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Haptic Rendering of Dynamic Volumetric Data
Karljohan Lundin Palmerius, Matthew Cooper and Anders Ynnerman

Abstract— With current methods for volume haptics in sci-
entific visualization, features in time-varying data can freely
move straight through the haptic probe without generating any
haptic feedback — the algorithms are simply not designed to
handle variation with time but consider only the instantaneous
configuration when the haptic feedback is calculated. This article
introduces haptic rendering of dynamic volumetric data to
provide a means for haptic exploration of dynamic behaviour in
volumetric data. We show how haptic feedback can be produced
that is consistent with volumetric data moving within the virtual
environment and with data that, in itself, evolves over time.
Haptic interaction with time-varying data is demonstrated by
allowing palpation of a CT sequence of a beating human heart.

Index Terms— direct volume haptics, time-varying data, chang-
ing model transform, scientific visualization

I. INTRODUCTION

Volume rendering has become an effective tool in scientific
visualization for exploring static as well as time-varying
volumetric data. Using sequences of data the user can explore
dynamic phenomena and processes which can otherwise be
difficult to understand, such as swirl propagation or shockwave
folding in a CFD simulation, the valve movements in a CT
scan of a beating human heart, or the changes in blood flow
in a Doppler MRI.

With the overwhelming amount of data provided by time-
varying volumes, it can be beneficial to augment the direct
graphical representation with other representations delivered
via alternative senses. Several independent research efforts[1]–
[5] have shown that haptics has the potential to significantly
increase both speed and accuracy of human-computer interac-
tion and provide extra information about the data. This natural
mode of interaction makes effective use of our fundamental
sense of touch and allows for synergistic effects between
multiple modes of exploration of the volume data[6]–[8].

Direct volume haptics[6]–[13], by analogy with direct vol-
ume rendering, provides a means to present the full data
through force feedback without restricting the exploration to
a subset of the data presented through an intermediate repre-
sentation, such as an extracted surface. Previous methods for
direct volume haptics, however, have difficulty in incorporating
dynamic data in the haptic representation since they cannot
capture changes in the data, which should affect the haptic
probe. If, for example, the user is holding the haptic probe
stationary in a volume of data through which a shock-front is
moving and the shock-front lies on one side of the probe in one
data sample, but in the next it lies on the other side of the probe
then it should, obviously, have affected the probe while passing
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Fig. 1. Centre to right shows interaction with time-varying data while
centre to left shows haptic interaction with data affected by a changing model
transform. The solid probe shows the correct haptic response, obtained through
the methods presented in this article, and the dotted probe shows the response
without these methods.

though it. While it is possible to see how a haptic model based
on surface extraction would allow the tracking of the surface
and the use of collision detection methods to detect this inter-
frame interaction of the data with the probe, current schemes
for direct volume haptics cannot capture this interaction. The
absence of this effect, where a feature should push against the
probe but does not, results in a counter-intuitive and potentially
confusing error in the haptic feedback.

This problem can also occur in interaction with time-
invariant data which moves in the scene, for example if the
user employs the common approach of using a separate inter-
actor, such as a 3D mouse, to create a two-handed operation
interface. Using the 3D mouse to change the model transform,
and so control the movement of the data being explored, while
the data are defining the force feedback can result in the effect
where the user rotates or translates the data and a feature in
the data lies on opposite sides of the (stationary) probe in
two consecutive positions of the data. The feature should have
transitioned across the probe and have affected it but, again,
this interaction is not captured by current techniques for direct
volume haptics.

The approach presented in this paper introduces two meth-
ods, each resolving one of the two problems described above,
see figure 1. These can be combined to permit direct volume
haptics to capture arbitrary changes in both the position of
a time-invariant data volume and the position of features in
a time-varying one. In this way this approach can capture
all of the time-varying effects which can affect the data
volume and hence the haptic interaction with the data. The
method uses a combination of preprocessing and real-time
techniques to ensure that the problem remains sufficiently
computationally simple to sustain the required haptic frame
rate and so full direct volume haptic interaction, reflecting the
dynamic features of the data, can be maintained as the data
evolves over time and is rotated and translated by the user.

The remainder of this article is structured as follows. The
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next section gives an overview of the most important related
research including an overview of the haptic primitives method
on which the dynamic volume haptics presented in this article
has been based. Section III shows how the changes in dynamic
transforms are handled for consistent feedback and section
IV describes how the feedback is made consistent with the
internal dynamics of sets of pre-generated frames of time-
varying data. Steps that are needed to correctly handle the
simultaneous rendering of multiple data sets are then described
in section V. The implementation is discussed in section VI
and the results are presented in section VII. The article
is finally concluded with a discussion on future work, in
section VIII, and conclusions, in section IX.

II. RELATED WORK

There are essentially two ways of producing haptic repre-
sentations of volumetric data. One way is by first extracting
some intermediate geometrical representation of the data, for
example an isosurface, and then applying a haptic surface
rendering algorithm. Some key methods for surface rendering
are described in section II-A. Extracting an intermediate repre-
sentation of the data requires preprocessing and also provides
representation only of a subset of the original data, such as
the isosurface subspace.

The other way to introduce haptic feedback from volumetric
data is by generating the feedback directly from the volumet-
ric data, Direct Volume Haptics (DVH) in which the force
feedback is generated directly from the local data at a probed
position. This approach allows for the haptic representation of
the full data, rather than just a subset. The methods for DVH
can, in turn, be divided into two branches: force functions and
constraint-based methods, see II-B and II-C below.

A. Surface Rendering

Surface haptics algorithms can be considered to have
evolved through three steps[14]. The original penalty method
produces a force directed towards the closest point on the
closest surface of a penetrated object. The penetration depth
multiplied by a stiffness constant gives the strength of the
force. Lacking a memory of where the haptic probe penetrated
an object, the penalty method produces discontinuities when
the closest surface polygon changes. The memory needed
to avoid this is introduced in the god object-based method,
through the “god-object”[15], a point that slides on the surface
of the objects. Due to the limitation in floating point precision
inter-polygon edges have small gaps through which the point-
sized god-object can slip. The problem is overcome by using
a finite-sized sphere object, used by the proxy-based method,
introduced in [14].

Both the god object and the proxy can be considered internal
representations of the haptic probe, a point that can be moved
by a haptic algorithm to mimic the behaviour of the probe, but
in a stable and fully controlled manner. The surface haptics
algorithms move this point to simulate the interplay between
polygons and a virtual spring-damper coupling the probe and
the proxy, see figure 2. The feedback, ~ffb, is estimated through

Feedback

Proxy

Probe

Fig. 2. The proxy is an internal representation of the haptic probe. It is
controlled by the haptic algorithm to simulate the interplay between polygons
and the virtual spring-damper that specifies the force feedback.

the spring-damper equation,

~ffb = −ks (~xprobe − ~xproxy)− kd

(
~̇xprobe − ~̇xproxy

)
(1)

where ks is a stiffness constant and kd is a damping term,
and the proxy point functions as a memory of the point of
palpation for the next time the feedback is estimated.

