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Abstract— Michotte’s theory of ampliation suggests that causal relationships are perceived by objects animated under appropriate
spatiotemporal conditions. We extend the theory of ampliation and propose that the immediate perception of complex causal
relations is also dependent on a set of structural and temporal rules. We designed animated representations, based on Michotte’s
rules, for showing complex causal relationships or causal semantics. In this paper we describe a set of animations for showing
semantics such as causal amplification, causal strength, causal dampening, and causal multiplicity. In a two part study we
compared the effectiveness of both the static and animated representations. The first study (N=44) asked participants to recall
passages that were previously displayed using both types of representations. Participants were 8% more accurate in recalling
causal semantics when they were presented using animations instead of static graphs. In the second study (N=112) we evaluated
the intuitiveness of the representations. Our results showed that while users were as accurate with the static graphs as with the
animations, they were 9% faster in matching the correct causal statements in the animated condition. Overall our results show that
animated diagrams that are designed based on perceptual rules such as those proposed by Michotte have the potential to facilitate
comprehension of complex causal relations.

Index Terms—Causality, visualization, semantics, animated graphs, perception, visualizing cause and effect, graph semantics.

1 INTRODUCTION
Causal relations are deeply rooted in human reasoning and appear in
many contexts. Cause-and-effect relationships are used for 
explaining natural phenomena (the iron will become red under the
influence of fire) and for specifying and resolving research questions 
(do horror movies lead to aggressive behaviour?). In most cases such 
relationships are intermeshed in the collection of information and 
data available to the user. To better comprehend cause-and-effect
relationships, many visual representations, typically in the form of 
diagrams, have been developed and are being used extensively.

Causal graphs constitute the most common representation of
cause-and-effect relationships. These are directed acyclic graphs, in
which vertices denote variable features of a phenomenon and edges
denote a direct causal claim between these features (Fig. 1). These
graphs have appeared in many forms: Feynman diagrams in physics
[18], Lombardi diagrams to explain secret deals and suspect relations
[6], and influence diagrams to represent the essential elements of a 
decision problem such as decisions, uncertainties, and objectives, 
and how they influence each other [16]. In all these variations, the 
causal graphs replace long verbose descriptions or complex 
mathematical formulations that describe events with their causes and 
effects.

Although, node-link causal graphs provide information about 
cause-and-effect, in certain cases it can be very difficult to make
credible causal inferences from linking lines and arrows [21]. They 
may produce many implicit and powerful assumptions, but they
cannot convey the entire structure of the information to find out what
is actually going on. In some instances, it is essential that the 
meaning or the semantic of the causal relationship be clearly
revealed. For example, car manufacturers could understand better the
quality of the tires being produced if a causal graph indicated that
glass has a stronger influence than thorns in causing a flat tire; or 
that a flat tire has a larger impact on steering problems than it does 
on noise (Fig. 1).

What seems to be lacking in the traditional forms of graphs is the
capacity to convey different types of complex causal relations or 
semantics. Very little knowledge exists for properly visualizing
complex causal relationships. The central question we address is how 

to make causal graphs more informative or carry precise meanings?
In an effort to respond to this question we first defined a subset of 
the various types of causal semantics that may exist. We produced
animated and static designs for depicting rich causal semantics. Our
static design is an enhancement to the basic causal graph. The
animated designs are based on perceptual theories explaining how
we infer causal relations. In a first study, we carry out a passage 
recall task to compare our static diagrams to the animated
representations. Our results show that participants are able to recall
passages better when they are complemented with animated instead
of static diagrams. In a second experiment we test whether causal
representations can be intuitively and immediately captured upon
viewing animated causal graphs. The results show that participants
were able to comprehend causal semantics quicker when the 
relations were displayed with animations that were created based on
results from theories of perception.

2 RELATED WORK
The work described in this paper is largely inspired by work
comparing animated and static diagrams, prior visualization 
techniques for causal relations, and from perceptual theories of 
causal inferences.
2.1 Animated or Static?
There has been a long standing debate on whether designers should 
display information using static or animated displays. To this end,
numerous studies have investigated the effect of animated diagrams
on comprehension. Results of one study by Tversky et al. [15] show 
that static representations can be as effective as their animated
counterparts. Tversky et al. [15] suggest that if the symbols used in 
the static representations are intuitive and clearly depict the
information being represented, then static diagrams can replace
animated diagrams, even in datasets containing temporal
relationships.

