
GVU TECH REPORT GT-GVU-06-16 1

CST: Constructive Solid Trimming for
rendering BReps and CSG

John Hable and Jarek Rossignac

Abstract—To eliminate the need to evaluate the intersection curves in explicit representations of surface cutouts or of trimmed
faces in BReps of CSG solids, we advocate using Constructive Solid Trimming (CST). A CST face is the intersection of a surface
with a Blist representation of a trimming CSG volume. We propose a new, GPU-based, CSG rendering algorithm, which trims the
boundary of each primitive using a Blist of its Active Zone. This approach is faster than the previously reported Blister approach,
eliminates occasional speckles of wrongly colored pixels, and provides additional capabilities: painting on surfaces, rendering
semitransparent CSG models, and highlighting selected features in the BReps of CSG models.

Index Terms— I.3.3 GPU support for CSG rendering, 3.5.a&b CSG expressions for trimmed faces, J.6 CAD model visualization

—————————— ——————————

1 INTRODUCTION
ANY design, visualization, analysis, and entertain-
ment applications manipulate models of solids. A
common approach is to represent a solid by a trian-

gle mesh that approximates its boundary.
A mesh M that is bounded (i.e. finite) and watertight (in
which each edge has an even number of incident triangles)
divides its complement into two half-spaces: the interior
i(M) and the exterior e(M) of M. i(M) is the set of points
from which rays that avoid the edges and vertices of M stab
an odd number of triangles of M.

Let M.v, M.e, and M.t be respectively the set of vertices,
edges, and triangles of M. In our terminology, an edge does
not include its bounding vertices and a triangle does not
include its bounding edges and vertices. We say that M is
clean when the set of all triangles, edges, and vertices of M
are exclusive (i.e. pairwise disjoint).

The regularization r(V) of a set is the closure of its inte-
rior. The boundary of a regularized solid separates its inte-
rior from its exterior. For simplicity, we say that a set V is a
solid when V=r(V). When M is bounded, watertight, and
clean, then the union V=M∪i(M) is a solid and M is its
boundary.

A CSG (Constructive Solid Geometry) representation of
V defines it as a regularized Boolean expression [1] that
combines primitive solids through union (+), intersection
(omitted), and difference (–) operators. We denote the com-
plement of a primitive A as !A. In what follows, we discuss
CSG representations that define solids as regularizations of
Boolean combinations of solid primitives, each defined by a
clean mesh. For example, the solid in Fig. 1.b is defined by
the Boolean combination of 20 different primitives.

We propose a new GPU-based approach for the realtime
rendering of CSG models and of trimmed surfaces (the in-
tersection or differences between a surface represented by a
triangle mesh, which needs not be watertight or clean, and

a CSG model).
Complex CSG models can be rendered in realtime on

commodity graphics adapters by exploiting the observation
that the boundary of a CSG solid is a subset of the bounda-
ries of its primitives. Hence, many approaches rasterize the
surfaces that bound the primitives, identify points that are
ON the solid’s boundary, and select the front-most bound-
ary-point at each pixel. The differences between approaches
lie in the order in which the primitives are rasterized and in
the manner in which candidate points are tested to estab-
lish whether they are boundary-points or not. For instance,
the Blister approach [2], generates candidate points by lay-
ers using hardware-supported front-to-back peeling which
stores the candidate points of the current layer in a depth-
buffer. It tests all the candidates of the current layer against
the entire CSG model by scan-converting each primitive; by
keeping track of the parity of the number of triangles of the
primitive that occlude each candidate point; and by merg-
ing the results using only a few book-keeping stencil bits
per pixel.

Unfortunately, a candidate point generated by scan-
converting a primitive A may happen to lie on another
primitive B. This singular situation may reflect the de-
signer’s intention of using primitives with overlapping
faces or it may be an unfortunate coincidence produced by
performing z-buffer tests on quantized depth values. (Even
though two candidate points that project on the same pixel
may have different depths, their quantized versions may be
identical.) Consequently, candidate surface points on A that
lie close to the boundary of B are often misclassified and
displayed using the surface properties of B, producing
wrongly colored speckles in the image (See Fig. 2). Note
that even though the color at speckles may be wrong, their
quantized depth is correct. The CST technique proposed
here eliminates such speckles without reducing perform-
ance.

• John.W. Hable is with the Worldwide Visualization Group, Electronic Arts, Vancou-
ver, BC V6C 3R8, Canada. Formerly with Georgia Institute of Technology.

• Dr. Jarek R. Rossignac is member of GVU and Professor of Computer Science in the
Interactive Computing Department, College of Computing, Georgia Institute of Tech-
nology, Atlanta, GA 30332. E-mail: jarek@cc.gatech.edu.

M

2

In fact, most other previously proposed techniques [3],
[2] do not really test whether a candidate point lies on the
boundary of the CSG solid. Instead, they only differentiate
between candidate points that are OUT (i.e. in the exterior
of the CSG solid) from those that are IN/ON (i.e. either in
the interior or on the boundary of the solid). This distinc-
tion is sufficient for rendering, since, assuming that the
viewpoint is outside of the solid, the front-most IN/ON
point selected by the depth-test at each pixel is necessarily
ON the solid [4].

Unfortunately, these approaches are not able to dis-
criminate whether IN/ON points that are hidden by a
front-most IN/ON point lie on the boundary of the CSG
solid or in its interior. This situation is illustrated in Fig. 3,
which shows a 2D slice through the model.

With such approaches, the union of all IN/ON points of
a CSG solid V cannot be used as a rasterized representation
of V when one wishes to use the parity test for classifying
candidate points of another mesh S against V.

This drawback leads to several limitations, all of which
are removed by the CST approach proposed here.

 Limitation 1: The techniques mentioned above are not
suitable for rendering CSG models as if their boundaries
were semi-transparent, because in most cases they render
extraneous portions of the boundaries of primitives that are
IN/ON, but not necessarily ON S. Some approaches [5], [6],
[7], [8], [9], [10] convert a CSG expression into a disjunctive
form [11] which is the union of intersections (products) of
primitives. These approaches are able to distinguish the ON

points of each product from the IN points. Unfortunately
ON points of a product may be IN points of the union of
products. Rendering them as semi-transparent produces
incorrect and confusing images.