B. Force Function Methods

Without an intermediate polygon model of the data, the
haptic algorithm has to directly convert the local volumetric
data at the probed position to a force feedback. The most
straightforward approach to DVH is the force function-based
approach. Here the haptic feedback is expressed as a vector-
valued function, ~F , of the volumetric scalar or vector data at
the position of interaction, the probe position, and the velocity
of the probe

~ffb = ~F (Λ, ~xprobe, ~̇xprobe) (2)

where ~ffb is the force feedback, ~xprobe is the probe position
and Λ is some property of the volumetric data. This property
could be the data value itself, the gradient of a scalar data
value, or any other suitable extracted value. Various haptic
effects from this approach have been used to produce palpable
representations of the data and to guide the user to interesting
areas. For example, pushing the haptic instrument in the
direction of the local gradient in CT data,

~ffb = C~∇Λ(~xprobe) (3)

where C is a positive or negative force scaling constant and
Λ is the scalar data, has proved useful in certain exploratory
tasks[6], [7], [16]. The haptic instrument is then either pulled
towards high density regions in the data, or pushed away from
it towards low density data. This haptic effect has also been
applied to other data than CT, for example for guidance in
MRI data[17].

For vector data the most obvious approach is to use the vec-
tor as force feedback[6] although more advanced approaches
have been proposed. In [8], for example, a vector representing
the direction towards the centre of local vorticity is extracted
and used to produce a haptic representation of the vorticity
and a guidance force which helps the user follow the path of
any vortex trail.

C. Constraint-based Methods

The constraint-based approach, first introduced in [9] and
subsequently refined and applied in [10]–[13], [18], has been
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developed to provide a more intuitive representation of the
volumetric data compared to force function-based methods.
A constraint-based method uses the local data to define local
passive constraints that represent the data at any position in
the volume. By letting the constraint yield when subjected to a
force exceeding some material-specific magnitude, occlusion
is avoided — the user can push through an occluding surface or
other distinct feature. In this way a continuous representation
of the data can be produced, removing the need for the user to
activate and deactivate the haptic feedback to probe different
regions. Using yielding constraints means that features in the
data are represented by shapes, an effect that is naturally
connected to human perception[19].

For example, the gradient vector in CT data has been used
to generate a yielding constraint that represents surface-like
features in the data[9], [10]. The interaction is similar to
surface haptics, giving a distinct sense of position and shapes,
in contrast with the ‘magnetism-like’ pulling and pushing of a
force function rendering of the same data. The feedback can be
assigned tissue specific material properties, such as friction and
the strength needed to penetrate the surface. The constraint-
based approach has also been used to produce haptic feedback
from vector data, by generating an anisotropic friction that
produces a resistance when moving the probe perpendicular to
the field[10], [12], or tube-like representations of vortices[12].

Intuitively, constraints should move with moving data or
with animated features in the data. In the implementations
published to date, however, no consideration has been taken for
the possibility of the data moving. Thus, the haptic feedback
from moving or time-varying data reflects only the static
configuration of the instantaneous data at the palpated position.
A moving volumetric object can freely move straight through
the haptic probe without generating any haptic feedback —
the user can push against the haptic features, but a moving
feature can never push against the haptic probe.

D. Proxy-based Volume Haptics

The constraint-based methods for volume haptics take their
basic principles from state-of-the-arts methods for surface
haptics, and thus make use of a proxy point. These methods,
however, simulate the interplay between the virtual spring-
damper, coupling the probe and the proxy, and implicit con-
straints representing the volumetric data at the proxy position.
Thus, such algorithms can be generalized into three steps, also
shown in figure 3.

1) extract data at proxy position, ~xproxy,

Λ = Λ(T−1~xproxy) (4)

where Λ is the volumetric data property of interest and
T is a transform describing the size and position of the
data volume in world coordinates

2) use data to estimate proxy movements,

~x′
proxy = ~xproxy + ~F (Λ, ~xproxy) (5)

where ~F is an algorithm-specific function that moves the
proxy in a manner that simulates the interaction between
constraints and the probe

3) calculate the feedback, ~ffb, from the displacement of the
new proxy point relative to the probe using equation 1

These three steps are similar in different proxy-based algo-
rithms and essentially only ~F in the second step differs.
This full procedure — extracting data, finding the new proxy
position and calculating the force feedback — is generally
performed in a dedicated haptic thread, at a rate of 1 kHz
to ensure low latency and high fidelity feedback. The support
for dynamic data is introduced through preprocessing of the
proxy position before extracting data and calculating the
proxy movements that represent these data, as described in
sections III and IV.

In the simplest approach, used in [10]–[12], the extracted
data is used to control the orientation and strength of an
orthogonal set of simple single dimensional constraints. The
proxy is then, in turn, moved in the direction of each con-
straint, j, according to

~x′
proxy = ~xproxy + q̂j max(0, ~qj · (~xprobe − ~xproxy)− sj/ks)

(6)
where ~qj is the constraint direction, sj is the strength of
the constraint and ks is the stiffness of the virtual coupling.
Defining the orientation, ~qj , as the normalized gradient of
the data, for example, the surface effect mentioned above is
obtained. The value of sj is generally controlled through a
transfer function from some scalar property, for example the
gradient magnitude for surface simulation.

E. Primitives-based Volume Haptics

Recently an algorithm based on haptic primitives has been
developed that captures the potential effects of both force
functions and constraint-based methods in a single frame-
work[13]. This algorithm is a proxy-based algorithm, in prin-
ciple defining the function ~F of equation 5, but hides this
implementation behind an abstraction layer, haptic primitives.
Since this is our preferred method for volume haptics it is this
approach that has been used for the implementation of the
dynamic volume haptics. Most of the techniques presented in
this article could, however, be implemented using any proxy-
based method for volume haptics. Some features for volume
haptics are currently only supported through haptic primitives,
such as support for non-orthogonal constraints required for
the simultaneous handling of multiple data sets. The special
considerations required for handling dynamics of multiple data
sets, section V, are therefore discussed in the context of haptic
primitives.

The haptic primitives form an abstraction layer for the
implementation of haptic interaction schemes and also provide
a means of calculating the feedback. Constraints are repre-
sented using primitives restricting the motion in one, two or
three degrees of freedom: plane, line and point, respectively.
Active forces and other force functions are included through
a fourth primitive: directed force. Superpositions of these four
primitives have been found to be sufficient to represent any
force feedback scheme encountered to date.

The haptic primitives are characterized by simple vector-
valued force functions of the proxy position, with parameters
strength, sj , position, ~xj , and direction, represented by a unit
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~xproxy

Λ

~xprobe

(i) In the first step the data at the pal-
pated position, ~xproxy, are examined.

~xproxy

~x′
proxy

~xprobe

(ii) In the second step the proxy is
moved to reflect the extracted data.

~x′
proxy

~ffb

~xprobe

(iii) Finally, the feedback is estimated
through a virtual spring-damper.