Pane et al. [10] conducted a study to show that static and
animated visualizations, when used properly, can be equally
effective. In their study, experiments were conducted to compare the
advantage of animated diagrams (in the form of videos or computer
simulated presentations) over text and carefully selected still images.
The results of the experiment showed that there was no significant
difference in comprehension between static and animated
representations, if both the representations were chosen carefully and
represented the same information.
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series of three experiments Morrison and Tversky conclude that text 
recall is enhanced with the complementary presentation of graphical 
information. However, in neither of their experiments do animations 
outperform static representations.

Fig. 1. Causal graph depicting the effect of glass or thorns on a tire, 
and the effect of a flat tire on driving conditions. 

While the above discussed studies do not show that animation 
present any benefits, several other studies suggest that animations
can be effective in various educational systems to simulate the
behaviour of concepts that are contingent upon temporal properties
and thereby augment the learner’s ability to comprehend difficult
concepts [21].

While many studies have been designed to compare and evaluate
the effectiveness of animated designs, none of these provide any
conclusive evidence on the beneficial properties of animation. 
However, we believe that if the animations are created with certain
spatiotemporal rules, then they can effectively convey the
information being represented.
2.2 Visualizing Causal Relations
A number of visual representations have been designed for showing 
causal relations. Hasse diagrams constitute one of the earliest
systems for showing causal concepts. They have been used for 
representing distributed systems [11], parallel processes [17], or any
other type of information structures that consists of causal events.
Hasse diagrams can be difficult to comprehend as the layout of the 
graph creates a large number of intersecting lines. Furthermore, to 
view the causal chain the user has to backtrace along the various
edges. As with causal graphs, Hasse diagrams are not equipped to
show causal semantics. Additionally, enhancing Hasse diagrams 
would result in more clutter and make it difficult to visualize
complex causal relationships.

Elmqvist and Tsigas [5] designed a Growing-squares technique to
depict causal dependencies between processes in a system. With
Growing-squares, each process is given a unique colour. When
processes influence one another, their colours intermix in a
checkered fashion over a time frame. Growing-squares takes
advantage of animation to show gradual increases and decreases of 
influences in a system. A user evaluation showed that users were 
significantly faster (~25%) in answering questions related to causal
events using Growing-squares in comparison to Hasse diagrams [5].
A significant redesign of the Growing-squares visualization would
be necessary if it included additional causal semantics to the system.

Growing-polygons are an enhancement to the growing-squares
technique [4]. In this approach, each causal factor is represented by
an n-sided polygon and a colour. Each polygon is further divided 
into sectors for each of the factors in the system. As one factor 
influences another, over a timeframe, the colour of the first flows
into its respective sector of the second, representing the effect. A
user evaluation by Elmqvist and Tsigas [4] showed that users were
58% faster and 21% more accurate in answering causal questions
with growing-polygons than with Hasse diagrams. Additionally,
Growing-polygons is capable of showing certain types of semantics 
such as depicting two factors that have a simultaneous effect on one 
another and the semantic of transitive causality, i.e. if A influences B 
and B influences C, then A influences C. However, significant 
modifications to the visualization is necessary in order to include
semantics such as strong or weak causal factors and large or small 
causal outcomes.

Ware et al. [19] designed a number of visual representations for 
showing causal information in node-link diagrams. They defined a 

visual causal vector (VCV) that represented a causal relation
between two entities. The VCV was tested using several metaphors
that were designed with a number of spatiotemporal rules that are
necessary for perceptually inferring causal effects [19]. Results from
their study showed that the nature of the metaphor is less critical than
the spatiotemporal rules that were used for showing the causal
relations. Their results inspired some of the work presented in this
paper. In particular, we extended their results for depicting semantics
that can provide rich descriptions of naturally occurring causal 
relationships.

While the representations described above have facilitated
viewing causal relationships in a passive way, a number of systems
have relied on some form of interactivity for showing causality. The
influence explorer [16] allows users to interactively inspect the
influence of factors on different outcomes. The interaction is 
provided by means of slider bars that control the amount or range of
influence of one factor on the effect. Neufeld and Krisstorn [9] used
a variation of the influence explorer in which dynamically varying
the values of causing factors shows the amount of influence on the 
final outcome. Such systems can be successfully used in situations
that necessitate causal reasoning for making decisions. However, 
neither method is equipped with the ability to depict various forms of
causal semantics.
2.3 Perceiving Causality
Michotte’s theory of ampliation suggests that we perceive or infer
causality when a moving object strikes another and sets the latter
into motion [7]. The causal inference is immediate upon presentation
to our visual system.