Limitation 2: The rendering system is not capable of cor-
rectly coloring the contribution of a primitive A to the
boundary of the solid V. Such a facility is vital during the
design phase when the user selects and manipulates one or
more primitives at a time and needs to see clearly which
portion of the solid’s boundary are affected by changes to
the selected primitives.
 Limitation 3: The inability to distinguish the ON points
from the other IN points of CSG models prevents the use of
CSG models as trimming volumes for surfaces represented
by meshes that are not water-tight. This facility is important
for a broad set of geometric modeling and artistic design
applications, in which Boolean combinations of solids are
used to trim faces or to paint logos or patterns on faces (Fig.
1.a).

The removal of the above limitations by the CST ap-
proach introduced here hinges on a single capability: trim a

surface S against a solid or CSG model V returning, de-
pending on the application, the portion of S in V, out of V,
or on V. We call this function CST(S,V). This trimming ca-
pability is based on two operators implemented efficiently
on commodity GPUs:

Peel(S) pushes depth values at unlocked pixels to candi-
date points on the next depth-layer of a mesh S during the
rasterization of S.

Trim(V) classifies candidate points at unlocked pixels
with respect to a Blist form of the CSG solid V and locks the
pixels at candidate points that lie in V (or if preferred, out
of V).

Fig. 4. Four consecutive layers generated by Blister (top) and by our
CST approach (bottom) are combined (right) to produce a semi-
transparent image. Note that the CST approach produces the correct
image (bottom-right) while Blister does not (top-right).

Fig. 1. Examples of CST applications include (from left to right): (a) Using extruded solids to carve or paint on the “Bunny”; (b) revealing the
trimmed faces of selected primitives (features) in the BRep of the “Complex” CSG model; (c) highighting (in red) the interference between two
semitransparent solids in a small assembly; and (d) correctly rendering a semitransparent CSG model with numerous overlapping primitive
boundaries (such as the “Gear” shown here). These models were rendered in realtime on the GPU using our peel&trim process.

Fig. 2. Blister with speckles, and CST which removes them.

Fig. 3. Four primitives (left). The boundary of the solid V=(A+B+C)–D
(right). IN/ON points (center).

HABLE & ROSSIGNAC.: CST 3

Alternating these operators until all pixels are locked or
all layers of S are processed renders a Constructive Solid
Trim (CST) of surface S. When S is opaque (not semi-
transparent), CST(S,V) is the front-most set of pixels of S
that falls inside the solid defined by V.

We advocate using such CSTs as an option for rendering
CSG models quickly and reliably. We realize that in many
applications, it may be preferable to pre-compute and tri-
angulate the boundaries (BReps) of CSG models and then
to use them for rendering. However, this pre-computation
is often numerically delicate and too slow for realtime
feedback during shape design or animation of parametric
CSG models.

For instance, boundaries of CSG models with polyhedra
primitives may be pre-computed reliably [12], triangulated,
and used for realtime rendering. However, such a bound-
ary evaluation is too slow (even for polyhedral models) to
be invoked at each frame during interactive editing or
when the tessellations of the primitive boundaries must be
refined through subdivision during camera motions.
Hence, numerous direct CSG rendering algorithms have
been proposed that eliminate this boundary evaluation
cost. CST improves on them providing a fast, accurate, and
scalable solution.

Furthermore, our CST approach offers an alternative to
the trimmed-surface representation of BReps. Using CST
for rendering BReps makes it possible to render trimmed
NURBS [13], [14] and subdivision surfaces without having
to parameterize them, compute intersection curves, and
convert these curves into trimming curves in the parametric
domain. CST also eliminates the need to stitch the cracks
between abutting trimmed faces [15], [16] and of tracking
the intersection curves in animated models [17]. Note that
this option is only possible when a CSG expression of a
trimming volume may be derived for each face, which is
the case when the shape is created through Boolean opera-
tions, but may not be the case when the trimming curves
are generated for example by filleting procedures.

Hence, we propose two techniques, both based on the
peel&trim approach mentioned above. One renders CSG
models, the other one renders trimmed faces of BReps,
where the trimming volume is a solid defined by a CSG
expression.

Our CST approach to CSG rendering is based on a new
algorithm, which peels each primitive P of a CSG model V
and classifies it against the Blist of the active zone Z of P.
The active zone Z is the volume where changes of P affect
V [18]. Its CSG formulation may be derived algorithmically
from the CSG expression of V. The Blist form of a CSG ex-
pression [19] reduces the storage per pixel needed for com-
bining the results of point/primitive tests when classifying
a point against a CSG solid.

Using this CST approach for CSG rendering offers sev-
eral advantages over prior approaches: (1) It eliminates
artifacts (such as speckles). (2) It makes it possible to high-
light the contribution of selected primitives. (3) It permits
correct rendering of images of semi-transparent CSG mod-
els.

Our CST approach to the rendering of trimmed faces of
a BRep peels each untrimmed surface S and classifies each

layer of candidate points on S against the Blist representa-
tion of the CSG model of the trimming volume V.

To support CST rendering, we have developed several
results reported as new contributions in this paper, which
is organized as follows. Section 2 reviews the background
and prior art for peeling, trimming, and CSG rendering.
Section 3 reviews the Blist formulation, its construction al-
gorithm, and its use for classifying candidate points against
a CSG expression. Note that without the Blist approach, a
large number of stencil bits per pixel could be required to
combine the classification results of the corresponding
candidate pixel against the CSG primitives. The Blist
approach in [2] reduces that number so that candidate
points may be classified against any CSG expression of 3909
primitives or less using only 7 bits per pixel. Section 4 dis-
cusses a novel, robust method for trimming a surface by a
Boolean combination of solids using CST. Section 5 shows
how to use CSTs for CSG rendering. Section 6 details appli-
cations of CSTs including transparency, depth peeling, and
painting on faces. The implementation and speed optimiza-
tions are discussed in Section 7. Section 8 reports results
and timing statistics.

