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Computation of Localized Flow for Steady and
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Abstract— We present, extend and apply a method to flow past a stationary object, critical points (important
extract the contribution of a subregion of a data set to the for topological analysis) and vortices often do not show
global flow. To isolate this contribution we decompose the yp at all although the flow can be more complicated
flow in th_e .subregion into a potential flow that is_ induced  than the velocity field suggests at first glance. A fast,
by the original flow on the boundary and a localized flow. -, o cossarily near-constant, component of flow through

The localized flow is obtained by subtracting the potential L . . :
flow from the original flow. Since the potential flow is free Fubes or similar objects can hide the mentioned features

of both divergence and rotation the localized flow retains N the same way. This is where the geometry comes
the original features and captures the region-specific flow iNto play, as the dominant flow most of the time is
that contains the local contribution of the considered sub- strongly influenced by the geometry. A bent tube is a
domain to the global flow. In the remainder of the paper, simple but intuitive example for this. In cases with such
we describe an implementation on unstructured grids in dominant flow the analysis of the flow greatly benefits

both two and three dimensions for steady and unsteady from removing the hiding component and treating the
flow fields. We discuss the application of some widely remaining local component of the flow.

used feature extraction methods on the localized flow and The id ted in thi | d th
describe applications like reverse-flow detection using # € 1deas presented in this paper revolve aroun e

potential flow. Finally, we show that our algorithm is robust  notion of localized flow analysiq1], i.e. the analysis
and scalable by applying it to various flow data sets and Of the contribution in a subregion to the global flow of
giving performance figures. a given data set. To this purpose, a so-cajetential
flow is constructed that matches the original field on the
boundary of the subdomain but is otherwise simple in the
sense that it has vanishing divergence and curl. In other
words, it represents the laminar flow in the subdomain,
|. INTRODUCTION which is induced by the geometry of the domain and

LOW visualization plays an important role duringh€ conditions on its boundary [2]. By subtracting this
Fthe design process of all kinds of objects in sciend€!d from the original flow (see Fig. 1), we are left
and industry. Cars, air planes, turbines, motors aMdth alocalized flowthat is confined to the subdomain
buildings are only few examples. They are very differeftnder consideration and contains the local contribution to
but for all of them the behavior of flow through or aroundhe global flow. Visualization methods that are based on
them can be crucial for durability and usability. Commoflivergence or rotation of the flow (both local in natire
to all of these objects is that their geometry has large unaffected by this approach since the localized flow
influence on the flow through or around them. Man tains the original rotation and divergence. Methods
standard flow visualization techniques ignore this fag;'ised on the velocity field are able to detect features
completely. They only treat the original velocity fieldn localized flow which were hidden in the original flow.
or simple derived fields and thus can miss important The method presented here works well for both two-
features. If, for example, the flow is dominated by éimensional and three-dimensional flow fields and is
large near-constant component, as is common in t@éen extensible to unsteady flows. The choice of sub-

region is arbitrary up to the condition that it is a simple
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Fig. 1. lllustration of the different components of the flow around the deitey in EDELTA data setLeft: Original flow field from the
CFD simulation,Middle: Potential flow computed by the original field’s flow normal to the boupdaiote that the flow is simple but not
constantRight: Localized or region-specific flow obtained by subtracting the potential fftom the original field.

improved version of the algorithm presented in [1] whichuite similar to what we describe here, our motives
implements the given ideas on unstructured trianguland technique are different. It is our aim to analyze
or tetrahedral meshes using a finite-element approabke localized flow with conventional flow visualization
and extend it for the use with time-dependent fieldsechniques, as opposed to making use of the potentials
Although the computation of the potential flow is dor that purpose. Moreover, in spite of the superficial
complicated numerical procedure, our algorithm worlksmilarity between the potential flow and the harmonic
well even on large CFD data sets with millions of celldield h from above, we believe that our approach is

Our work can be seen as having similarities to whaetter suited to the localized analysis of flow since we
others have published before (cf. [3]-[5]), therefore wase specific boundary conditions to guarantee that the
describe some essential differences to the work presenpedential flow contains the part of the flow that does not
here in Section Il as well as other work that is relateariginate in the considered domain. No such condition is
to this paper. In Section lll, we recall the mathematicéihposed orh. Last but not least, the computation of the
concepts that the region-specific flow is based on apdtential flow is conceptually simpler than thatwotnd
extend these concepts to fit the time-dependent casegas only one potential and this only of scalar nature
in Section IV. We give a detailed discussion on thkas to be computed.

