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Data Driven Grasp Synthesis using Shape Matching
and Task-Based Pruning

Ying Li, Jiaxin L. Fu, and Nancy S. Pollard,Member, IEEE

Abstract— Human grasps, especially whole-hand grasps, are
difficult to animate because of the high number of degrees of
freedom of the hand and the need for the hand to conform
naturally to the object surface. Captured human motion data
provides us with a rich source of examples of natural grasps.
However, for each new object, we are faced with the problem
of selecting the best grasp from the database and adapting it to
that object. This paper presents a data-driven approach to grasp
synthesis. We begin with a database of captured human grasps.
To identify candidate grasps for a new object, we introduce a
novel shape matching algorithm that matches hand shape to
object shape by identifying collections of features having similar
relative placements and surface normals. This step returns many
grasp candidates, which are clustered and pruned by choosing the
grasp best suited for the intended task. For pruning undesirable
grasps, we develop an anatomically based grasp quality measure
specific to the human hand. Examples of grasp synthesis are
shown for a variety of objects not present in the original database.
This algorithm should be useful both as an animator tool for
posing the hand and for automatic grasp synthesis in virtual
environments.

Index Terms— Grasp synthesis, hands, shape matching, grasp
quality.

I. I NTRODUCTION

A NIMATED characters in games and virtual environments
must be able to interact with their world in a realistic

way. One requirement is the ability to grasp objects in order
to manipulate them. If a grasp is not carefully constructed,it
may appear impossible or awkward. In fact, the anatomical
complexity of the human hand makes it challenging to pose
the hand in ways that appear natural.

The problem of posing the human hand in a natural way
can be addressed by making use of a database of successful
grasps. Even though the hand has a large number of degrees of
freedom, it takes on a similar shape in many grasps, and it may
be easy to find an example grasp that is a good match to the
current problem. This paper presents a data driven algorithm
for selecting hand poses to grasp an object in a natural way.
The key insight presented in this paper is that when a grasp
database is available, grasping can to a large extent be treated
as a shape matching problem (Figure 1). As intuition for why
shape matching may be an effective way to select a grasp from
a database, consider Figure 2, which shows the hand pose for a
grasp of a mouse. The shape of the inside surface of the hand
gives us a great deal of information about the shape of the
mouse. We represent this shape information by extracting from
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Fig. 1. Grasp synthesis as a shape matching problem. Offline, the user
creates a database of hand poses. Online, a user or a program loads a query—
a three-dimensional model of the object to be grasped. The shape matching
system searches the database to find the hand poses that best match the query
object. Representative hand poses for this example are shownin the middle
of the figure. The poses displayed are from a grasp of a mouse, a jelly jar,
and a lightbulb (left to right). Finally, unacceptable grasps are pruned from
consideration and the best grasps are chosen using a qualitymetric tailored
to the desired task.

Fig. 2. Hand pose for the mouse grasp. The figure shows contact points
on the hand and object, and contact normals on the object surface. Note that
the inside surface of the hand contains a great deal of information about the
shape of the mouse. If similar features can be found on a new object, it may
be possible to use the same grasp for the new object.

each example grasp a set of representative contact points and
normals.1 If we find a similar arrangement of contact points
and normals on the surface of a different object, then we may
be able to reuse the same hand pose to grasp the new object.
For example, the mouse grasp is used in the leftmost image
in the middle row of Figure 1 to hold the spray bottle.

Shape matching is commonly used in other fields—
examples include object recognition in computer vision [1]

1Specifically, the contact points are selected by hand from a discrete set of
possibilities each time the user enters a new grasp into the database. Normals
are obtained by taking the normal from the closest point on theobject surface.
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and example-based retrieval of geometric models in computer
graphics [2]. However, the use of shape matching for grasp
synthesis presents some new challenges. First of all, the hand
surface gives us information about only a portion of the
surface of the object. Because of this, global measures of
shape such as overall volume and principle directions cannot
be used to match the shape of the inner surface of the hand
to the shape of the object. This problem also arises in the
vision community–where there may be only partial shape
information available from range scans, for example. In those
circumstances, discriminative local features are typically used
to compensate for the absence of global shape information
(e.g., [3]). Discriminative local features are local regions of
three-dimensional geometry (curves, corners, angles, etc.) that
are useful for distinguishing one shape from another. However,
in shape matching for grasp synthesis, our local features are
typically not discriminative. They generally consist of contact
patches that are nearly planar and ellipsoidal in shape. As
such, they are not helpful for distinguishing between different
grasped objects or different hand shapes.

In this paper, we present a novel algorithm that allows us to
overcome the problem of partial shape information that does
not contain discriminative local features. The main idea behind
our approach is to randomly generate a set of global shape
features from the contact points and normals representing a
grasp. These features are global in the sense that they capture
arrangements of contacts with respect to one another. If a
similar collection of features can be located on an object
surface, then we hypothesize that the hand shape may match
this object surface and attempt to find alignments of the hand
to the object that achieve the desired overall arrangement of
contacts and normals. We tailor our solution to the domain of
grasp synthesis by making use of shape features that contain
contact normal information, which is important for grasping.

Our shape matching algorithm is extremely successful in
that it returns a large number of candidate grasps. However,
many of these grasps are not appropriate for the desired task
(e.g., lift the object to place it on a shelf). To obtain a single
best grasp, or a small set of candidate grasps to present to
the user, we cluster the results and then prune them using a
grasp quality metric. For effective pruning, we develop a novel
grasp quality measure that compares the ability of the hand
to apply forces to the grasped object to those forces needed
to accomplish the task. Our model of grasp quality captures
anatomical features of the human hand (e.g., the fact that
flexors are stronger than extensors) and distinguishes grasps
having a good arrangement of contacts over the object surface
from those that do not.

Portions of this work have appeared separately in [4]
and [5]. In this paper, we bring the ideas of shape matching
and task-based quality metrics together into a single system for
humanlike grasp synthesis. Specifically, we add a refinement
algorithm to the shape matching portion of the algorithm to
achieve solid contact with the object, and we present many new
results and observations from evaluating the resulting grasps
based on the intended task.

II. BACKGROUND

Algorithms for grasp synthesis that consider complex hand
kinematics are typically procedural or rule-based [6], [7], [8],
[9], [10], [11], [12]. These systems involve treating all orpart
of an object as a primitive shape (e.g., box, cylinder, sphere)
for which a grasp synthesis strategy is available. This approach
is supported by classifications and taxonomies of observed
human grasps [13], [14], [15]. However, creating a rule-
based grasping system based on these classifications requires
a significant amount of skill on the part of the designer, and it
may not always be clear how to fit irregularly shaped objects
into a given classification system. Our goals in this paper are
to reduce the knowledge and tuning required of the algorithm
designer by (1) making use of a grasp database to capture
variation in hand shape both across and within families of
grasps, and (2) developing a grasp synthesis algorithm that
allows an appropriate grasp to be selected from the database
based on object geometry and task definition.

Data driven grasp synthesis has been used by Pollard and
Zordan [16], who automatically construct a controller for
grasping by fitting control setpoints from measured human
example grasps and similarly by Kry and Pai [17], who create
grasping controllers to match measured stiffness in measured
hand-object interactions. However, in both cases, the grasp
synthesis algorithms cannot form appropriate controllersfor
objects that differ substantially from those objects in the
database. The work in the current paper could be combined
with that in [16] or [17] to create a more robust and flexible
grasping system. In other data-driven work related to grasping,
ElKoura and Singh [18] use a data driven approach to animate
the hand for guitar playing. They use a database of human
grasps to filter results produced using an inverse kinematics
algorithm so that a natural coupling between joint angles is
expressed.