2 BACKGROUND AND PRIOR ART
First, we discuss peeling. The ray from the viewpoint

through a pixel may stab a surface S more than once. Since
the front-most intersection point may be trimmed away by
V, we must be able to generate the other intersection candi-
dates (or surfels). This is accomplished by rasterizing the
surface several times. Two approaches have been proposed
for generating all candidate points on S. (1) Goldfeather et
al. [5] used stencil bits to count how many times a pixel has
been covered during the rasterization of a given primitive
and to lock the surfel produced during the ith hit of the ith
raster pass. (Fig. 5 left). This approach was implemented on
Pixel Planes [20] and later on commodity graphics hard-
ware [7]. (2) The Trickle algorithm [21] uses a Depth-
Interval Buffer (DIB) [22] to traverse the layers of a product
of primitives in depth-order (Fig. 5 right). The depth of the
previous layer is stored in z-buffer Front. Z-buffer Back is
initialized to infinity. While rasterizing S, when we find a
surfel whose depth falls between Front and Back values of
the current pixel, we replace Back by depth. The process
computes the front-most layer behind Front and stores it in
Back. Main memory was initially used for Front and Back
[22]. Everitt [23] implemented peeling in hardware follow-
ing Mamman’s design [24], which uses texture memory.
Our CST algorithm uses texture memory and DIB peeling
to generate candidates on the consecutive layers of S.
Depth-peeling custom hardware for rendering transparent
CSG models has been proposed by Kelley et al. [25].

Now, we discuss how to classify these candidates sur-
fels against a single primitive P. Several approaches have
been proposed. Du and Qin [26] have used solids to trim
physically defined surfaces. Schmitt at al. [27] define het-
erogeneous objects using Booleans between curves, sur-
faces, and solids. Several software approaches are possible
for classifying a fixed sampling of candidate points on S.
When P is represented as a conjunction of algebraic ine-

4

qualities [4] candidates are rejected if they fail to satisfy any
one of inequalities of the conjunction. When a voxel model
or octree approximation of P provides sufficient accuracy, it
may be used as a look-up table to classify candidates on S
[28] or candidates inside the volume bounded by S [29].
However, when the model or the desired resolution is
changing at each frame, it is more efficient to re-compute
the candidates at each frame through rasterization and clas-
sify them using hardware. This is the approach that we
follow.

The candidates (surfels) of the current layer are stored in
the color and z-buffer of unlocked pixels. To classify them
in parallel against a solid primitive P, we rasterize the
boundary of P while toggling a parity bit, parity, at each
unlocked pixel each time a rasterized portion of P lies be-
hind the candidate surfel. If the final value of parity is true,
the corresponding candidate is IN P. In fact, this approach
tests whether the points immediately behind the candidate

lies in P. Note that we could also toggle parity when we find
P in front of the candidate to test whether the point imme-
diately in front lies in P (see Fig. 6).

To classify candidates against a CSG model V, one can
rasterize each primitive P of V, store for each candidate the
corresponding parity results in different stencil bits, and
combine these results using parallel bitwise logical opera-
tions on stencil bits [30]. Unfortunately, contemporary
graphic adapters offer only 8 stencil bits per pixel. Hence,
to support complex CSG expressions, most previously pro-
posed CSG rendering approaches expand the CSG into a
sum-of-products (disjunctive form) [21], [6] and use two
stencil bits to track the status of each candidate. Several
techniques were proposed to accelerate the rendering of
products [21], [31], [8], [10] or other variations of disjunc-
tive forms [9], [3]. Unfortunately, the number of products in
a disjunctive form may grow exponentially with the num-
ber of primitives. Generating products may be avoided by
using custom hardware to merge ray/primitive classifica-
tions [32] or, as done by Blister [2] by using a Blist repre-
sentation [33] of the CSG expression of V. Blister peels the
union of the boundaries of all primitives of V as if it were a
single surface S and classifies the candidates on each layer
against the Blist of V.

In contrast, as mentioned earlier, to improve perform-
ance, to eliminate occasional color errors, and to support a
broader set of applications, the CSG rendering algorithm
introduced here trims the boundary of each primitive P
against a Blist of its active zone.

To simplify explanations, throughout the paper we as-
sume that all CSG expressions have been converted into
their positive form (Fig. 4), obtained by replacing each dif-
ference operator (L–R) by the intersection (L(!R)) with the
complements, !R, of its right operand R and by propagating
the complements to the leaves using de Morgan laws.
Leaves that are complemented in this positive form (as D in
Fig. 7) are said to be negative. The other ones are said to be
positive.

3 COMPUTING AND USING BLISTS
The Blist form [33] of a Boolean expression is a particular
case of the Reduced Function Graph (RFG) [34] and of the
Ordered Binary Decision Diagram (OBDD) [35] studied for
logic synthesis. These are Acyclic Binary Decision Graphs

[36], which may be constructed through Shannon’s Expan-
sion [37]. The size (number of nodes) of RFGs may be ex-
ponential in the number n of primitives and depends on
their order [38]. Minimizing it is NP-hard. In contrast, Blist
expressions have exactly n nodes and have linear construc-
tion and optimization costs, because they treat each leaf of
the tree as a different primitive. Although this may not be
acceptable for logic synthesis, it is appropriate for CSG ren-
dering. Indeed, if a primitive appears several times in a
CSG expression, each instance usually has a different posi-
tion, and hence must be processed as a different primitive
during rendering.

We present below a simple algorithm for extracting the
Blist of a CSG tree. Assume that the tree is stored as an ar-
ray o of chars, where o[m] is ‘+’ when m is a union, ‘×’
when m is an intersection, or a letter identifying a primi-
tive. We make two passes of linear-cost. During the first
pass (recursive call to lml shown in blue below), each node
m retrieves the name of the left-most leaf of its right child. If
m represents an intersection operation, this name is stored
in the field f[m], otherwise it is stored in the field t[m]. The
results are marked in blue in Fig. 8.

char lml (int m) { // get left-most leaf of right child
 char leftMost;
 if ((o[m]!='×')&&(o[m]!='+')) {leftMost=o[m]; }
 else {if (o[m]=='+') {f[m]=lml(r[m]); } else {t[m]=lml(r[m]); };
 leftMost=lml(l[m]); };
 return(leftMost); }

Fig. 5. Traversal-order (left) and depth-order (right) peeling.