usefulness of the region-specific and potential flow for concerming topological analysis and feature extraction
data set analysis in Section V. The implementation o vecior fields, there is a large body of literature
tr!angular angl tetrahedral gr!ds is the topic of Section Vévailable. Poset al. [6] provides a good overview. Of
Finally, we discuss the application on some examples dBecial interest in this paper are topological methods as
Section VII. Section VIII concludes on the presenteglaaieq by many authors, e.g. Helman and Hesselink [7],
work. Globus [8], Scheuermanet al. [9], Tricocheet al. [10]
and Theiseket al. [11] to name just a few. We are also
Il. RELATED WORK concerned with more general feature extraction methods,
The notion of localized flow analysis under preseguch as the vortex core line extraction method of Sujudi
vation of the original characteristics of the field (i.eand Haimes [12] and the region-basggkcriterion by
divergence and rotation) is in part related to woreéong and Hussain [13] that we discuss in the context of
published by Polthier and Preuss [3], [4] (in 2D) anthe localized flow. As a fast moving frame of reference
Tonget al.[5] (in 3D). These authors employ the Hodgés a simple example for a dominating flow component
decomposition theorem from vector analysis, stating thaigling vortices, the work of Sahnet al.[14] concerning
any vector field can be decomposed into three fiel@svortex core extraction method that is independent of the
containing the divergence, rotation and harmonic partsame of reference is of interest. The method computes
The decomposition is given in terms of potentials for thédge and valley lines of Galilean invariant vortex region

divergence- and rotation-components, guantities, such as the mentionggkcriterion to extract
the vortex core lines. Stegmaiet al. [15] combine the
v = gradu + curlw + h, \p-criterion with the method of Banks and Singer [16]

which are computed explicitly. Analysis is then att0 extract Galilean invariant but distinct regions for

tempted by locating features as extremal points of tifafividual vortices.
first two components. Although these approaches seenThere is some recent work by Laramee al. [17]



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICSYOL. 1, NO. 8, AUGUST 2002 3

which presents a simple method for the extraction & A Special Neumann Problem

regions of reverse flow (or recirculation). They investi- Let us assume thatp is given as the gradient of a

gate data where the main flow should go from negatiYSnction u:Q — R (thenvp is calledpotential flov).
to positive z-coordinate and regard regions containing is immediate that

vectors with negative-component as reverse flow zones.

Obviously, this idea can be applied to arbitrary main flow curl vp = curl grad u = 0 onQ.

directions (different frome, y and z) by evaluating the

dot product of the vectors with the respective directioRequiring thatvp has vanishing divergence, we compute
and testing for negativity. However, for this method the

main flow direction has to be known a priori and it has 0 =div vp = div grad u = Au onf),

to be constant all over the dataset. As we will see later

these problems can be circumvented using the potenwgerEA denotes the Laplace operator on scalar func-

flow computed by our method. tions. Rewriting Eq. (2) in terms ai, it turns into

n-gradu = v-n ono.

Il "L 0CALIZED FLOW COMPUTATION Hence, forvp := grad w to fulfill the conditions (1) and

In the following, letv : R — Re d = 2.3 be (2),u mustsolve
a continuous (flow) vector field. Lef2 € R be an
open, bounded and connected domain aridle outward Au =0 on {2 (3)
normal field ond<). n-gradu =v-n on 99 (4)
In order to analyze the specific contribution of the
flow in © to the global flow field, we define thegion-
specific flowvy : Q@ — R? by requiring two essential
conditions:

This class of problem is called a Neumann-Laplace
problem forw, and it is uniquely solvable up to a con-
stant. From this construction, we are able to determine
_ _ _ _ _ vp by solving for . Since we are only interested in
1) it retains the essential behavior of the flow in termgrad u, the constant is essentially factored out and does
of rotation and divergence, i.e. not influence the result. The region-specific flow is then
given by

divvg=divv and curl vg =curlv on{.
vg = v — grad u.

2) itis isolated from the global flow on the boundary : . .
of the subdomain, i.e. the region-specific flow A unique solution to (3) and (4) can be obtained by

through the boundary vanishes: requiring
favm =0 (5)
vep-n = 0 onoQ. 90

o - o _ implying that the total flow through the boundary must
The suitability of these conditions is discussed in Motg,nish. This ensures that the right hand side is in the

detail in Section V. The difference of global and regionsthogonal complement of the kernel of the Laplacian
specific flow is then given by with pure Neumann boundary conditions. The compati-
bility condition (5) is a-priori fulfilled for incompressibl

vp = V — VR flows (e.g. liquid flow), since by Stokes’ theorem

(?Wlng to the linearity of divergence and cuvlp must / veon — /divv .
satisfy 90 Q

In the next section, we detail a modification of the

divvp = 0 and curlvp = 0 onQ, (1) )
Neumann problem for the case of compressible flows.

and we find that

vpom = v-on ondo. ) B. Compressible Flows
When considering compressible flows, e.g. those aris-
We next look at how the construction afp can be ing as solutions of the full Navier-Stokes equations, the

achieved by a simple mathematical procedure. compatibility condition (5) does not necessarily hold.
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However, we note that compressible flows satisfy treondition. Letv}12 andv* be two fields interpolated from

continuity equatiof the respective field above with< X < j. The linear
Op . interpolation forv}_-i satisfies the following equation:
— +div pv = 0, (6)

ot V/\:Vi—l—u(vj—vi)
wherep > 0 denotes a material density that may vary R=ORT VTR TRE
spatially. Based on this, we are able to enhance OHben with the linearity of the divergence
approach from above to guarantee results for steady ‘
compressible flows. We propose a modified Neumann giy v\ = div v, + Q@V vl — div vi)
problem in the form —t

Au = 0 on (7) and with div v, = div v* and div V‘}é = div v/ it
n-grad u = (pv)-n on of. (8) follows L
. A . i -1, .. i . i . A
As for steady flows2? = 0, the compatibility condition 4V vk = div v+ T—i (div v/ —div v') = div v

for this system coincides with Eq. (6) and is hence Th iderati hold for th it q
fulfilled. Then, v is again divergence- and curl-free and. . '© sami consl eraAlons old for the vorlicry an
by setting yield curl v, = curl v*. Thus, as mentioned above,

the first condition holds for the interpolated fields too.

