd, an
effective. However, it is inefficient, and processing a new
object to obtain a small set of grasps to present to the useBased on the biomechanics work by Valero-Cuevas et
requires several minutes of running time. There are maa} [62] [63], we use a hand model that has the following
ways this process could be made more efficient (e.g., wig@nfiguration (see Figure 28): The fingers have four degrees
fast nearest neighbor algorithms), although we expect tteftfreedom (DOF). The metacarpophalangeal (MCP) joint has
obtaining real-time performance may be challenging wittyvo DOF of flexion/extension and adduction/abduction. The
today’s computers. In addition to efficiency considerationproximal interphalangeal (PIP) and the distal interphgezah
sampling has the potential to poorly sample high frequené®!P) joints both have one DOF of flexion/extension. The
or very thin features. Objects for which power grasps atBumb has five DOF in total. The carpometacarpal(CMC),
applicable, however, do not typically have such features; WICP and thumb interphalangeal (IP) joint each has one DOF
did not have any such difficulties with the objects in ouef flexion/extension. The CMC and MCP joint both have
database. another DOF of adduction/abduction. In the actual human

We considered power grasps almost exclusively, becadtnd, the ring and little finger have two additional DOFs of
the large number of contacts between the hand and obj#exion/extension and adduction/abduction at the CMC joint
provided a great deal of useful shape information. Pregisi®ince they only provide a relatively small range of motiore, w
grasps could also be addressed using this framework. Howewensider these extra DOFs fixed.
if there are only two, three, or four contacts between thalhan
and object, the possibility of more efficient algorithms slilo
be considered. To obtain the maximum muscle force for the index finger

Our current refinement algorithm has some difficulty itendons, Valero-Cuevas et al. [62] uses physiologicalssros
achieving all of the desired contacts (e.g., see Figures 2&ctional area (PCSA) numbers and a conversion from PCSA

APPENDIX
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Fig. 28. A. Finger model; B. Thumb model. 6]
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to force of 35 N/ecm?. Lacking PCSA data for all tendons,[17]
we combine this computation with the relative tension data
from Brand and Hollister [64] to get the maximum muscl
force for each tendon. First we compute the maximum muscle
force of the FDP tendon for the index fingefDPI1=4.1  [19]
35 = 143.5 N, where 4.1 is the PCSA number for the FDP
tendon of the index finger. Then the maximum muscle forcem)
for other tendons can be generated with the relative tension
data. For example, the maximum force of the FDS tendon f h
the middle finger isl43.5 x 3.4/2.7 = 180.7 N, where 2.7
and 3.4 are the relative tension data for the FDP and the FDS
tendon, respectively. Moment arm and relative force data 52!

