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CST: Constructive Solid Trimming for 
rendering BReps and CSG 

John Hable and Jarek Rossignac 

Abstract—To eliminate the need to evaluate the intersection curves in explicit representations of surface cutouts or of trimmed 
faces in BReps of CSG solids, we advocate using Constructive Solid Trimming (CST). A CST face is the intersection of a surface 
with a Blist representation of a trimming CSG volume. We propose a new, GPU-based, CSG rendering algorithm, which trims the 
boundary of each primitive using a Blist of its Active Zone. This approach is faster than the previously reported Blister approach, 
eliminates occasional speckles of wrongly colored pixels, and provides additional capabilities: painting on surfaces, rendering 
semitransparent CSG models, and highlighting selected features in the BReps of CSG models. 

Index Terms— I.3.3 GPU support for CSG rendering, 3.5.a&b CSG expressions for trimmed faces, J.6 CAD model visualization 

——————————  —————————— 

1 INTRODUCTION
ANY design, visualization, analysis, and entertain-
ment applications manipulate models of solids. A 
common approach is to represent a solid by a trian-

gle mesh that approximates its boundary.  
A mesh M that is bounded (i.e. finite) and watertight (in 
which each edge has an even number of incident triangles) 
divides its complement into two half-spaces: the interior 
i(M) and the exterior e(M) of M. i(M) is the set of points 
from which rays that avoid the edges and vertices of M stab 
an odd number of triangles of M.  

Let M.v, M.e, and M.t be respectively the set of vertices, 
edges, and triangles of M. In our terminology, an edge does 
not include its bounding vertices and a triangle does not 
include its bounding edges and vertices. We say that M is 
clean when the set of all triangles, edges, and vertices of M 
are exclusive (i.e. pairwise disjoint). 

The regularization r(V) of a set is the closure of its inte-
rior. The boundary of a regularized solid separates its inte-
rior from its exterior. For simplicity, we say that a set V is a 
solid when V=r(V). When M is bounded, watertight, and 
clean, then the union V=M∪i(M) is a solid and M is its 
boundary.  

A CSG (Constructive Solid Geometry) representation of 
V defines it as a regularized Boolean expression [1] that 
combines primitive solids through union (+), intersection 
(omitted), and difference (–) operators. We denote the com-
plement of a primitive A as !A. In what follows, we discuss 
CSG representations that define solids as regularizations of 
Boolean combinations of solid primitives, each defined by a 
clean mesh. For example, the solid in Fig. 1.b is defined by 
the Boolean combination of 20 different primitives.  

We propose a new GPU-based approach for the realtime 
rendering of CSG models and of trimmed surfaces (the in-
tersection or differences between a surface represented by a 
triangle mesh, which needs not be watertight or clean, and 

a CSG model).  
Complex CSG models can be rendered in realtime on 

commodity graphics adapters by exploiting the observation 
that the boundary of a CSG solid is a subset of the bounda-
ries of its primitives. Hence, many approaches rasterize the 
surfaces that bound the primitives, identify points that are 
ON the solid’s boundary, and select the front-most bound-
ary-point at each pixel. The differences between approaches 
lie in the order in which the primitives are rasterized and in 
the manner in which candidate points are tested to estab-
lish whether they are boundary-points or not. For instance, 
the Blister approach [2], generates candidate points by lay-
ers using hardware-supported front-to-back peeling which 
stores the candidate points of the current layer in a depth-
buffer. It tests all the candidates of the current layer against 
the entire CSG model by scan-converting each primitive; by 
keeping track of the parity of the number of triangles of the 
primitive that occlude each candidate point; and by merg-
ing the results using only a few book-keeping stencil bits 
per pixel.  

Unfortunately, a candidate point generated by scan-
converting a primitive A may happen to lie on another 
primitive B. This singular situation may reflect the de-
signer’s intention of using primitives with overlapping 
faces or it may be an unfortunate coincidence produced by 
performing z-buffer tests on quantized depth values. (Even 
though two candidate points that project on the same pixel 
may have different depths, their quantized versions may be 
identical.) Consequently, candidate surface points on A that 
lie close to the boundary of B are often misclassified and 
displayed using the surface properties of B, producing 
wrongly colored speckles in the image (See Fig. 2). Note 
that even though the color at speckles may be wrong, their 
quantized depth is correct. The CST technique proposed 
here eliminates such speckles without reducing perform-
ance. 
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In fact, most other previously proposed techniques [3], 
[2] do not really test whether a candidate point lies on the 
boundary of the CSG solid. Instead, they only differentiate 
between candidate points that are OUT (i.e. in the exterior 
of the CSG solid) from those that are IN/ON (i.e. either in 
the interior or on the boundary of the solid). This distinc-
tion is sufficient for rendering, since, assuming that the 
viewpoint is outside of the solid, the front-most IN/ON 
point selected by the depth-test at each pixel is necessarily 
ON the solid [4].  

Unfortunately, these approaches are not able to dis-
criminate whether IN/ON points that are hidden by a 
front-most IN/ON point lie on the boundary of the CSG 
solid or in its interior. This situation is illustrated in Fig. 3, 
which shows a 2D slice through the model.  