The second condition requires the potential flow’s
it follows component normal to the boundary to be zero. Again,
this condition does not depend on time and ensuring that
it is satisfied for the time steps provided, is sufficient to
Dividing by p we find guarantee that it holds for all instantaneous time steps.
Note that the above considerations also imply that (1)
and (2) hold for fields interpolated between potential
i.e. the region-specific flow is again confined(®oand fields of given time steps.

pvR = pv —grad u

n-pvg = n-(pv—gradu) = 0 onofQ.

n-vg = 0 onos,

inherits the characteristics of the original flow. Summarizing this section, we find that the localized
flow in the time-dependent case is obtained by comput-
IV. EXTENSION TO TIME-DEPENDENTCASE ing the localized flow for the given time steps (as in the

As the notion of localized flow can be formulated wittfteady case) and linear interpolation between these time
two purely mathematical conditions (see Sec. IlI), it i§t€ps.
easily extended to unsteady flow.

In the steady case the first condition requires that the Unsteady Compressible Flows
Iocallzed_flpw exh|b|t§ t_he same dlv_e_rgence and vorticity For the steady case, we gave a modified Neumann
as the original flow. Lifting this condition to the unsteadg

i that the localized fl has o h t oblem to handle compressible flows in section lll-
case It says nat the focalized Tlow nas 1o have e Unfortunately we are not able to give a modified

mentltcr)]ned dlve:g;a_nce fac?d vorticity a(ljl thet. t.'tm(;' ASyeumann problem for all unsteady flows. This is due to
SOW’ de contq_pu aton o |vergi?_ce_ ant voruet yth Ot r][%e fact that herd? does not necessarily vanish and thus

epend on ime In any way, fis Just means tma rH’?e continuity equation (6) does not necessarily coincide
condition from the steady case has to be fulfilled f%ith the compatibility condition (5)

every instantaneous time step of the unsteady field. However, compressibility does not always mean that

y Plr%cfgdé”? frof‘ the t?.e‘(’jrf;'cf" C?”Sf'der_‘"‘t":”stto PraGndition (5) is not fulfilled. It is still possible to check
Ica atasets, we find that only Tew Instaman€oys, ier the condition is fulfilled directly by evaluating
time steps are given. The fields between these steps h@lve

. ! ! € boundary integral. This check can be performed
to be interpolated. Fortunately, the following con5|der%r the original Neumann problem or for the modified
tions show that if we have two time steps fulfilling th

first dition for the localized fl Il fields obtai j\leumann problem. If the condition is fulfilled for one
Irst condition for the focalized Tlow all ields obtainedye y,q systems one just solves this system to get the
by linear interpolation fulfill the same condition.

A . . otential for the divergence and vorticity-free flow.
Let v, and V% be two fields that, together with twoIO 9 Y

i ¢ i andvi of th iqinal field. satisfy the first Additionally, in our experiments, we found that our
ime stepsv* andv/ of the original field, satisfy the firs implementation (which is described later in this paper)

2We note that Wiebegt al. [1] in the same context erroneously!S VETY toleran'_[ against S_ma” deviations from _Condition
refer to Eq. (6) as the conservation of momentum law. (5). The solutions are influenced only marginally by
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small deviations. However, we are working on a modified
scheme for compressible unsteady flow with strongly g
time-varying density.

V. INTERPRETATION OF THEFIELDS OF THE
LOCALIZATION PROCESS

So far we have only considered the mathematica
construction of the region-specific flow. Along the way,
some conditions were imposed to guarantee solvabilit
of the problem. We will now dedicate some thoughts
as to how these conditions affect applicability of our
method to the general localized analysis of flows. We o
will also discuss the interpretation and use of the®) original flow
fields introduced in the previous sections. More datasel / - \
specific results and application examples are given i "
Section VII. \

A. Scalar Potential

The first field appearing during the localization pro-
cess is the scalar potential obtained as solution of th
Neumann problem. For the Hodge decomposition Polth
ier et al. [4] have used features in the scalar potential tc
identify features of the flow field. We will not go into J
further detail about the scalar potential as all intergstin <&
featu_res als_o appear _in the potential flow w_hich, asc) average flow and
mentioned, is the gradient of the scalar potential. Not

- . ) .._original flow with
additionally that all extrema of the scalar field lie on its removed average flow
boundary.

