A Generic Scheme for Progressive Point Cloud
Coding

Yan Huang, Jingliang Peng, C.-C.Jay Kuo and M. Gopi

Abstract—In this paper, we propose a generic point cloud of 3D model coding, besides the compression ratio, other
g_f;fCOdef the}é DfOVi?eS a Unifield frameWOfkd_fOf cogg)ressing parameters such as the following are also important.

ifferent attributes of point samples corresponding to 3D objecs . . L
with arbitrary topology. In thepproposedpschen?e, the cojding One main objective Qf 3D model compress_lon IS to com-
process is led by an iterative octree cell subdivision of the Press models of all different types with various geometry
object space. At each level of subdivision, positions of point and topological features and various point attributes.sThu
samples are approximated by the geometry centers of all tree- whether a coding scheme can be applied to a large class of
front cells while normals and colors are approximated by their models provides a metric for generality measure. Furthezmo

statistical average within each of tree-front cells. With this . .
framework, we employ attribute-dependent encoding techniques en.d.users_evaluate a coding sgheme based on .the decoding
efficiency in order to assure timely reconstruction of the

to exploit different characteristics of various attributes. All of ) )
these have led to significant improvement in the rate-distortion compressed models. This also requires that the decoders are

(R-D) performance and a computational advantage over the simple to implement. Finally, compression becomes imntinen
state of the art. Furthermore, given sufficient levels of octree for models with millions of points, while memory usage
expansion, normal space partitioning and resolution of color . . .
guantization, the proposed point cloud encoder can be potentially alslol mcregses proportionally with such large models. Thus
used for lossless coding of 3D point clouds. gfﬁuency in memory usage of the codec becom(_es another
important parameter based on which the compression scheme
has to be evaluated. With these requirements in mind, we
propose a 3D point cloud coding scheme that is generic, time
and memory efficient, and achieves a high compression ratio.

Index Terms— Progressive coding, LOD, compression, octree,
3D point cloud.

I. INTRODUCTION

3D models find applications in many fields such as gaming, ) o
animation and scientific visualization. With the increasin’- Main Contributions
capability of 3D data acquisition devices and computing |n this work, we propose a novel scheme for progressive
machines, it is relatively easy to produce digitized 3D ni®decoding of positions, normals and colors of point samplemfro
with millions of pOintS. The increase in both avallabllltpdi 3D Objects with arbitrary topo|ogy_ The major contribuon

complexity of 3D digital models makes it critical to efficién

include the following.

compress the data so that they can be stored, transmitted,
processed and rendered efficiently. ¢

Traditional polygonal mesh representation of 3D objects
require both geometry and topology to be specified. In con-*
trast, in point-based 3D model representation the triaatiur
overhead is saved, processing and rendering are fadiitate
without the connectivity constraint, and objects of comple
topology can be more easily represented. They make the-point
based representation an ideal choice in many applications
that use high quality 3D models consisting of millions of
points. With such a huge amount of data, efficient comprassio
becomes very important.

The technique of 3D model coding has been studied for
more than a decade. When various coding schemes are
compared, the compression ratio is the most widely used
performance metric. However, in the algorithmic designcepa
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Generic Coder. It can compress point data for objects
with arbitrary topology.

Full-range Progressive Coder.At the decoder side, a
model is progressively reconstructed from a single point
to the complete complexity of the original model.

o Time and Space Efficiency.The decoder only needs

to maintain partial octree layers and is able to recon-
struct/update a model in a time-efficient manner.

« Efficient attribute coders. The simple and effective

prediction technique in position coding, the progressive
guantization and local data reorganization in normal
coding, and the adaptive and nonuniform quantization
in color coding lead to the superior performance of the
proposed scheme.

« Suitability for lossless coding! Since no re-sampling of

the input model is done, lossless coding can be potentially
achieved.
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1In the field of model compression, "lossless coding” refershim ¢oding
process that, for a specific quantization of (a floating pailsita, represents
and recovers the quantized data in a lossless manner. Incessba recon-
structed data is within a tolerance range from the originglt, and there
is no resampling of the input data. Specifically, it does not et the
decoded data is exactly the same as the floating point input.



B. Related Work degradation in coding efficiency.

All the coders in [26]-[28] are based on octree-based

Mesh Compression:The problem of 3D mesh Compress'or’}_gartitioning of the object space. With a major focus on edfiti
has been extensively studied for more than a decade. FQhqering, Botsclet al. [26] encode only the position data

a comprehensive survey of 3D mesh coding techniques, W, ,gh the coding of byte codes associated with octree cell
refer to Penget al's work [1]. The existing 3D mesh codersgivisions. Similar to that in Peng and Kuo's work [15],
can be classified into two general categories: single-r&shm o coger by Schnabel and Klein [27] encodes the number of
coders [2]-{7] and progressive mesh coders [8]-{18]. Agynempty child cells and the index of child cell configuratio
compared to single-rate mesh coders, progressive coders akq each octree cell subdivision. If color attributes areb®

a mesh to be transmitted and reconstructed in multiple sevel,jeq it first encodes a color octree and then encodes a color
of dgtan_ (LODs), which is suitable for streaming m_netwedk index for each nonempty cell in the position octree. Despite
applications. Most of 3D mesh coders handle manifold mesl]f'ss good R-D performance, Schnabel and Klein's [27] coder

only, with exceptions of [13]-[15] which process meshes Qf,,y not be generally applicable to real-time decoding due to

arbitrary topology. its computational complexity.

Point-based Model CompressionSimilar to mesh coding  The rest of this paper is organized as follows. Sec. II
techniques, most point-based model coders can be classifigdyides an overview of the proposed coding scheme. The
into single-rate coders [19] and progressive coders [28-[ position, the normal and the color coders are detailed in
In Kriger et al's work [29], although the input model is secs. |11, IV and V, respectively. Evaluation of the algonit
encoded into multiple LODs, the bitstream of a coarser LOD js, computational and memory efficiency is made in Sec. VI.
not embedded in that of a finer one. Hence we do not classifytyit gllocation strategy is proposed in Sec. VII. Experittan

as a progressive coder. Furthermore, some point-basedl meggyits are presented in Sec. VIII, and concluding remarés a
coders are good for samples from manifold objects onlydgtawn in Sec. IX.