With such approaches, the union of all IN/ON points of 
a CSG solid V cannot be used as a rasterized representation 
of V when one wishes to use the parity test for classifying 
candidate points of another mesh S against V.  

This drawback leads to several limitations, all of which 
are removed by the CST approach proposed here. 

 Limitation 1: The techniques mentioned above are not 
suitable for rendering CSG models as if their boundaries 
were semi-transparent, because in most cases they render 
extraneous portions of the boundaries of primitives that are 
IN/ON, but not necessarily ON S. Some approaches [5], [6], 
[7], [8], [9], [10] convert a CSG expression into a disjunctive 
form [11] which is the union of intersections (products) of 
primitives. These approaches are able to distinguish the ON 

points of each product from the IN points. Unfortunately 
ON points of a product may be IN points of the union of 
products. Rendering them as semi-transparent produces 
incorrect and confusing images. 

Limitation 2: The rendering system is not capable of cor-
rectly coloring the contribution of a primitive A to the 
boundary of the solid V. Such a facility is vital during the 
design phase when the user selects and manipulates one or 
more primitives at a time and needs to see clearly which 
portion of the solid’s boundary are affected by changes to 
the selected primitives. 
    Limitation 3: The inability to distinguish the ON points 
from the other IN points of CSG models prevents the use of 
CSG models as trimming volumes for surfaces represented 
by meshes that are not water-tight. This facility is important 
for a broad set of geometric modeling and artistic design 
applications, in which Boolean combinations of solids are 
used to trim faces or to paint logos or patterns on faces (Fig. 
1.a).  

The removal of the above limitations by the CST ap-
proach introduced here hinges on a single capability: trim a 

surface S against a solid or CSG model V returning, de-
pending on the application, the portion of S in V, out of V, 
or on V. We call this function CST(S,V). This trimming ca-
pability is based on two operators implemented efficiently 
on commodity GPUs: 

Peel(S) pushes depth values at unlocked pixels to candi-
date points on the next depth-layer of a mesh S during the 
rasterization of S. 

Trim(V) classifies candidate points at unlocked pixels 
with respect to a Blist form of the CSG solid V and locks the 
pixels at candidate points that lie in V (or if preferred, out 
of V).  

 
Fig. 4. Four consecutive layers generated by Blister (top) and by our 
CST approach (bottom) are combined (right) to produce a semi-
transparent image. Note that the CST approach produces the correct 
image (bottom-right) while Blister does not (top-right).  

 

    
Fig. 1. Examples of CST applications include (from left to right): (a) Using extruded solids to carve or paint on the “Bunny”; (b) revealing the 
trimmed faces of selected primitives (features) in the BRep of the “Complex” CSG model; (c) highighting (in red) the interference between two 
semitransparent solids in a small assembly; and (d) correctly rendering a semitransparent CSG model with numerous overlapping primitive 
boundaries (such as the “Gear” shown here). These models were rendered in realtime on the GPU using our peel&trim process.  

 

 

 
Fig. 2. Blister with speckles, and CST which removes them.  

 
Fig. 3. Four primitives (left). The boundary of the solid V=(A+B+C)–D 
(right). IN/ON points (center).  
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Alternating these operators until all pixels are locked or 
all layers of S are processed renders a Constructive Solid 
Trim (CST) of surface S. When S is opaque (not semi-
transparent), CST(S,V) is the front-most set of pixels of S 
that falls inside the solid defined by V. 

We advocate using such CSTs as an option for rendering 
CSG models quickly and reliably. We realize that in many 
applications, it may be preferable to pre-compute and tri-
angulate the boundaries (BReps) of CSG models and then 
to use them for rendering. However, this pre-computation 
is often numerically delicate and too slow for realtime 
feedback during shape design or animation of parametric 
CSG models.  

For instance, boundaries of CSG models with polyhedra 
primitives may be pre-computed reliably [12], triangulated, 
and used for realtime rendering. However, such a bound-
ary evaluation is too slow (even for polyhedral models) to 
be invoked at each frame during interactive editing or 
when the tessellations of the primitive boundaries must be 
refined through subdivision during camera motions. 
Hence, numerous direct CSG rendering algorithms have 
been proposed that eliminate this boundary evaluation 
cost. CST improves on them providing a fast, accurate, and 
scalable solution. 

Furthermore, our CST approach offers an alternative to 
the trimmed-surface representation of BReps. Using CST 
for rendering BReps makes it possible to render trimmed 
NURBS [13], [14] and subdivision surfaces without having 
to parameterize them, compute intersection curves, and 
convert these curves into trimming curves in the parametric 
domain. CST also eliminates the need to stitch the cracks 
between abutting trimmed faces [15], [16] and of tracking 
the intersection curves in animated models [17]. Note that 
this option is only possible when a CSG expression of a 
trimming volume may be derived for each face, which is 
the case when the shape is created through Boolean opera-
tions, but may not be the case when the trimming curves 
are generated for example by filleting procedures. 

Hence, we propose two techniques, both based on the 
peel&trim approach mentioned above. One renders CSG 
models, the other one renders trimmed faces of BReps, 
where the trimming volume is a solid defined by a CSG 
expression. 