B. Potential Flow

From a feature oriented point of view the potential
flow seems to be uninteresting. It has vanishing diver
gence and rotation and thus is irrotational and free o
sinks and sources (saddles are possible, see the close:
in Fig. 2b). It is very simple, in fact it is theimplest
flow (minimum of total kinetic energy, see [2]) matching
the original inflow and outflow on the boundary of the
considered region. Most of its behavior is determined by
the geometry of the region, the rest is determined by th&) reverse flow region f) streamline in
Neumann boundary conditions. and strength reverse flow region

These properties, however, make it seem uninteresting
only at first glance. The influence of the geometry ofig. 2. Imagea) shows streamlines of the flow in a draft tube of a
the region is very important. Engineers knowing theater turbine. Image) shows how the potential flow follows the turn
geomety of a fegion are able to predict the potentgle Lbe 2% Sese b o e et ek ot )
flow in the region with little effort. The potential flow of constant average field. As the constant flow does not follow the
shows how the flow would pass a region or object ifibe, the flow with subtracted average often leads directly into the
viscosity and wall friction were negligible [2]. Thus jtwalls of the tube. The localized flow respects the boundary and does

: : - not lead into walls. In image) a volume rendering shows locations
can be regarded as the most natural main flow dlrecuda}ﬁd strength of reverse flow regions in the tube. ImBgghows an

As alluded to in the related work section, this propertyosurface that represents the border of regions with reverse flow of
can be used to detect regions of reverse flow. Treating Hrether time step. A streamline in the original flow shows the reverse

direction suggested by the potential flow as main flofpW:
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direction we compute the dot product of the normalizetiat one can infer the potential flow mainly from the
original flow with the normalized potential flow. Thisgeometry of the region. Thus deviations from this flow
yields a scalar value at every position which indicatese what is interesting in a flow. For the detection of
whether the original flow has a component in (positivihese deviations the magnitude of the localized flow or
value) or against (negative value) the main flow directiobetter the ratio of the magnitude of the localized and
Then regions of reverse flow are easily identified dke original flow are considered. For two-dimensional
regions of negative value. Their borders can be visualizBdws a simple color mapping of this ratio can give a
by isosurfaces of zero isovalue (see Figs. 2f and 4). first overview. Isosurfaces and direct volume rendering
can be used for the same purpose when treating three-
dimensional flows (Figs. VII-A and 2).

Concerning the influence of the frame of reference
From a purely physical point of view it does not seeron flow analysis, the region-specific flow delivers a
feasible at first glance to manipulate a flow field in orderatural abstraction. For the common case that features
to further its analysis. It is known practice, howevein the flow are obscured by a dominating constant flow,
to decompose flow fields (see e.g. [2]) or to subtragie influence of the latter is “caught” in the boundary
a constant vector field to reveal structures that are nginditions of the potential flow, even if it is non-constant.
visible in the original field (heuristically, the averaget is subsequently subtracted from the original flow and
(boundary) flow is subtracted). The latter is justified byloes not show up in the region-specific flow. By this, for
the principle of Galilean invariance which states that thie case of topological methods, critical points such as
properties of flow have to be the same for a constan#ijnks, sources and spirals relating to extremal divergence
moving and for a resting observer. However, in mosind vorticity are much more likely to occur than in the
cases, this approach is not appropriate as it does bgtinal flow, enabling the use of such methods in a

preserve boundary conditions. For example, in the flagvoader context of flow analysis.
around a stationary object (see Fig. 3) or through aFigure 3 exemplifies some of the previous consid-
channel (see Fig. 2), subtraction of a constant vector fiedghtions. The 2D vector field shown represents the in-
yields streamlines that lead into the boundary surfaegympressible flow passing around a cylinder. On the
Since the boundary conditions are an integral part of ta@wnstream side of the cylinder, the well knowaran
region-specific flow (via condition (2)), it does not suffegortex street should develop. However, it cannot be
these problems. observed in the original flow. Removing the numeri-

Furthermore, both vorticity and divergence of the origzally obtained average flow reveals some but not all
inal flow are preserved in the region-specific approacht the features present and yields a strong diagonal
Therefore, feature definitions that build on these quanfiew component that has no physical interpretation. The
ties and consequently algorithms that extract these fe@nstructed potential flow is very uniform except in
tures are naturally unaffected. Recently, Saetlal. [18] the vicinity of the cylinder where it reflects the flow
presented analysis and visualization of three-dimensio@ound it. Subtracting the potential flow from the original
vector fields based on vorticity and vorticity lines. Whilglow reveals all the downstream vortical structures by
the streamlines of the velocity are naturally differeni topological analysis. In this example, subtracting the
in the region-specific flow, the invariance of vorticitycorrect downstream component (a multiple ©f =
lines and hence the non-changing vorticity transport {n,0)”) would also reveal all vortical structures and
the flow imply that all vortical structures are kept. Thigwoid the uninterpretable diagonal component. However,
confirms our approach to be meaningful and to contaim practical applications (see Sec. VII-B) the original
the information for the important features present ilownstream component is often not known. In these
the original field. In summary, the region-specific flowtases the numerically obtained average vector was the
contains exactly the local domain-specific contributiopest approximation up to now.
to the global flow.