Data driven approaches are now quite popular for tasks
such as reaching, kicking, and locomotion (e.g., [19], [10],
[20]). In particular, Yamane and colleagues [21] make use of
a database to obtain full body posture for characters that are
grasping and moving objects. However, these systems often
work by identifying poses that match constraints such as end
effector position. Extending this approach to work for non-
trivial grasps is challenging due to the large amount of contact
between the hand and object. This difficulty motivated us to
consider an alternative approach based on matching the shape
of the inner surface of the hand to the geometry of the object.

A. Shape Matching Background

Shape matching algorithms have been studied for re-
lated applications such as example-based retrieval of three-
dimensional objects from databases and object identification
from range scans. (See [22], [1], [23] for surveys of techniques
in these fields.) Most of these techniques, however, cannot be
applied directly to our problem, because they assume problem
characteristics that are not applicable here. Some techniques
require information about the entire surface of the two shapes
that are to be compared, either to measure global features (e.g.,
[22]) or to compare probability distributions of features (e.g.,
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[2]). We have only partial information about shape available
from the hand pose. Some techniques require dense and
discriminative information about local features, such as may be
available from range images in cluttered environments (e.g.,
[24], [25]). The shape information associated with the hand
pose has very uninteresting local features: locally flat contact
patches with their normals. Finally, some techniques require
registration / alignment of objects or feature correspondence,
for example to build histograms characterizing the space
occupied by the object [26]. We have noa priori way to align
the query object to a hand pose.

For the shape matching portion of this paper, we combine
and modify ideas from two bodies of work. First, we take
inspiration from work on shape descriptors that randomly
sample a global shape function (e.g., [2], [27]). An example
of a global shape function is the probability distribution of
distances between pairs of points on an object surface [2].
A descriptor for this shape function could be computed by
randomly sampling pairs of surface points and recording their
distances. Such a descriptor is useful because it gives us
information about how points on the surface are distributed
with respect to one another. We adapt the shape descriptors
used in previous work to provide more detailed information
about the relative orientations of contact normals, which is
important for grasping.

Second, we take inspiration from work on partial matching.
In particular, we use a representative descriptor technique (i.e.,
a nearest neighbor search) to determine whether hand pose
features can be found in the query object (e.g., [3], [28]). We
modify this technique so that the descriptors are not based on
local features but instead are based on a sample of a global
shape function. We also introduce a weighting term to capture
the intuition that some features are more important than others.

B. Grasp Quality Background

Research on grasp quality measures has primarily been in
the field of robotics. Within robotics, a great deal of research
has focused on selecting good points of contact on the object
surface (e.g., [29], [30], [31], [32], [33], [34], [35], [36],
[37], [38], [39], [40], [41], [42], [43]). This research, however,
makes the assumption that contact points are identical and
independent, which is a very poor approximation to the actual
mechanical constraints of the human hand [5].

Quality metrics that include mechanical constraints for
robot hands and parallel manipulators have been investigated
(e.g., [44], [45], [46], [47], [48], [49], [50]). However, ellip-
soidal metrics such as force manipulability ellipsoids aremost
commonly considered. Ellipsoidal metrics may be appropriate
for robotic hands, which are typically highly symmetrical.
However, the human hand has strong asymmetries, such as
the large difference between strength of the flexors and ex-
tensors [5]. To account for these asymmetries, we introduce
a quality metric that more accurately models anatomical
constraints such as maximum available muscle force and the
specific tendon layout of the human hand. Our algorithm
is unique in using a fast algorithm (linear programming) to
compute a grasp quality metric that includes a biologically
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Fig. 3. Block diagram of the shape matching and clustering portion of our
system. The online portion of this algorithm contains four main steps: find the
hand poses that seem likely matches to this object, find good alignments of
these poses to the object surface, cluster the results, and locally refine poses
to conform to the object surface.

plausible tendon layout and muscle force capability obtained
using measurement results from the biomechanics literature.

The core of our algorithm involves computing maximum
force that can be applied to a grasped object. When developing
this portion of the algorithm, we drew heavily upon work
on optimizing contact forces and analyzing force capabilities,
such as [51], [52], [53], [46], [54], [55], [39], [40].

III. SHAPE MATCHING AND CLUSTERING

Figure 3 shows a block diagram of the shape matching and
clustering portion of our system. The input to the system is a
geometric description of an object—the query object. The first
step of the algorithm is to compute a collection of features that
will be used to match the object against different hand poses.
A hand pose database is available, and a similar feature set
has been computed for each hand pose. There are then four
main steps to the algorithm: (1) find the best hand poses to
match the query object by comparing object features to hand
pose features, (2) align these poses to the object geometry
to obtain a set of possible grasps, (3) cluster results into a
few representative grasps, and (4) refine each representative
hand pose to conform to object geometry. The output of this
portion of the system is a set of candidate grasps that will then
be sorted and pruned based on effectiveness for the intended
task (Section IV).

A. A Feature Set for Grasps

This section describes the feature set used for shape com-
parison. Our goal in choosing a feature set is to find a
representation of object geometry that will allow us to quickly
determine whether a given grasp can be matched to some
portion of the object surface. In particular, we would like the
feature set to capture important information about the relative
configurations of contact positions and contact normals in the
grasp.

We begin with an oriented point representation for both
the hand pose and the object geometry. The feature sets are
computed from these oriented point representations.

The oriented point representation for the query object is
computed by randomly sampling points on the object surface.
For point sampling, we use the algorithm outlined in [2],
which randomly selects points on the surface of a triangulated
object that are unbiased with respect to the surface area of
the triangulated mesh. We use a fixed number of samples per
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Fig. 4. We compute a three-dimensional feature value for pairsof points
on the object or hand surface. This feature value consists ofthe distanced
between points, and the anglesθ1 and θ2 between the surface normals and
the line passing through both points.

unit area (100 sample points per square centimeter in our
experiments). Normals at those points are determined based
on local surface geometry.

For the hand pose, the oriented point representation is the
complete set of contact points and normals taken from the
grasp. Each time a new grasp is added to the database, the
relevant contact points are selected by hand from a discrete
set of typical contact points that represent the contact patches
on the hand surface that are commonly used in grasping. We
select from a set of 38 total potential contact points distributed
over the inner surface of the hand and the side of the index
finger. Some of these points can be seen indicated on the
surface of the hand in Figures 2, 6, and 7, for example. The
normals for each of these contact points are taken from the
nearest point on the surface of the grasped object. The nearest
point on the object surface is approximated as the nearest
neighbor from the oriented point representation computed for
the object.

A variety of considerations drove our particular choice of
a feature set that differs from those already available in the
shape matching literature. First, global features cannot be
computed due to the sparse shape information available from
hand pose. For example, aligning the “center of mass” of the
hand pose with the center of mass of the object would not
make sense. Second, local feature information is not helpful
here, as regions of contact between the hand and object are
typically devoid of discriminatory features such as edges,
corners, and areas of high curvature. Third, features that are
important are not necessarily those that are visually salient or
visually discriminative as discussed by Shilane and colleagues,
for example [56]. Instead, we want to capture how contact
points and normals are distributed relative to one another in
three-dimensional space, because this arrangement of contacts
is what allows us to create a solid grasp.