Our CST approach to CSG rendering is based on a new 
algorithm, which peels each primitive P of a CSG model V 
and classifies it against the Blist of the active zone Z of P. 
The active zone Z is the volume where changes of P affect 
V [18]. Its CSG formulation may be derived algorithmically 
from the CSG expression of V. The Blist form of a CSG ex-
pression [19] reduces the storage per pixel needed for com-
bining the results of point/primitive tests when classifying 
a point against a CSG solid. 

Using this CST approach for CSG rendering offers sev-
eral advantages over prior approaches: (1) It eliminates 
artifacts (such as speckles). (2) It makes it possible to high-
light the contribution of selected primitives. (3) It permits 
correct rendering of images of semi-transparent CSG mod-
els. 

Our CST approach to the rendering of trimmed faces of 
a BRep peels each untrimmed surface S and classifies each 

layer of candidate points on S against the Blist representa-
tion of the CSG model of the trimming volume V. 

To support CST rendering, we have developed several 
results reported as new contributions in this paper, which 
is organized as follows. Section 2 reviews the background 
and prior art for peeling, trimming, and CSG rendering. 
Section 3 reviews the Blist formulation, its construction al-
gorithm, and its use for classifying candidate points against 
a CSG expression. Note that without the Blist approach, a 
large number of stencil bits per pixel could be required to 
combine the classification results of the corresponding 
candidate pixel against the CSG primitives. The Blist 
approach in [2] reduces that number so that candidate 
points may be classified against any CSG expression of 3909 
primitives or less using only 7 bits per pixel. Section 4 dis-
cusses a novel, robust method for trimming a surface by a 
Boolean combination of solids using CST. Section 5 shows 
how to use CSTs for CSG rendering. Section 6 details appli-
cations of CSTs including transparency, depth peeling, and 
painting on faces. The implementation and speed optimiza-
tions are discussed in Section 7. Section 8 reports results 
and timing statistics. 

2 BACKGROUND AND PRIOR ART 
First, we discuss peeling. The ray from the viewpoint 

through a pixel may stab a surface S more than once. Since 
the front-most intersection point may be trimmed away by 
V, we must be able to generate the other intersection candi-
dates (or surfels). This is accomplished by rasterizing the 
surface several times. Two approaches have been proposed 
for generating all candidate points on S. (1) Goldfeather et 
al. [5] used stencil bits to count how many times a pixel has 
been covered during the rasterization of a given primitive 
and to lock the surfel produced during the ith hit of the ith 
raster pass. (Fig. 5 left). This approach was implemented on 
Pixel Planes [20] and later on commodity graphics hard-
ware [7]. (2) The Trickle algorithm [21] uses a Depth-
Interval Buffer (DIB) [22] to traverse the layers of a product 
of primitives in depth-order (Fig. 5 right). The depth of the 
previous layer is stored in z-buffer Front. Z-buffer Back is 
initialized to infinity. While rasterizing S, when we find a 
surfel whose depth falls between Front and Back values of 
the current pixel, we replace Back by depth. The process 
computes the front-most layer behind Front and stores it in 
Back. Main memory was initially used for Front and Back 
[22]. Everitt [23] implemented peeling in hardware follow-
ing Mamman’s design [24], which uses texture memory. 
Our CST algorithm uses texture memory and DIB peeling 
to generate candidates on the consecutive layers of S. 
Depth-peeling custom hardware for rendering transparent 
CSG models has been proposed by Kelley et al. [25]. 

Now, we discuss how to classify these candidates sur-
fels against a single primitive P. Several approaches have 
been proposed. Du and Qin [26] have used solids to trim 
physically defined surfaces. Schmitt at al. [27] define het-
erogeneous objects using Booleans between curves, sur-
faces, and solids. Several software approaches are possible 
for classifying a fixed sampling of candidate points on S. 
When P is represented as a conjunction of algebraic ine-
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qualities [4] candidates are rejected if they fail to satisfy any 
one of inequalities of the conjunction. When a voxel model 
or octree approximation of P provides sufficient accuracy, it 
may be used as a look-up table to classify candidates on S 
[28] or candidates inside the volume bounded by S [29]. 
However, when the model or the desired resolution is 
changing at each frame, it is more efficient to re-compute 
the candidates at each frame through rasterization and clas-
sify them using hardware. This is the approach that we 
follow. 

The candidates (surfels) of the current layer are stored in 
the color and z-buffer of unlocked pixels. To classify them 
in parallel against a solid primitive P, we rasterize the 
boundary of P while toggling a parity bit, parity, at each 
unlocked pixel each time a rasterized portion of P lies be-
hind the candidate surfel. If the final value of parity is true, 
the corresponding candidate is IN P. In fact, this approach 
tests whether the points immediately behind the candidate 

lies in P. Note that we could also toggle parity when we find 
P in front of the candidate to test whether the point imme-
diately in front lies in P (see Fig. 6). 