As the localized flow is the difference of the original ) o )
and the potential flow it represents the deviation of - Choice of Localization Region
particle in the original flow from the flow induced by From the mathematics of solving the special Neumann
the geometry. Consequently its magnitude is large whermoblem 3, it is only required that the subdomdin
the influence of wall friction and viscosity are large anté open, bounded and connected. These requirements
it is small where the original flow is nearly equal tare easily fulfiled and do not constrain the choice of
the potential flow, i.e. laminar. We already mentionekgion much. Regarding the numerical schemes we apply

C. Region-specific Flow
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= . We now recall that the vorticity can be defined with the
————— N7 3\‘ ING))) vy ), non-diagonal elements of the anti-symmetric part of the

TN == . - Jacobian7 as follows:
— 7; ::_ : = =5 \:k:‘\k;\k\\;\; A curl v=V xv = (9271,9072,91’0)71. (9
a) original flow b) original flow minus Since (2 is antisymmetric, all its diagonal elements are
average flow zero. Due to (9) and the antisymmetry all other elements

are determined by the curl of. As the curl of the
original and the region-specific flow are equal ndw,
is also equal for both flows. Unfortunate$yis only the
same up to the sum of the diagonal elements as can be
N = seen by

- o _ tr(J) =tr(S)=div v
c) potential flow d) original flow minus
potential flow and the fact that the divergence of the original and the

Fig. 3. Comparison of different fields obtained from cylinder data sggglon-spe_mflc flow are eq,ua_l' However’ this reasoning
with Karman vortex streeta) Streamlines in the original flow. Only at least yields a strong similarity betweey for the
sinusoidal line structures adumbrate the vortidgsThree vortices original and the localized flow. We, in fact, observed

revealed by removing average flow). Potential flow induced by the this similarity in all our experiments, see for example
flow on the boundary of the considered region. Note how the flo !

attaches to the cylinder and does not seem to cross it as it Would%%@ left image of Fig. 4 for the EDELTA data set.
the case for constant average flay. Subtracting the potential flow
reveals all five vortices present in the considered region by use of VI

topology.

Y vz
| 7

Dl g
| V)R

| \

LA | (
| n\, |

. IMPLEMENTATION

In the following, we will revisit the construction of
the region-specific flow from Section Il and show how
in the application of our ideas in the next section can be achieved for discrete data sets.
a convex domain with piecewise smooth boundary is\we assume that the discrete flow field is given on
greatly beneficial in terms of convergence. the vertices of a simplicial (triangular or tetrahedral)
Choosing a localization region appropriately as inp@]trid, a form taken by many modern CFD data sets. We
to the algorithm is the responsibility of the user. Oftemote that the derivation of the potential flow is basically
an a-priori region of special interest can be a gogfdependent of spatial dimension. In an implementation,
choice and the engineers often know what is or shoyldyever, differences show up since the method works on
be interesting in their data sets. For the applicatiopgangles in the two-dimensional case and on tetrahedra
described in the previous subsection (reverse flow regipnthree dimensions. By formulation in the context of

detection and extraction of regions with large influenggite element methods, a unified numerical formalism
of friction and viscosity) the whole dataset is chosen f@i3n pe achieved nevertheless.

computation of the region-specific flow. The region(Q is easily discretized as a connected
subset of the original grid simplices. The Neumann
E. Influence of Localization on,-criterion problem is then discretized on this set by the application

To support our statement that the localized flow retai@$ @ Galerkin-type finite element method. The basic idea
the essential features of the original flow, we discudy Simple: by discretizing. in a nodal basig¢;} that
the influence of the localization on the-criterion in has one basis function for every grid point, Eqns. (3)
this section. The\,-criterion [13], as mentioned before nd (4) can be written as a linear system
is_a method for detectin_g vort_ex core regions. By _this Au = f A€ R™™ andu, f € R", (10)
criterion a vortex core is defined as set of positions
with low “modified” pressure, which means a set olvhere A is symmetric and sparse (cf. [19] for a very
positions where a certain matri®? + Q2 derived from concise presentation of the general procedure).
the local velocity gradient/ = Vv has two negative The solution of this system is slightly more com-
eigenvalues. The matrices and €2 are the symmetric plicated than in the usual finite element case, owing
and antisymmetric part qf/: to the fact thatA is not positive definite but positive

1 1 semidefinite. This corresponds to the fact that the orig-
J=8+Q= §(j+JT) + 5(«7—\7T)~ inal problem (3) and (4) is only determined up to a
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constant. The compatibility condition (5) translates to emphasis on topological methods and feature extraction
schemes, since we believe that this class of methods is
Z fi=0 most benefitted by the localized flow approach.

implying that f must be orthogonal to the kernel 4f If The presented results were computed on a standard

this discrete condition is fulfilled exactly, the commonly’C Workstation with 3GB of RAM. Performance figures
used Conjugate Gradients (CG) scheme can be emplof&dl dataset sizes are given in Table .

to solve the singular system (10). Owing to inexactness

in numerical integration, this is extremely difficult toa, pelta Wing Configurations

ensure in practice, resulting in instability and extremely

bad performance of the iterative scheme. Bochev andIn the following we examine two datasets, both result-