The experiments developed by Michotte initially concentrated on
mechanical causality. In the basic experiment, referred to as 
launching, subjects see two immobile rectangles (L and T) of 
different colours on a uniform white background. The experiment
begins when the launcher (L) moves at a constant speed toward the
target (T). When L reaches T, it stands still and the latter starts
moving (Fig. 2). Subjects, even though unaware of the purpose of the
experiment, responded with descriptions that were endowed with
causal meaning. Some descriptions included phrases such as “L
pushes T”, “L launches T”, or “L projects T”.

Michotte carefully controlled various factors to determine the
conditions under which causal inferences would still be produced.
Temporal conditions were one of the most contributing elements for
appropriately perceiving “launching”. Specifically, the time between
impact and movement of the target needs to be maintained to a
maximum of 100 msecs. For delays beyond 150 msecs, the object L 
and T appear to move independently [7].

The size and shape of objects can vary significantly without
depreciating causal inferences, as long as the objects are perceived as 
independent upon the point of impact. Thinés [14] used triangular 
arrays of lights spots and found that subject responses were not 
affected by a change in shape. Also when L and T are perceived to 
be created from different types of material (i.e. L is a light spot and T
is a solid object) launching responses were still obtained [7].

Absolute speed restrictions on the launcher and target are
necessary for observing proper launching effects. Velocities beyond 
110 cm/sec are perceived as the launcher passing through the target
(tunnel effect). On the lower limit, velocities of either launcher or 
target below 3 cm/sec weakens the launching effect.

Fig. 2. Simple launching experiment. The launcher (L) upon impact
stops and sets the target (T) into motion.

The relative ratio of velocities between L and T is considered
important in maintaining causal inferences. The character of the
causal structure is considered best when the movement of the target
is slower than that of the launcher [7]. When the reverse is applied,
very different responses are provided, in particular that of the target
being autonomous in its movement.
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In addition to temporal conditions, spatial information such as the 
length of the paths travelled by L and T should be carefully 
manipulated. In essence the causal responses start to degrade once 
the path of the target extends beyond its radius of action, i.e. naively 
related to the velocity of both objects [2, 20]. After a certain length
of path, which can be empirically determined, the target appears to
be autonomous. The direction taken by the launcher-target couple is
also critical in inferring the relations. Best results are achieved when
the target’s path follows the line of action created by the launcher.

Several studies have extended Michotte’s results to analyze the
effects of context environments on the perception of causality. These
studies state that existence of a causal event in the surrounding
environment improves the perception of causality in a non-causal 
event by ~80% [12]. Another interesting study is one which 
examines the ability of perceptual grouping to influence causality
[3]. In this study, the authors show that connectivity between a
causal and non-causal event improves the perception of causality in 
the non-causal event, which has some bearing on the connected lines 
that are employed in visualizing our causal graphs.

3 SEMANTICS OF CAUSAL RELATIONS
The work of Michotte and others suggests that certain spatiotemporal
conditions favour the perception of causal phenomena. We reasoned 
that if we could map the semantics of causal systems onto a set of 
perceptual semantics we could create diagrams that are more
informative and that give rich descriptions.

We define a set of causal semantics as:
Causal amplification – In abstract terms, we talk about causal

amplification when a factor is causing an increase in the final effect.
For example, studying for an exam improves performance (Fig. 3).

Causal dampening – Causal dampening means that a causal
agent is having an overall negative or opposite effect on an outcome.
For example, taking medication “reduces or dampens” the symptoms
of a flu (Fig. 4).

Causal multiplicity – When two or more agents are contributing
to the causal effect we refer to this as causal multiplicity. In this
definition it is implicit that the effect is only present when all the
causing agents are simultaneously contributing to the overall effect.
In more concrete terms, causal multiplicity appears in many contexts
such as active and passive learning having a combined influence on 
scholastic success (Fig. 5).

Causal strength – In abstract terms, we can talk about causal 
strength when a given agent is contributing more or less significantly
to an effect than any other causal agent. For instance, active learning
has a stronger impact than passive learning for scholastic success 
(Fig. 5).

4 VISUAL DESIGNS
We produced several alternative designs for representing the causal 
semantics described above. We have two large categories, static
representations and animated representations. We first define several 
keywords that are used to describe the causal relations:

Factor: A factor is the cause in a causal relationship, and is
represented as a labelled circle. For example, cold weather, stress,
and immunity are all factors.