To classify candidates against a CSG model V, one can 
rasterize each primitive P of V, store for each candidate the 
corresponding parity results in different stencil bits, and 
combine these results using parallel bitwise logical opera-
tions on stencil bits [30]. Unfortunately, contemporary 
graphic adapters offer only 8 stencil bits per pixel. Hence, 
to support complex CSG expressions, most previously pro-
posed CSG rendering approaches expand the CSG into a 
sum-of-products (disjunctive form) [21], [6] and use two 
stencil bits to track the status of each candidate. Several 
techniques were proposed to accelerate the rendering of 
products [21], [31], [8], [10] or other variations of disjunc-
tive forms [9], [3]. Unfortunately, the number of products in 
a disjunctive form may grow exponentially with the num-
ber of primitives. Generating products may be avoided by 
using custom hardware to merge ray/primitive classifica-
tions [32] or, as done by Blister [2] by using a Blist repre-
sentation [33] of the CSG expression of V. Blister peels the 
union of the boundaries of all primitives of V as if it were a 
single surface S and classifies the candidates on each layer 
against the Blist of V.  

In contrast, as mentioned earlier, to improve perform-
ance, to eliminate occasional color errors, and to support a 
broader set of applications, the CSG rendering algorithm 
introduced here trims the boundary of each primitive P 
against a Blist of its active zone. 

To simplify explanations, throughout the paper we as-
sume that all CSG expressions have been converted into 
their positive form (Fig. 4), obtained by replacing each dif-
ference operator (L–R) by the intersection (L(!R)) with the 
complements, !R, of its right operand R and by propagating 
the complements to the leaves using de Morgan laws. 
Leaves that are complemented in this positive form (as D in 
Fig. 7) are said to be negative. The other ones are said to be 
positive. 

3 COMPUTING AND USING BLISTS 
The Blist form [33] of a Boolean expression is a particular 
case of the Reduced Function Graph (RFG) [34] and of the 
Ordered Binary Decision Diagram (OBDD) [35] studied for 
logic synthesis. These are Acyclic Binary Decision Graphs 

[36], which may be constructed through Shannon’s Expan-
sion [37]. The size (number of nodes) of RFGs may be ex-
ponential in the number n of primitives and depends on 
their order [38]. Minimizing it is NP-hard. In contrast, Blist 
expressions have exactly n nodes and have linear construc-
tion and optimization costs, because they treat each leaf of 
the tree as a different primitive. Although this may not be 
acceptable for logic synthesis, it is appropriate for CSG ren-
dering. Indeed, if a primitive appears several times in a 
CSG expression, each instance usually has a different posi-
tion, and hence must be processed as a different primitive 
during rendering. 

We present below a simple algorithm for extracting the 
Blist of a CSG tree. Assume that the tree is stored as an ar-
ray o of chars, where o[m] is ‘+’ when m is a union, ‘×’ 
when m is an intersection, or a letter identifying a primi-
tive. We make two passes of linear-cost. During the first 
pass (recursive call to lml shown in blue below), each node 
m retrieves the name of the left-most leaf of its right child. If 
m represents an intersection operation, this name is stored 
in the field f[m], otherwise it is stored in the field t[m]. The 
results are marked in blue in Fig. 8. 

char lml (int m) {     // get left-most leaf of right child 
 char leftMost;  
 if ((o[m]!='×')&&(o[m]!='+')) {leftMost=o[m]; } 
 else {if (o[m]=='+') {f[m]=lml(r[m]); } else {t[m]=lml(r[m]); };  
      leftMost=lml(l[m]); };  
 return(leftMost); } 

 
Fig. 5. Traversal-order (left) and depth-order (right) peeling.  

 
Fig. 7. CSG tree for (A+B)(C–(D–E)) and its positive form.  

 
Fig. 6. Parity-based classification. Toggle parity when the rasterized 
primitive is on the desired side of the candidate point (red/green dots).  
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During the second pass (recursive call to mb, shown in 
red below), we push down the values of the pt and pf pa-
rameters, which are initialized to true and false (respec-
tively) and replaced by the corresponding blue values of a 
node m when going to the left child of m. The resulting as-
signments of the t and f values (stored as t[m] and f[m] en-
tries) are shown in red in Fig. 8. 

void mb (int m, char pt, char pf) {   // push down blue values 
 if ((o[m]!='*')&&(o[m]!='+')) { // if leaf 
  xblistName[pc]=o[m]; blistIfTrue[pc]=pt; blistIfFalse[pc]=pf;  
  t[m]=pt; f[m]=pf; pc++; } 
 else {if (o[m]=='+') {mb(l[m],pt,f[m]); } else{mb(l[m],t[m],pf);};  
 mb(r[m],pt,pf); }; } 
Executing our algorithm on the tree in Fig. 8 yields the 

Blist in Fig. 9, where each primitive P, corresponding to 
index m in the array representation, has 3 labels: (1) its ID 
P.n=o[m], (2) the ID P.t=t[m] of the next primitive against 
which a candidate that is classified as in P should be tested 
(shown in Fig. 9 as a link from the top right corner of the 
corresponding triangle), and (3) the ID P.f=f[m] of the next 
primitive against which a candidate that was classified out 
of P should be tested (shown in Fig. 9 as a link from the 
bottom right corner of the corresponding triangle). 

For example, when P is A in Fig. 6, P.n=A, P.t=t, P.f=B. 
This circuit represents the different paths that one may take 
to classify a candidate X against the Blist, depending on its 
classifications against the primitives. For instance, if X∉A, 
X∈B, X∉C, X∈D, we would leave A by the bottom link to B, 
leave B by the top link directly to D, skipping C, and leave 
the whole circuit by the top link of D. Note that the special 
labels, t and f, of the exit links stand for true and false, and 
indicate the ultimate classification of X.  