Fig. 7. CSG tree for (A+B)(C–(D–E)) and its positive form.

Fig. 6. Parity-based classification. Toggle parity when the rasterized
primitive is on the desired side of the candidate point (red/green dots).

HABLE & ROSSIGNAC.: CST 5

During the second pass (recursive call to mb, shown in
red below), we push down the values of the pt and pf pa-
rameters, which are initialized to true and false (respec-
tively) and replaced by the corresponding blue values of a
node m when going to the left child of m. The resulting as-
signments of the t and f values (stored as t[m] and f[m] en-
tries) are shown in red in Fig. 8.

void mb (int m, char pt, char pf) { // push down blue values
 if ((o[m]!='*')&&(o[m]!='+')) { // if leaf
 xblistName[pc]=o[m]; blistIfTrue[pc]=pt; blistIfFalse[pc]=pf;
 t[m]=pt; f[m]=pf; pc++; }
 else {if (o[m]=='+') {mb(l[m],pt,f[m]); } else{mb(l[m],t[m],pf);};
 mb(r[m],pt,pf); }; }
Executing our algorithm on the tree in Fig. 8 yields the

Blist in Fig. 9, where each primitive P, corresponding to
index m in the array representation, has 3 labels: (1) its ID
P.n=o[m], (2) the ID P.t=t[m] of the next primitive against
which a candidate that is classified as in P should be tested
(shown in Fig. 9 as a link from the top right corner of the
corresponding triangle), and (3) the ID P.f=f[m] of the next
primitive against which a candidate that was classified out
of P should be tested (shown in Fig. 9 as a link from the
bottom right corner of the corresponding triangle).

For example, when P is A in Fig. 6, P.n=A, P.t=t, P.f=B.
This circuit represents the different paths that one may take
to classify a candidate X against the Blist, depending on its
classifications against the primitives. For instance, if X∉A,
X∈B, X∉C, X∈D, we would leave A by the bottom link to B,
leave B by the top link directly to D, skipping C, and leave
the whole circuit by the top link of D. Note that the special
labels, t and f, of the exit links stand for true and false, and
indicate the ultimate classification of X.

Since we will be storing these labels in the stencil bits of
the corresponding pixels, we wish to encode them as short
bit strings. First, as in Hable and Rossignac [2], we obtain
positive integer encodings of the labels by traversing the
Blist left to right. As we do so, we keep track of the active
and free integer labels. We allocate 0 to the first primitive.
When a primitive is referenced for the first time, we give it
the smallest free integer label.

If one stencil bit is used for parity, we may represent
27=128 different labels using the remaining 7 bits. Since two

labels are reserved for true and false and one for the locked
mask, we would be able to accommodate all CSG expres-
sions with up to 125 primitives. To accommodate more

complex CSG expressions we reuse labels. For example,
consider the Blist expression for (A+B)(C–(D!–E)) shown in
Fig. 10. Even if we omit the label for the first primitive A,
we need 5 labels. We reduce the number of labels needed
(Fig. 11) by freeing and reusing the label of a primitive
when it is reached by the label-to-integer conversion dis-
cussed above.

Since the intersection and union operators are commuta-
tive, one may swap (pivot) their left and right arguments to
produce equivalent Blists. This flexibility may be exploited
to further reduce the number of labels needed. A pivoting
strategy that makes the tree left-heavy has been proposed
by Hable and Rossignac [2]. It guarantees that CSG trees
with 3909 leaves can be supported in Blister.

A further optimization [39] guarantees support of CSG
trees with up to 1038 primitives on 7 stencil bits. For exam-
ple, (A+((B+((C+((D+E)+F))+G))+H))+(I+(J+(K+L)M)N),
(Fig. 10) yields a Blist form which requires 4 labels and
hence 2 stencil bits. The optimization pivots the tree, pro-
ducing (K+L)+JM+IN+(A+(H+(B+(G+(C+(F+(D+E))))))), for
which the Blist form requires only 3 labels.

4 TRIMMING USING CST
In this section, we explain the implementation of our
peel&trim algorithm for rendering the CST of a surface S
trimmed against a CSG volume V onto a buffer called Fi-
nalColorDepth. The overall CST(S,V) algorithm is as follows:

Initialize;
Repeat {Peel(S); Trim(V); Push()} until Done;
Render(S);

In Initialize, we initialize two buffers. The first buffer,
CurrDepthStencil, is an interleaved buffer in texture mem-
ory that associates a 24-bit depth, Back, and an 8-bit stencil
[next,parity] with each pixel, where next is a 7-bit Blist label

Fig. 10. Integer Blist labels for (A+B)(C–(!D–E)).

Fig. 8. Results of lml (in blue) and of mb (in red).

Fig. 11. Reusing labels for (A+B)(C–(!D–E)).

Fig. 12. The Blist of (AB+CD)E+(FG+HI)J requires 4 labels.

Fig. 9. Blist of A+(B+C)D with P.n, P.t, and P.f labels.

6

identifying the primitive P against which the candidate is to
be classified and where parity is toggled to establish the
classification of the candidate against P. Back is initialized to
infinity, next to 0 and parity to 0, indicating that the pixel’s
candidate should be classified against the first primitive of
the Blist. The second buffer, PrevDepth, also stored in tex-
ture memory, stores a depth Front for each pixel. It is initial-
ized to 0.

Peel(S) rasterizes S (or only its front faces if desired) to
advance the depth of the unlocked pixels to the next layer.
Let Z denote the depth of a fragment of S at the current pixel.
We perform the update Back=Z, when ([next,parity]==0) &&
(Front<Z<Back). At the end of a Peel, the depth of the candi-
date points is stored in Back.

Trim(V) classifies the candidate point X of each unlocked
pixel against the Blist of V. To classify a candidate point X
whose depth is stored in Back at an unlocked pixel p, we
rasterize the primitives of the Blist of V one by one. The
parity stencil bit is toggled during the rasterization of the
current primitive P to keep track of the parity of the num-
ber of layers of the boundary of P behind X.