[21], [22]) while others can handle samples from arbitraly 3
objects ( [19], [20], [23]-[29)). [l. OVERVIEW OF PROPOSEDCODING SCHEME

In Gumholdet al’s work [19] a prediction tree is built up for ~ Constructing LODs of the Model: The proposed encoder
each input model to facilitate prediction and entropy cgdinrecursively and uniformly subdivides the smallest axigrad
however it is not suitable for progressive coding. A bougdin bounding box of a given model into eight children in a
sphere hierarchy is used by the QSplat rendering systetree data structure. Only the nonempty child cells will
developed by Rusinkiewicz and Levoy [20] for interactivgge subdivided further. The part of the model within each
rendering of large point-based models. Although not dyriat cell is represented by its cell’s attributes — the positidn o
compression algorithm, QSplat offers a compact repreenta each cell is represented by the geometric center of the cell,
of the hierarchy structure where 48 bits are used to quatitee and the normal/color of each cell is set to the average of
position, normal and color attributes of each node. A med#l normals/colors of contained points. The attributes of mopty
point-based representation is adopted by Fleishetan. [21] cells in each level in the octree structure yield an LOD of
where the coefficient dimension is reduced from 3D to 1D fahe original 3D model. We call each point in an LOD as a
higher coding efficiency. Techniques of 3D model partittani representative
and height field conversion are introduced by Ochotta andCoding of LODs: The efficiency of the proposed coding
Saupe [22] so that the 2D wavelet technique can be usssheme lies in effective coding of LODs of the model repre-
to encode the 3D data. Multiple Hexagonal Close Packirgnted by the octree data structure. In association with eac
(HCP) grids with decreasing resolutions are constructed bygtree cell subdivision, we encode position, normal andrcol
Krigeret al. [29] where sequences of filled cells are extractegktributes of each nonempty child cell.
and encoded for each HCP grid. An extended edge collapserhe position of each cell is implicit as the subdivision of a
operator merges two end-points of a virtual edge into orell is uniform and the center of the cell can be computed from
point in Wu et al’s work [23]. The cluster-based hierarchicathe position of the parent cell. Nevertheless, the sequefce
Principal Component Analysis (PCA) is used by Kalaiahonempty child cells has to be coded efficiently. The pasitio
and Varshney [24] to derive an efficient statistical geogneteoder is described in Sec. I,
representation. Since research in [20], [23], [29] and [2dUis The normal attribute is first quantized based on uniform
on efficient rendering, no rate-distortion (R-D) data ofrtoi subdivision of the unit sphere. When the normal information
cloud compression are reported therein. needs to be refined for an octree cell subdivision, normals of

Among the previous works on point-based model codahildren are predicted by the normal of their parent, andt the
ing, [25]-[28] are the most related to our current workiesiduals are coded. On the unit sphere, quantized normals
Waschliisch et al. [25] used iterative point pair contractionaround the predicted normal are locally sorted and indexed,
for LOD construction and the reverse process is encodedsulting in a reduced entropy of normal residual indicdse T
It encodes all point attributes under a common frameworkormal coder is discussed in Sec. IV.

Although this technique is applicable to samples from non- Before color coding, PCA is first performed on the color
manifold objects in principle, no such results were present data of the model to determine a new color frame where an
Besides, there is a limit on the number of LODs that should leeiented bounding box of color samples is calculated. Then,
encoded, beyond which the method might show a significathie generalized Lloyd algorithm (GLA) is used to calculate



the quantization ranges/representatives along each dioren nonempty based on the parent cell’s local neighborhoodn,The
of the oriented bounding box. This adaptive quantizatione determine the new traversal order of child cells and
reduces the number of quantization bins (thus, the numberrebrder bits in the corresponding occupancy code according
representational bits) for a given quantization errorghodd. to the relative magnitude of the estimated probability. The
When the color information needs to be refined for an octr&ey in occupancy code reordering is probability estimation
cell subdivision, each child color is predicted to be thesa@® which consists of two steps: neighborhood identificatiod an
its parent color, and the residual is encoded. The colorrcogeobability assignment.

is detailed in Sec. V. Neighborhood Identificationtn a 3D mesh, an edge indi-
cates the neighbor relationship between two vertices, hwhic

I1l. PosITION CODER " . . .
was utilized by Peng and Kuo [14] for bit reordering. Since

For each octree cell subdivision, the point representire,ge do not have edges in a point-based 3D model, we call
the parent cell is replaced by points representing nonempity representatives, and ¢, in the current LOD (and the

child cells. The decoder needs to know which child Ce"@orresponding octree cell§}; and Cs) neighbors if and only
are nonempty so that a representative can be placed at imﬁe following conditions are satisfied

geometry center of each nonempty child cell, leading to a . .

finer approximation to the original point cloud model. Our * The difference of level numbers Gf; andC is less than

main contribution in position coding is to propose a techeiq a predetermined threshotd ,

to lower the entropy of codes representing nonempty childre * The distance betweem; and c, is less thand x
min(diag(C1), diag(Cs)), where § is a constant and

using a neighborhood-based predictor. ) \ ;
Occupancy Code: In the proposed position coder, a 1-  ¢iag(Ci) is the diagonal length of cell’;.

bit flag is used to signify whether a child cell is nonempty, The first condition requires at most continuous octree
with ‘1’ indicating a nonempty child cell and ‘0’ an emptylevels, instead of the whole octree, to be maintained during
child cell. For each octree cell subdivision, if we travesedle the process of compression. This allows a memory-efficient
child cells according to a fixed order, and collect the flagnplementation of the encoder and the decoder. The second
bits of all child cells, we will obtain an 8-bit code calledcondition guarantees that only nearby representatives (
the occupancy codewhich has to be coded. For the ease dfells) could be neighbors, and the range of local neightmmitho
illustration, we consider a 2-D example and show the quadtris controlled by paramete¥. Interestingly, a similar condition
subdivision and its occupancy code in Fig. 1. If we traversgas used by Gopet al. [30] for neighborhood identification
child cells according to the fixed order, we will obtain twof points for surface reconstruction. We set = 3 and
occupancy codes, 1010 and 0101, for the two cell subdivisiofi = 1.5 in our experiments. Note that there are data structures

in Figs. 1(a) and (b), respectively. and computational geometry algorithms [31] to determine
immediate neighbors of a cell in both complete and incoreplet
cell 1 cell 2 cell 1 cell2__ octrees. However, these algorithms are not directly apple
0|1 o_ [ 0 3“ 2 1 to the current case since we would like to control the extent
7 of the neighborhood using the spatial relationship.
% —3-> 2 /18 ! 2 3 |9 Neighborhood identification can be performed efficiently

with the help of the octree structure. To determine the reigh
bors of a cell after subdivision, we first construct a list
of candidate neighbors of the target cell by inheriting the
Fig. 1. Examples of occupancy code formation (a) before andatsy ~N€ighborhood relationship from its parent and including al
estimation of each child cell’s relative probability of bginonempty, where children of parent’s siblings that have been compresseitl unt

nonempty and empty child cells are colored green and whitentisely. now, We then prune cells from this list that do not satisfy the
The traversal orders are denoted by the blue arrows. . L.
above two distance criteria.