Since we will be storing these labels in the stencil bits of 
the corresponding pixels, we wish to encode them as short 
bit strings. First, as in Hable and Rossignac [2], we obtain 
positive integer encodings of the labels by traversing the 
Blist left to right. As we do so, we keep track of the active 
and free integer labels. We allocate 0 to the first primitive. 
When a primitive is referenced for the first time, we give it 
the smallest free integer label. 

If one stencil bit is used for parity, we may represent 
27=128 different labels using the remaining 7 bits. Since two 

labels are reserved for true and false and one for the locked 
mask, we would be able to accommodate all CSG expres-
sions with up to 125 primitives. To accommodate more 

complex CSG expressions we reuse labels. For example, 
consider the Blist expression for (A+B)(C–(D!–E)) shown in 
Fig. 10. Even if we omit the label for the first primitive A, 
we need 5 labels. We reduce the number of labels needed 
(Fig. 11) by freeing and reusing the label of a primitive 
when it is reached by the label-to-integer conversion dis-
cussed above.  

Since the intersection and union operators are commuta-
tive, one may swap (pivot) their left and right arguments to 
produce equivalent Blists. This flexibility may be exploited 
to further reduce the number of labels needed. A pivoting 
strategy that makes the tree left-heavy has been proposed 
by Hable and Rossignac [2]. It guarantees that CSG trees 
with 3909 leaves can be supported in Blister.  

A further optimization [39] guarantees support of CSG 
trees with up to 1038 primitives on 7 stencil bits. For exam-
ple, (A+((B+((C+((D+E)+F))+G))+H))+(I+(J+(K+L)M)N), 
(Fig. 10) yields a Blist form which requires 4 labels and 
hence 2 stencil bits. The optimization pivots the tree, pro-
ducing (K+L)+JM+IN+(A+(H+(B+(G+(C+(F+(D+E))))))), for 
which the Blist form requires only 3 labels. 

4 TRIMMING USING CST  
In this section, we explain the implementation of our 
peel&trim algorithm for rendering the CST of a surface S 
trimmed against a CSG volume V onto a buffer called Fi-
nalColorDepth. The overall CST(S,V) algorithm is as follows:  

Initialize; 
Repeat {Peel(S); Trim(V); Push()} until Done; 
Render(S);  

In Initialize, we initialize two buffers. The first buffer, 
CurrDepthStencil, is an interleaved buffer in texture mem-
ory that associates a 24-bit depth, Back, and an 8-bit stencil 
[next,parity] with each pixel, where next is a 7-bit Blist label 

 
Fig. 10. Integer Blist labels for (A+B)(C–(!D–E)).  

 
Fig. 8. Results of lml (in blue) and of mb (in red). 

 
Fig. 11. Reusing labels for (A+B)(C–(!D–E)).  

 

 
Fig. 12. The Blist of (AB+CD)E+(FG+HI)J requires 4 labels.  

 
Fig. 9. Blist of A+(B+C)D with P.n, P.t, and P.f labels. 
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identifying the primitive P against which the candidate is to 
be classified and where parity is toggled to establish the 
classification of the candidate against P. Back is initialized to 
infinity, next to 0 and parity to 0, indicating that the pixel’s 
candidate should be classified against the first primitive of 
the Blist. The second buffer, PrevDepth, also stored in tex-
ture memory, stores a depth Front for each pixel. It is initial-
ized to 0. 

Peel(S) rasterizes S (or only its front faces if desired) to 
advance the depth of the unlocked pixels to the next layer. 
Let Z denote the depth of a fragment of S at the current pixel. 
We perform the update Back=Z, when ([next,parity]==0) && 
(Front<Z<Back). At the end of a Peel, the depth of the candi-
date points is stored in Back. 

Trim(V) classifies the candidate point X of each unlocked 
pixel against the Blist of V. To classify a candidate point X 
whose depth is stored in Back at an unlocked pixel p, we 
rasterize the primitives of the Blist of V one by one. The 
parity stencil bit is toggled during the rasterization of the 
current primitive P to keep track of the parity of the num-
ber of layers of the boundary of P behind X.  

The trimming algorithm is: 
parity=false;      // initialized to out  
Rasterize P (toggling parity); 
if (next==P.n) {if (parity) {next=P.t} else {next=P.f}}; 

For example, assume that X∉A, X∈B, X∉C, and X∈D for 
the Blist in Fig. 9. This algorithm will perform as follows. 
Initially, P is A. We reset parity and rasterize A. Since 
next==P.n and parity==false, we set next=P.f (label of B), to 
indicate that X needs to be trimmed by B. Now P=B. We 
reset parity and rasterize B. Since next==P.n and par-
ity==true, we set next=P.t (label of D), to indicate that we 
can skip C, but need to trim X using D. Now P=C. We still 
reset parity and rasterize C, because other pixels may have 
next set to the label of C. However, the content of p will not 
be affected since the predicate (next≠P.n). Now P=D. We 
reset parity and rasterize D. Since next==P.n and par-
ity==true, we set next=P.t, to indicate that X is in V. 