Target: A target is the variable acted upon by a factor or a 
combination of factors. For example, flu is the target which is acted
upon by the factors mentioned above.

Relation: A relation signifies a causal action occurring between a 
factor(s) and the target and is represented as a line emerging from the
factors to the target, which is directed from factor to target in the
static and undirected in the animated representation.

Influence: A factor can have a weak, moderate or a strong
influence on the target. For example, cold weather can have a weak,
moderate or strong influence on flu.

Effect: A target can have several different effects based on the
combinations of factors and the strengths of their influences. The
effect can be positive (increases the target) or can be negative
(decreases the target).

Fig. 3. Factor (Study) causing increase in outcome (Exam) – Causal
Amplification

Fig. 4. Factor (Medication) causing decrease in outcome (Flu) – 
Causal Dampening 

Fig. 5. Factors (Active Learning, Passive Learning) have combined 
effect on outcome (Scholastic Success) – Causal Multiplicity; One
factor (Active Learning) has more influence than the other (Passive
Learning) – Causal Strength 

The above terms define the structure of the causal relations that 
were tested in the experiment. For the purposes of the experiment, 
we define two types of causal relations that were presented to the
participants:

Positive causal relations: where the factor(s) had positive 
influences on the target, and the effect was positive.

Negative causal relations: where the factor(s) had negative 
influences on the target, and the effect was negative.

The various causal semantics defined above can be illustrated
through the following scenario. For instance, “Cold Weather” and
“Low Immunity” (causal multiplicity) together can cause an increase
in “Flu” (causal amplification). On the other hand “Medication” can
relieve “Flu” (causal dampening). Together “Medication” and
“Taking Rest” (causal multiplicity) can also relieve “Flu” (causal
dampening). In the latter case, “Medication” has a stronger effect 
than “Rest” in relieving “Flu” (causal strength). It is possible to 
capture these semantics using a variety of visual representations,
described below.
4.1 Static Design
We designed a number of static representations to express the causal
semantics. The final design was the outcome of several
brainstorming sessions during which alternative drawings were
sketched and examined for their intuitiveness and ability to reflect
accurate information.

4.1.1 Representing Causal Relations with node-link arrows
and glyphs

This representation enhances traditional causal graphs with 
additional visual encodings. Factors are connected to a target using
directional arrows; the direction of the arrow determines the cause
and the effect in the relation. A positive or negative influence is
denoted by a plus sign ( ) or by a minus sign ( ) attached to a
factor (Fig. 3). The size of the glyph depicts the strength of the 
influence on the target. Causal multiplicity is depicted by using
glyphs of the same colour to represent factors that act on a target

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 6, NOVEMBER/DECEMBER 20071256



simultaneously. Near the target, a series of bars are placed to show
the magnitude of the effect. Bars along the positive y-axis describe
an amplified effect while bars along the negative y-axis describe a 
dampened effect. The order of the bars depicts the order in which 
each causal action takes place.

Fig. 6. Representation of the flu graph using nodes, links, , , bars, 
and colors 

4.2 Animated Design
We designed several methods of animating the causal relations to 
depict the causal semantics. We utilized the same process as that
described above for designing the animated diagrams. Our diagrams 
were based on Michotte’s rules for perceiving causal information [7].

4.2.1 Representing causal relations by animating the target 

Fig. 7. Representation of a causal relation using simple animation. (a) 
“Virus” and “Cold Weather” have a combined effect on “Flu”, and (b)
the effect is a large causal amplification (the “Flu” node expands to a
large size).

This representation uses simple animations and Michotte’s theory of
ampliation [7] to generate the sensation of a causal interaction
between the factors and the target. The causal relation is displayed
by the factors and the target as a simple graph with undirected lines
to connect the factors to the target. A factor’s influence on the target
is displayed in the form of a smooth animation comprising of a bullet
moving from the factor to the target, at a speed of 12cm/sec, along
their connecting line. Causal multiplicity is described by
simultaneous ejections of bullets from the factors, in the relation.
Causal strength is determined by the size of the bullets. As the
bullet(s) hits the target, the size of the target is modified based on the

type of influence. One difference between our visualizations and
those of Michotte is that the target changes shape instead of being
launched. This is mainly due to the design of the causal graphs
which do not allow for movement of the nodes themselves.
Nonetheless, the speed at which the target changes is controlled at 10
cm/sec, which again is in keeping with Michotte’s absolute speed
guidelines. Also, the time between the impact and modification of
the target is kept to a maximum of 50 msec. Causal amplification is 
depicted by an increase in the size of the target, while causal
dampening is depicted by a reduction in the size of the target. The
magnitude of the effect is described by the degree of expansion or 
shrinkage of the target when it is hit by the bullet(s). For example, in
Fig. 7, “Virus” and “Cold Weather” have a combined effect on “Flu”
(causal multiplicity); “Cold Weather” has only a small influence
compared to the medium influence of “Virus” (causal strength).
“Virus” and “Cold Weather” increase the chances of getting “Flu”,
as the “Flu” node expands when the bullets hit it (causal
amplification), and the magnitude of this effect is large.