To reduce the entropy of occupancy codes, we “push” ‘1*- Prqbapility Assignmgnﬂ:n general, t.he Ioca! surface around
bits toward an end by reordering the bits in each occupan@yPOint in a model lies on one side of its local tangent
code as shown in Fig. 1. It is worthwhile to point out thaPane except for saddle and other complex surfaces, and poin
the technique of octree cell subdivision was also used B@MPles contained in a cell tend to locate closely to thel loca
Peng and Kuo [14] and [15] for mesh compression. Pelt@ngem _plane. Based on these observatlons, we estlm_ate the
and Kuo [15] encode the index of each nonempty—chiId-cé?l"‘)bab'“ty of child cells’ being nonempty with the follong
tuple instead of the occupancy code. Despite its high codifEfPS:
efficiency, the process of pseudo-probability estimatiod a « At the center of the parent cell, the normal, whose coding
tuple sorting is computationally intensive. As compared to will be detailed in Sec. IV, gives an approximate local
the bit reordering technique used by Peng and Kuo [14] for tangent plane denoted by
entropy reduction in coding triangular meshes, the occeypan « On either side ofp, we sum up distances of neighbor

1010 0101 1100 1100
(a) before estimation (b) after estimation

code reordering method described below differs extensivel representatives tp, and assign higher probability values
local neighborhood identification and probability assigmin to child cells whose centers are on the sidepakith a
Occupancy Code Reordering: For each cell subdivi- higher sum of distances.

sion, we first estimate each child cell’s probability of leein « For child cells with centers on the same sidepphigher



probability values are assigned to those whose centers are

closer top.

For computational efficiency, we use a plane instead of a

higher order surface patch to approximate the local surface
Being different from the probability assignment in Peng and

Kuo’'s work [14] which orders child cells purely based on

their distances to a local approximating surface, our élgor
prioritizes all points on one side of plapeover those on the
other. In general, the plane-side-based priority assigrinas
led to an additional coding gain in our experiments.

Bit Reordering:It is not the exact probability values but
their relative magnitudes that matter in the proposed occu-
pancy code reordering algorithm. They guide the child cell
traversal and the order of corresponding bits in the ocatypan
code. Consider the example of a quadtree cell subdivision

shown in Fig. 2. The parent representative is shown aad
its neighbors are given byb;. The distances ofib; to the
tangent plane ab given by the normal vector. at o are
represented byl;. The children ofo are represented bg;.

The child cellsCy and C5 are assigned higher probability

values thanCy, and C; sinced; + ds > ds. Child cell C5 is
assigned a higher probability value th@i sinceCs is closer
to the tangent plane tha@s. For the same reasou, has
higher probability assignment thatt,. Based on this proba-
bility assignment, the order of child cell traversal is chad
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Fig. 3. The distribution of occupancy codes (a) before andafter bit
reordering.
IV. NORMAL CODER

The main contribution in normal coding is to rearrange
the normal data using a novel local normal indexing scheme

from Co—C1—Cy—C3 to C3—Cy—Cy—C, as llustrated yh4¢ significantly reduces the entropy. The normal of a rep-

by red arrows. Accordingly, the associated occupancy COflg;

entative is the normalized average of normals of all data

is changed from 0011 to 1100, with 1's being shifted t0 thesints contained in the corresponding octree cell. For each
left side. Note that this probability estimation algorithakes g subdivision, all nonempty child cells are predictechave

into account the local geometry of point-based 3D modej

implicitly, and it works well for different local curvatuse
including regions of maxima and minima.
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Fig. 2.  Determination of the new child cell traversal ordersdzh on
estimated relative probabilities, whet®). . .C3 are child cells, withC> and
Cs nonempty (filled). The approximate tangent planes determined by the
normaln at the parent representativeand nb; is a neighbor representative
whose distance tp is d;(i = 1,2, 3). The final order of child cell traversal
is shown by red arrows.

Effect of Bit ReorderingThe effectiveness of the probability

fe same normal as their parent, and prediction residuals ar
coded using a local normal indexing scheme that organizes
similar normals around the predicted one on the unit sphere
(Gauss sphere) into a 1D list.

Normal Quantization: Before compression, normals need
to be quantized. This is achieved by iterative subdivisibtihe
normal spaceif. the unit Gauss sphere) to a pre-determined
resolution as done by Taubét al. [32] and Botsctlet al. [26].
Each representative normal can then be identified by an index
into a table of quantized unit normals determined by the
above subdivision. We use the same subdivision and indexing
approaches of Botscht al. [26]. The iterative process of
normal space subdivision and indexing is illustrated in Big

3(@) and (b). These figures show the histograms of occu-
pancy codes before and after the reordering based on the
accumulative statistics for the Octopus model with eighel
octree subdivision. High peaks show up at a few values affdg- 4. Normal quantization: (a) an octahedron is inscribed the unit
the reordering, leading to a greatly reduced entropy vafue gﬂggfj;‘g‘n" :ﬁde('g)hzrf:ﬁgefgﬁj ((]? e:{o(f’ll,’.....‘:??})) form the first evet of
4.58 from the entropy of 6.95 before reordering. This methado-triangles Ty 4, ... T1.4513 with index (1 : 4;) assigned to the central
achieves similar entropy reductions in other models also. sub-triangle whose normal is equal to that7ef ;.

. . - . . \
estimation and the occupancy code reordering techniques in \
entropy reduction of occupancy codes is shown in Figures \

(a)



In terms of R-D performance, it is not meaningful to encode
the normal value in high resolution when the positional keso
tion is still low. Hence we build up multiple normal tableseo
for each level of normal space subdivision, and associate an  (a) 1% neighbor ring
appropriate resolution-level normal table with each l@f¢he
octree in the position coder. In our experiments, a maximum
of 13 bits (that is, 6 levels of sphere subdivision) are used
for normal quantization. When an octree cell is subdivided
with increased resolution of normal quantization, we need t
encode the normal of each child representative. Since it mos
cases, the normal of a child representative is close to that o
the parent, we predict the normal of a child representative t
be the same as that of the parent and encode the residualrig. 5. Local normal indexing: (.45 . . . Ti.4;+3 are assigned the smallest

Local Normal Indexing: The proposed normal coder ist_Ur_indiceST since }gre%/] Slivfsttmzisﬂﬁglfﬁ; dicf)fgje”_c_e(bi)”thn;{ffsﬁgﬂr?e?zﬁg&
based on a local normal mdexmg _SCheme with an Opjecnﬁﬁsjgflﬁ:;jl:ié]g?panded and thég‘d neigh%or ;lr% (in purple ang pink)
to reduce the entropy of normal residuals. For each tri@guls formed by the triangular facets around th& neighbor ring. Note that
facet I.,; at the it level of normal space subdivision, we b B0 e e+, than those of the pink fabets: (0 the local
re-index the same-level facets n Its, |0C6:| neighborhood (ﬁgighborhood is expanded t84t]Bé‘i neighbor ring s?milarly. ’
the sphere based on the differences in their normal ffom).