Upon completion of Trim, the [next,parity] stencil of each 
pixel is either 0x00 (X∈V: the pixel is locked) or 0xFF (X∉V: 
the pixel is unlocked and will be pushed to the next layer). 

Push(S) copies Back to Front at all pixels. For all pixels set 
to [V.t,0], the pixel’s stencil state is set to locked. For all pix-
els set to [V.f,0], the pixel’s stencil state is cleared to 0 and 
its depth is set to 0. 

Done stops the peel&trim loop when the occlusion 
query initiated by Peel indicates that no pixel was updated 
during the last pass. If S is known to be the boundary of a 
convex set, we stop after one pass when trimming front-
faces, or after two passes otherwise. Note that Done can be 
tested either before or after Trim(V). 

Render(S) merges the trimmed portion of S with the rest 
of the scene (which typically includes previously trimmed 
surfaces). When the Repeat loop stops, Front holds the 
depth-values at the retained points of S. Then, we set the 
rendering target to FinalColorDepth. S is rasterized with full 
color information updating only pixels whose depth 
matches the value in Front. 

5 NEW CSG RENDERING ALGORITHM 
In this section, we present our new algorithm for CSG ren-
dering. To justify its benefit over prior art, we revisit the 
speckle problem, which, as admitted by Hable and Ros-
signac [2], typically produces incorrect colors at a few pix-
els in most images generated by Blister (Fig. 2). To render a 
CSG model V, Blister peels the union of the boundaries of 
all the primitives of V treating them as a single surface S 
and trimming them against the Blist of V. This approach 
may lead to speckles. For example, consider the expression 
V=(A–B)+C shown in Fig. 13. A point X of A inside B is not 
contributing to the boundary of V. Yet, if it lies on the 
boundary of V, it will be classified by Blister as being 
ON/IN V and rendered. Although it has the correct depth 
(because there is a coincident point of C on the boundary of 
V), it may have a different normal (here the normal of A 
instead of the normal of C), which produces a shading mis-
take (speckle). 

To solve this problem, we build on [33] and introduce a 
CSG rendering algorithm that peels and trims one primitive 
A at a time. Instead of trimming its boundary against the 
whole CSG expression, it trims it against the active zone, Z, 
of A. Z=WI–U is the intersection of the universe W with the 
i-zone I of A and with the complement of the u-zone U of 
A. I is the intersection of i-nodes and U the union of u-
nodes defined as follows [18]. Consider the path from the 
root to A. The i-nodes of A are the children of intersection 
nodes of the path that are not in the path. The u-nodes of A 
are the children of union nodes of the path that are not in 
the path. Hence, Z is the intersection of W with each i-node 
and with the complements of each u-node of A. Note that, 
the CSG expression of the active zone of each primitive 
may be derived trivially from the CSG tree by a recursive 
traversal.  

For example, in (A+B)(C(!D+E)) shown in Fig. 7, primi-
tive A has one u-node, B, and one i-node, C(!D+E). Its ac-
tive zone is !BC(!D+E). Thus, we can render the contribu-
tion of A as CST(A, !BC(!D+E)). E has two i-nodes, A+B and 
C, and one u-node, !D. Its active zone in is (A+B)CD. The 
contribution of E is CST(E,(A+B)CD).  

Changes to A out of Z will not affect V. For instance, in 
our example, changing E in !D will have no effect on D–E. 
Changes of E in D will affect D–E, but will affect C(D–E) 
only if they are in C. Most importantly, the boundary of V 
is the union of the boundaries of each primitive P trimmed 
by its active zone Z. Based on this observation, our new 
CSG rendering peels each primitive while trimming it 
against its active zone Z and merges the results into a 
global z-buffer to select the front-most points. 

 

  
Fig. 13. A speckle on the boundary of A on (A–B)+C and a double 
point P on the boundary of A+B.  



HABLE & ROSSIGNAC.: CST 7 

 

In this example, the final solid is rendered as the union 
of the following CSTs: 

CST( A, C(!D+E)!B ) 
CST( B, C(!D+E)!A ) 
CST( C, (A+B)(D!E) ) 
CST( D, (A+B)CE ) 
CST( E, (A+B)CD ) 
Rendering these primitive boundaries trimmed by their 

active zones will produce correct pictures when rendering 
opaque CSG models. In some applications, such as trans-
parency or volume computation, it may be desired to en-
sure that overlapping portions of trimmed primitive faces 
(overlap) are not counted as multiple ON surfels.  

We distinguish between speckles and overlaps. A 
speckle occurs when one point, which is outside its active 
zone, interferes with another point that should be rendered. 
An overlap occurs when two or more points that are ON 
the trimmed portions of different primitives coincide. As-
sume for instance that we have an overlap of two points. If 
neither is rendered, a hole will appear in the solid’s bound-
ary. If both are rendered, the overlap will appear twice 
more opaque, producing incorrect transparency images. To 
solve this problem, we choose an arbitrary ordering of the 
source primitives in a CSG expression. For two primitives L 
and R where L is ordered before R, L is considered slightly 
in front of R when two points from L and R overlap (share 
the same depth relative to the camera). For the right object 
in Fig. 11, we choose our ordering to be A, B, meaning that 
at P the point from A would be rendered and the point 
from B would not. 