5 EXPERIMENT 1: COMPARING PASSAGE, PASSAGE+STATIC AND
PASSAGE+ANIMATED REPRESENTATIONS

The goal of this experiment was to evaluate the two different
visualizations that depict causal semantics. Our hypotheses were as
follows:

Hypothesis 1: Participants will perform the recall tasks better
when the causal relations are enhanced with visualizations.

Hypothesis 2: Participants will perform more accurately and
with faster response times when the causal relations are enhanced
with animated (vs. static) visualizations.
5.1 Method

5.1.1 Subjects
Forty-four undergraduate psychology students of a local university 
participated in this experiment. The ages of the students varied from
23 to 30 years. None of the students had any formal training with
computers, perceptual visualizations or causal relations. The
participants also confirmed that they had good English language
skills, normal to corrected vision, and did not suffer from a history of 
colour blindness, which was required to distinguish between the 
various colours displayed during the experiment.

5.1.2 Materials 
The experiment comprised of three methods for representing simple 
causal relations. These relations were displayed as passages, static
diagrams, and animations. The passage representation was provided
in the form of an English passage, printed on an 8½  x 11  paper. 
The static graphs were created using Microsoft Visio and projected
onto a 60  x 60  screen. The animations were created using
Macromedia Flash™ and were also projected on the same screen.

The static diagrams and the animations were run on a Windows
XP computer. The visualizations were projected with a 1024 x 768
pixel screen resolution.

5.1.3 Design
We used a 3×2 within subject design. The two independent variables
were: Representation Type and Statement Type.
Representation type 
Three types of representations were shown to the participants; 
Passage, Static, and Animated.

Passage: In this representation type, the participants were
provided with passages to read for a limited amount of time. The
passage consisted of 10 relations in total; 5 positive and 5 negative.
The relations were separated from each other as separate paragraphs
with distinct titles. Each sentence in a paragraph described one
causal relation.

Static: In this representation type, the participants were shown a
static graph projected onto a screen. The graphs described causal
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relations using  and  signs, bars, and connecting lines. Colours
were used to connect the influences with the effects. Upright or 
inverted bars of varying sizes depicted the type and magnitude of
effect and varying sizes of  and  signs were used to describe the 
strengths of the influences.

Animation: In this representation type, the participants were
shown an animation projected onto a screen. Each causal relation
was clearly defined by a 2 second gap. The influences were depicted
using animated bullets. The expanding and shrinking of the target
was used to depict the type of effect, and varying sizes of bullets and
the target were used to depict the strength of the influences and the 
effects.
Statement Type
At the completion of each trial, the participants were given a set of 
causal relations and were asked to identify whether they had seen
these relations previously in the experiment. The statements that the
participants were asked to match were of two types:

Correct: A correct statement is one where all the components of 
the given relation match a relation provided during the experiment. 
For this statement the participant would need to enter a “True”
response to get a correct score.

Incorrect: An incorrect statement could either be one that was
not presented to the participant or one that was presented, but in 
which parts of the causal relation were inaccurate. The participant
would need to select “False” to get a correct score.

5.1.4 Tasks
The experiment consisted of three phases; passage-only, passage +
static and passage + animation. The participants were given two
tasks to perform. The first task was the memorization task where the
participants were asked to read and/or view the causal relations, and
memorize as many as they could within a time period. Depending on
the condition, the memorization task of the participant varied 
slightly. In the passage-only condition, the participants’ task was to 
read the given passage for 4 minutes. The participant was then asked
to fill the next four minutes by performing simple filler tasks such as 
connecting a sequence of dots. In the passage + static condition, the
participants first read the given passage for 4 minutes to memorize 
the causal relations. They then viewed the static graph for the next 4
minutes to support what was read previously. Similarly, in the
passage + animated condition, the participants first read the given
passage for 4 minutes and then viewed the animation for the next 4
minutes. As the length of the animation was only 60 seconds, the 
animation repeated itself four times to fill the 4 minute slot.