Lehoucq [20] give a possible solution to this class dr9 from smu}!_aﬂons_ of alr:‘llovaDs:ErﬁRd Z?SgEldeelta_
problems: by reformulating the Neumann problem Jype wing configuration (calle . an A .

a saddle point problem, a regularization approach Cglqth data_sets were computed in the conteﬂxt of numerical
be employed to achieve stability and good convergenrcets"f'e"’?rCh _|-nt_o vortex_breakdown by Markustien at thg
properties. Essentially, this results in a modified c@R m_Gottln_gen. Given on large unst_ructured adaptive-
scheme that ensures that successive iterates remain Be_f.ﬁglu,t'on grids, they pr_esent a serious challenge for
side the kernel ofd. We found this approach both easilQ"Sua“Zat'on techniques in general owing to both per-
implemented and very stable formance issues and numerical stability problems. The

Having obtained the discrete potentia) taking its datthaset:; tire qun;a _Iargelt_wlltht.11Mtresp. 1‘?.M .tcells.
gradient gives a cell-wise constant vector field. We uéé ough they contain muttipie ime steps, we fimit our

weighted averaging of neighboring simplices to compuEé'ta;:yS(‘;stto stlngle r?'g]"? sllctes |rt1) thlsk(;)aper 'antlj ?Ith?ugh
the vector field values of » on the vertices of the grid. 0 atasets exhibit vortex: breakdown in 1ater ime

Finally, v, is obtained by subtractingp from v at the steps, we also c9n5|der tw_ne steps that _do not show it.
grid vertices 1) EDELTA: Figure 1 gives an overview of the lo-

A is best represented in a sparse storage format. z?éiza_ttion process fpr this dataset. Th? origina_l flow
allows us to treat grids with millions of cells without re—( eft |mage). '3 do[jnlgatehd by_ a Iiarbge (:jn magm(;ggle)
sorting to out-of-core or cluster techniques which mak&§mPponent induced by the original boundary condition.

the implementation straightforward. Computational corrﬁ2 oI(_)sm_g a EOX arou_n?ﬂthe W'_r:j%l g?ome”y for the
plexity is two-fold: the assembly of the system matrix ocalization, the potential flow (middle image) captures

is relatively costly since the complexity is linear in th his component and essentially corresponds to a laminar

number of grid cells. The complexity of the successi _éow a“,’“”d 'the wing. The reglon-spemﬂc flow looks
matrix inversion is then a function of the number of gridl'€resting (right image). The primary vortical structures

points and the smallest cell in-circle radius. The numb&f® cl_early V'S't_)le (the flow component along the vortex
of iterations of the CG scheme can be significant es is essentially removed), as is the bow wave at the

reduced by application of preconditioning. Section vIIeP of the wing.

D and Table | provide details on the performance of our Nekxt, we look Iat a time rs1tep Fhat sr;]ows t_he”vortﬁx
implementation for a number of data sets. breakdown bubble above the wing. Theoretically, the

Remark: As the matrix depends only on the griCpreakdown bubble mainly consists of a recirculation zone

and its connectivity, the same matrix can be used fBfet IS shielded by two saddle points forcing the flow
all time steps in the unsteady case. Computing tﬁéound it (for a more detailed exp_osmon, see [22]_). F!g-
matrix once and storing it for reuse avoids repeaté{ﬁe 5 shows the results of a straightforward application

costly computations and improves the performance 8ff the Sujudi-Haimes algorithm to a _sphencal region
the localization procedure dramatically. around the breakdown bubble. The original vortex core

is visible together with the breakdown saddle points (left
image). The strongly curved region is an indication of
the recirculation. However, the recirculation core is not

In this section we demonstrate the proposed teatieanly extracted. The right image shows an identical
niqgues and show how they can help in furthering vivisualization for the corresponding region-specific flow.
sualization on several application datasets. All data s&#hile the critical points are unchanged, the recirculation
except theHART Il dataset (which contains measures cleanly identified as a closed vortex core winding
data) result from CFD simulations conducted in actuatound the original vortex. We extract exactly the same
application research. In our analysis, we put a sligbtructures as others working on this dataset [23] with

VII. RESULTS AND EXAMPLES
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Fig. 4. Left: Vortex core lines and volume rendering of the-criterion, both computed for the localized flow around the delta wing of
the EDELTA data set. The vortex core lines were extracted using the algodfhSujudi and Haimes in the parallel vectors version of
Peikert and Roth [21]. Note how the volume rendering indicates evenett@ndary and tertiary vortices in the localized flaiddle:
Zero-isosurface (red) of dot product between original and poteftbia indicating reverse flow regions. Streamlines in the image and the
close-up show that the isosurfaces identify the recirculation in the voreaktown bubblesRight: Volume rendering of the ratio of the
velocity magnitude of original and localized flow. The opacity encodes dtie while the color encodes the sign (positive blue, negative
pink) of (v/||v]]) - (ve/|[vel)- In this representation we can see both, the recirculation zones andtém ekthe vortices.