We can enforce this ordering during the Trim() step of 
the CST algorithm. If a point of L is testing its parity against 
a solid R, L’s parity is toggled if a point of R is behind or 
equal to L. In the reverse case, when R is evaluated against 
L, a point from R is toggled if a point of L is strictly behind 
the point from R. Effectively, the point from R is inside the 
solid L, whereas the point from L is outside the solid R.  

6 DEPTH PEELING, TRANSPARENCY, AND PAINTING  
Transparency is used to visualize the internal structure of a 
CSG solid or to show semi-transparent CSG parts as context 
when rendering their interferences. Correct rendering of 
transparency requires that we render the faces of the CSG 
model in front-to-back order and that we only render one 
candidate point per face of V for each pixel covered by it, 
even if several primitives overlap. 

To ensure front-to-back order for transparency render-
ing, we peel the CSG model as follows. We render V as ex-
plained above and store the result in the front z-buffer F. 
Then, we render V again, but this time, we initialize the 
peeling of each primitive to the depth values stored in F. 
Hence, only candidate points behind F will be considered. 
Fig. 14 illustrates this process. 

To ensure that we do not miss gaps or thin plates where 
surfels of two adjacent layers are close enough to share the 
same quantized depth, we treat the even and odd layers 
separately. To construct the first layer, we only render faces 
that would be front-facing in the resulting solid. Since our 
representation of the solid’s boundary satisfies the parity 

test, the ray/boundary intersection points along the ray 
alternate between back-faces and front-faces. We can thus 
render the third layer as the second layer in the set of front-
facing surfaces. More generally, layer 2k–1 is rendered as 
the kth layer of the front-facing surfaces, and the layer 2k is 
the kth layer of the back-facing surfaces. This transparent 
rendering method requires a buffer for front-faces and a 
separate buffer for back-faces. Since z-fighting between 
adjacent front and back faces is avoided, cracks, thin plates, 
and thin portions of the solid near sharp silhouette edges 
are rendered correctly.  

We use transparency to visualize interferences as shown 
in Fig. 1.c. This is important in the inspection of mechanical 
assemblies and digital mock-ups for verifying that two dis-
tinct parts A and B do not overlap. While the interference 
can be visualized with existing algorithms by directly ren-
dering AB, it helps to see the interference in the context of 
the A and B. In the case where A is yellow and B is blue, we 
can view the interference by creating two new primitives A’ 
and B’ which share the same geometry as A and B respec-
tively, but are rendered with a red color. We then render 
the expression (A–B’)+(B–A’). 

We can also use a CSG solid V to paint on a surface S, as 
shown in Fig 1.a. To do so, we render CST(S,V) in one color 
and CST(S,!V) in another. 

7 IMPLEMENTATION AND OPTIMIZATION 
We propose below three optimizations to improve the per-
formance of CST rendering. 

(1) When rendering opaque CSG models, we only 
peel&trim the front-faces of positive primitives and the 
back-faces of negative primitives.  

(2) When rendering opaque CSG models, we need not 
trim the primitives against the u-nodes at all. Hence, we 
need only to use the i-nodes for trimming. If the extraneous 
portions that would have been trimmed away by u-nodes 
do not lie on V, they are guaranteed to lie in V, and hence, 
will be occluded by other CST faces of V. This optimization 
tends to considerably reduce the trimming time, especially 
in CSG models with many union operators at the top of the 
tree, which is often the case in CSG models of assemblies 
used in the automotive, naval, and aerospace industry. 

(3) We can also group leaf nodes that share the same op-
erator into similar nodes. The trimming step is based on the 
fact that we can evaluate a layer of pixels against a single 
primitive. We can also classify a layer against a subtree of 
primitives that all have the same parent operator, which 

 
Fig. 14. The successive layers of a CSG solid are shown in depth order 
(top). They are merged for transparency (bottom).  



8  

 

will be discussed in the next section. This optimization 
tends to reduce the number of stencil operations. 

The Trim(V) operation in Section 5 refers to switching all 
stencil values in a buffer with the value of src to a value dst. 
We can perform this operation using the technique de-
scribed by Hable and Rossignac [2], which inverts all bits 
that are different between src and dst. We perform this up-
date by setting the following stencil states and rendering a 
rectangle over the entire screen. Thus, updating the stencil 
values after parity testing requires calling ChangeStencil-
State() twice, which requires two passes over the entire 
screen per primitive. 
Trim( V ) 

  For each Primitive P in V 
    Render V 
    ChangeStencilState( (V.n << 1) | 0x1, V.t ) 
    ChangeStencilState( (V.n << 1) | 0x0, V.f ) 

ChangeStencilState( src, dst ) 
glStencilMask( src ~ dst ); 
glStencilFunc( GL_EQUAL, src, 0xFF ); 
glStencilOp( GL_KEEP, GL_KEEP, GL_INVERT ); 
DrawFullScreenRectangle(); 

We determine whether a candidate point X at pixel p is 
in an intersection-group G by scanning all of the primitives of 
G while using a counter [10] stored in the stencil of p. We 
initialize the counter to c0. Then, for each positive primitive 
P of G, we rasterize the back faces of P while incrementing 
counter and the front faces of P while decrementing counter 
for each point of P in front of X. Note that processing P in 
this manner increments counter if X∈P and leaves counter 
unchanged if X∉P. Then, we do the same for each negative 
primitive N of G, but flip the role of front and back faces. 
Note that processing N in this manner decrements counter if 
X∉N and leaves counter unchanged if X∈N. Suppose that 
we had cp positive and cn negative primitives in G. X∈G 
when X is in all positive primitives (i.e., counter was incre-
mented cp times) and in none of the negative primitives 
(i.e., counter was never decremented). Thus X∈G when 
counter=c0+cp Using DeMorgan’s laws, we convert a union-
group to an intersection-group by reversing the role of 
positive and negative primitives and switching the result. 