Because of these considerations, we develop a feature set
based on random samples of pairs of contact points, and we
include distance and normal information about each sampled
pair. Specifically, we store for each pair of contact points a
three-dimensional value that includes the distance between
the points and the angles formed between the surface nor-
mals and the line passing through those points (Figure 4).
This feature value is similar to that used by Ohbuchi and
colleagues [27], but contains an extra dimension to locate
the normals relative to the line between the contact points
(not just relative to each other). We considered this to be
the feature set of minimal dimension to distinguish between
contact arrangements that have very different properties for
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Fig. 5. Considering distanced only (a 1D feature), all three contact pairs look
the same. Considering distanced and the relative angle between normalsn1
andn2 (a two-dimensional feature), pairs b and c look the same. The three-
dimensional feature illustrated in Figure 4 allows us to distinguish between
these three situations. This discriminatory power is important for grasping,
because it is important to be able to balance forces and torques appliied to
the object through combinations of contacts.
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Fig. 6. (Top) Feature set for the softball. This figure shows 1% of the features
actually used in our system. (Bottom Left) Feature set for thehand pose in
this grasp. This figures shows half of the features availablefrom the hand
pose. (Bottom Right) Hand shape for the softball grasp.

the purposes of stable grasping (Figure 5). Higher-dimensional
features would likely have even more discriminatory power,
but increasing feature dimensionality would also add to the
computational complexity of the algorithm and make it more
difficult to visualize feature sets.

Example feature sets are shown in Figure 6, which illustrates
feature sets for a softball and for the hand pose when the
hand is grasping the softball. Note that although the hand pose
feature set is more sparse than that of the softball, it captures
its overall shape very well.

For good discriminatory power, we require that these feature
sets differ substantially for different objects. As one example,
Figures 7 show the feature sets for a book and for a grasp of
that book. In this example, note that the feature set for the hand
pose captures only a portion of the information contained in
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Fig. 7. (Top) Feature set for the book. This figure shows 1% of the features
actually used in our system. (Bottom Left) Feature set for thehand pose in
this grasp. This figure shows half of the features available from the hand pose.
(Bottom Right) Hand pose for the book grasp.

D database size= number of hand poses
Pi set of features for hand posei
Pi,k featurek of hand posei, represented as[d θ1 θ2]T

Qi set of features for objecti
Qi,k featurek of object i
C(Pi) count of features for hand posei
C(Qi) count of features for objecti
NN(A, b) nearest neighbor tob in feature setA
α weights angular vs. linear terms in features

TABLE I

DEFINITION OF TERMS USED TO DESCRIBE THE SHAPE MATCHING

ALGORITHM .

the feature set for the book. Yet this information is sufficient
to distinguish this grasp from the softball grasp.

The number of feature values to calculate is a practical
consideration for the algorithm. We compute feature values
for all pairs of points on the hand surface. For the object, we
compute feature values for randomly selected pairs of points
on the object surface. A sampling of 1000 features per unit
centimeter of surface area has worked well for the sizes and
types of objects in our database. The point pairs from which
features are computed are drawn in an unbiased manner from
the original set of points computed at the time the object was
converted to an oriented point representation.

B. Matching Hand Pose to Object

We compare a hand pose and a query object using their
feature sets. For a matching hand pose, we expect all features
present in the hand feature set to appear in the object feature
set, while the converse is not generally true. We therefore use
a representative descriptor approach for evaluating a match
[28][3].

The representative descriptor approach is designed for com-
paring a partial shape such as that obtained from a range image
to a complete shape (a geometric model). The quality of the
match is based on the average distance from features in the
partial shape to their nearest neighbors in the complete shape.
In this case, we compute distance from hand posei to object
j. This distanceEi,j is expressed as follows, where Table I
contains notation for this section.

Ei,j =
1

C(Pi)

C(Pi)
∑

k=1

Dist(Pi,k − NN(Qj , Pi,k)) (1)

Dist(x) =
[

d2 + α2θ2
1 + α2θ2

2

]
1

2 (2)

The first expression is just distance from each featurek in hand
posei to its nearest neighbor on objectj, averaged over all
hand pose featuresPi,k. The distance metricDist is designed
to provide a reasonable weighting between linear and angular
values. In our case, we useα = 1 cm/rad.

Although initial results were promising, this distance ex-
pression was not good enough. In particular, it would some-
times identify matches that were unacceptable because the
object lacked certain key features (e.g., a place to put the
thumb for the book grasp). To address this problem, we
introduce a scheme to weight feature values more highly if
they are relatively plentiful on the grasped object and relatively
rare in other hand poses. The weighted distance from hand
posei to objectj is

Ew
i,j =

1

wi C(Pi)

C(Pi)
∑

k=1

wi,k Dist(Pi,k −NN(Qj , Pi,k)) (3)

where the normalizing termwi is the sum of all weights for
hand posei:

wi =

C(Pi)
∑

k=1

wi,k (4)

and the weight for featurek of hand posei is computed as

wi,k =
matchCount(Qi, Pi,k)

∑

l 6=i (matchCount(Pl, Pi,k))
(5)

The numerator of this equation is a count of the number of
times a feature similar toPi,k is found on objecti, where
object i is the object that was originally grasped using hand
posei. The denominator contains a count of the number of
times a feature similar toPi,k is found in any of the other
hand poses in the database. In other words,wi,k is high when
the feature is relatively common on the grasped object and/or
when it is uncommon in other hand poses. It is important
to note that when computing the value in the numerator, we
check only the portion of the object surface relevant for this
grasp. For example, if a person was grasping a handle to a
pitcher, only features on that handle would be relevant. The
portion of an object relevant to the grasp is selected by the
user during construction of the grasp database (Figure 16).

We can make a Bayesian argument for this weighting func-
tion. LetP (posei) indicate the probability of encountering the
current hand posei. LetP (featurei,k) indicate the probability
of encountering the current featurePi,k. Then the probability
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Fig. 8. It is not enough to identify matching hand poses. We mustalso find
an alignment of the hand pose to the object surface.

that hand posei is a good match for objectj based on finding
the current featurePi,k on objectj can be expressed as

P (posei|featurei,k) =
P (featurei,k|posei)P (posei)

P (featurei,k)
(6)

In weighting termwi,k, we estimateP (featurei,k|posei) by
counting the number of times the feature appears on the
object originally grasped using this hand pose.P (posei) can
be considered uniform and we ignore it.P (featurei,k) is
estimated by counting the occurrences of that feature over all
hand poses.

The functionmatchCount used in computing weightwi,k

can be expressed as follows:

matchCount(A, b) =

C(A)
∑

k=1

isMatch(Ak, b) (7)

with

isMatch(Ak, b) =

{

0 Dist(Ak − b) > ε
1 Dist(Ak − b) ≤ ε

}

(8)

A match is counted if the distance between corresponding
features is less than a valueε. In our experiments,ε is set to
10% of the maximum distance between features in the hand
pose under consideration.

During runtime, pose selection proceeds as follows. Given
a new objectO, features of that object are extracted and value
Ew

O,j is computed for each hand posej in the database. Those
poses with the lowest values ofEw

O,j are identified as candidate
poses and passed on to the pose alignment, clustering, and
refinement algorithms described in the next section.