different methods. Essentially, the region-specific flow
is much closer to an analytic breakdown bubble mode \ \
allowing for a clean identification of this phenomenon
in this dataset.
To detect the recirculation in the same time stej
as above, but assuming not to know their location ir
advance, we used the potential flow as mentioned i
Section V-B. The results can be seen in the middle an
right image of Figure 4. The middle image shows a zero-
isosurface Qf the dot p,rOdUCt of the normalized O_ngmia—ll . 5. Close-up of the vortex breakdown bubble. In the original
and normalized potential flow. It encloses the regions ﬁﬁgw, the main vortex core is strongly curved and distorted (left). In
reverse flow. The right image shows a volume rendéringpe region-specific flow, the recirculation type nature of the bubble
where the color represents the sign of the dot produ'@tplearly io_Ientified by the closed vortex core (right image). Critical
. - ints are in this case unaffected by the localization.
The opacity, however, represents the deviation of the
original flow from the potential flow, i.e. the ratio of the
magnitudes of original and localized flow. Both images
show the recirculation zones quite clear. The right image
additionally gives an impression of the deviation and thaserlaid with its topological graph. The high number of
of the influence of friction and viscosity. Both are largeritical points is a result of the numerically unstable shea
where the main vortices are located. flow computation that involves numerical derivatives.
2) TDELTA: Although this simulation is quite similar Some separatrices are indicative of separation/attachment

to the EDELTA configuration, its spatial resolution isbehavior, however, the picture is incomplete. Using the
higher. This is especially true for the region close t@ntire wing as localization region, the resulting region-
the wing surface, making an analysis of the shear str&fgcific flow shows all the features as part of its topology
field feasible. One is especially interested in separatigiiddle image). Since the subtracted potential flow is
and attachment lines, whose extraction still poses majgy smooth, the localized shear flow does still contain
pr0b|ems for modern datasets. In ana|ogy to vortex cdﬂgnificant amounts of numerical noise. In spite of thiS,
lines, separation and attachment lines can appear as gitextracted separation and attachment lines are of a
of the topological skeleton of the shear flow. Figure ¥ery good quality and match the original shear flow
(left) shows a LIC image of the original shear flowproperties (right image). In analogy to the vortex cores
in the EDELTA dataset (cf. [1]), by the use of region-

3Because of the complexity of the CFD grids we use the techniqu%@ef')iﬁc flow, it is possible to_ extract important features
introduced by Tricochet al. [23]. easily as part of the topological graph.
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Fig. 6. Topology of the surface shear stress in TIREELTA dataset. The topology of the original shear flow captures some feahureis
incomplete (left). All separation and attachment lines appear in the topabtye localized shear flow (middle). All images also show a
LIC representation of the original shear flow. A close-up reveals fegiematch between original shear flow and localized features (right).

B. HART Il

TheHART Il dataset does not result from a simulation
It consists of measurements of a helicopter rotor blac———
wake (cf. [24]), aiming at improved knowledge aboutl—
the evolution of the vortices generated by the wake are—==
reducing the rotor noise which is created by interactio..—
of the wake and a following blade hitting the wake.
PIV (Particle Image Velocimetry) was used to obtaifig. 7. HART Il data set consisting of PIV measurements of
instantaneous flow field data in a large observation a'lé%jcopter rotor blade wake. Left image shows original measured flow
di I | . f th in a plane cutting through the wake. The wake vortices of the passing
and in a smaller close-up view of the vortex _core. BMades are not visible. On the right, the topology of the region-specific
nature, PIV produces measurements on 2D slices of #u& reveals the vortices present in the correct frame of reference.
three-dimensional flow field. We consider one such slice
with 8K vertices that cuts through the wake and thus the

wake vortices of one rotor blade. C. Draft Tube

This type of dataset is of special interest since the This dataset represents the draft tube of a Francis
correct frame of reference is unclear: while the obseniirbine, in which the runner is spinning in the inlet
is static, the rotor blades are moving. From the left imagrart of the turbine (see Fig. 2a). The runner (at the
of Fig. 7, showing the original measured data, no vortictdp) induces a spinning motion in the water, which
structure can be inferred. Without making any assumigaves the turbine (bottom) after passing through the
tions about the correct frame of reference and using therved tube. We essentially used this dataset to illustrate
entire measurement domain as localization region, thee unsuitability of the average (boundary) flow in the
structures of primary interest are easily extracted frolacalization of such datasets.
the region-specific flow using simple topological tools. From Figure 2 it is obvious that the average flow
The two wake vortices present in the flow are clearfiails to approximate the overall boundary flow due to
visible in the rightimage. The stronger vortex stems frothe strong curved nature of the domain (image c). The
the last passing blade while the origin of the smallgrotential flow, however, follows the curved shape of the
vortex is the tip of a blade passing earlier. The latténbe (image b). Subtracting the average flow and the
vortex is smaller due to two reasons: it is older and thpetential flow from the original flow (images ¢ and d),
decaying and it was hit by the last passing blade (thige observe that the localized flow does not violate the
disturbs its vortical nature). The goal of the engineerspundary condition on the tube wall, as opposed to the
which is to determine the position of the wake vorticesyverage-reduced flow. In summary, the region-specific
is easily achieved with the region-specific flow. flow shows a more natural behavior.
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For this dataset the detection of reverse flow as prand subtracting it from the original field. We have ex-
posed by Larameet al.[17] must fail because the maintended this method to unsteady flow fields. Furthermore,
flow direction turns by 90 degrees while passing througte have given applications of components (localized
the tube. In contrast, our method using the dot productafd potential) of the original flow. While the potential
original and potential flow detects the reverse flow easifipw can be used to detect reverse flow regions, the
(Fig. 2f). The volume rendering in Fig. 2e even allowmagnitude of the localized flow can reveal regions where
to get an impression of how strong the flow directiothe influence of friction dominates the flow.
differs from the main flow direction. The difference, i.e. The localization retains the original features of the
the negative dot product of the normalized vectors fibw and is thus ready for the application of many
original and potential flow, increases from yellow to redstandard methods for feature and topology analysis. We
The bluish area shows the space surrounding the revedséailed this by examining the influence of the local-
flow for completeness. ization on topology, vortex core line extraction and the