We maintain an arrayd; 4;, of pointers to these facets in the

26 o8
105041 4250 43

(c) 3" neighbor ring

O O O O
(b) 2™ neighbor ring

neighborhood as shown in Fig. 5. Although we can further , 2500
expand the local neighborhood we have already seen very 2004
good performance with just three rings in our experiments 51500
and the advantage of having more rings with additional apdin 21004
bit complexity is negligible. Note that at lower quantizati % 500
resolutions, the neighborhood may not have enough triangle 0 st sinie b
: : . 0 200 400
to have three rings and hence will have fewer rings. The nor- normal index: 0-511 global, 512-563 local
mal space subdivision scheme and the local normal indexing (a)
scheme are computed only once and stored as a table for use , 2500
by both encoder or decoder. 52000
Initially, the normal of the root octree cell is represented 51504
with a 3-bit global normal index. When an octree cell is 21000
subdivided and the associated normal data need to be refined, S 500
the indexed local neighborhood facet of the Gauss sphere
X . _ 200 400
around the facet of the parent normal in which the normal normal index: 0-511 global, 512-563 local
of the child representative falls is searched. A 1-bit flag is (b)

arithmetic encoded to indicate whether this local search is
successful. If it is, the local index of the matching normalfig. 6.  The distribution of normal indices: (a) global indicat 9-bit
is arithmetic coded; otherwise, a global search is condiuctd‘antization for the Igea model and (b) the correspondinglloormal
T T . indexing, where the local normal indices are offset by 512tHier purpose of

and the global normal index is arithmetic coded. plotting.

In essence, the proposed local normal indexing scheme
increases the occurrence frequencies of local normal esdic
(0...51), resulting in a reduced entropy of the normal dat&oding is employed to further reduce the entropy of coloadat
Fig. 6 demonstrates the effectiveness of the local normEhe proposed adaptive quantization scheme consists of two
indexing scheme. By comparing Figs. 6(a) and 6(b), we se@jor components: adaptive color frame determination and

a much more concentrated distribution around a small numtastaptive quantization representative/range computation

of local normal indices in Fig. 6(b). Adaptive Color Frame Determination: A high degree of
color correlation exists in a wide range of 3D models andrcolo
V. COLOR CODER samples of a model tend to cluster in only a small portion of

Our approach to color data coding is adaptive quantizatitime color space. This often leads to high redundancy in color
followed by delta coding. To reduce the resultant data @gtrorepresentation when the uniform RGB space quantization is
at the same distortion tolerance, the proposed quantizatissed. For example, there is a high degree of color sample
scheme utilizes the probabilistic distribution of colomsa clustering in the RGB color space for the Face model as
ples specific to an input model. As a result, the proposstiown in Figs. 7(a)—(c). This observation generally holus i
adaptive color quantization scheme leads to optimized RfDost models. To exploit this color coherency, we derive a new
performance when compared with the uniform quantizatidbartesian color frame based on the probabilistic distidiout
scheme and the well-known octree-based color quantizatiohinput color data so as to achieve higher representational
scheme by Gervautz and Purgathofer [33]. Finally, the dekdficiency. Specifically, PCA is applied to the set of inpuloco



samples in the RGB color space. The three orthogonal eigen The originC, and axesV,, V5 andV3 of the new color
vectorsVy, V5, and V3 identified by PCA and the centroid, frame.
C, of the input color samples determine a new Cartesian colors The following data along each of the above three axes:

frame and is denoted b¥’. The oriented bounding box that — the value of the first quantization representative.
tightly encloses the color samples in the fraifieis denoted — the number of guantization ranges and intervals
by B’, and that which is defined iF" is denoted byB. between every two consecutive quantization repre-
Typically, the volume ofB’ is significantly smaller than that sentatives.

of B. For the Face model whose color data distribution is For time and space efficiency, GLA is conducted along each
illustrated in Fig. 7, the volume ofs’ is only around 15% dimension separately. Please note that, running GLA three
that of B. In general, such a compact bounding box leads {pnes, once for each dimension, for 1-D ranges of size

reduction of redundancy in the representation. each is about three orders of magnitude faster than running

After the new color framé” is determined, the coordinatesit once for 3-D cubes of sizé?® that partition the entire
of each color sample in the old RGB color framg, are 3D bounding box. Furthermore, the separable GLA scheme
transformed to the new color framé;'. These transformed demands a table consisting 8 1-D representatives, rather
coordinates are used to compuié. than a table consisting & 3-D representatives as demanded
by the joint GLA scheme.

Effectiveness of Adaptive Color Quantization: To illus-
trate the effectiveness of the proposed adaptive colortmqzan
tion scheme, we use two other color quantization schemes as
benchmarks: the uniform quantization scheme that subshvid
each dimension of the original RGB color cube into equal-
sized ranges and the octree-based color quantization gschem
by Gervautz and Purgathofer [33] that adaptively cons$ruct
an octree in the original RGB color cube for the quantization
purpose.

We plot estimated R-D curves of three quantization schemes
Fig. 7. The distribution of color samples for the Face modeleig from in Fig. 8 with the Face model. The schemes are denoted as
(2) the R-axis (b) the G-axis, and (c) the B-axis. ‘uniform’, ‘octree’ and ‘adaptive’ in the figure. The quardi-

tion resolution is controlled by the number of quantization

Adaptive Quantization Range and Representative Calcu- ranges along each dimension in the uniform quantization
lation: In the new color frame”, we subdivide each dimen-gcheme and the proposed adaptive quantization scheme, and
sion of B’ into quantization ranges and select a representatiyg the number of quantization representatives in the octree
for each range. To utilize the probabilistic distributiofi 0py35ed scheme. For each guantization resolution, we estimat
color samples, instead of equally subdividifyj along each he corresponding coding bits per input sample based on the
dimension, we adaptively determine the extent of indivldugmropy of quantized color indices, and estimate the distor
ranges along each dimension &f such that the averageper input sample by the average distance between each input
quantization error can be minimized for a given number @bjor sample and its quantized representative. We see from
quantization ranges. This is done using the generalizegdLIoig. g that the proposed adaptive quantization schemesyield
algorithm (GLA), which is a clustering algorithm widely 5 significant R-D advantage over the uniform quantization
used in the context of vector quantization [34] and pattediheme.
recognition [35]. (See Appendix for more information.) &ft  Ajthough the octree-based color quantization scheme yield
the application of GLA, a sequence of optimal represergativaimost the same R-D performance as the adaptive color
is obtained along each dimension Bf, and the set of mid- quantization scheme, the memory efficiency of the adaptive
points between adjacent pairs of representatives delithés scheme can be two orders of magnitude superior to the octree-
individual quantization ranges. based quantization scheme. Fotk?) 3D color quantization

The number of required ranges in each dimension is d@presentatives, the octree-based color quantizatioenseh
termined by the tolerance to the quantization error. In eagdquiresO(k*) of space to store the color quantization table,
dimension, the GLA algorithm can be repeatedly applied lyhile the adaptive scheme requires j@tk) of space since
adding additional seed representatives at every iteratidih the quantization representatives are stored indeperydent
the algorithm yields a partition aB’ such that the maximum each of the three axes of the bounding box.
difference between any sample to its representative isiwith Entropy Coding: Since the color decoder requires the
the tolerance. In our experiment, we use2 of RGB cube’s color quantization table, the encoder has to encode the tabl
side length as the tolerance level, which has yielded a firgéfore encoding the colors of representatives in any LOD. In
color quality that is perceptually indistinguishable frdive our implementation, the color quantization table is arigtio
original in all our test models. coded.