C. Pose Alignment, Clustering, and Refinement

Once a hand pose is selected from the set of candidates, it
must be aligned to the object shape. The goal of the alignment
process is to find a transformation to be applied to the hand
pose so that the contact points in the hand pose are brought
into correspondence with points on the object having similar
normals (Figure 8). Our alignment process has three parts.
First, we narrow the set of transforms by identifying good
alignments for a single triangle from the hand pose. Then, for
each of these candidate transforms, we check all other contact
points from the hand pose, discarding transforms that result in
a poor match for any one of those contacts. Finally, we cluster
and refine the results. The next paragraphs provide more detail.

1) Finding Candidate Transforms:In the first step of the
alignment process, coordinate transforms are collected by
finding good matches between a triple of points from the
hand pose and triples of points on the object. We indicate
an alignment triangle formed by three contact points on the

n1

n3

nf

n2

e3

e2

e1

ni nfγ
i

Fig. 9. A single triangle is used to find a candidate set of alignments of hand
pose to object surface. This alignment triangle is created from three contact
points selected from the hand pose.

hand pose as shown in Figure 9. The alignment triangle is
manually defined as a specific triple of contact points for each
hand pose at the time the grasp is added to the database. The
primary goal in selecting an alignment triangle is to provide
early rejection of unlikely matches; in practice, we simply
select one of the largest possible triangles from the contacts
that made up the grasp.

For the alignment triangle, we compute edge lengthsei and
anglesγi between the normalsni and the triangle normalnf .
Randomly sampled triangles from the object surface are then
tested for a match to the alignment triangle. Matching triangles
must have edge lengths within valueεe and angles within value
εγ , whereεe = 0.5 cm and εγ = 0.5 rad in our experiments.
We check the alignment triangle against a randomly generated
set of triples of points that can be constructed from the oriented
point representation of the object.2 All matching triangles are
recorded and passed on to the next step.

2) Pruning Poor Transforms:Once a number of candidate
transforms are generated using the alignment triangle, each
of these transforms is examined to test whether it represents
a plausible grasp. For an alignment to be plausible, it must
meet two conditions. The first condition is that all desired
contact points must be present in the new grasp. To check this
condition, all contact points are first transformed by aligning
the corresponding triangles, and the pose is checked to see
whether there are good matches for all contact points on the
object surface. For each contact point, its nearest neighbor on
the surface of the object is identified by selecting the closest
point from the object’s oriented point representation. Then the
entire transform is discarded if the distance from the contact
point to the object surface is greater than valueεd, or the angle
between the contact normal and the object surface normal is
greater than valueεn, with εd = 1 cm and εn = 1 rad in our
experiments.

The second condition that must be met is that there are
no major collisions with the object surface. For this test, a
sampling of points representing the entire inner surface of
the hand are transformed and checked for penetration into the
object surface. For collision checking, we use the same set of
38 points that represent potential contact points on the hand
surface (Section III-A). If penetration exceeds a threshold, the

2In our experiments, we check as many alignment triangles as there are
object features. Specifically, each pair of oriented pointsthat were used to
create a feature for shape matching is joined with a third, randomly selected
point on the object surface to form a test triangle.
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alignment is rejected. We used a threshold of1.5 cm in our
experiments.

3) Pose Clustering:At the end of the alignment process,
there may be many possible grasps available for a single
hand pose and object. These grasps are automatically clustered
for use in the next stage of the algorithm. We use K-means
clustering [57], with the number of clusters selected usingthe
criterion proposed in Krzanowski and Lau [58]. Clustering
was performed on the transformation used to align the hand
pose to the object surface. We experimented with a variety
of different subspaces that can be formed from this transfor-
mation, including using Euler angles or quaternions for the
orientation of the hand, and found that for our problem the
most intuitive results were produced when clustering in the
nine-dimensional space representing the rotation portionof
the transformation matrix (i.e., we formed a nine-dimensional
vector from the 3x3 rotation matrix of each transformation and
performed clustering in the resulting nine-dimensional space).
We did not consider translation of the hand during clustering,
and we found that the results were still intuitive for the types
of objects in our database. If objects are more complex, it may
be important to consider translations as well as rotations.

4) Pose Refinement:One grasp from each cluster (the grasp
closest to the cluster mean) is selected for further processing.
In particular, we refine the grasp to remove collisions and
obtain more exact contact locations. We use a local refinement
algorithm for this purpose. Jacobian based inverse kinematics
(e.g., [59]) is used to iteratively eliminate collisions ofpoints
inside the surface and achieve contact for points that are
outside the surface. In both cases, contact points are moved
toward their nearest neighbors on the object surface. These
nearest neighbor points are selected from the object’s oriented
point representation. The are selected once, at the beginning
of the iterative process, and are not changed. We found that
keeping these points fixed resulted in more natural looking
results. In addition, we impose joint limits on the hand to
avoid unnatural poses. Finally, if a contact is too far outside the
object surface at the start of the iterative process, we assume
that it is not likely to successfully make contact, and we do not
attempt to move that point to the surface. These choices were
made to avoid unnatural hand poses, but one side effect is that
in some cases not all desired contacts are actually achieved.
For this reason it is especially important to use a quality metric
to prune and rank grasps resulting from the pose alignment,
clustering, and refinement processes.

IV. TASK-BASED PRUNING

After shape matching and clustering, a small number of
candidate grasps remain. Some of these grasps may be inap-
propriate for the intended task. They may fail to support the
object securely, for example, or the main power of the grasp
may be aligned in the wrong direction for the task.

For our system, we choose a force based grasp quality
measure to prune and rank candidate grasps. In other words,
the quality of a grasp is computed by comparing the forces
that can be achieved by a grasp to the forces required for
a task. For intuition on a force-based grasp quality measure,
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Fig. 10. Example of a task expressed as a set of wrenches that must be
exerted on the object. In this case the wrenches are pure forces to be applied
through the object center of mass, such as might be required to support the
object against gravity.

consider the difference between placing a bowl on a high shelf
and holding a pitcher to pour water. In the first case, it may be
fine to support the object from the bottom only, as the expected
forces are primarily to support the object against gravity.In the
second case, however, a secure grasp of the handle is needed
to support the pitcher at different orientations as it is tipped
for pouring. Similarly, a sander is grasped differently from a
drill because of the different forces that must be applied to
support the tool and to perform the intended task.

When developing a grasp quality measure for the human
hand, we must consider the fact that the ability of our hand to
apply forces is different for different force directions. This is
caused by the asymmetric structure of the hand mechanism.
For example, the flexors of the human hand are typically much
stronger than the extensors. Thus, our grasp quality metricis
based on a biomechanically plausible estimate of the hand’s
ability to apply forces, so that task requirements and hand
capabilities can be compared in an equitable manner.

A. Grasp Quality

To compute a quality metric that considers both task re-
quirements and hand abilities, we need to quantify these two
variables.

1) Task Requirements:A force-based task can be repre-
sented generally as a set of wrenches that must be exerted on
the object, where a wrenchw is a six-dimensional vector of
forcesf and torquesτ :

w =

[

f
τ

]

(9)

We represent a task as the set of wrenchesti, i=1,...,t
which are the extreme points of the convex hull that bounds
the space of wrenches required for the task as in [40] [41].
This set of extreme wrench requirements can be user defined
when the task requirement is known to the user. For example,
Figure 10 shows the task definition used in some of our
experiments. This example task consists of pure forces that
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Fig. 11. This figure shows the mapping from muscle activation levels to
joint torques.
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Fig. 12. There is also a well-defined mapping from contact forces to joint
torques. For a static grasp, these joint torques must match exactly those
generated by muscle activation (Figure 11).

the hand should be able to apply easily to the grasped object.
These forces correspond, for example, to supporting the object
against gravity when it is vertical or at a relatively small angle
from vertical. Torque requirements could be added to the task
without changing the algorithm.