Fig. 3. The three steps used to update the proxy position and calculate the force feedback. These three steps are similar in different proxy-based algorithms
and only the second step, the moving of the proxy, differs.

vector, ~qj . The force fields of the primitives are illustrated
in figure 4. Each constraint primitive generates a force of
magnitude sj towards the closest point on the primitive defined
by the position and orientation. The plane primitive is semi-
directed so that it provides feedback only when pushing the
probe against a plane surface and not when moving away from
it. Two such primitives can then be combined to produce a bi-
directional planar constraint.

• Plane, a directed force which exists only on one side of
the plane defined by ~xj and ~qj :

~fj (~xproxy) =
{

0, if (~xproxy − ~xj) · ~qj ≥ 0
sj~qj , if (~xproxy − ~xj) · ~qj < 0

(7)

• Line, an attractor towards the closest point on a line:

~fj (~xproxy) =

{
~0, if |~m| = 0

sj
~m
|~m| , if |~m| 6= 0 (8)

~m = ~qj [~qj · (~xproxy − ~xj)]− (~xproxy − ~xj)

• Point, an attractor to point ~xj in space:

~fj (~xproxy) =

{
~0, if |~xj − ~xproxy| = 0

sj
~m
|~m| , if |~m| 6= 0 (9)

~m = ~xj − ~xproxy

• Directed force, a position-independent force:

~fj (~xproxy) = sj~qj (10)

The proxy position is then found by balancing the force
feedback, ~ffb, from the coupling equation (equation 1) against
the force from the primitives, by minimizing the residual ~ε in

~ε = −~ffb +
∑

j

~fj (~xproxy) (11)

with respect to ~xproxy. In the current implementation this
is carried out using a numerical solver. When the minimum
has been found the new proxy position perfectly represents,
through the coupling equation, the haptic effect from the
selected primitives. The residual will be zero unless the proxy
point lies on a constraint primitive, in which case it will be
non-zero. This is because of the discontinuity in the equations
at the border of each constraint primitive. All primitive pa-
rameters (position, strength and orientation) are constant when
estimating ~ε.

~q

~x

~q

~x

~x

~q

Fig. 4. The haptic primitives and their effects. From the top left: plane, line,
point and force.

Using the primitives, schemes for haptic interaction can be
handled as entities, haptic modes, simplifying the design and
implementation of visio-haptic interfaces. Each haptic mode
generates haptic feedback by placing one or more haptic
primitives at the proxy position (~x = ~xproxy): during the
haptic simulation each mode controls their parameters, such
as orientation and strength, as functions of the local data at the
proxy position, Λ(T−1~xproxy). In that respect the haptic mode
acts as a link between the data and its haptic representation.

As an example, surface-and-friction feedback is imple-
mented using two haptic primitives. A plane primitive oriented
by the normalized gradient of the scalar data at the proxy
position, ~n, represents a surface. Friction is added using a line
primitive with the same orientation, as shown in figure 5. The
residual to minimize for this haptic mode then becomes, from
equations 7, 8 and 11,

~ε = −~ffb +
{

0, if (~xproxy − ~x) · ~n ≥ 0
s1~n, if (~xproxy − ~x) · ~n < 0

+

{
~0, if |~m| = 0

s2
~m
|~m| , if |~m| 6= 0 (12)

where ~x is set to the initial value of ~xproxy and

~m = ~n [~n · (~xproxy − ~x)]− (~xproxy − ~x)

The strength of the surface is defined by the scalar data, Λ,
at the proxy position using a transfer function, τsurf , so that
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Fig. 5. Surface and friction simulation by using plane and line primitives at
the position of the proxy point.

s1 = τsurf(Λ). The friction force is calculated from the normal
force, estimated as the smallest value of the normal force,
ks~n ·

(
~x′

proxy − ~xprobe

)
, and the current surface strength. The

strength of the line primitive is then calculated by multiplying
the normal force strength with a friction value obtained from
a transfer function, τµ,

s2 = τµ(Λ) min(s1, ks~n · (~xproxy − ~x))

Similarly the follow-mode, a mode that provides a guidance
by generating a resistance to movement of the probe perpen-
dicular to a vector field, is implemented using a single line
primitive,

~ε = −~ffb +

{
~0, if |~m| = 0

s3
~m
|~m| , if |~m| 6= 0 (13)

~m = Λ [Λ · (~xproxy − ~x)]− (~xproxy − ~x)

where Λ, here, is the local vector and s3 is controlled through
a transfer function, τfollow, from the vector magnitude, s3 =
τfollow(|Λ|).

Once defined, a haptic mode is calibrated through the haptic
material transfer functions, τ . Multiple haptic modes defined
in this manner can easily be combined. When two or more
modes are used simultaneously, their individual primitives’
force contributions are combined linearly in the balancing
equation, as expressed by equation 11. Minimizing this resid-
ual formula then provides a new proxy position that represents
the combined haptic effect of the arbitrary number of active
haptic modes.

III. DYNAMIC TRANSFORMS

In this section we describe how the interaction point, and
thus the volumetric features at that position, can respond to
changes in the dynamic transforms of static volumetric data
and so actively move the haptic probe. The feedback then
responds to the collective motion of features in the data,
described by the transform dynamics. This is a fundamental
requirement for natural haptic interaction in a dynamic multi-
modal VR environment; the user can, for example, rotate
the visualized data using a space mouse to explore it from
an arbitrary direction, with consistent haptic feedback being
generated throughout the movement.

A. Moving Feature Representations

So far the current static transform, T , has been used to
describe the location of the volumetric data in the virtual
environment, and any changes between adjacent frames have

1

Proxy point

Feature in volume

2

Probe

Fig. 6. The point of interaction, the proxy, is moved to reflect the movement
of the volume of data.

been ignored. To produce haptic feedback that is consistent
with movements in the scene, the proxy point should be
moved according to changes in the transform of the data. This
principle is shown in figure 6.

The principle here is that the initial proxy position, before
performing the three steps for proxy-based haptics calculation
described in section II-D, should be the same in the current
local data space as in the last local data space when the
proxy position was last determined through equation 5. The
changes of transformation between two frames are defined
by the difference between the current transform, T c, and the
previous transform, T p. Setting the proxy position, defined in
world coordinates, equal in the current and previous local data
spaces

T−1
c ~x′

proxy = T−1
p ~xproxy (14)

~x′
proxy = T c T−1

p ~xproxy (15)

we obtain a new proxy position, ~x′
proxy, representing the

palpated position in the data after the changes in the model
transform.

Using this new position as the initial proxy position when
extracting data (equation 4) and calculating the haptic feed-
back (equations 5 and 1) produces a haptic representation
at the updated position. In this way the point of interaction,
and the feedback experienced, move relative to the transform
difference which will produce an active pull in the direction
of the data movement, as can be seen in figure 6.

B. Improving Haptic Frame-rate

Most systems for visio-haptic computer environments make
use of two asynchronous threads, one for haptics and one
for graphics, so that the haptic calculations can be executed
at a higher rate and with lower latency than the graphical
rendering. In a scene graph system the transforms are typically
controlled in the same thread as the graphics, together with
mouse events, game processing and other simulation event
handling. Thus, the haptic process, rendered at a higher frame-
rate, has to use the static knowledge between the graphics
frames. Since the graphics frame-rate is low compared to
the 1 kHz haptic frame-rate needed to produce smooth force
feedback, the feature translation described above cannot be
performed only when a new transform becomes available.