Having determined quantization representatives and sgangeln an intermediate LOD, the color of a representative is
along each dimension d8’, we construct a color quantizationquantized in the new color fram€& according to the obtained
table, which consists of the following data items. guantization table, and the quantized color coordinatesar




-
[6)]

A o Color encoding/decoding: The encoder performs
“adaptive 30(logk) searches to quantize each color, if the
~octree guantization ranges and representatives of each
dimension are organized into a binary search tree,
where k is the average number of ranges along each
dimension. Typically, we havéog k < 8 for k£ < 256.

12 The decoder simply retrieves the quantized color through
three table lookups. In addition, both the encoder
Fig. 8. Comparison of R-D curves of three color quantizatiohesnes for and the decoder need to perform a color coordinate
the Face model. transformation through a matrix-vector production. The
total computational cost of color encoding/decoding is
thus O(1).
Besides the computational cost per cell subdivision as
analyzed above, we need to construct the octree and the color
uantization table once at the encoder as a pre-procedsing s
r a 3D model ofV points, building anr + 1)-layer octree
cofstsO(rN) in the position encoding, whereis the number
guantization bits along each 1D dimension. For the color
coding, one PCA step and one GLA iteration cO$tV)
fd O(kN), respectively, wheré: is the average number of
fantization ranges along each dimension in the adaptively
etermined color frame.

-
o

estimated distortion

o

[«

(83
o
=1
o

estimated bitrate

be encoded. Motivated by the observation that there is lysual
high correlation between colors of a child representative a
its parent, a child representative is predicted to have dnees
color as its parent, and only the residual is coded with
arithmetic coder leading to further entropy reduction.
Please note that the RGB color representation instead
the luminance-chrominance representation (such as the Y
color space) is used here. Since the luminance-chromina
color representation models human perception of color mg
closely, it would be interesting to study the quantizatioﬂ
scheme in the Igminance-chrominance color representaﬁon Based on the above analysis, we conclude that the pro-
a futu.re (_axtensmn. For example, we may ap‘?'y the adapt%gsed encoding scheme has a computational complexity of
guantization scheme separately to the 1-D Iumlnance—mbspo(max(r k)N). Based on our experimentsand typically
and the 2-D chrominance-subspace to prioritize the Iurruieantake thei; values from the range o — 30 in order to produce

component over the chrominance components. an approximation to the original 3D model with perceptually

VI. EVALUATION ON TIME AND SPACE EFFICIENCY indistingUiShable quallty We also conclude that the pﬂmb

, , decoding scheme has a computational complexity)6iV),
A Asy.mptot|c Pgrformance Analysis . which is much faster than encoding scheme. For more detailed
In this subsection, we conduct an asymptotic performangging data, we refer to Table IV in Sec. VIII

analysis on the computational and memory costs of the Pro-Memory Cost: Both the encoder and the decoder have to
posed point cloud coder. In order to provide a big-O analysigiore several tree-front layers of the octree, i.e. 3 trestf

we focus on the cost associated with major algorithmic SteRS/ers of the octree, which také€y(N) space. In addition, the
and the most expensive operations in each step. Consider dfigoder has to store the position, normal and color atebut
case where there a®¥ points in the input 3D model, which 55sociated with each point in the input model, whose memory
is decoded to a sufficient level of detail; namely V) cell  ¢ost is againO(N). Furthermore, both the encoder and the

subdivisions in total. _ decoder need to store the normal quantization table and the
Computational Cost: The computational cost for each celleo|or quantization table. The normal quantization tablesa
subdivision can be analyzed as follows. O(sM) space where is the neighborhood size in the local

« Position encoding/decodingThe neighbor search re-normal indexing, which is a constant, add is the number
quiresb point-point distance calculations, whelrés the of distinct normals in the maximum quantization resolution
size of candidate neighbor set. The probability assignmeTtie color quantization table takéyk) space. Sincéd/ < N
entails b + 8 point-plane distance calculations. The bitndk < N, the overall memory cost of the encoder/decoder
re-ordering process demands at mesk log, 8 = 24 is O(N).
comparisons. Sincé is a bounded constant by the
definition of local neighborhood, the computational cod- Comparison with the Prior Art
for each position encoding/decoding¥1). In this subsection, we compare the asymptotic performance

« Normal encoding/decoding:he major cost of normal en- of our scheme with the prior art [25]-[27]. Since all these
coding resides in the normal table search, which is domrorks and our work ha® (V') space complexity, we just focus
inated by the local normal indexing. For each nonemptyn the comparison of computational complexity below.
child cell, the encoder performs at most 52 (mostly less Botschet al. [26] only compress the position data with a
than 10) calculations and comparisons of the normebmputational cost o©(/N). As compared to our codet, its
difference and the decoder retrieves the normal vectoomputational efficiency is slightly better since no prédic
through a table lookup whose cost is negligible. Thus, the made in the encoding process (at the cost of poorer R-D
computational cost for each normal encoding/decoding performance).

O(1). Note that the normal quantization table can be built Waschliischet al. [25] compress all position, normal and
up once and stored for use by any encoder/decoder. color data. A computational cost aD(N) is needed for



the actual encoding/decoding of each attribute. Before tpesition resolution does not help much in providing good
actual coding, the encoder needs to build up a multi-ressiut normal prediction accuracy.

hierarchy through a minimum weight perfect matching pro- 1000

cess [36], which demands an extra computational cost of ~-EveryOther:normal
O(N?%log N). In addition, both the least-square local plane 80" Agizg‘gg‘:ilosmon
approximation in the position coding and the local coortiina 4 Every:position . :
transformaion/conversion in attribute coding demand &igh s:; 60l R R . :
complexity than ours. z e

Schnabel and Klein [27] encode position and color data. The * a0
overall coding time is betwee@ (N log N) andO(N?log N) )
due to the expensive re-ordering of tree-front cells in bbth 200 —
position and the color octrees. The prioritization of nopgm 0 5 10 15
child-cell configurations associated with each cell sulsiw total bits per point

step is. alls.o cpmputationally inteqsive. Actua_lly, W? oliser Fig. 9. R-D curves of normal coding for the Dragon model witHfedint
that prioritization of nonempty-child-cell configurati®rand bit allocation strategies.

re-ordering of tree-front cells are major computationatlbe

necks in some octree-based 3D model coders such as those 5or models with color attributes, we have an additional