2) Hand capabilities: To compute the hand capabilities,
we start from an anatomical human hand model. The details
of the hand model are described in the Appendix. Given
anatomical details derived from the biomechanics literature,
we can estimate the maximum forces that can be transmitted
from muscles through tendons to joints to contact points and
finally to be applied to the object.

To compute the set of wrenches that the hand can apply
to a grasped object, we need the following equations. All
anatomical parameters for these equations can be found in
the Appendix, along with their original references.

First, the joint torques generated by the tendons due to
muscle activation can be computed as follows (Figure 11):

τJ = MPa, (10)

whereP is diag(p1,max, p2,max, ..., pn,max), wherepi,max is
the maximum force that can be generated along tendoni.
Matrix M contains joint moment arm information and converts
tendon forces to joint torques. Parametera is annx1 vector of
activation levels, ranging from 0 (inactive) to 1 (at maximum
force), for n tendons.

Then when the hand grasps an object, we can also map from
the contact forces to the joint torques as follows (Figure 12):

τ ′
J = JT f, (11)

where f is a 3mx1 vector of contact forces withm as the
number of contacts, andJT is the contact Jacobian, which
maps contact forces to joint torques.

(contact force)

 moment arm)
(grasp map

(applied wrench)

=

= Σ
k
[ ]I

Xo rok kfw

rok
of

kf

τ o[ ]of
τ o

ow

Fig. 13. Finally, we need the mapping from contact forces to forces and
torques applied to the object.

Finally we can map the contact forces to wrenches on the
object using the grasp matrixG (Figure 13):

W = Gf, (12)

G =

(

I3 I3 ... I3

Ro1 Ro2 ... Rom

)

, (13)

Rok =





0 −rokz
roky

rokz
0 −rokx

−roky
rokx

0



 , (14)

wherem is the number of contacts androk=[rokx
roky

rokz
]T

is the grasp map moment arm for thekth contact.

3) Grasp Quality as Optimization:To take both the hand
grasp ability and the task requirement into account, we con-
sider the following grasp quality metric:

Q = min
i

‖wi,max‖

‖ti‖
, i = 1, ..., t (15)

wherewi,max is the maximal wrench that can be applied to
the object in the directioni. This minimum ratio between the
grasp’s wrench capability and the task requirement can be
interpreted as a safety index of how strong the grasp is when
compared to the most difficult task requirement. Figure 14
shows examples ofwi,max andti in various directionsi. Note
that this is in the 6D wrench space andwi,max andti are all 6D
vectors. However, the key computation to be performed is quite
simple: repeatedly identify the maximal wrenchwi,max that
can be applied by the hand to the object in a given direction
defined by a task vectorti.

We note that maximizing the applied wrench in a given
direction can be efficiently solved as a linear optimization
problem. Let αi = ‖wi,max‖ be the value we wish to
maximize (Figure 14). In other words, our objective is

maximize(αi) (16)

Let si = ti

‖ti‖
be the unit direction vector forwi,max, as shown

in Figure 14.
We can specify the following equality constraints for our

problem:

(

−si G 0
0 JT −MP

)





αi

f
a



 = 0 (17)
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t1

t3

t4

t2

W1,max

W2,max

W4,max

W3,max

Q=1.4

4.1
2

8.2

||||

||||

4

max,4 ===
t

W
Q

Grasp Ability

Task 
Requirement

Fig. 14. Example ofwi,max and ti on direction i in 6D force / torque
(wrench) space. The outer convex hull is the grasp’s capability and the inner
convex hull is the task requirement.

The first row ensures that the applied wrenchGf is in the
desired direction. Specifically, the applied wrench must equal
αisi, which by definition iswi,max. The second row ensures
zero acceleration at the finger joints by equating torques
produced by tendon activation (MPa) to those required to
generate the contact forces (JT f ).3 Note that this equation is
very similar to that in [46], extending that work to include
tendon activation levels.

To take the friction between the finger and the object at
the contact points into account to ensure that the object does
not slip, we first approximate the Coulomb friction cone with
a friction pyramid to keep the system linear (Figure 15). In
practice, we use a friction pyramid having four sides (i.e.,
defined by four halfplanes), as shown in the figure. Let the
normals of the friction pyramid halfplanes benjk, where
j is the index of the contact point andk is the index of
the halfplane. Now we can define the following inequality
constraints which ensure that contact forces remain withinthe
friction cones at the contact points:

njk · fj < 0 j = 1, . . . ,m; k = 1, . . . , h (18)

wherem is the number of contact points andh is the number
of halfplanes in each friction pyramid.

To compute the grasp quality metric in Equation 15, we
perform the optimization problem defined in Equations 16
through 18 fori=1, ..., t, setting‖ wi,max ‖= αi at the end
of each optimization step, and taking the minimum‖wi,max‖

‖ti‖
as our quality metric.

V. THE GRASPDATABASE

We illustrate our results with a database consisting of 17
hand poses obtained from motion capture data. Objects that
were grasped to form the database are shown in silhouettes in
the right hand portion of Figure 16. The objects on the left of

3A more complete analysis would consider the distinction between sets of
contact forces that can be resisted by the hand and those thatcan be actively
applied. In our experiments and in most practical grasps, the two sets of forces
are identical and the constraint equations in Equation 17 are sufficient. Please
see [5] for more detail.

Fig. 15. (a)Friction cone. (b) Friction pyramid. The contactforce must fall
within the friction cone/pyramid.

Fig. 16. (Right) Silhouettes of the 17 objects in our database. The highlighted
“partial objects” show the regions of those objects that were grasped to form
the hand pose database. (Left) New objects that were not in the database
were used as query objects to test our algorithm. Specifically, we created four
queries pictured from top to bottom as (1) the entire surfacegeometry of a
mouthwash bottle, (2) the entire surface geometry of a spray bottle, (3) a
portion of the surface of a sander, and (4) a portion of the surface of a spray
bottle. Figure 21 shows results from these four queries.

Figure 16 are test objects that were not a part of the database.
Grasps of the 17 objects in the database were captured using a
Vicon optical motion capture system using the skeleton model
described in the Appendix. Geometric models for the objects
were created manually for each of the objects grasped. For
each hand pose, contact points were identified manually by
selecting from a discrete set of contact points on the hand
surface, and the normals at those contact points were obtained
by taking the normal from the closest point on the object
surface.

In terms of the standard grasp hierarchy (e.g. [15]), our
database focuses on power grasps, because these grasps tendto
have a large number of contacts between hand and object. The
database includes power sphere and cylinder grasps for objects
of a variety of sizes and having a variety of differences from
the primitive shapes. For example, the grasp of the lightbulb
is more like a cone grasp than a cylinder grasp, and the drill
handle has a roughly ellipsoidal cross section. In some grasps
such as the phone and remote control grasp, the thumb does
not wrap around the object in opposition to the fingers, but lies
along the main axis of the object. The database also contains
grasps of flat objects–a book and a CD case–where the object
makes contact at many places on the fingers and has a single
area of contact on the thumb.