The second task was the recall task where we asked participants
to respond to whether a selected relation we presented was either 
Correct or Incorrect (as described above) within a 5 minute
timeframe.

The representation types were fully counterbalanced using a Latin
square design. Each participant viewed three of six passages, with
one passage per condition. Each questionnaire consisted of 14 
questions, with 7 questions of each statement type. The statement
types were randomly distributed within the questionnaire. Overall,
with 44 participants, 2 independent variables, and 7 questions per
statement type, a total of 1848 responses were collected for analysis.

5.1.5 Procedure
The experiment was conducted in three phases. In the first phase, we 
ran a colour blindness test [1] to ensure that the participants could
distinguish the colours in the static graphs. We then conducted a 20 
minute training session, where we described the representation and
statement types to the participants in detail. We showed examples of 
the passage, static, and animated representations and quizzed the 
participants to ensure that they had understood the representations.
We then showed a sample questionnaire, and the participants were
told how to record their responses. We conducted the experiment
after the training session. Conditions were randomly assigned and 
time constraints were strictly enforced. At the completion of each

condition, the participants were asked to answer the questionnaire
corresponding to the condition, within a time limit of 5 minutes. At 
the end of 5 minutes, the participants were asked to stop answering
and move to the next condition. On completing all three conditions,
the participants were asked to record their individual opinions of the 
representations and the experimental procedure, in an informal
questionnaire. We captured the number of correct responses that the 
participant gave in each of the conditions. The participant was given
a maximum score of 1 for each correct answer they provided. If the
participant answered only parts of the answer correctly, we awarded
only a corresponding fraction of the maximum score.
5.2 Results and Discussion
Following the procedure described in the Method section, we first
computed the proportion of accurate responses made by each
participant for each of the experimental conditions. These data were 
then submitted to a 3×2 repeated-measures Analysis of Variance
(ANOVA), treating memorization condition (passage-only vs. 
passage + static vs. passage + animated) and statement type (correct
vs. incorrect) as within-participant factors. This analysis revealed a
main effect of memorization condition, F(2, 86) =  6.76, MSe = .035, 
p < .005. The basis for this main effect was that participants were 
more accurate in making judgments about causal relationships in the
passage + animated condition than in both of the other two
memorization conditions. Specifically, participants made about 8% 
more accurate responses in the passage + animated condition than in
the passage-only condition (.64 vs. .56), F(1, 43) = 7.79, MSe = 
.031, p < .01, and they made about 10% more accurate responses in
the passage + animated condition than in the passage + static
condition (.64 vs. .54), F(1, 43) = 11.01, MSe = .040, p < .005.

There was no reliable difference in response accuracy between 
the passage-only and passage + static conditions, F < 1. Moreover,
the main effect of statement type was not reliable, F(1, 43) = 2.86, 
MSe = .062, p > .05, although participants were about 5% more
accurate in responding to correct statements than incorrect
statements (.60 vs. .55). Finally, the effect of presenting an animated
diagram on response accuracy did not depend on whether the test
statement was correct or incorrect (memorization condition × 
statement type interaction, F < 1).

The results of this experiment partially concur with both our
hypotheses. The results show that visualizations do help in 
improving recall of causal passages (Hypothesis 1). However this
improvement was shown only by the animations. We think the 
reason the static representations did not prove very effective was
because it is quite difficult to adequately distinguish between the
different colours displayed. On-screen clutter was another problem 
adversely affecting this representation. Finally, even though the 
effects (bars next to the target) described the timeline of the causal
relations, on-screen clutter reduced any semblance of order in the 
influences (  and  signs) which made the task extremely tedious. 
Fig. 8 shows a decrease (albeit insignificant) in the accuracy rate
when the causal relations were enhanced using static images.

The results also show that our animations performed better than
the static images (Hypothesis 2). We think this is because the 
animations did not depend on colours, showed only one relation at a 
time, and also described a smooth and continuous timeline. We also
think that designing our representations based on Michotte’s 
guidelines contributed to a better performance with the animations.
The results also showed that the participants were able to distinguish
correct and incorrect relations more accurately in this condition. Two
drawbacks of this representation were noticed during the evaluation.
One drawback was that the sequential nature of the animation did not
allow skipping to a required relation, which can be overcome by
allowing interactions with the animations. A second drawback was
that the absolute sizes of the influences (bullet size) or the effects
(degree of expansion or shrinking of the target) were not easily
distinguishable due to the absence of a legend. Only relative
judgements were possible. 
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Graph showing Recall Accuracy w ith varying Representation Type
and Statement Type

0
0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8
0.9

Passage Passage+Static Passage+Animation

Representation Type

A
cc

ur
ac

y 
ra

tio

Correct

Incorrect

Fig. 8. Accuracy rate of recognizing correct and incorrect causal 
relations across the three conditions.