The trimming algorithm is:
parity=false; // initialized to out
Rasterize P (toggling parity);
if (next==P.n) {if (parity) {next=P.t} else {next=P.f}};

For example, assume that X∉A, X∈B, X∉C, and X∈D for
the Blist in Fig. 9. This algorithm will perform as follows.
Initially, P is A. We reset parity and rasterize A. Since
next==P.n and parity==false, we set next=P.f (label of B), to
indicate that X needs to be trimmed by B. Now P=B. We
reset parity and rasterize B. Since next==P.n and par-
ity==true, we set next=P.t (label of D), to indicate that we
can skip C, but need to trim X using D. Now P=C. We still
reset parity and rasterize C, because other pixels may have
next set to the label of C. However, the content of p will not
be affected since the predicate (next≠P.n). Now P=D. We
reset parity and rasterize D. Since next==P.n and par-
ity==true, we set next=P.t, to indicate that X is in V.

Upon completion of Trim, the [next,parity] stencil of each
pixel is either 0x00 (X∈V: the pixel is locked) or 0xFF (X∉V:
the pixel is unlocked and will be pushed to the next layer).

Push(S) copies Back to Front at all pixels. For all pixels set
to [V.t,0], the pixel’s stencil state is set to locked. For all pix-
els set to [V.f,0], the pixel’s stencil state is cleared to 0 and
its depth is set to 0.

Done stops the peel&trim loop when the occlusion
query initiated by Peel indicates that no pixel was updated
during the last pass. If S is known to be the boundary of a
convex set, we stop after one pass when trimming front-
faces, or after two passes otherwise. Note that Done can be
tested either before or after Trim(V).

Render(S) merges the trimmed portion of S with the rest
of the scene (which typically includes previously trimmed
surfaces). When the Repeat loop stops, Front holds the
depth-values at the retained points of S. Then, we set the
rendering target to FinalColorDepth. S is rasterized with full
color information updating only pixels whose depth
matches the value in Front.

5 NEW CSG RENDERING ALGORITHM
In this section, we present our new algorithm for CSG ren-
dering. To justify its benefit over prior art, we revisit the
speckle problem, which, as admitted by Hable and Ros-
signac [2], typically produces incorrect colors at a few pix-
els in most images generated by Blister (Fig. 2). To render a
CSG model V, Blister peels the union of the boundaries of
all the primitives of V treating them as a single surface S
and trimming them against the Blist of V. This approach
may lead to speckles. For example, consider the expression
V=(A–B)+C shown in Fig. 13. A point X of A inside B is not
contributing to the boundary of V. Yet, if it lies on the
boundary of V, it will be classified by Blister as being
ON/IN V and rendered. Although it has the correct depth
(because there is a coincident point of C on the boundary of
V), it may have a different normal (here the normal of A
instead of the normal of C), which produces a shading mis-
take (speckle).

To solve this problem, we build on [33] and introduce a
CSG rendering algorithm that peels and trims one primitive
A at a time. Instead of trimming its boundary against the
whole CSG expression, it trims it against the active zone, Z,
of A. Z=WI–U is the intersection of the universe W with the
i-zone I of A and with the complement of the u-zone U of
A. I is the intersection of i-nodes and U the union of u-
nodes defined as follows [18]. Consider the path from the
root to A. The i-nodes of A are the children of intersection
nodes of the path that are not in the path. The u-nodes of A
are the children of union nodes of the path that are not in
the path. Hence, Z is the intersection of W with each i-node
and with the complements of each u-node of A. Note that,
the CSG expression of the active zone of each primitive
may be derived trivially from the CSG tree by a recursive
traversal.

For example, in (A+B)(C(!D+E)) shown in Fig. 7, primi-
tive A has one u-node, B, and one i-node, C(!D+E). Its ac-
tive zone is !BC(!D+E). Thus, we can render the contribu-
tion of A as CST(A, !BC(!D+E)). E has two i-nodes, A+B and
C, and one u-node, !D. Its active zone in is (A+B)CD. The
contribution of E is CST(E,(A+B)CD).

Changes to A out of Z will not affect V. For instance, in
our example, changing E in !D will have no effect on D–E.
Changes of E in D will affect D–E, but will affect C(D–E)
only if they are in C. Most importantly, the boundary of V
is the union of the boundaries of each primitive P trimmed
by its active zone Z. Based on this observation, our new
CSG rendering peels each primitive while trimming it
against its active zone Z and merges the results into a
global z-buffer to select the front-most points.

Fig. 13. A speckle on the boundary of A on (A–B)+C and a double
point P on the boundary of A+B.

HABLE & ROSSIGNAC.: CST 7

In this example, the final solid is rendered as the union
of the following CSTs:

CST(A, C(!D+E)!B)
CST(B, C(!D+E)!A)
CST(C, (A+B)(D!E))
CST(D, (A+B)CE)
CST(E, (A+B)CD)
Rendering these primitive boundaries trimmed by their

active zones will produce correct pictures when rendering
opaque CSG models. In some applications, such as trans-
parency or volume computation, it may be desired to en-
sure that overlapping portions of trimmed primitive faces
(overlap) are not counted as multiple ON surfels.

We distinguish between speckles and overlaps. A
speckle occurs when one point, which is outside its active
zone, interferes with another point that should be rendered.
An overlap occurs when two or more points that are ON
the trimmed portions of different primitives coincide. As-
sume for instance that we have an overlap of two points. If
neither is rendered, a hole will appear in the solid’s bound-
ary. If both are rendered, the overlap will appear twice
more opaque, producing incorrect transparency images. To
solve this problem, we choose an arbitrary ordering of the
source primitives in a CSG expression. For two primitives L
and R where L is ordered before R, L is considered slightly
in front of R when two points from L and R overlap (share
the same depth relative to the camera). For the right object
in Fig. 11, we choose our ordering to be A, B, meaning that
at P the point from A would be rendered and the point
from B would not.

We can enforce this ordering during the Trim() step of
the CST algorithm. If a point of L is testing its parity against
a solid R, L’s parity is toggled if a point of R is behind or
equal to L. In the reverse case, when R is evaluated against
L, a point from R is toggled if a point of L is strictly behind
the point from R. Effectively, the point from R is inside the
solid L, whereas the point from L is outside the solid R.