VI. RESULTS

Results are presented to illustrate the discriminative power
of our features, to show the effectiveness of the shape match-
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Fig. 17. Evaluation using theunweighteddistance metricEi,j (Equation 1).
All hand poses in the database are compared to all of the objects for which
grasps were collected. Darker colors indicate lower valuesof Ei,j , or closer
matches. A perfect discriminator would have black boxes on thediagonal and
white everywhere else.

ing, clustering, and refinement algorithms, and to demonstrate
use of our grasp quality metric.

A. Discriminative Power of Features

We first tested whether our matching algorithm would select
appropriate grasps for the objects used to form the database.
The motivation behind this experiment is that if our algorithm
does not work on the original data, then we must conclude
that our feature set is not sufficiently discriminative.

Figures 17 and 18 show results from this initial experiment.
Figure 17 illustrates results using the unweighted distanceEi,j

from Equation 1, and Figure 18 illustrates weighted results
using distanceEw

i,j from Equation 3. Hand poses 1 through
17 are shown on the x-axis, and query objects 1 through 17
are shown on the y-axis. The list of objects is:

• 1-Softball, 2-Baseball, 3-SmallBall, 4-SauceJar, 5-
Mug, 6-JellyJar, 7-MilkJar, 8-LargeBook, 9-CD, 10-
CokeBottle, 11-LightBulb, 12-WaterBottle, 13-Drill, 14-
BubbleGun, 15-Phone, 16-RemoteControl, 17-Mouse

So, for example, column 15, row 15 represents the hand pose
from the phone grasp compared to the object geometry of the
phone, and column 10, row 15 represents the hand pose from
the coke bottle grasp compared to the object geometry of the
phone. All of these results are run with the user highlighting
the relevant region of the object to consider. For example, for
the drill geometry, the user selected the handle of the drill
as shown in Figure 16 and other parts of the drill were not
considered. In these two figures, a purely black cell would
represent zero distance. The diagonal terms are not exactly
zero due to errors in estimating contact positions from the
motion capture data and due to discrete sampling of points
on the object surface. In some cases (e.g., the grasp of the
mouse and the drill), the motion capture data was quite poor,
resulting in less good matches for the original object. Better
motion capture technology or post-processing to improve our
estimates of the hand poses in the database would solve this
problem.

Fig. 18. Evaluation using theweighteddistance metricEw
i,j

(Equation 3).
All hand poses in the database are compared to all of the objects for which
grasps were collected.

Fig. 19. Test of three new objects against the hand pose database. Theentire
objectwas considered. The figure shows weighted results, usingEw

i,j
.

Clearly the weighting term adds a great deal to our ability
to discriminate between different grasps based on shape.
However, note that even in Figure 18 some poses / objects
show quite similar results. In particular, objects 4, 5, and7
group together, as do objects 8 and 9 and objects 15 and 16.
These groupings are not surprising. Objects 4, 5, and 7 are
all medium sized objects of approximately cylindrical shape.
Objects 8 and 9 are flat objects (a book and a CD). Objects 15
and 16 are a phone and a remote control, which are likewise
grasped in a similar manner. This experiment shows that the
weighting term used in Equation 3 is effective for pruning
spurious matches.

B. Results for Feature Matching on New Objects

Our second set of experiments was to find good matches for
objects that were not in the database by comparing the feature
sets computed from those objects to the feature sets computed
from hand poses. We selected three objects of moderate
complexity for this experiment: 1-MouthwashBottle, 2-Sander,
and 3-SprayBottle. Figures 19 and 20 illustrate results for
these three objects. Figure 19 contains results of searching for
matches using the entire object geometry. Figure 20 contains
results in a similar format when the user has highlighted
the portion of the object to be grasped. Only results using
weighted metricEw

i,j are shown. From these images we can
see that the feature matching process can reduce the number of
candidate poses to be considered, especially when the user has
indicated a portion of the object to be grasped, as in Figure 20.

C. Results for Aligning, Clustering and Refinement

Based on the similarity matrices in Figures 19 and 20, we
selected the best hand poses for further processing. Specifi-
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Fig. 20. Test of three new objects against the hand pose database. Only
a portion of the objectwas considered. The figure shows weighted results,
usingEw

i,j
.

WHOLE OBJECT PARTIAL OBJECT
Mouthwash Mouthwash

5-Mug 399 (4) 17-Mouse 0 (-)
15-Phone 15 (4) 6-JellyJar 218 (4)
17-Mouse 2 (-) 15-Phone 7 (-)
10-CokeBottle 380 (4) 5-Mug 360 (4)
1-Softball 721 (2) 10-CokeBottle 11 (4)

Sander Sander
5-Mug 2 (-) 1-Softball 31 (4)
4-SauceJar 7 (-) 5-Mug 1 (-)
1-Softball 59 (2) 17-Mouse 0 (-)

SprayBottle SprayBottle
15-Phone 4 (-) 15-Phone 0 (-)
17-Mouse 13 (4) 13-Drill 0 (-)
6-JellyJar 163 (4) 12-WaterBottle 243 (2)

11-Lightbulb 13 (3)

TABLE II

RESULTS FOR THREE NEW OBJECTS. (LEFT) THE ENTIRE OBJECT

SURFACE WAS USED. (RIGHT) A PORTION OF THE OBJECT WAS SELECTED.

BOTH ALIGNMENTS AND CLUSTERS(IN PARENTHESES) ARE SHOWN.

HAND POSES WITH8 OR FEWER ALIGNMENTS WERE NOT CLUSTERED.

cally, for each hand pose / object pair, we identified candidate
alignments of hand to object, clustered the results, and refined
the median pose from each cluster to obtain representative
grasps, which were displayed to the user.

Table II shows the number of alignments and the number
of clusters returned for the three new objects in each of the
conditions tested. For example, the top section of the left
column shows alignments for the mouthwash container when
the entire object was considered. The five best matching hand
poses based on their feature sets were the mug, phone, mouse,
coke bottle, and softball poses. The mug pose resulted in
399 valid alignments with the object surface, which could
be grouped into 4 clusters based on orientation of the hand
pose. When only a portion of the mouthwash container was
considered, the best matching hand poses were from the
mouse, jelly jar, phone, mug, and coke bottle grasps. Although
the mouse grasp was best in terms of its feature set, no valid
alignments could be found on the object surface. In other
words, even though similar features to all pairs of points in
the grasp could be found on the object surface, none of these
matching pairs led to a complete matching grasp.

Figure 21 shows some results of the shape matching and
clustering phase. Each collection of images shows all cluster
results where a single hand pose matches the given object.
For example, the top two rows show the median cluster
representative for each cluster matching the coke bottle pose
to the mouthwash object.

Fig. 21. Cluster results for four queries presented to our system. The left hand
portion of Figure 16 shows the portions of the object geometryconsidered
for these queries. (1) For the entire surface geometry of a mouthwash bottle,
4 clusters were found using the coke bottle pose. (2) For the entire surface
geometry of a spray bottle, 4 clusters were found using the jelly jar pose.
(3) For a portion of the surface of a sander, 4 clusters were found using the
softball pose. (4) For a portion of the surface of a spray bottle, 3 clusters
were found using the lightbulb pose.
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Fig. 22. Best hand poses for the spraybottle. The first grasp (lightbulb grasp)
is the best among the five candidates of water bottle and light bulb grasps,
considering the partial spraybottle shape. The next three grasps are chosen
from the twelve candidates (phone, jellyjar, and mouse grasps) considering
the entire spraybottle shape. Among these three grasps, the first two are jellyjar
grasps and the last one is a phone grasp.