Schnabel and Klein [27] and Peng and Kuo [15]. flexibility in specifying the bit-allocation priority of dor
coding. It is still an open problem to find the optimal bit
VII. DISCUSSION ONBIT ALLOCATION STRATEGY allocation among different attributes. Instead of pravidian

optimal or a suboptimal solution, we only illustrate theeeff

In this section, we consider the bit budget allocation 8gt o gitferent bit allocation strategies on the model qualigre.
among different types of point attributes for the proposed The reconstructed Santa model at 2.5bpp with two bit
point cloud coder. Since the coding process is driven by thgqcation strategies is shown in Fig. 10. Fig. 10(a) adopts
iterative octree cell subdivision, the positional resoiotis oo coding at every level and normal resolution refinement
always increased at every level of octree expansion. For thgq coding at every other level. Fig. 10(b) uses color coding
normal and color coding, we have the flexibility in specityin gyery other level and normal resolution refinement and apdin
the octree level at which the points would inherit thosg; every level. We see clearly that the reconstructed model
attr]buteg from parents and at which the dlfference penNeﬁpFig_ 10(a) has higher visual quality than that in Fig. 30(b
their attributes should be encoded. Further, since théutiso especially in regions around Santa’s hat, face, beard afgl.wa

of normal quantization is progressively refined, we haveaextryis could be due to the higher contribution to visual gyalit
flexibility in specifying the octree level at which the restbn ¢ position’s and color's accuracy than normal’'s accur&ay:.

of normal quantization should increase. ~_ example, densely sampled models usually have smooth normal
For models without color attributes, better approximatiogyriation among adjacent points over the surface.

quality of intermediate models has been observed for mOStAIthough our experiments suggest that we need higher
of our test models when we encode the normal updates gadg|ytion for position and color data than the normal data
increment the level of normal space partitioning at eveheot qyring bit allocation, it is worthwhile to study the bit atiation
octree level (rather than every octree level). This may b dyrgplem and its optimality conditions more thoroughly. In
to the fact that the positional accuracy contributes more é%neral we need to estimate the R-D curves for different
the model quality than the normal accuracy when points ak@ihytes and measure the relative importance of difteren

densely sampled. ~_ attributes accordingly. A preliminary study along thisedition
We plot the R-D curves for the Dragon model in Fig. Quas conducted by Li and Kuo in [11].

using different bit allocation strategies. Two sets of R-D
curves are obtained with two bit allocation strategies: to
increase the normal resolution and conduct the normal goc
at every level, and at every other level, denoted by ‘Eve
and ‘EveryOther’, respectively. The horizontal axis is thel
coding bitrate while the vertical axis is the correspondil
PSNR values for the position/normal coding. We see frc
Fig. 9 that the ‘EveryOther’ strategy leads to significant
better position quality at any fixed total bitrate. Intenegty,
the ‘EveryOther’ strategy achieves not only higher poaiti
quality, but also higher normal quality at relatively hig
bitrates. This could be explained by the fact that the norr.._.. @) (b)

guantization reaches its maximum resolution quickly with t

‘Every’ strategy while the position resolution is still a¢ively Fig. 10.  Visual comparison of the Santa model at 2.5bpp with bito
low. After that, the normal coding is not efficient since natsn allocation strategies.

are already encoded in full resolution while the relativiely




VIII. EXPERIMENTAL RESULTS of Waschliischet al’s work [25], the color PSNR is measured
. . . . _in the YUV space for fair comparison.
Nine pom_t—basgd models are used in our expenmentsWe compare the R-D performance of the proposed point
gi d shgv(\:/tno Lns F'bg' 1t$1.e Trc];i)(;rtzge. I(:)?Ceboligtes?o Dra??[c;:qoud coder with those in [25]-[27], which serve as bench-
n y esy . P rharks since they too can encode point samples of 3D objects
Acer_saccarinum from Xfrog public plants (http://web.inf.tu- . . .
. with arbitrary topology progressively. Please note that th
dresden.de/ST2/cg/downloads/publicplants/), Dragon- .
Vi Santa.  Ha Buddha  (vripped reconstruc(Eoder of Botschet al. [26] encodes only position data, the
tioﬁs from ' the pggamford 3D scapnpnin renositor coder of Schnabel and Klein [27] encodes both position and
) : 9 b Yeolor data, and the coder of Was¢lschet al. [25] encodes
(http://graphics.stanford.edu/data/3Dscanrep/), arddteWB

) - __all position, normal and color data.
from Cyberware (http://www.cyberware.com/). Two version The R-D performan f the br d ition coder and
of dragon models (namely, Dragon and Dragon-vrip) ar € r-L periormance of the proposed position coder a

t§at of our own implementation of Botsckt al's [26]

used in our experiments for fair comparison with previou ) . L
work, although only one dragon model is rendered in Fig. ﬁll‘c?sqtr'lgr]]n::cfjecrorzgza:;:esd 5'8(;'8.‘”;2 \rlc\elz Scet}'?) r:hfg[r r;NpFZOp;SEg
Except for models provided by Pointshop 3D, all Otheﬁelcl)vlv 65 U7 bl uet vad

models were transferred to the Surfel format by ourselves. .

The R-D performance of the proposed progressive coder
and that of Waschischet al. [25] for position and normal
coding is compared in Fig. 13(a) and Fig. 13(b), respegtivel
The horizontal axis is the coding bitrates while the vettéoas
gives the position/normalPSNR values. Note that the R-@& dat
of the position coder of Waschbchet al. [25] are taken from
the progressive encoding curves in Fig. 10 of [25] and the R-D
data of normal encoding for [25] are taken from the encoding
Igea Acer_saccarinum Happy_buddha Octopus results in Table 2 of [25]. Due to the lack of data, we are
not able to make full-range comparison especially for ndrma
encoding as shown in Fig. 13(b). As shown in Fig. 13(a),
the PSNR improvement in position coding is around 10dB
and 15dB for Igea and Dragon, respectively, at all bitrates.
Further, the proposed normal coder can reduce the bitrate by

4 ¢ about 50% at certain high PSNR values.
Santa Dragon Face FemaleWB

Fig. 11. Models used in our experiments.
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A. Rate-Distortion Performance Comparison

PSNR:position
(2]
S

The coding performance is measured in bits per point (bpp),
which is the ratio of the total coding bit rate and the number | ~~our coder
of points in the original model. Although the MLS surface ‘ ‘ s o —
that compares the difference between two point-based model 0 1 bits per pointposition 4
was adopted as the distortion measure by PauBbl.[37] and
Fleishmanet al. [21], we do not use the MLS'Surface'basedig. 12. R-D performance comparison of the proposed coder laadir
distortion metric since it is not suitable for measuringmal Botschet al’s work [26] for Octopus (466Kk).
and color distortions [25]. Here, we use the peak-signal-to
noise ratio (PSNR) to measure position, normal and colorNext, we compare the R-D performance with all coding
distortions as done by Wasdidrhet al. [25]. The position schemes taken into account. The R-D performance of position
PSNR is calculated using the Euclidean distance betwesormal and Y-color-component coders for Octopus is shown
corresponding points in the original and the reconstructéd Figs. 14(a)-(c), where the horizontal axes are the total
models with the peak signal given by the diagonal lengttoding bitrates i(e., the sum of position, normal and color
of the tightly-fit axis-aligned bounding box of the originalencoding bitrates) in bpp and the vertical axes give the
model. The normal PSNR is calculated using angles betwesrresponding PSNR values. The proposed position and color
the original and the reconstructed normals with a peak sigrders outperform those of Wasglgzhet al. [25] at almost
of 180 degrees. The color PSNR is measured separately ddirbitrates with an improvement of up to 9dB, which roughly
each color channel, using the difference between the aligirtorresponds to 65% distortion reduction. As compared high t
and the reconstructed color coordinates with the peak kigmarmal coder of Wasclilschet al. [25], the proposed coder
of 255 for an 8-bit pre-quantization of each color channehas comparable or better R-D performance for higher bisrate
We measure the color PSNR in the RGB space except thas, shown in Fig. 14(b). For lower bit rates, performance of
when the color encoding performance is compared with thiile proposed normal coder is dictated by the coarse normal