An analysis of the informal questionnaires also showed 
interesting results. More participants (p=67.4%) agreed that visual
enhancements do improve memory and help in recall tasks.
However, a considerable number (p=32.6%) of participants did not 
agree and were quite content with reading the passages only; this can
be attributed to their superior memorizing abilities. When asked to 
compare between the static and animated images, the participants
were noncommittal as to which technique was better. Based on the
task, they claimed either the static images or the animations to be
more accurate and interesting.  More participants (p=60.3%) agreed
that the animations enhanced the memory better than the static
images. However, they claimed (p= 58.7%) that it was easier to view
the strengths of the influences with the static images. Finally, a
major observation during the experiment was that pure animation 
seemed to be quite boring as it constrained the participants to a fixed
order and timeline and did not give any room for intellectual
exploration.

The results of the first experiment showed that participants were
able to comprehend causal relations better when the textual passages
were complemented with static and animated representations.
However, we are not able to conclude from the experiment whether 
the static and animated representations we have designed can 
naturally and intuitively elicit causal relations. Furthermore, we 
cannot infer from our results whether one type of representation is 
better than the other for showing the selected set of semantics. As a 
result we designed a second experiment to compare the effectiveness
of static and animated representations in describing causal relations.

6 EXPERIMENT 2: STATIC VS. ANIMATED REPRESENTATIONS
The goal of this experiment was to compare the effectiveness of our
static and animated representations in describing causal relations. We
were interested in identifying whether representations for complex
semantics based on Michotte’s rule of perceiving causality would
elicit accurate and rapid responses. Our hypotheses for this 
experiment were as follows:

Hypothesis 1: Participants will perform the recall tasks better
when the causal relations are enhanced with animations.

Hypothesis 2: Participants will be able to respond faster when 
the causal relations are enhanced with animations.
6.1 Method

6.1.1 Subjects
One hundred and twelve (112) undergraduate psychology students of
a local university participated in this experiment. None of the 
participants had performed the previous experiment and were not 
familiar with the objectives of our study. The participants satisfied
the same selection criteria as in Experiment 1 (age, no colour 
blindness, normal to corrected vision, no prior experience with
causal graphs).

6.1.2 Materials 
The experiment consisted of two major conditions for representing
the relations; static images and animations. The experiment was

generated as a .NET program with the embedded static and animated
Macromedia 8 flash files. Individual copies of the program were 
executed on a Windows XP computer and displayed on a 17” Dell
monitor with a 1024x768 pixel screen resolution.

6.1.3 Design
We used a 2×4 within subject design. The two independent variables
were: Representation Type and Statement Type.
Representation type 
Two types of representations were shown to the participants: Static
and Animated.

Static: In this representation type, the participants were shown a
static graph that contained about 1 – 2 causal relations. We kept the
graphs simple as we wanted to identify whether subjects were able to
intuitively capture the concepts presented in the atomic relationships.
In the initial design of the static graphs, which we used in 
experiment 1, we found that the + and – glyphs were redundant cues
because the upright and inverted bars already described the type of 
the outcome to be either positive or negative. As a result we replaced
these by square ( ) glyphs to avoid displaying redundant
information. The size of the glyph represented the strength of the 
influence. Colour was used to distinguish the different sets of causal 
relations.

Animation: In this representation type, the participants were
shown an animation which contained about 1 – 2 causal relations.
The features of the animation were similar to the previous
experiment. We maintained, to the best of our ability, the animated
syntax equivalent to the static syntax with the exception of applying
Michotte’s rule in the animated case, and replacing those with
descriptive glyphs and symbols in the static case. We felt that these
mappings were as close as we could get for providing a fair basis for
both representations.
Statement Type
At the completion of each trial, the participants were shown a
statement based on the relation(s) they viewed. In order to isolate
and test the effectiveness of various components of our
representations, we asked participants to correctly match four types
of statements that were created from our initial set of semantics:

Type of outcome (S1): This type of statement tested the ability
of the participant to distinguish between positive and negative
outcomes in the causal relation. In the experiment, the outcome of 
the causal relation was represented by upright/inverted bars in the 
static and by expansion/shrinking of the target in the animations.