Fig. 23. Best hand poses for the mouthwash bottle. The first grasp (phone
grasp) is the best among nineteen candidates (phone, jellyjar, cokebottle, and
mug grasps) considering the partial mouthwash shape. The lasttwo grasps
are chosen from the sixteen candidates (phone, mouse, cokebottle, mug, and
softball grasps) considering the entire mouthwash shape. The first one is a
cokebottle grasp and the second one is a softball grasp.

D. Results from Task-Based Pruning

We define a task for our experiments as statically grasping
the object with the ability to support it against gravity in
vertical and near vertical orientations (Figure 10). We compute
the quality metric using this task requirement and choose the
best grasps from the grasp candidates obtained from shape
matching and clustering. Figures 22 to 24 show results for the
spray bottle, mouthwash bottle, and sander. Note that if there
is more than one grasp with a similar, high quality metric, all
such grasps are shown.

We note that some grasps are typically better for a given
object and some are generally worse. For example, among the
candidates for the mouthwash bottle (considering the whole
object), the mug grasp candidates have very poor performance
with an average metric of 0.602, compared to the phone grasp
of 6.01, mouse grasp of 1.34, cokebottle grasp of 8.065, and
softball grasp of 5.537. Figure 25 shows an example of the
mug grasp. Note that the index finger and middle finger do not

Fig. 24. Best hand poses for the sander. The first two softballgrasps are
the best among the five candidates (mug and softball grasps) considering the
partial sander shape. The last grasp is the saucejar grasp, the best among the
eleven candidates (saucejar, mug, and softball grasps) considering the whole
sander shape.

Fig. 25. Mug grasps in general have worse performance.

Fig. 26. Two softball grasp candidates with different metricvalues, caused
by the difference in contact points.

contact the object, which is the primary reason for the poor
performance of this grasp.

We notice that the shape matching algorithm sometimes
cannot achieve the necessary contact points for a stable grasp.
Grasps that cannot be made stable also tend to appear implau-
sible, and we would like to remove them from consideration.
In our system, the grasp candidates having this problem are
screened out by the grasp quality metric. For example, one of
the softball candidates for the mouthwash bottle (whole) only
has contacts on the index, ring, and little finger (shown as the
first grasp in Figure 26.) With the locations of the contacts
on the object all at one side of the object, this grasp cannot
be stabilized. As a result, the grasp earns a metric of zero.
However, another softball grasp candidate (the second grasp
in Figure 26) has an extra contact on the thumb that can apply
torque to the object to balance the contacts on the other fingers.
The second grasp has a metric of 12.56.

Another example is given in Figure 27. The first grasp has
no thumb contact and has a metric of 1.55, while the other
three all have thumb contacts and the metrics are 24.3, 13.2,
and 13.58, respectively.

Because of the much stronger flexors in the fingers and
the wrist, grasps with the palm facing upward, which cause
the forces in the y-direction (upward) to be generated by the
stronger flexors, usually have better performance. For example,
the last three grasps in Figure 27 are similar phone grasp

Fig. 27. Four phone grasp candidates for the spraybottle (whole). The metrics
are different because of the different contact points and hand orientation.
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candidates with very similar contact points for the spraybottle
(whole object), but with different orientations. The first one
is facing palm-upward and has a metric of 24.3, while the
other two are facing palm-downward and the metrics are only
13.2 and 13.58. Of course, other factors such as reachability
or comfort of the arm may cause the grasps on the right side
of Figure 27 to be preferred over the grasp on the left side of
that figure.

VII. C ONCLUSIONS ANDFUTURE WORK

This paper describes a shape matching algorithm for syn-
thesizing humanlike enveloping grasps that is inspired by
work in geometric model matching. We have described an
approach that handles the specific challenges of applying
shape matching to grasp synthesis. The availability of only
partial information is handled using a representative descriptor
approach, and the lack of good local features is handled by
sampling a global shape function. We introduce a novel global
shape function that emphasizes the relations between relative
positions and normals of pairs of oriented points and we intro-
duce a mechanism to weight features relative to one another
to improve the discriminatory power of our shape matching
algorithm. To prune unsuitable matches from consideration,
we introduce a grasp quality metric that compares forces that
can be exerted by the hand to those required for the task.

There are several limitations to the current algorithm that
must be addressed in future work. First of all, our algorithm
assumes that the animated hand model is very similar to
the hand of the actor whose motion was originally captured.
If the same joint angles are assumed for a similar hand,
the database should still represent plausible grasps. However,
adapting grasps in the database to extremely different hand
kinematics may produce unnatural results. Retargeting grasps
in the database to different hands while preserving the “intent”
of the grasp is an interesting topic of future work.

The algorithm uses a number of sampling steps. The
sampling process is straightforward, easy to implement, and
effective. However, it is inefficient, and processing a new
object to obtain a small set of grasps to present to the user
requires several minutes of running time. There are many
ways this process could be made more efficient (e.g., with
fast nearest neighbor algorithms), although we expect that
obtaining real-time performance may be challenging with
today’s computers. In addition to efficiency considerations,
sampling has the potential to poorly sample high frequency
or very thin features. Objects for which power grasps are
applicable, however, do not typically have such features; we
did not have any such difficulties with the objects in our
database.

We considered power grasps almost exclusively, because
the large number of contacts between the hand and object
provided a great deal of useful shape information. Precision
grasps could also be addressed using this framework. However,
if there are only two, three, or four contacts between the hand
and object, the possibility of more efficient algorithms should
be considered.

Our current refinement algorithm has some difficulty in
achieving all of the desired contacts (e.g., see Figures 25

and 27). There are two primary reasons for this difficulty.
The first is that the set of algorithms we use are threshold
based. For example, if a contact is too far from the surface,
we do not attempt to move it to a surface point. However,
there is no one threshold that works in all cases, and although
we attempted to set thresholds that produced generally good
results, there were still a number of failures, the most extreme
of which are shown here. The second reason for difficulty
in achieving desired contacts is that the standard Jacobian
based IK algorithm we were using produced highly unnatural
grasps in our first implementation (e.g., unnatural twisting of
the fingers) and we chose to impose stringent joint limits in
order to avoid these problems. A more satisfying solution may
be obtained by developing an IK algorithm that takes hand
synergies into account or formulates the pose refinement task
as a more general optimization or control problem. Improving
the refinement algorithm is a topic of future research.

Our results show that the shape matching algorithm can find
very good matches between the hand and the object surface. In
fact, we were surprised at the variety of good matches found
using our small database of 17 grasps, even after functionally
poor grasps were pruned using our quality metric. At present, a
user must select the desired grasp from among the possibilities
presented by the system, because some of the grasps appear
unintuitive. For example, the hand may appear to be grasping
the object “backwards” or “upside down.” Objects such as
tools with buttons or levers may require customized shape
matching algorithms that can exploit these features (e.g.,see
Miyata et al. [60]), and for a fully automatic system, aspects
of natural grasps other than ability to apply forces must
be taken into account. Much research remains to be done
to better understand human grasping (e.g., see [61]) and to
develop algorithms that quantify the “naturalness” of grasps.
For example, comfort and reachability of the hand and arm
pose must certainly be considered.