a1
o




TABLE I

®
o

~—our coder:dragon| COMPARISON WITH SCHNABEL AND KLEIN'S WORK[27]:COLOR CODING
75 |+ [25]:dragon
A our coder:igea H
5 2ol |+ 25ligea . [ Bitrate(bpp) [1.865] 2.09[ 2.75[ 4.82] 5.82 |
9 PSNR| our coder | 34.88| 35.59| 38.18| 42.08| 44.36
Sl ‘ 277 [17.52] 26.7 | 32.35/ 37.61] N/A
o
= 60F 4 “ (a) Santa
g
55t N N * ‘ [ Bitrate(ppp)  [1.022] 1.31] 2.2 [ 5.36] 6.62 |
s . ‘ ‘ ‘ ‘ ‘ PSNR[ our coder | 26.41] 26.91] 28.83] 38.32] 43.72
3 4 5 6 7 8 9 [27] [ 13.96| 24.95| 28.55| 32.63| N/A
bits per point:position
(a) (b) FemaleFB
45;
40 - . . .
= e R and color coding with the proposed point cloud coder for
E35 six test models is given in Table Ill, where the bitrate and
= . . . .
D30 4 distortion are reported in bpp and PSNR, respectively. *N/A
5257“ signifies unavailable data because the fully expanded ectre
e *?Zug]%ﬁgggg’agon in our experiments has 12 levels only, and the final total
20 + our coderiigea bitrate of Happy Buddha is less than 16.0 bpp. Due to high
15} * [25)igea . randomness in position and normal data and non-manifoédnes

10 . . . .
bits per point:normal Acer_saccarinum requires more coding bits than other models.
(b) Similarly, due to high variation in the color of Octopus, it
requires more bits than other models to represent the color
E\i/g- 1&] E-D Ipffgg]mga)nce Comparéson Ofdt?t?) proposled dcodE; fwlijddf information. To the best of our knowledge, no other work
laschliischet al. : (a) position coding an normal coding, for Dragon .
(436K) and Igea (134K) exce_pt that of Huangt al. [2_8] has ever reported R-D data
on highly complex models like Happy Buddha.
Intermediate LODs of Dragon, Octopus and

guantization resolutions that are adopted in initial cztevels. Acer-saccarinum are shown in Fig. 15 for visual comparison.
As the resolution of normal quantization is refined, the rairmThe same Dragon and Octopus models were considered
encoding performance is improved at higher bitrates. by Waschlasch et al. [25] also. The first four rows show
Since Schnabel and Klein [27] do not compress normBle models reconstructed at total bitrates of 2bpp, 4bpp,
data, we compare this work with only the proposed positidiPPP and 16bpp, respectively, while the last row shows the
and color coders in Tables | and II. Table Il shows only thdncompressed original models. As shown in this figure, a
PSNR value of the B-color-component coding; similar trend§asonable profile already appears at 2bpp. We can achieve
are observed for other color components as well. The pasiti¥ery decent model quality at 8bpp. The reconstructed models
coder of Schnabel and Klein's [27] achieves higher PSN&€ almost indistinguishable from the original ones at p6bp
values by 4dB at most bitrates for Dragon-vrip and Igea. In
contrast, the proposed color coder outperforms [27] by 10dRB Computational Complexity Comparison
r iher e s 4 o2 660 100 L ppoor imporan. s f . propsod o
scheme is its low computational complexity. In additionhe t

Table | and Table Il were not reported in the original PaPesymptotic performance analysis given in Sec. VI, we report
yet kindly provided by the authors for this comparison. ymp P ysIs g R P

the measured timing data for selected models in Table IV. The
TABLE | experiment was conducted on a PC with IfftePentiun®-4
3.20GHz CPU and 1GB RAM. The reported timing data in
this table refer to full-resolution encoding/decoding hwiur
unoptimized prototype research code. We see from Table IV
[ Bitrate(bpp) [ 0.04[ 0.15] 053] 1.82[ 415] 534 [ 841 |  that models with less than a half million pointe.d. Igea,
PSNR| our coder | 42.16| 48.15| 53.89| 60.10| 66.23| 68.82 | 75.59 Dragon and Octopus) can be decoded within 10 seconds while
[27] _[45:86[52.07] 58 [63:84]68:52] N/A | N/A models with around one million pointe.g. Acer_.saccarinum
(a) Dragon-vrip and Happy Buddha) may take about 30-40 seconds. For very
large models such as Acsaccarinum and Happy Buddha, the
increase in decoding time seems to be super-linear witleoesp
to the number of points in the input model, which could be
due to the large memory requirement. Typically, the enapdin
(b) Igea time is several times higher than the decoding time due to the
extra cost associated with the maintenance of original tpoin
A comprehensive list of R-D data for position, normahttribute data and the quantization of normal and color.data

COMPARISON WITH SCHNABEL AND KLEIN'S WORK [27]:POSITION
CODING

[ Bitrate(bpp) | 0.04 | 0.43| 1.77 | 4.35] 6.45] 8.71 [11.28 |

PSNR| our coder | 38.59 49.91| 55.44| 61.59] 66.10| 71.15 | 75.15
[27] 47.79| 53.6 [ 59.39| 65.4 |70.17| 76.65|82.21
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Fig. 14. R-D performance comparison of the proposed progessiders and those in Wasdldgh et al's work [25]: (a) position, (b) normal and (c)
Y-color-component coding for Octopus (466k).