To obtain the inter-frame transform information needed
for smooth feedback, we perform interpolation between the
transforms available from the graphics thread, see figure 7.
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Tp

Tip

Tc

Tic

Fig. 7. Rotational transform example — the current (Tc) and the previous
(Tp) graphics transforms of the haptic mode are recorded and used in the
haptics thread to determine the current (Tic) and previous (Tip) interpolated
haptic transforms.

Thus, instead of using the current and previous transforms
(T c and T p) for moving the interaction point (equation 15),
the current (T ic) and previous (T ip) interpolated transforms
are used,

~x′
proxy = T ic T−1

ip ~xproxy (16)

The most recent interpolated transform, T ic, is then used to
project to local space when extracting the local data, Λ =
Λ(T−1

ic ~x).

C. Transform Interpolation

The interpolated transform is obtained by first splitting
the two transform samples into scaling (T s), rotation (T r)
and translation (T t). Scaling and translation are interpolated
linearly and the rotation is interpolated using Spherical Linear
Interpolation (Slerp), and the parts are then rejoined into the
complete interpolated transform,

T t
ic = rT t

c + (1− r)T t
p (17)

T r
ic = Slerp

(
T r

c , T r
p ; r

)
(18)

T s
ic = rT s

c + (1− r)T s
p (19)

T ic = T t
ic T r

ic T s
ic (20)

where r is the interpolation ratio. Since the new transform is
needed to perform a correct interpolation, the haptic rendering
will lag by up to one graphics frame. It will then converge to
the most current graphics transform.

To perform the interpolation requires the current time into
the graphics frame interval and the start and end times for
that graphics frame. The time elapsed since the last graphics
update is known, but not the remaining duration of the frame,
when a new transform will become available — this needs to
be estimated. The most obvious frame duration estimation is
the mean of the time taken for the last few frames. Our tests
have shown that the delay for rendering an individual frame is
subject to noise and may vary significantly from the average
because of interrupts in the operating system. Smoothing and
removal of outliers is done by taking the inter-quartile mean
(IQM) of the delay from the last N frames,

∆IQM =
2
N

3N/4∑
i=N/4+1

∆i (21)

for an ordered set, {∆0, ∆1, . . . , ∆N}, of frame delays. The
size of N is a trade-off between an accurate mean and a rapid
response to a long-term change in the graphics frame rate. In

(a)

T1 T2 T3

(b)

T4

(c)

t

(i) In frame interval (b) the interpolation between transforms T2 and
T3 is not complete when T4 becomes available earlier than expected.
Thus, at the beginning of interval (c) there will be a discontinuity
unless the current interpolated value (circled) is used to interpolate
from, instead of T3.

T3T2T1 T4

(a) (b) (c)

t

(ii) In this example transform T4 becomes available later than
expected and so the interpolation in frame interval (b) has finished
before the new transform appears, resulting in a hold in the transform
dynamics.

Fig. 8. The effect of different misestimations of the frame duration. In
frame interval (a) T2 is available as the new transform and T1 is used to
interpolate from. With a correctly estimated frame duration, the interpolated
value converges with transform T2 at the end of the frame interval.

the implementation used in section VII, tests have shown that
12 frames gives a good balance.

Since the frame time can only be estimated it is bound to
result in too long or too short an estimate (see figure 8). Frames
that take less time than the estimate will then produce a sudden
jump at the end of the frame period. This is caused by the
significant difference between the new T ic value and T ip from
the previous frame (figure 8(i)). To reduce this problem, we
use the last interpolated transform, T ic, as the old transform
to interpolate from instead of the transform that was currently
the target for the interpolation, see figure 8(i). Thus, as a new
transform becomes available, T p is set equal to T ic instead
of T c, providing a C0 continuous transform interpolation.

Similarly, a frame that is shown for longer than the esti-
mated frame duration will have a slight pause at the end of the
interpolation, since the haptic interpolation will finish before a
new transform is available (figure 8(ii)). This pause is already
C0 continuous.

D. Dynamic Transforms Summary

In this section the changes in the transformation of static
volumes have been used to control the movement of the proxy
point, prior to rendering shapes and other features in the data,
to enable smooth haptic feedback consistent with the scene
dynamics. This handling of changes in the scene is essential
for the general handling of volume visualization in a larger
virtual environment — the feedback will be consistent with
the motion, rotation and scaling of the volumes. The following
section discusses how similar principles can be applied to the
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more general case where the data inside the volume changes
between frames.

IV. TIME-VARYING VOLUMETRIC DATA

The principle used above to add support for active dynamic
transforms can be expanded to also provide feedback that is
consistent with changes in time-varying data. In this section
we consider sets of pre-captured data frames, each consisting
of a static data volume. This can be a series of CT volumes or
data from CFD simulations, for example. Graphical rendering
of such time-varying data is a matter of showing some
visual representation of the data frames in sequence. When
computing the haptic feedback, however, the changes between
the data frames must also be taken into account so that the
haptic probe can be pushed by a moving feature in the data
and thus provide a tactile sense of the dynamics in the data.

In section III the changes in the model transforms are
used to determine the movement of the data, and thus also
the collective movement of the features it contains, between
frames. In sets of data volumes the changes between adjacent
data frames are not known, so some explicit information about
these changes is needed. Without this, there is no way of
knowing how features are moving within the volume and so
it is impossible to perform the proxy movements described
above. It is, therefore, assumed that for each data frame there
exists a motion field, ~M , describing with a vector for each
position how that particular data point moves to a new location
in the following data frame. This motion field may, in some
cases such as with simulation data, be readily available, or can
be computed as discussed in section IV-E.

A. Animation Control

We begin by assuming that the animation of the time-
varying data is controlled by a fractional frame pointer that
specifies the current position in time. In the graphics thread,
this value is used to control the visual playback of the
animation. By extracting the integer part of the pointer value,
the current frame to show is determined.

In the haptic thread the fractional frame pointer is used to
control the haptic animation. Two values are of importance: the
fractional frame pointer in the current haptic frame interval,
Fic, and the value from the previous frame interval, Fip. Note
that to perform a smooth haptic interpolation between data
frames, the frames must be at known points in time, but these
points do not have to be equally spaced.

B. Moving Feature Representations

In visual rendering the same data frame can be shown for
the full duration of that frame — the visual sense performs
an interpolation to provide a sense of continuity even at fairly
low frame-rates. In haptics we need a much higher frame-
rate, preferably not less than 1 kHz, to give a smooth sense
of continuity. To obtain this higher frame-rate, we treat the
data frames as key-frames and perform a haptic interpolation
between them.