APPENDIX

Based on the biomechanics work by Valero-Cuevas et
al. [62] [63], we use a hand model that has the following
configuration (see Figure 28): The fingers have four degrees
of freedom (DOF). The metacarpophalangeal (MCP) joint has
two DOF of flexion/extension and adduction/abduction. The
proximal interphalangeal (PIP) and the distal interphalangeal
(DIP) joints both have one DOF of flexion/extension. The
thumb has five DOF in total. The carpometacarpal(CMC),
MCP and thumb interphalangeal (IP) joint each has one DOF
of flexion/extension. The CMC and MCP joint both have
another DOF of adduction/abduction. In the actual human
hand, the ring and little finger have two additional DOFs of
flexion/extension and adduction/abduction at the CMC joint.
Since they only provide a relatively small range of motion, we
consider these extra DOFs fixed.

To obtain the maximum muscle force for the index finger
tendons, Valero-Cuevas et al. [62] uses physiological cross-
sectional area (PCSA) numbers and a conversion from PCSA
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Fig. 28. A. Finger model; B. Thumb model.

to force of 35 N/cm2. Lacking PCSA data for all tendons,
we combine this computation with the relative tension data
from Brand and Hollister [64] to get the maximum muscle
force for each tendon. First we compute the maximum muscle
force of the FDP tendon for the index finger:FDPI=4.1 ∗
35 = 143.5 N , where 4.1 is the PCSA number for the FDP
tendon of the index finger. Then the maximum muscle forces
for other tendons can be generated with the relative tension
data. For example, the maximum force of the FDS tendon for
the middle finger is143.5 ∗ 3.4/2.7 = 180.7 N , where 2.7
and 3.4 are the relative tension data for the FDP and the FDS
tendon, respectively. Moment arm and relative force data for
each tendon are listed in Table III.
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Finger Anatomical Name Relative Tensiona Joints/DOF | Moment Arm| b Finger Anatomical Name Relative Tension Joints/DOF | Moment Arm|

Index c Flexor Digitorum Superficialis 2.0 MCP flex. 11.9 Pinkyd Flexor Digitorum Superficialis 0.9 MCP flex. 11.9

MCP add. 1.7 MCP add. 1.7

PIP flex. 6.2 PIP flex. 6.2

Flexor Digitorum Profundus 2.7 MCP flex. 11.1 Flexor Digitorum Profundus 2.8 MCP flex. 11.1

MCP add. 1.1 MCP add. 6

PIP flex. 7.9 PIP flex. 7.9

DIP flex. 4.1 DIP flex. 4.1

Extensor Digitorum Communis 1.0 MCP ext. 8.6 Extensor Digitorum 0.9 MCP ext. 8.6

MCP abd. 0.2 MCP abd. 0.2

PIP ext. 2.8 PIP ext. 2.8

DIP ext. 2.2 DIP ext. 2.2

Extensor Indicis 1.0 MCP ext. 9 Extensor Digiti Minimi 1.0 MCP ext. 8.6

MCP add. 1.3 PIP ext. 2.6

PIP ext. 2.6 DIP ext. 1.9

DIP ext. 1.9 Abductor Digiti Minimi 1.4 CMC opp. 6

Lumbrical I 0.2 MCP flex. 9.3 MCP abd. 4

MCP abd. 4.8 PIP ext. 2.5

PIP ext. 1.8 DIP ext. 2

DIP ext. 0.7 Flexor Digiti Minimi Brevis 0.4 CMC opp. 6

Palmar Interosseus I 1.3 MCP flex. 6.6 Opponens Digiti Minimi 2.0 CMC opp. 6

MCP add. 5.8 Lumbrical IV 0.1 MCP flex. 5

PIP ext. 2.6 MCP abd. 4.8

DIP ext. 1.6 PIP ext. 1.8

Dorsal Interosseus I 3.2 MCP flex. 3.7 DIP ext. 0.7

MCP abd. 6.1 Palmar Interosseus III 1.0 MCP flex. 6.6

Middle d Flexor Digitorum Superficialis 3.4 MCP flex. 11.9 MCP add. 5.8

MCP add. 1.7 DIP ext. 2.6

PIP flex. 6.2 PIP ext. 1.6

Flexor Digitorum Profundus 3.4 MCP flex. 11.1 Dorsal Interosseus IV 1.7 MCP flex. 3.7

MCP add. 6 MCP abd. 6.1

PIP flex. 7.9 PIP ext. 2.6

DIP flex. 4.1 DIP ext. 1.6

Extenxor Digitorum 1.9 MCP ext. 8.6 Thumbe Flexor Pollicis Longus 2.7 CMC abd. 0.2

MCP abd. 0.2 CMC flex. 14.3

PIP ext. 2.8 MCP add. 0.1

DIP ext. 2.2 MCP flex. 13.6

Lumbrical II 0.2 MCP flex. 5 IP flex. 8.7

MCP abd. 4.8 Extensor Pollicis Longus 1.3 CMC ext. 8.1

PIP ext. 1.8 CMC add. 9.5

DIP ext. 0.7 MCP ext. 8.5

Dorsal Interosseus II 2.5 MCP flex. 3.7 MCP add. 4.4

MCP add. 6.1 IP ext. 4.1

PIP ext. 2.6 Abductor Pollicis Longus 3.1 CMC ext. 7.1

DIP ext. 1.6 CMC abd. 10.5

Dorsal Interosseus III 2.0 MCP flex. 3.7 Extensor Pollicis Brevis 0.8 CMC ext. 13.0

MCP add. 6.1 CMC abd. 3.2

PIP ext. 2.6 MCP ext. 8.6

DIP ext. 1.6 MCP abd. 1.4

Ring d Flexor Digitorum Superficialis 2.0 MCP flex. 11.9 Abductor Pollicis Brevis 1.1 CMC flex. 3.9

MCP add. 1.7 CMC abd. 16.5

PIP flex. 6.2 MCP abd. 11.1

Flexor Digitorum Profundus 3.0 MCP flex. 11.1 MCP flex. 2.6

MCP add. 6.0 Flexor Pollicis Brevis 1.3 CMC flex. 13.4

PIP flex. 7.9 CMC abd. 10.5

DIP flex. 4.1 MCP abd. 8.7

Extensor Digitorum 1.7 MCP ext. 8.6 MCP flex. 8.8

MCP abd. 0.2 Opponens Pollicis 1.9 CMC flex. 12.9

PIP ext. 2.8 CMC abd. 4.8

DIP ext. 2.2 Adductor Pollicis(t) 3.0 CMC flex. 36.9

Lumbrical III 0.1 MCP flex. 5 CMC add. 20.6

MCP abd. 4.8 MCP flex. 9.7

PIP ext. 1.8 MCP add. 6.0

DIP ext. 0.7 Adductor Pollicis(o) 3.0 CMC flex. 27

Palmar Interosseus II 1.2 MCP flex. 6.6 CMC add. 17

MCP add. 5.8 MCP flex. 8.2

DIP ext. 2.6 MCP add. 4.0

PIP ext. 1.6

TABLE III

TENDON DATA

aRelative Tension data are collected from [64]
bAdductors or flexors have positive moment arms and abductors or extensors have negative moment arms.
cIndex finger data are collected from [65]
dMiddle,ring, and little finger data are collected from [66]
eThumb data are collected from [67].