each tendon are listed in Table Ill.
[23]
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Finger || Anatomical Name Relative Tensio? | Joints'DOF | | Moment Am | P | Finger [] Anatomical Name Relative Tension | Joints/DOF | | Moment Arm| |
Index © Flexor Digitorum Superficialis 2.0 MCP flex. 11.9 F’inkyd Flexor Digitorum Superficialis 0.9 MCP flex. 11.9
MCP add. 1.7 MCP add. 17
PIP flex. 6.2 PIP flex. 6.2
Flexor Digitorum Profundus 2.7 MCP flex. 11.1 Flexor Digitorum Profundus 2.8 MCP flex. 111
MCP add. 11 MCP add. 6
PIP flex. 7.9 PIP flex. 7.9
DIP flex. 4.1 DIP flex. 4.1
Extensor Digitorum Communis 1.0 MCP ext. 8.6 Extensor Digitorum 0.9 MCP ext. 8.6
MCP abd. 0.2 MCP abd. 0.2
PIP ext. 2.8 PIP ext. 2.8
DIP ext. 22 DIP ext. 2.2
Extensor Indicis 1.0 MCP ext. 9 Extensor Digiti Minimi 1.0 MCP ext. 8.6
MCP add. 13 PIP ext. 2.6
PIP ext. 2.6 DIP ext. 1.9
DIP ext. 19 Abductor Digiti Minimi 1.4 CMC opp.
Lumbrical | 0.2 MCP flex. 9.3 MCP abd. 4
MCP abd. 4.8 PIP ext. 25
PIP ext. 1.8 DIP ext. 2
DIP ext. 0.7 Flexor Digiti Minimi Brevis 0.4 CMC opp. 6
Palmar Interosseus | 1.3 MCP flex. 6.6 Opponens Digiti Minimi 2.0 CMC opp. 6
MCP add. 5.8 Lumbrical IV 0.1 MCP flex. 5
PIP ext. 26 MCP abd. 4.8
DIP ext. 1.6 PIP ext. 1.8
Dorsal Interosseus | 3.2 MCP flex. 37 DIP ext. 0.7
MCP abd. 6.1 Palmar Interosseus Il 1.0 MCP flex. 6.6
Middle @ Flexor Digitorum Superficialis 34 MCP flex. 11.9 MCP add. 5.8
MCP add. 1.7 DIP ext. 26
PIP flex. 6.2 PIP ext. 1.6
Flexor Digitorum Profundus 3.4 MCP flex. 11.1 Dorsal Interosseus 1V 1.7 MCP flex. 3.7
MCP add. 6 MCP abd. 6.1
PIP flex. 7.9 PIP ext. 2.6
DIP flex. 4.1 DIP ext. 16
Extenxor Digitorum 1.9 MCP ext. 8.6 Thumb® Flexor Pollicis Longus 2.7 CMC abd. 0.2
MCP abd. 0.2 CMC flex. 14.3
PIP ext. 28 MCP add. 0.1
DIP ext. 22 MCP flex. 13.6
Lumbrical I 0.2 MCP flex. 5 1P flex. 8.7
MCP abd. 4.8 Extensor Pollicis Longus 1.3 CMC ext. 8.1
PIP ext. 18 CMC add. 9.5
DIP ext. 0.7 MCP ext. 8.5
Dorsal Interosseus Il 25 MCP flex. 37 MCP add. 4.4
MCP add. 6.1 IP ext. 4.1
PIP ext. 2.6 Abductor Pollicis Longus 3.1 CMC ext. 7.1
DIP ext. 1.6 CMC abd. 10.5
Dorsal Interosseus |1l 20 MCP flex. 3.7 Extensor Pollicis Brevis 0.8 CMC ext. 13.0
MCP add. 6.1 CMC abd. 3.2
PIP ext. 2.6 MCP ext. 8.6
DIP ext. 1.6 MCP abd. 1.4
Ring @ Flexor Digitorum Superficialis 20 MCP flex. 11.9 Abductor Pollicis Brevis 11 CMC flex. 3.9
MCP add. 1.7 CMC abd. 16.5
PIP flex. 6.2 MCP abd. 1.1
Flexor Digitorum Profundus 3.0 MCP flex. 11.1 MCP flex. 2.6
MCP add. 6.0 Flexor Pollicis Brevis 13 CMC flex. 13.4
PIP flex. 7.9 CMC abd. 105
DIP flex. 4.1 MCP abd. 8.7
Extensor Digitorum 17 MCP ext. 8.6 MCP flex. 8.8
MCP abd. 0.2 Opponens Pollicis 1.9 CMC flex. 12.9
PIP ext. 28 CMC abd. 4.8
DIP ext. 2.2 Adductor Pollicis(t) 3.0 CMC flex. 36.9
Lumbrical 11l 0.1 MCP flex. 5 CMC add. 20.6
MCP abd. 4.8 MCP flex. 9.7
PIP ext. 18 MCP add. 6.0
DIP ext. 0.7 Adductor Pollicis(o) 3.0 CMC flex. 27
Palmar Interosseus Il 1.2 MCP flex. 6.6 CMC add. 17
MCP add. 5.8 MCP flex. 8.2
DIP ext. 2.6 MCP add. 4.0
PIP ext. 1.6
TABLE Il

TENDON DATA

2Relative Tension data are collected from [64]

bAdductors or flexors have positive moment arms and abductorstensors have negative moment arms.
Index finger data are collected from [65]

dMiddle,ring, and little finger data are collected from [66]

€Thumb data are collected from [67].