6 DEPTH PEELING, TRANSPARENCY, AND PAINTING
Transparency is used to visualize the internal structure of a
CSG solid or to show semi-transparent CSG parts as context
when rendering their interferences. Correct rendering of
transparency requires that we render the faces of the CSG
model in front-to-back order and that we only render one
candidate point per face of V for each pixel covered by it,
even if several primitives overlap.

To ensure front-to-back order for transparency render-
ing, we peel the CSG model as follows. We render V as ex-
plained above and store the result in the front z-buffer F.
Then, we render V again, but this time, we initialize the
peeling of each primitive to the depth values stored in F.
Hence, only candidate points behind F will be considered.
Fig. 14 illustrates this process.

To ensure that we do not miss gaps or thin plates where
surfels of two adjacent layers are close enough to share the
same quantized depth, we treat the even and odd layers
separately. To construct the first layer, we only render faces
that would be front-facing in the resulting solid. Since our
representation of the solid’s boundary satisfies the parity

test, the ray/boundary intersection points along the ray
alternate between back-faces and front-faces. We can thus
render the third layer as the second layer in the set of front-
facing surfaces. More generally, layer 2k–1 is rendered as
the kth layer of the front-facing surfaces, and the layer 2k is
the kth layer of the back-facing surfaces. This transparent
rendering method requires a buffer for front-faces and a
separate buffer for back-faces. Since z-fighting between
adjacent front and back faces is avoided, cracks, thin plates,
and thin portions of the solid near sharp silhouette edges
are rendered correctly.

We use transparency to visualize interferences as shown
in Fig. 1.c. This is important in the inspection of mechanical
assemblies and digital mock-ups for verifying that two dis-
tinct parts A and B do not overlap. While the interference
can be visualized with existing algorithms by directly ren-
dering AB, it helps to see the interference in the context of
the A and B. In the case where A is yellow and B is blue, we
can view the interference by creating two new primitives A’
and B’ which share the same geometry as A and B respec-
tively, but are rendered with a red color. We then render
the expression (A–B’)+(B–A’).

We can also use a CSG solid V to paint on a surface S, as
shown in Fig 1.a. To do so, we render CST(S,V) in one color
and CST(S,!V) in another.

7 IMPLEMENTATION AND OPTIMIZATION
We propose below three optimizations to improve the per-
formance of CST rendering.

(1) When rendering opaque CSG models, we only
peel&trim the front-faces of positive primitives and the
back-faces of negative primitives.

(2) When rendering opaque CSG models, we need not
trim the primitives against the u-nodes at all. Hence, we
need only to use the i-nodes for trimming. If the extraneous
portions that would have been trimmed away by u-nodes
do not lie on V, they are guaranteed to lie in V, and hence,
will be occluded by other CST faces of V. This optimization
tends to considerably reduce the trimming time, especially
in CSG models with many union operators at the top of the
tree, which is often the case in CSG models of assemblies
used in the automotive, naval, and aerospace industry.

(3) We can also group leaf nodes that share the same op-
erator into similar nodes. The trimming step is based on the
fact that we can evaluate a layer of pixels against a single
primitive. We can also classify a layer against a subtree of
primitives that all have the same parent operator, which

Fig. 14. The successive layers of a CSG solid are shown in depth order
(top). They are merged for transparency (bottom).

8

will be discussed in the next section. This optimization
tends to reduce the number of stencil operations.

The Trim(V) operation in Section 5 refers to switching all
stencil values in a buffer with the value of src to a value dst.
We can perform this operation using the technique de-
scribed by Hable and Rossignac [2], which inverts all bits
that are different between src and dst. We perform this up-
date by setting the following stencil states and rendering a
rectangle over the entire screen. Thus, updating the stencil
values after parity testing requires calling ChangeStencil-
State() twice, which requires two passes over the entire
screen per primitive.
Trim(V)

 For each Primitive P in V
 Render V
 ChangeStencilState((V.n << 1) | 0x1, V.t)
 ChangeStencilState((V.n << 1) | 0x0, V.f)

ChangeStencilState(src, dst)
glStencilMask(src ~ dst);
glStencilFunc(GL_EQUAL, src, 0xFF);
glStencilOp(GL_KEEP, GL_KEEP, GL_INVERT);
DrawFullScreenRectangle();

We determine whether a candidate point X at pixel p is
in an intersection-group G by scanning all of the primitives of
G while using a counter [10] stored in the stencil of p. We
initialize the counter to c0. Then, for each positive primitive
P of G, we rasterize the back faces of P while incrementing
counter and the front faces of P while decrementing counter
for each point of P in front of X. Note that processing P in
this manner increments counter if X∈P and leaves counter
unchanged if X∉P. Then, we do the same for each negative
primitive N of G, but flip the role of front and back faces.
Note that processing N in this manner decrements counter if
X∉N and leaves counter unchanged if X∈N. Suppose that
we had cp positive and cn negative primitives in G. X∈G
when X is in all positive primitives (i.e., counter was incre-
mented cp times) and in none of the negative primitives
(i.e., counter was never decremented). Thus X∈G when
counter=c0+cp Using DeMorgan’s laws, we convert a union-
group to an intersection-group by reversing the role of
positive and negative primitives and switching the result.

If the depth complexity of each primitive is bounded by
k (i.e., its boundary may intersect a line at 2k isolated
points), counter may vary between c0–cn–k and c0+cp+k dur-
ing this process. Hence, we select c0=cn+k to ensure that
counter stays positive and must allocate log2(cn+cp+2k)
stencil bits for it. Although this approach does not change
the number of times each primitive P is rasterized during
trimming, it reduces the number of stencil passes, which
are the dominant fraction of the total cost because they visit
all pixels of the screen. Instead of 2 stencil passes per primi-
tive, the grouping approach requires 4 stencil-passes per
group to reinitialize count after each group and then to per-
form the Blist logic, as explained earlier. Since this ap-
proach uses 4 stencil passes per group instead of 2 stencil
passes per primitive, we achieve performance gains when
the number of groups is less than half the number of primi-
tives.