In the case of dynamic transforms the interpolated trans-
form is used to determine the data movements during haptic

3.02.75 3.25 3.5 3.75 4.0 4.25 4.5

2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5

A1A0

Animation timer

Haptics thread

Graphics thread
Fc

FicFip

Fig. 9. The fractional frame pointer is used in the graphics thread to determine
which data frame to show. In the haptics thread, the value is used to control
the haptic interpolation.

rendering between graphics frames. In this new case, however,
we do not have information about what is happening between
data frames. The animation frames are samples that can be
considered as hyperplanes in the space-time of the dynamic
data, see figure 10. As long as the fractional frame pointer is
not an exact integer value, the proxy cannot be considered to
be “on a data frame” in time. Thus, to be able to extract volume
data from one of the static volumes of the data sequence,
the inter-frame proxy from the previous haptic calculations,
~xproxy, must first be back-tracked to its corresponding posi-
tion, ~xP

proxy, in the data frame of the previous calculations,
bFipc. The details on proxy back-tracking are presented in
section IV-D.

The motion field vector at the data frame proxy position
describes how the local features in the data move between the
data frames. To derive the haptic effects of features moving
between the individual frames we update the proxy, the point
of interaction, to simulate a motion along the local motion
field vector,

~x′
proxy = ~xP

proxy + (Fic − bFicc) ~M(~xP
proxy) (22)

where Fic − bFicc is the current fraction between the data
frames. Back-tracking the proxy position using the previous
fractional frame pointer, Fip, and then moving the proxy using
the current fractional frame pointer, Fic, makes the haptic
interaction point move with the motion field.

This new proxy position, ~x′
proxy, is used in equation 5 when

estimating the haptic effect generated by the data extracted
from the volume. These data must, like the motion vector
in equation 22, be extracted from the data frame using the
data frame proxy position, ~xP

proxy. In this way the interaction
point is interpolated between the data frames while the data
controlling the effects of the haptic feedback are extracted
from the corresponding position in the volume frames of the
data sequence.

To summarize, the steps taken to produce feedback that is
consistent with changes between data frames are:

1) back-track the inter-frame proxy to its corresponding
position in the data frame
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t

A0

A1

~xproxy

Fip

t

~M(~xP
proxy)

~xP
proxy

A0

A1

~x′
proxy

Fic

Fig. 10. The proxy can always be considered to be located between two adjacent data frames in space-time. Thus, the motion field has to be used to first
back-track this position onto the current data frame for data extraction (left), and then move the proxy forwards to the current inter frame position (right)
before the proxy movement that determine the haptic effects is calculated.

2) use this position to extract data that should control the
effects from the haptic feedback (equation 4)

3) move the data frame proxy forwards to its new inter-
frame position

4) use the new proxy position as initial state when calcu-
lating the haptic effect (equation 5)

Since the probe position is generally used as part of ~F in
equation 5 to determine the proxy movements that should
produce the desired haptic effect, the user input can always
potentially modify the state and, for example, make the proxy
move sideways over a moving surface or even penetrate the
currently palpated feature. Thus, the proxy will not, in reality,
move straight along the line specified by ~M , which makes
the back-tracking and forward-moving necessary each time the
feedback is calculated.

C. Data Value Interpolation

In time-varying CT data the features in the data generally
have similar scalar values in adjacent data frames, but not at
the same location in the frames. This characteristic does not
apply to all types of data. For example, in CFD data the pres-
sure of a shockwave will decrease as the wave front propagates
through the volume. To avoid temporal discontinuity in such
cases, we introduce inter-frame temporal data interpolation.

When the data frame proxy position, ~xP
proxy, has been

determined as described above, its corresponding position in
the next data frame is determined through

~xP ′

proxy = ~xP
proxy + ~M(~xP

proxy) (23)

This position can then be used to extract data from the next
data frame. The data used to control haptic effects, Λ, are thus
estimated by interpolating between the data extracted from
the current data frame and the next data frame, A0 and A1

respectively (figure 10),

Λ = (1− r)Λ0(~xP
proxy) + rΛ1(~xP ′

proxy) (24)
r = Fic − bFicc (25)

where Λ0 and Λ1 are the volumetric data property of interest
from frames A0 and A1.

D. Position Back-tracking

The back-tracking is needed to find the proxy position in
the current data frame that corresponds to the current inter-
frame proxy position. This can be expressed as finding the

point ~xP
proxy for which

~xP
proxy + γ ~M(~xP

proxy) = ~xproxy (26)

where γ = Fip − bFipc, a value in the range [0, 1). This
equation can be rewritten as a fixed-point problem in 3D space,
~g(~x) = ~x, where

~g(~x) = ~xproxy − γ ~M(~x) (27)

The solution to fixed-point problems can be found by itera-
tively applying the function, starting from an initial estimate.
We use the data frame proxy position, ~xP

proxy, from the
estimation for the last haptic frame as an initial estimate, ~x0.
This value is not correct since the proxy has been moved
relative to the data frame in response to user actions since
then, but since the movement between two haptic frames is
generally small, this is an adequate first estimate.

The Banach fixed point theorem (1922) states that a neces-
sary and sufficient condition for successfully finding the fixed-
point in a compact space, a closed and bounded subset of Rn,
is d(Tx, Ty) ≤ q d(x, y), where q < 1 and T is the mapping
transform, in our case corresponding to ~g in equation 27. This
gives us, from equation 27 with γ set to one corresponding to
the worst case at the end of each data frame,∣∣∣(~x− ~M(~a)

)
−

(
~x− ~M(~b)

)∣∣∣ ≤ q
∣∣∣~a−~b

∣∣∣ (28)

⇓∣∣∣ ~M(~b)− ~M(~a)
∣∣∣ <

∣∣∣~a−~b
∣∣∣ (29)

where ~a and ~b are points in the compact space.
We let the current local region, where the solution is sought,

be our compact space. This is defined by the initial estimate
(~x0), the data frame proxy position (~xF

proxy) and the immediate
neighbourhood, the region containing the intermediate values
from the iteration. This indicates that the critical factor for
finding the correct solution to equation 26 is the temporal
resolution of the animation relative to the speed of the
changes in the volume — high temporal resolution reduces the
magnitude of ~M , while slow dynamic behaviour lowers the
difference between ~M at neighbouring positions. Moreover,
large movements of the haptic instrument enlarge the size of
the local neighbourhood, which also has a negative impact on
the conditions.

The back-tracking should move the proxy point into the
current data frame. If, in the interval between the previous
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Fig. 11. Two different cases are considered when using the motion vector
information to produce interpolated haptic feedback: A) both the current and
previous fractional frame pointer refers to the same data frame interval and
B) the current fractional frame pointer lies within a new frame interval.

and current haptic frame, a new data frame has been crossed
then the proxy must be advanced by the full extent of the
motion of the previous data frame, so that the proxy point
is at the start of what is now the current data frame when
extracting the data, see figure 11. Thus, we have two cases
of back-tracking shown in figure 11: (A) when the current
and the previous fractional frame pointer lie within the same
data frame interval, and (B) when the current fractional frame
pointer refers to a new data frame interval. This is also done
with the initial estimate mentioned above. Note also that a
wrap-around in a cyclic animation falls under case B.