TABLE Il
R-D DATA FOR POSITION NORMAL AND COLOR CODING USING THE PROPOSED POINT CLOUD CODER

Position Normal Color
Total | Data | Dragon] Acer- Octopus Happy | Dragon| Acer. Octopug Happy |Octopug Santa] FemaleWB
saccarinum Buddha saccarinum Buddha
bitrate | type | (436k) (889K) (466k) | (1,088K) | (436Kk) (889K) (466k) | (1,088k) | (466k) | (76k) (148k)
1.0 R 0.38 0.46 0.08 0.29 0.62 0.54 0.61 0.71 0.30 0.63 0.63
D 53.28 53.02 53.15 53.88 19.99 12.95 20.08 18.91 17.45 | 28.28 24.73
2.0 R 0.61 0.69 0.14 0.47 1.39 131 0.88 1.53 0.98 1.08 11
D 54.35 53.46 53.99 56.07 20.73 13.23 20.32 21.22 18.34 | 31.96 26.38
4.0 R 1.07 1.17 0.24 1.86 2.93 2.83 1.55 2.14 221 2.66 2.69
D 57.76 5451 58.33 63.35 24.13 13.70 22.83 24.52 21.69 | 36.67 30.38
8.0 R 3.88 2.11 1.24 3.39 4.12 5.89 3.96 4.61 2.79 4.30 4.49
D 65.78 57.98 65.21 66.84 25.64 14.86 28.09 26.07 22.40 | 39.95 34.33
12.0 R 5.36 5.45 2.03 4.72 6.64 6.55 4.52 7.28 5.46 5.66 5.88
D 68.81 65.06 66.40 70.38 29.06 15.07 28.63 28.64 2455 [ 42.59 36.88
16.0 R 8.32 6.78 2.73 N/A 7.68 9.22 5.43 N/A 7.84 6.84 7.39
D 75.17 66.78 68.40 N/A 30.44 16.43 30.80 N/A 27.49 | 46.52 43.83

The reader may have noticed that, for some models otliene due to the complexity associated with adaptive color
than Acersaccarinum and Happy Buddha, the relative maguantization over significantly more points in the colorapa
nitudes of decoding and/or the encoding time may not léhen compared with Santa. Although Octopus and Dragon
commensurate with the relative magnitudes of the poiheive comparable numbers of points, the encoding time for
numbers. Although the number of points in Santa is onl@ctopus is more than twice that of Dragon. This may again
about one half that in Igea, the encoding and the decodibg explained by the complexity in adaptive color quantaati
times for Santa are more than those of Igea. The reasorsiisce we need to encode the color data for Octopus but not
that color data need to be encoded and decoded for SdfiotaDragon. Interestingly, their decoding time is compéeab
but not for Igea, and significant amount of computation iglthough more types of attributes are encoded for Octopus.
demanded by the adaptive color quantization in encoding andis may be explained by different point distributions or,
the color coordinate transformation in decoding. Althougim other words, different numbers of octree cell subdivisio
there are almost twice the number of points in FemaleWw encode/decode in these two models. According to our
as in Santa, the decoding time for FemaleWB is comparatsatistics, 711,658 cell subdivisions are encoded/datdde
with that for Santa. This may be related to the different bdctopus while 1,022,947 cell subdivisions are encoded for
allocation strategies we employ for the two models. For &arbragon.
(FemaleWB), normal resolution refinement and coding is
performed every other (every) octree level while color agdi
is performed every (every other) octree level. Recondtinct ) )
of a normal vector requires decoding of one integral inde an A generic point cloud coder was proposed to encode
looking up a normal table once, while reconstruction of acol attributes, including position, normal and color, of psint
vector requires decoding of three integral indices, séagch Sampled from 3D objects with arbitrary topology in this work
three 1D color representative tables and transforming tMéth novel and effective schemes of quantization, predicti
color coordinates. This difference in the decoding comipfex and data rearrangement, the proposed point cloud coddtsresu
of normal and color leads to similar decoding performand@ @ Significant R-D gain and offers a computational advaatag
of two models with significantly different sizes. As for thePVer prior art. Another advantage of the proposed pointctlou

encoding time, however, FemaleWB takes significantly mof@der is that it does not re-sample the input model. Thus, it
can be potentially used for lossless encoding, if the lewéls

IX. CONCLUSION AND FUTURE WORK



Original

Fig. 15. Models reconstructed at different bitrates.

octree expansion and normal space partitioning are suffigie the same color and normal as its parent. However, a local-
large, and the resolution of color quantization is fine etougneighborhood-based predictor may further improve prestict
There are several ways to extend the current research, Figscuracy. Second, for better color quantization, we may seg
we would like to design more effective predictors for normahent all color samples inside the RGB cube into several
and color data. Currently, we predict that each child cefl hamall clusters analytically and perform adaptive quatitra



TABLE IV
STATISTICS OF ENCODINGDECODING TIME IN THE UNIT OF SECONDS AND THE NUMBER IN THE PARETHESIS REFERS TO THE NUMBER OF POINTS IN

EACH MODEL.
Igea | Dragon| Acer_saccarinumHappy Buddha Santa| FemaleWB Octopus
(123K) | (436k) (889Kk) (1,088k) (76k) | (148k) (466Kk)
Encoding| 5.11 | 21.93 162.66 190.58 8.26 13.94 48.76
Decoding| 4.03 9.94 33.52 41.90 5.49 5.56 9.69

separately for each small cluster for higher efficiency itada[19]

representation. Other interesting directions of futurerkwo

S. Gumhold, Z. Karni, M. Isenburg, and H.-P. Seidel, ‘thcéve point-
cloud compression,” irsiggraph Sketchef005.

. . . . h . [20] S. Rusinkiewicz and M. Levoy, “Qsplat: A multiresolutigoint render-
include analytical bit a_llocatlon, we_vv-de_pendent 3D renldg _ ing system for large meshes.” KCM SIGGRAPH2000, pp. 343-352.
out-of-core compression of gigantic point clouds and effiti [21] S. Fleishman, D. Cohen-Or, M. Alexa, and C. T. Silva, ‘Ghessive
decoding and rendering implementation on GPUs. poin: set surfaces AC Trans. Graph.vol. 22, no. 4, pp. 997-1011,
A [22] T. Oéhotta and D. Saupe, “Compression of point-based 3defsadby
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APPENDIX

The generalized Lloyd algorithm (GLA): GLA is em-
ployed to calculate the quantization ranges and repreharga
along each dimension of the axis-aligned bounding box in the
new color frameF” such that the overall quantization error
is minimized along each dimension. For a given set of 1-
D color coordinatesS = {s1,s2,...,sn}, if k quantization

A. Khodakovsky, P. Sclider, and W. Sweldens, “Progressive geometrj€presentatives are to be calculated, GLA can be stated as
follows.

1) Initialization: Select randomly an initial representative
setRy = {ry,re,...,r;} fromS.



2) lterative Partition: Forl = 1,2,---, we perform the

following.
a) Partition S into nonoverlapping subsets
P,P,,...,P, using the nearest neighbor

rule; namely,S = U;cr10 5y P BN P =0
for all i # j and P; = {s|d(s,r;) < d(s, rj) vl <
j <k,s €S}, whered(.) is a distance metric.

b) Compute the new centroid,, from all coordinates
in P;, 1 <1i <k, update representative sif with
the k new centroids and calculate the distortion

E = %Efz1zpepid(1% Ti)-
3) Stopping Criterion: The above iteration stops if either
(Ei—-1 — E))/E; < dorl = L,whered and L are design
parametersR; gives the final set of representatives.
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