Ao-criterion. We discussed the differential equation that
has to be solved to obtain the potential flow fields and
described our implementation. Applied to large data sets
from CFD simulations and to a measurement data set
' our method proved to be scalable and robust.
‘ Future work may include the following research av-
enues:

« Having the time-dependent extension of the local-
ized flow it may be interesting to track reverse flow
regions over time to learn more about their creation

Fig. 8. Three snapshots of an animation showing the movement 514 evolution. Additionally, the interpretation of

of reverse flow in tube dataset. Notice the movement and split of th i in the | lized fI’ . fi

the reverse flow region in the main vortex as long thin parts of the pa_ Ines m_ e loca 'Z_e OwW'IS an open question
isosurface. which we will address in the the future.
« As solving for the potentiak: includes handling
The extension of the localized flow approach to un-  of very large matrices we intend to implement a
steady flows allows us to visualize the evolution of the  parallel solver to reduce the computation time.

reverse flow regions as shown in Figure 8.
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An overview of the performance of the localization fo

APPENDIXI

VIII. C ONCLUSION AND OUTLOOK As mentioned before, one reviewer raised concerns
We have presented a method to isolate the flow @&bout the notion of rotation and divergence beincal
subdomains of flow data sets from the flow in the neigln nature. We give his example problem here, as we think
borhood by constructing an irrotational and divergenc#iat discussing it may yield deeper insight in the idea of
free field from the flow at the boundary of the subdomaiocalized flow.
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| Region | Dimension| # Simplicial Cells| # Vertices| Computation Time in sed.
Box around cylinder 2D 4.7 K 4.8 K 0.66
HART Il 2D 16.6 K 85K 0.49
TDELTA (wing) 2D 156K 81K 10.2
Ball 3D 202.6 K 36.5 K 7.37
Box in furnace chamber 3D 540.0 K| 964.4 K 22.03
Ball with hole 3D 1.1 M 04 M 119.09
Draft Tube 3D 49 M 0.9 M 322.07
ICE train 3D 6.2 M 1.1 M 381.16
EDELTA (box) 3D 17.3 M 3.0M 1386.07
TDELTA (entire) 3D 25.8 M 45 M 3403.10

TABLE |

PERFORMANCE FIGURES FOR LOCALIZED FLOW PROCEDURE OF DIFFERIE DATA SETS

The reviewer stated that a slow moving large vorteiow will only be influenced by the rotation of the large
would provide a counter-example to the locality argwortex inside the chosen region. Any rotation outside that
ment (especially for rotation). region will not show up in the localized flow, so that

For the discussion of his problem, at first it should béae region determines whether the localized flow gives
noted that the mathematical definition of divergence amdcomplete or a partial picture of the large vortex. If,
rotation ¢url) is local in nature and that this is what wdor example, the region is fixed and the area essentially
refer to in the whole paper. We know that there existsfluenced by the vortex moves over time from inside
vorticity transport in flows and thus the rotation cathe region to the outside, the localized flow will show a
change by global influences. However, as we will detaimaller and smaller part of the vortex. In our eyes, this
in the following, we do not believe that this influencefimitation is obvious to any fluid dynamics researcher or
the soundness of our method for the moving vortex adgineer and will no disturb him. We believe so because
other problems. the construction of the localized flow by separating a

Rotation and divergence of the region-specific flo@livergence-free potential flow from the remaining part
v are identical to the original flow inside the domain uses very well known basic concepts of fluid dynamics.
Q in the sense of the mathematical definition. This i§ one wants to examine the whole moving vortex using
condition (1) in section IIl and the essence of the wholecalized flow one has to choose a region that covers the
construction. It follows by Stokes’ theorem that e.g. thehole path of the vortex. As the examples in our paper
circulation around the boundary curve of any surfachow, it even makes sense to choose the whole simulation
inside (2 also coincides: domain for computing the localized flow in many cases.
The draft tube is an example of how the localized flow
can be used to determine reverse flow regions in a flow

vrdx with a moving vortex
S

Cr =

curl vg -n dS
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