If other position parameters expressed in world coordinates,
such as the probe position, are to be used to extract data then
these parameters must also be back-tracked to their frame-
specific locations. Subsequently, if any parameter is also used
when calculating the haptic effect, it must also be moved
forward, as expressed by equation 22.

E. Estimating the Motion Field

The motion field, ~M , may be readily available when
exploring time-varying data acquired from simulations. In the
case of interaction with most scanned data, such as MRI or
CT data, or with legacy data where motion information is
unavailable, this motion field needs to be estimated from the
set of static volumetric data frames.

The main requirement for the algorithm used to produce the
motion field is that it generates a dense field, that is a field that
defines a motion vector for each voxel. Data co-registration
algorithms, for example, provide dense fields describing the
relationship between data sets, so applying such algorithms
on pairs of adjacent frames, Λ0 and Λ1, produces this type of
data. These algorithms aim at minimizing the error, ε, in

ε2 =
∥∥∥Λ1(~x + ~M(~x))−Λ0(~x)

∥∥∥2

(30)

that is, find a deformation that projects one data set into
the other. An example is the Demons algorithm presented
by Thirion in [20]. This algorithm is available as a filter in
ITK[21], which we use to pre-process the data and subse-
quently to extract the motion field.

Λ1

Λ0

Λ(~x)

~x

~M(~xp)

~xp

~∇Λ0(~xp)

Fig. 12. This 1D example shows the implications of the instantaneous optical
flow equation for two discrete time steps (equation 31) at a position ~xp.

The Demons algorithm is based on the instantaneous optical
flow equation for two discrete time steps, which is designed
to identify the local motion of objects in space,

~M(~x) · ~∇Λ0(~x) = − (Λ1(~x)−Λ0(~x)) (31)

see figure 12. This equation is under-defined and needs an
extra constraint to be solvable. This constraint is provided by
projecting the deformation vector onto the gradient, resulting
in an expression for the deformation or motion field, ~M ,

~M(~x) = − (Λ1(~x)−Λ0(~x)) ~∇Λ0(~x)

‖~∇Λ0(~x)‖2
(32)

To make the expression less sensitive to small values for the
image gradient, a value must be added to the denominator so
that it does not approach zero. Thirion suggests the use of the
volume value difference, resulting in

~M(~x) = − (Λ1(~x)−Λ0(~x)) ~∇Λ0(~x)

‖~∇Λ0(~x)‖2 + (Λ1(~x)−Λ0(~x))2
(33)

This equation describes only a deformation determined from
the local comparison between the two volumes Λ0 and Λ1.
The full deformation is found by iteratively refining the
deformation field, according to

~M
n+1

(~x) = ~M
n
(~x)−(
Λ1(~x + ~M

n
(~x))−Λ0(~x)

)
~∇Λ0(~x)

‖~∇Λ0(~x)‖2 +
(
Λ1(~x + ~M

n
(~x))−Λ0(~x)

)2

(34)

where ~M
n

is the nth refinement’s deformation field. To ensure
connectivity in the resulting deformation field, a Gaussian filter
is applied to ~M after each iteration.

Since the range of the gradient is small relative to the
changes in most sequences of data, the estimation of the
motion field is preferably performed in multiple resolutions.
The result from the deformation estimation of one level of
resolution is used as the initial deformation for the estimation
of a finer level of resolution, starting with a initial zero defor-
mation at the lowest level. We perform this multi-resolution
deformation estimation in size doubling steps, resulting in
log2 256 = 8 levels for a volume of 2563 voxels.

This procedure, applied to a scalar data property, produces
a motion field describing the changes between one data frame
and the next. It should be noted, however, that while the
motion field for a scalar data set describing the location of
objects in space (such as CT) may seem unambiguous, this



TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

is not always the case. Different properties of a specific set
of scientific data may move in completely different directions
between two frames. For example in CFD the dynamics of
interest may be the motion of features such as vortices,
pressure regions or flow bifurcations. Each of these move in
separate directions and would need a separate motion field.
The Λ of equation 34 must therefore be carefully selected
so that the resulting motion field describes the motion of the
features represented by the current haptic mode. Thus, since
two haptic modes may describe different features from the
same data, these may need different motion fields to control
the dynamics in that same data.

F. Time-varying Volumetric Data Summary

In this section the changes between captured data frames
have been used to provide a smooth haptic feedback reflecting
the changes in the data. To achieve this the current interaction
point, the proxy, is first used together with a motion field to
determine the interaction position relative to the current data
frame. The local data at this position is used to control the
haptic effects in the current visualization. The motion field is
then used again, this time to move the proxy forwards, so that
the new position represents the motion of features from the
previous proxy position. This position is used when calculating
the haptic effect. This produces a haptic interpolation of the
motion or flow of features in the data between two data frames.
These frames may even be seconds apart in animations with
low temporal resolution or during slow playback.

V. MULTIPLE DATA VOLUMES

The primitives-based approach to volume haptics is de-
signed so that multiple data visualizations can be simultane-
ously handled in a single virtual environment, and data pro-
vided by different modalities can be co-registered to produce
a combined haptic effect. Each haptic mode that is part of
the balancing equation, equation 11, is potentially assigned an
individual data set and an individual transform, for example by
being at a different location in a scene graph. Proxy, probe and
primitive positions are described in world coordinates and the
projection into the data space is described by the inverse of the
transform of the haptic mode, T . Thus, different parts of the
sum in equation 11 may be subject to different transforms and
data so that, for example, follow-mode feedback is provided
by one volume at one position in space and surface feedback
is generated by another volume at a different location.

In section III we describe how the proxy point must be
translated in response to changes in the transforms to allow
for haptic feedback that is consistent with these changes. Since
the haptic modes may have individual transforms, this must
be performed separately for each haptic mode, which leads
to an individual proxy position for each haptic mode. These
are temporary points, however, used only to define the mode-
specific primitive parameters such as position and strength.
When minimizing the balancing equation all primitive param-
eters are expressed in world coordinates, producing a single
new proxy position again in world coordinates. The same
considerations must also be taken into account when handling

time-varying data (section IV). Since the haptic modes may
have different data and thus also different motion fields, the
data frame proxy position may be specific to each haptic mode.

VI. IMPLEMENTATION

The support for dynamic transforms and time-varying data
has been integrated into the publicly available Volume Hap-
tics Toolkit[18], our earlier implementation of the haptic
primitives-based method. The toolkit is built on H3D API,
an X3D-based and cross-platform scene graph system for
multi-modal applications. It provides haptic modes, visual
components and data handlers as scene graph nodes for fast
and simple construction of advanced multi-modal applications.
In the toolkit each haptic mode is represented by an individual
scene graph node providing the haptic representation of data
in a manner similar to the way that a graphics node may
produce a visual representation controlled by transforms and
parameters in the scene graph.

Each haptic mode node extends a super-class that handles
transform caching, data interpolation and extraction, and data
animation. A singleton core handles the collecting of haptic
primitives from all active haptic modes. Since all primitive
parameters are held constant after being set, these primi-
tives by themselves fully define the haptic behaviour and no
knowledge about the data or features are needed outside of
the mode node. The core node also moves the proxy with
transform changes, and performs the proxy back-tracking and
movements following the approach presented here.