8 RESULTS
To illustrate typical performance, we report for each model
in Fig. 1 the number Prims of primitives and the rendering
times (averaged over various viewing directions) for 4
methods: Blister (column Blister); CST trimming against all
branching nodes (column Z); CST against i-nodes only
(column I); and CST against i-nodes using grouping (col-
umn G). All times are reported in milliseconds on a Win-
dows XP on a 3.2 Ghz Pentium 4 processor with an nVidia
GeForce 6800 GT graphics card. The implementation uses
OpenGL and Cg. All tests were performed in an 800×800
pixel window, with a view set so that the CSG solid barely
fits in the window.

 Prims Blister Z I G
Complex 20 121 96 92 100
Gear 48 481 382 312 179

We observe the following. Performance of Blister for a
given model varies considerably with the view orientation.
For example, Complex takes twice as long to render from the
side than from the front. Our CST-based algorithm is faster
and less viewpoint-dependent. Performance of CST de-
pends on the sum of the depth layers of its components,
which varies less with view changes. In fact, it is constant if
all primitives are convex. Its dominant cost lies in the sten-
cil logic. Skipping u-nodes usually improves performance
significantly. Grouping, which has an overhead, benefits
only models, such as Gear, which yield large groups (inter-
section or union trees at the bottom of the CSG tree).

We also report the performance of the more advanced
rendering techniques made possible by our CST approach.
Since there is no other realtime algorithm that can produce
correct images of semi transparent CSG models, we cannot
provide a comparative analysis with prior art. Bunny refers
to the Bunny with CST painted on it in Fig. 1. Interference
refers to the rendering of the transparent solid with the in-
terference in red in Fig. 1. Transparent refers to rendering
the first 4 layers of the Complex solid in Fig. 1. Inside refers
to showing the interior portion of the Complex object in
Fig. 1. Prims is the total number of primitives in the scene,
and CSTs is the total number of CST passes. For example,
rendering a single layer of Transparent requires 20 CSTs, so
rendering 4 layers requires rendering 80 CSTs. The re-
ported times are in milliseconds.

 Prims CSTs Time
Bunny 2 2 110
Interference 2 4 80
Transparent 20 80 391
Inside 20 16 222

The rendering time for semi-transparent models is pro-
portional to the depth complexity of the model, since each
layer requires rendering each visible CST. The dominant
rendering cost is the number of CSTs times the number of
primitives that need to be evaluated for each CST.

9 CONCLUSION
We have presented a new, GPU-based, CSG rendering al-
gorithm that fixes the shortcomings and extends the capa-

HABLE & ROSSIGNAC.: CST 9

bilities of Blister. Our CST algorithm trims the boundary of
each primitive against a Blist of its i-zone. We have shown
that it outperforms Blister and eliminates speckles, which
appear as several wrongly colored pixels in most Blister
images. Furthermore, our CST approach provides the first
solution for the realtime rendering of non-trivial semi-
transparent CSG models. It also may be used for painting
on solids, for highlighting primitive contributions in CSG
models, and for representing and rendering trimmed faces
of BReps without having to precompute their trimming
curves, which are typically generated through slow sur-
face/surface intersection calculations.

REFERENCES
[1] A. Requicha, “Representations for Rigid Solids: Theory, Methods, and

Systems,” ACM Computing Surveys, vol. 12, no. 4, pp. 437–464, 1980.
[2] J. Hable and J. Rossignac, “Blister: GPU-based rendering of Boolean

combinations of free-form triangulated shapes,” ACM Transactions on
Graphics, vol. 24, no. 3, pp. 1024–1031, 2005.

[3] A. Rappoport and S. Spitz, “Interactive Boolean Operations for Concep-
tual Design of 3-D Solids,” Proc. ACM SIGGRAPH, pp. 269–278, 1997.

[4] J. Rossignac and A. Requicha, “Depth-buffering display techniques for
constructive solid geometry,” IEEE Computer Graphics and Applications,
vol. 6, no. 9, pp. 26–39, 1986.

[5] J. Goldfeather, J.P.M. Hultquist, and H. Fuchs, “Fast constructive solid
geometry display in the pixel-powers graphics system,” Proc. Annual
Conference on Computer Graphics and Interactive Techniques, pp. 107–116,
1986.

[6] J. Goldfeather, S. Molnar, G. Turk, and H. Fuchs, “Near realtime CSG
rendering using tree normalization and geometric pruning,” IEEE Com-
puter Graphics and Applications, vol. 9, no. 3, pp. 20–28, 1989.

[7] T.F. Wiegand, “Interactive rendering of CSG models,” Computer Graph-
ics Forum, vol. 15, no. 4, pp. 249–261, 1996.

[8] N. Stewart, G. Leach, and S. John, “Linear-time CSG rendering of inter-
sected convex objects.” Proc. International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision, pp. 437–444, 2002.

[9] N. Stewart, G. Leach, S. John. “Improved CSG rendering using overlap
graph subtraction sequences,” Proc. International Conference on Computer
Graphics and Interactive Techniques in Australasia and South East Asia, pp.
47–53, 2003.

[10] S. Guha, S. Krishnan, K. Munagala, and S. Venkatasubramanian, “Ap-
plication of the two-sided depth test to CSG Rendering,” Proc. Sympo-
sium on Interactive 3D Graphics, pp. 177-180, 2003.

[11] J. Rossignac, “Processing Disjunctive forms directly from CSG graphs,”
Proc. CSG 94: Set-theoretic Solid Modeling Techniques and Applications, pp.
55-70, 1994.

[12] R. Banerjee and J. Rossignac, “Topologically exact evaluation of poly-
hedra defined in CSG with loose primitives,” Computer Graphics Forum,
vol. 15, no. 4, pp. 205–217, 1996.

[13] S. Kumar and D. Manocha, “Efficient rendering of trimmed NURBS
surfaces,” Computer-Aided Design, vol. 27, no. 7, pp. 509–521, 1995.

[14] M. Guthe, A. Balázs, and R. Klein, “GPU-based trimming and tessella-
tion of NURBS and T-Spline surfaces,” ACM Transactions on Graphics,
vol. 24, no. 3, pp. 1016–1023, 2005.

[15] A. Rockwood, K. Heaton, and T. Davis, “Real-time rendering of
trimmed surfaces,” Proc. ACM SIGGRAPH, pp. 107–117, 1989.