If the depth complexity of each primitive is bounded by 
k (i.e., its boundary may intersect a line at 2k isolated 
points), counter may vary between c0–cn–k and c0+cp+k dur-
ing this process. Hence, we select c0=cn+k to ensure that 
counter stays positive and must allocate log2(cn+cp+2k) 
stencil bits for it. Although this approach does not change 
the number of times each primitive P is rasterized during 
trimming, it reduces the number of stencil passes, which 
are the dominant fraction of the total cost because they visit 
all pixels of the screen. Instead of 2 stencil passes per primi-
tive, the grouping approach requires 4 stencil-passes per 
group to reinitialize count after each group and then to per-
form the Blist logic, as explained earlier. Since this ap-
proach uses 4 stencil passes per group instead of 2 stencil 
passes per primitive, we achieve performance gains when 
the number of groups is less than half the number of primi-
tives. 

8 RESULTS  
To illustrate typical performance, we report for each model 
in Fig. 1 the number Prims of primitives and the rendering 
times (averaged over various viewing directions) for 4 
methods: Blister (column Blister); CST trimming against all 
branching nodes (column Z); CST against i-nodes only 
(column I); and CST against i-nodes using grouping (col-
umn G). All times are reported in milliseconds on a Win-
dows XP on a 3.2 Ghz Pentium 4 processor with an nVidia 
GeForce 6800 GT graphics card. The implementation uses 
OpenGL and Cg. All tests were performed in an 800×800 
pixel window, with a view set so that the CSG solid barely 
fits in the window. 

 Prims Blister Z I G 
Complex 20 121 96 92 100 
Gear 48 481 382 312 179 

We observe the following. Performance of Blister for a 
given model varies considerably with the view orientation. 
For example, Complex takes twice as long to render from the 
side than from the front. Our CST-based algorithm is faster 
and less viewpoint-dependent. Performance of CST de-
pends on the sum of the depth layers of its components, 
which varies less with view changes. In fact, it is constant if 
all primitives are convex. Its dominant cost lies in the sten-
cil logic. Skipping u-nodes usually improves performance 
significantly. Grouping, which has an overhead, benefits 
only models, such as Gear, which yield large groups (inter-
section or union trees at the bottom of the CSG tree). 

We also report the performance of the more advanced 
rendering techniques made possible by our CST approach. 
Since there is no other realtime algorithm that can produce 
correct images of semi transparent CSG models, we cannot 
provide a comparative analysis with prior art. Bunny refers 
to the Bunny with CST painted on it in Fig. 1. Interference 
refers to the rendering of the transparent solid with the in-
terference in red in Fig. 1. Transparent refers to rendering 
the first 4 layers of the Complex solid in Fig. 1. Inside refers 
to showing the interior portion of the Complex object in 
Fig. 1. Prims is the total number of primitives in the scene, 
and CSTs is the total number of CST passes. For example, 
rendering a single layer of Transparent requires 20 CSTs, so 
rendering 4 layers requires rendering 80 CSTs. The re-
ported times are in milliseconds. 

 Prims CSTs Time 
Bunny 2 2 110 
Interference 2 4 80 
Transparent 20 80 391 
Inside 20 16 222 

The rendering time for semi-transparent models is pro-
portional to the depth complexity of the model, since each 
layer requires rendering each visible CST. The dominant 
rendering cost is the number of CSTs times the number of 
primitives that need to be evaluated for each CST. 

9 CONCLUSION 
We have presented a new, GPU-based, CSG rendering al-
gorithm that fixes the shortcomings and extends the capa-
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bilities of Blister. Our CST algorithm trims the boundary of 
each primitive against a Blist of its i-zone. We have shown 
that it outperforms Blister and eliminates speckles, which 
appear as several wrongly colored pixels in most Blister 
images. Furthermore, our CST approach provides the first 
solution for the realtime rendering of non-trivial semi-
transparent CSG models. It also may be used for painting 
on solids, for highlighting primitive contributions in CSG 
models, and for representing and rendering trimmed faces 
of BReps without having to precompute their trimming 
curves, which are typically generated through slow sur-
face/surface intersection calculations. 
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APPENDIX: HIGH RESOLUTION IMAGES 
 
 

 
Appendix Fig. 2: Blister produces speckles (see magnification insert on the left). CST does not (right).  

 
Appendix Fig. 3: CST images of the Complex CSG model (from left to right): Opaque rendering of the first depth layer (a); The second depth layer 
(b); Active parts of selected primitives (c); Semi-transparent boundary of the CSG model (d). 

: 

 
Appendix Fig. 1: CST can be used for painting or carving on surfaces.  