By applying the measures discussed in sections III and IV in
sequence, the full support for dynamic data is implemented. By
performing the forward movement on the primitives instead of
the proxy, see figure 13, the haptic modes can work entirely in
the space of the data frames. The primitives are then fed into
a solver that solves equation 11 and returns the new proxy
position. With this approach both the haptic modes and the
primitives’ solvers are unaware of the dynamics of transforms
and data. This greatly simplifies the implementation of new
haptic modes and solvers.

VII. RESULTS

The implementation is run on a SenseGraphics IW Display
equipped with 19” stereoscopic CRT, a Desktop PHANToM
and a Magellan SpaceMouse. The display is driven by a dual
Xeon 2.0 GHz PC with 256 MiB RAM and a Quadro FX
3000 graphics card. The system is calibrated for co-located and
co-registered haptics and graphics, and the world coordinate
system is calibrated with real-world metric units.

It is hard to communicate the effect of haptics in the static
medium of an article, and dynamic haptics is even harder. The
results below attempt to describe both objective observations,
such as timings, tested data sets and experimental details, as
well as subjective experiences by experienced users of haptic
visualization.

A. Dynamic Transforms

We tested the dynamic transform support on a sim-
ple visualization of an analytical electropotential field of a



TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

1 for each mode in list of haptic modes
2 interpolate transform
3 forward transform proxy
4 back−track proxy to get frame proxy
5 call get primitives in mode
6 use frame proxy to get data
7 use data to define primitives
8 use frame proxy to position primitives
9 return primitives

10 end call
11 move forward primitives’ positions
12 end for
13 call get new proxy position in solver
14 return spring feedback

(i) This pseudo code shows the combined use of the steps presented in this
article.

for each mode

Core

Define Haptic Primitives

Haptic Mode

Animation Field

Haptic Mode Super-class

Scene-graph Transform

Transform Proxy

Interpolate Transform

Back-project Proxy

Query Haptic Primitives

Move Haptic Primitives

Find New Proxy Position

Solver

Minimize Balance Eqn.

(ii) This structural figure of the current implementation shows how
different parts communicate. All haptic modes have a common super
class that handles the accumulated transform, the time-varying data and
the motion field.

Fig. 13. The estimation of proxy position and haptic feedback that is
performed for each haptic frame.

dichloroethane molecule, see figure 14. The data is rasterized
into a 3D texture for the visual volume rendering while the
haptic rendering is performed directly on the analytical data.
The haptic feedback is generated using the follow-mode, see
section II-E, applied to the gradient of the electropotential.
This mode provides a feeling of both the orientation of the
field by guiding the probe to follow the field lines, and
the strength of the electropotential through the strength of
the haptic feedback, the force needed to move the probe
perpendicular to the field. Stream-tubes, interactively released
in the virtual environment using the haptic instrument, provide
a visual impression of the field used to control the haptic
feedback. The molecule model can be freely rotated using a
Magellan SpaceMouse and the dynamics support provides an
active drag of the haptic probe that follows the changes in the
transform.

Without the support for dynamic transforms, the user will
get no feedback from the rotation of the visualization: even if
the data is rotating, the feedback will provide a static haptic
representation of the data, so that the data at the probed
position is experienced as static but with a changing value.

Activating the dynamic transform support, the feedback
becomes consistent with the changes in the model transform.

Fig. 14. The dichloroethane electropotential visualization with dynamic
transforms controlled by a Magellan SpaceMouse. The haptic device is
represented by a pen model with a small sphere in front of the pen at the
probe position.
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Fig. 15. In this graph, that shows the feedback force during interaction with
a rotating data set, the artifacts from misestimated frame time can be seen as
an unevenness in the force feedback at the end of every graphics frame.

For example, the moving haptic representations of the data pull
the haptic probe with the rotation of the data. The lag of up to
one graphics frame is unnoticeable at normal graphics frame-
rates and the transform interpolation works well and produces
smooth feedback. With large movements in combination with
uneven frame-rate, however, the C1 discontinuity mentioned in
section III-C can be noticed as an irregularity in the feedback
from, for example, a continuous rotation. This is experienced
as a small tick at the transition between two graphical frames,
see graph in figure 15. It should also be noted that controlling
the transforms through a device outside of the haptic control
loop will add energy to the system, which can lead to unstable
behaviour.

B. Time-varying Data

The support for time-varying data has been tested in two
configurations with different data sets, one synthetic with
known changes over time and one authentic with unknown
changes that need to be estimated. The authentic data set is a
CT scan sequence of a beating human heart and the synthetic
data set is a simulation of the same type of data.
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1) Haptic Feedback: For haptic feedback from these data
sets we apply the surface and friction mode, see section II-E.
This mode extracts the gradient vector from the scalar data
and uses this as an estimation of a local surface. The effect is
the feeling of surfaces at locations where the scalar value in
the CT data changes, typically at borders between tissues. The
yielding constraints allow the user to apply a force exceeding
the tissue specific strength and so penetrate the surface.

Exploring either of these animated data sets without the
support for dynamics introduced here produces the impression
of static data. The movements of, for example, the heart wall
do not provide any haptic feedback. Only when the haptic
instrument is moved by the user towards or over a tissue
surface is the feedback exerted. The feeling is then of a static
surface and as the animated surface moves away from the
probed position, the feedback disappears.

2) Synthetic Data: This data set is of 1283 voxels and both
scalar data and motion field have been analytically estimated to
provide a minimal error testing suite. The “heart” is a spherical
shell of high scalar values surrounded by low values, and
the “beating” consists of this shell repeatedly cycling through
the phases small, intermediate, large and then back again to
intermediate, four frames in total. The first three frames, from
the expansion phase, are shown in figure 16 (leftmost, middle
and rightmost). This setup has been tested at animation rates
of 1–4 fps.

The feedback from the time-varying volumetric data is
smooth and provides the same feature representation as in-
teraction with static data, but now consistent with the changes
in the data, providing a sense of moving haptic features. As the
heart expands, the haptic features push the haptic instrument
forwards and as the heart contracts, the features yield allowing
the instrument to move inwards.

Since the animation frame-rate is independent of the graph-
ics frame-rate of the running system, the difference between
haptic and graphics feedback is more apparent here than with
the dynamic transforms. With the haptic feedback interpolated
between the data frames it can appear, particularly with low
data frame-rates, as if the surface is pushing the probe away
from the visual heart wall when the heart is expanding or
yielding when the heart is contracting. The push effect can
be seen in the expansion phase in figure 16, frames 2 and 4.
Increasing the data frame-rate reduces this effect and with a
rate experienced as smooth, the effect becomes unnoticeable.

3) Authentic Data: We have also tested the algorithm on
an authentic CT of a beating heart, shown in figure 17. This
data set, acquired through CT synchronized with EKG, is of
10 frames for the full beat cycle (to run at approximately
10 frames per second) with 5122 × 400 voxels size and a
resolution of about 0.5 mm/voxel. The data was downsampled
to 1282 × 100 to make the full animation fit in the available
memory. The motion field estimation for this data set was
implemented using ITK to perform a coarse-to-fine multi-
resolution refinement as described in section IV-E.