[16] S. Kumar, “Preventing Cracks in Surface Triangulations,” Proc. Chimera
98: 4th Symposium on Overset Composite Grid & Solution Technology, pp.
40–47, 1998.

[17] G.K. Cheung, R.W. Lau, and F.W. Li, “Incremental rendering of de-
formable trimmed NURBS surfaces,” Proc. ACM Symposium on Virtual
Reality Software and Technology (VRST), pp. 48–55, 2003.

[18] J. Rossignac and H. Voelcker, “Active zones in CSG for accelerating
boundary evaluation, redundancy elimination, interference detection,
and shading algorithms,” ACM Transactions on Graphics, vol. 8, no. 1, pp.
51–87, 1988.

[19] J. Rossignac, “BLIST: A Boolean list formulation of CSG trees,” Techni-
cal Report GIT-GVU-99-04, GVU Center, Georgia Institute of Technol-
ogy, http://www.cc.gatech.edu/gvu/reports/1999/, 1999.

[20] H. Fuchs and J. Poulton, “Pixel-planes: a VLSI-oriented design for 3-D
raster graphics,” Proc. Canadian Man-Computer Communications Confer-
ence, pp. 343–347, 1981.

[21] D. Epstein, F. Jansen, and J. Rossignac, “Z-buffer rendering from CSG:
The Trickle algorithm,” Research Report RC15182, IBM Research, 1989.

[22] J. Rossignac and J. Wu, “Correct shading of regularized CSG solids
using a depth-interval buffer,” Advanced Computer Graphics Hardware V:
Rendering, Ray Tracing and Visualization Systems, Eurographics Seminars,
pp. 117–138, 1992.

[23] C. Everitt, “Interactive order-independent transparency,” Technical
Report, Nvidia Corporation, http://developer.nvidia.com, 2002.

[24] A. Mamman, “Transparency and antialiasing algorithms implemented
with the virtual pixel maps technique,” IEEE Computer Graphics and Ap-
plications, vol. 9, no. 4, pp. 43–55, 1989.

[25] M. Kelley, K. Gould, B. Pease, S. Winner, and A. Yen, “Hardware accel-
erated rendering of CSG and transparency,” Proc. Conference on Com-
puter Graphics and Interactive Techniques, pp. 177–184, 1994.

[26] H. Du and H. Qin, “Integrating Physics-Based Modeling with PDE
Solids for Geometric Design,” Proc. Pacific Conference on Computer Graph-
ics and Applications, pp. 198, 2001.

[27] B. Schmitt, G. Pasko, A. Pasko, and T. Kunii, “Rendering trimmed im-
plicit surfaces and curves”, Proc. AFRIGRAPH, pp. 7–14, 2004.

[28] B. Adams and P. Dutré, “Interactive Boolean operations on surfel-
bounded solids,” ACM Transactions on Graphics, vol. 22, no. 3, pp. 651–
656, 2003.

[29] D. Liao and S. Fang, “Fast volumetric CSG modeling using standard
graphics system,” Proc. ACM Symposium on Solid Modeling and Applica-
tions, pp. 204–211, 2002.

[30] E. Jansen, “A Pixel-Parallel Hidden Surface Algorithm for Constructive
Solid Geometry,” Proc. Eurographics, pp. 29–40, 1986.

[31] G. Erhart, and R. Tobler, “General purpose z-buffer CSG rendering
with consumer level hardware,” Technical Report. VRVis 003, VRVis
Zentrum für Vurtual Reality und Visualisierung Forschungs-GmbH,
2000.

[32] J. Ellis, G. Kedem, G.T. Lyerly, D. Thielman, R. Marisa, and J. Menon,
“The Ray Casting Engine and ray representations,” Proc. ACM Sympo-
sium on Solid Modeling Foundations and Applications, pp. 255–268, 1991.

[33] J. Rossignac, “CSG formulations for identifying and for trimming faces
of CSG models,” Proc. CSG'96: Set-theoretic solid modeling techniques and
applications, pp. 1–14, 1996.

[34] R. Bryant. “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Computing, vol. 35, no. 8, pp. 677–691, 1986.

[35] R. Bryant, “Binary decision diagrams and beyond: enabling technolo-
gies for formal verification,” Proc. IEEE/ACM international Conference on
Computer-Aided Design, pp. 236–243, 1995.

[36] S. Akers, “Binary decision diagrams,” IEEE Trans. Computing, vol C-27,
no. 6, pp. 509–516, June 1978.

[37] B. Yang and D. O'Hallaron, “Parallel breadth-first BDD construction,”
Proc. ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, pp. 145-156, 1997.

[38] H. Payne and W. Meisel, “An algorithm for constructing optimal binary
decision trees,” IEEE Trans. Computing, vol. 26, no. 9, pp. 905–916, 1977.

[39] J. Rossignac 2006, “Blist: Small footprint evaluation of Boolean expres-
sions,” Technical Report, GVU Center, Georgia Institute of Technology.

John Hable is a Software Engineer with the WorldWide Visualization
Group at Electronic Arts. His research focuses on real-time photoreal-
istic recreation of human performances and visualization of scenes
defined by Boolean operators.

Jarek Rossignac is Professor of Computing at Georgia Tech. His
research focuses on the design, analysis, compression and visualiza-
tion of shapes and animations. Before joining Georgia Tech as Director
of the GVU Center, he was Senior Manager and Visualization Strate-
gist at the IBM T.J. Watson Research Center. He authored 19 patents
and 120 articles, for which he received 5 Corporate and 8 Best Paper
Awards. He created the ACM Solid and Physical Modeling Symposia
series; chaired 20 conferences and program committees; and served
on the Editorial Boards of 7 professional journals and on 52 Technical
Program committees. He is a Fellow of the Eurographics Association.

10

APPENDIX: HIGH RESOLUTION IMAGES

Appendix Fig. 2: Blister produces speckles (see magnification insert on the left). CST does not (right).

Appendix Fig. 3: CST images of the Complex CSG model (from left to right): Opaque rendering of the first depth layer (a); The second depth layer
(b); Active parts of selected primitives (c); Semi-transparent boundary of the CSG model (d).

:

Appendix Fig. 1: CST can be used for painting or carving on surfaces.