The haptic feedback makes it possible to touch and track
by touch the moving heart walls, and feel the movements.
Touching the heart from the outside, the beating surface can
be freely palpated and, by simply applying a force exceeding

TABLE I
TIME NEEDED TO ESTIMATE THE HAPTIC FEEDBACK WITH AND WITHOUT

SUPPORT FOR DYNAMIC TRANSFORMS AND ANIMATED VOLUMES.

Activated Support CPU Time
Static Volumes 0.036 ms
Dynamic Transforms 0.045 ms
Dynamic Transforms & Time-varying Data 0.66 ms

the strength defined for the heart muscle, the wall can be pen-
etrated and the inside of the heart chamber can be examined.

In the case of the motion field being estimated from the
set of frames, the accuracy of the haptic feedback depends
heavily on the quality of this estimation. The required quality
also varies for the different haptic modes available for scalar
data due to their different nature. In the case of the surface
and friction mode used here, the demands are high. Palpating
regions where the motion field has been miscalculated could
result in haptic artifacts such as ‘pop-through’ of the heart
wall and temporal discontinuities in palpated shapes.

C. Performance

To check the performance of the presented approach, the
implementation has been timed with the authentic heart con-
figuration described above. To estimate the CPU time the delay
in estimating the haptic feedback was recorded for a typical
exploration session. This was done for the same simulation and
in similar conditions in three compilations of the software:
without support for feedback from dynamics, with support
for dynamic transforms but not animated volumes, and with
support for both dynamic transforms and animated volumes.
For each version the typical CPU time on the current platform
is presented in table I. The time is independent of haptic
rendering state and has O(N) time complexity with respect to
the number of haptic modes used, since each mode potentially
needs a separate processing of the proxy position.

The results show that adding support for dynamic trans-
forms adds marginal extra load on the CPU. The support for
haptic feedback from animated data, however, adds consider-
able extra time to the feedback estimation. It is primarily the
back-tracking that adds to the computations. This procedure
includes multiple vector data extraction from the motion field,
each of which requires interpolations and world to local
space transformations. The total time needed, however, is still
generally below the limit of 1 ms required to keep the 1 kHz
update rate.

VIII. FUTURE WORK

The results show that the presented algorithm is capable
of allowing feedback that is consistent with dynamics in
the data and that the haptic effects are both effective and
predictable, however there remain some development areas
for the support for animated data. Firstly the requirement of a
high quality motion field makes this method heavily dependent
on the success of algorithms for optic flow or registration.
Since direct volume haptics is not connected to an isosurface,
streamlines or some other object that can be exactly located
on a frame to frame basis, errors in each haptic frame may
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Fig. 16. A part of the sequence of a simulated CT of a beating heart. Images 1, 3 and 5 show the on-surface effect when haptic and graphics frames are
in sync, while 2 and 4 show the effect of the haptic interpolation which gives the impression of the haptic probe lying on a virtual surface outside the visual
surface.

be accumulated to eventually yield a noticeable error in the
haptic behaviour. The Demons algorithm used in the work
presented here follows a general optical flow-based approach
that uses simply the intensity values and gradient of the
scalar volumes. Other phenomena that are unique to specific
volumetric data are not handled by optic flow algorithms, such
as conservation of mass in CT. By considering the properties
of the specific data at hand a more accurate, precise and
complete definition of the motion field could potentially be
extracted. Consequently, in the continuation of this project we
wish to make use of specialized algorithms, for example those
presented in [22]–[24]. This is an important line of research
for more accurate and effective haptic interaction with a wider
variety of dynamic data.

Artifacts not removed by improving the quality of data,
for example the irregularities from dynamic transforms and
other artifacts from misestimated interpolation time, need to
be reduced through additional measures. The possibilities of
applying force smoothing in the transitions between interpo-
lated frame intervals to reduce the artifacts, and its impact on
the feedback quality are examples of future interests.

The most important future work in this project, however,
is to investigate the back-tracking algorithm and alternatives,
and find ways to guarantee graceful failure when no single
solution is available. In the current implementation we address
this by checking the calculated estimate and the initial estimate
against equation 27 and choosing the best match. Our worst
case scenario, the initial estimate, corresponds to ignoring the
movement of the proxy point since the last estimation when
reading off the movement vector.

The haptic support for time-varying data require only the
data of the current data frame interval and an explicit descrip-
tion of the motion of local features from the current frame
to the next. These data can also be provided by real-time
simulation, allowing for dynamic volume haptics from, for
example, interactive and volumetric tissue deformation. There
are several issues in this process that we will examinate in our
future work, for example motion field estimation and how to
handle a delay in the data generation.

IX. CONCLUSIONS

Volume visualization is a powerful tool for exploring scien-
tific data of a dynamic nature. Haptic feedback for volumetric
data, capable of enhancing speed, accuracy and information
flow in volume exploration, has been lacking methods for
representing time-varying properties of dynamic data. This
article has presented a technique to enable haptic feedback

Fig. 17. A frame from the animated CT sequence of a beating human heart.
The haptic pen is probing the moving heart wall.

that reflects changes in volumetric data, which allows the
introduction of haptic feedback in the exploration of dynamic
behaviour in scientific visualization, and feedback consistent
with changes in transforms. We have shown that the algorithm
is effective in handling both dynamic transforms and animated
volume data, providing smooth haptic interpolation and stable
and predictable feedback, while still allowing for the required
1 kHz haptic update rate. Furthermore, we have shown that
the method can be implemented in a way so that no additional
considerations are needed when implementing haptic modes.
New modes can be developed for static data sets and then be
readily deployed on time-varying data.
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[17] Dirk Bartz and Özlem Gürvit, “Haptic navigation in volumetric
datasets,” in Proceedings of PHANToM User Research Symposium,
2000.

[18] Karljohan Lundin, Matthew Cooper, Anders Persson, Daniel Evestedt,
and Anders Ynnerman, “Enabling design and interactive selection of
haptic modes,” Virtual Reality, 2006, DOI: 10.1007/s10055-006-0033-
7.

[19] Susan J. Lederman and Roberta L. Klatzky, “Hand movements: A
window into haptic object recognition,” Cognitive Psychology, vol. 19,
no. 3, pp. 342–368, July 1987.

[20] Jean-Philippe Thirion, “Image matching as a diffusion process: an
analogy with Maxwell’s demons,” Medical Image Analysis, vol. 2, no.
3, pp. 243–260, 1998.

[21] Luis Ibanez, Will Schroeder, Lydia Ng, and Josh Cates, The ITK
Software Guide: The Insight Segmentation and Registration Toolkit,
Kitware Inc, 2003.

[22] Samuel M. Song and Richard M. Leahy, “Computation of 3-D velocity
fields from 3-D cone CT images of a human heart,” Transactions on
Medical Imaging, vol. 10, no. 3, pp. 295–306, September 1991.
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