Strength of influence (S2): This type of statement tested the
ability of the participant to comprehend the amount of influence a 
factor had on the target. In the experiment, the strength of influence 
was depicted as varying sizes of square ( ) glyphs in the static
graphs and different size bullets in the animations.

Magnitude of the outcome (S3): This type of statement tested
the ability of the participant to comprehend the magnitude of the 
outcome when a factor influences a target. The magnitude of the 
outcome was displayed as varying sizes of upright or inverted bars in 
the static condition and in the animated representations the targets
would expand or shrink. 

Combination of components (S4): This statement type tested
the ability of the participant to identify all the constituent elements of 
a causal relation, such as the type and magnitude of outcome and 
strength of the influence. We believe this type of statement was the
most complex and evaluated the overall effectiveness of the static
and animated representations in displaying causal relations.

6.1.4 Tasks
The experiment consisted of showing multiple random trials of static 
and animated graphs. As in the previous experiment, the experiment
consisted of two tasks; memorization and recall. In the memorization
task the participant was shown the causal relations for a pre-
determined length of time (9 seconds per causal relation). Within this 
period the subject was asked to carefully view all the possible 
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relationships that existed. In the recall task, the participant was 
shown a statement, based on the relations that were just viewed. For
example, they would be presented with a statement that was not 
based on real facts (i.e. they could not answer correctly without
seeing the graphs) such as “Female mosquitoes have a positive effect
on malaria”. After reading the statement, the participant was asked to 
hit one of two keys (B = ‘Yes’ or N = ‘No’, B was taped with a “Y” 
on top of it) depending on whether they agreed with the statement or
not based on the previously viewed graph. We asked the participants 
to provide as accurate an answer as possible and to respond quickly.
Upon providing an answer, the trial automatically ended and the
setup presented the next trial.

6.1.5 Procedure
The experiment was conducted in two phases. The first phase was
the training phase, where the participants were asked to self-train
themselves by running a pilot tool that displayed static and animated
causal relations. They were presented with statements that were 
similar to what would be displayed during the experiment. The 
participant was given the opportunity to run the pilot as frequently as
needed, but was not able to obtain explanations from the 
experimenter regarding the meanings of the relations or the visual 
representations. After completing the self-training phase, the
participant was asked to run the experimental program.

The second phase was the experiment phase. The trials in the
experiment were divided into 6 sessions. At the end of each session,
the timers were paused and the participant was allowed to take a
break if required.

6.1.6 Results 
The main variables of interest in this experiment were the
completion times in responding the question and the accuracy of the 
users’ responses. Each accurate response of the participant was
awarded one point. The analysis for response times only considered
accurate responses. The results are summarized in Fig. 9 and Fig. 10.
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Fig. 9. Response rate for correctly identifying the type of causal 
relation across all four types of statements.

The data was analysed using a 2×4 repeated-measures Analysis
of Variance (ANOVA), treating representation type (static vs.
animated) and statement type (S1-S4) as within-participant factors.
This analysis revealed a main effect of representation condition, F(1,
111) =  126.418, p < .001. The basis for this main effect was that 
participants were 9% quicker in making judgments about causal
semantics in the animated condition than in the static condition.
(5.36 secs vs. 5.90 secs). This analysis also revealed a main effect of 
statement type, F(1, 3) =  263.176, p < .001. The basis for this main
effect was that performance with statements S2 (6.19 secs) and S3
(6.93 secs) was significantly lower with statements S1 (4.31 secs)
and S4 (5.1 secs) (all p-values between pairs of conditions were < 
0.001). Finally, the effect of presenting an animated diagram on
response rate did not depend on the type of statement, (representation
type × statement type interaction, p=.428).

Analysis of the accuracy rates did not reveal any significant
differences between representation types F(1,111)=2.089, p=.151, 
82.1% for static and 83.2% for animated. This high accuracy rate,

along with no difference between the major conditions is particularly
noteworthy as it suggests that both representations captured or 
represented the semantics in an equivalent manner. Accuracy rates
were lower on statements of type S3 (80.3%) and S4 (79%) in 
comparison to S1 (87.2%) and S2 (84.2%).

Accuracy Rate for Static vs. Animated Representations
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Fig. 10. Accuracy in matching the visual representations to the causal 
relations across all four types of statements.

7 DISCUSSION
The results of both experiments suggest overall that animated
diagrams can facilitate comprehension of complex causal relations.
We discuss the ability of our representations for allowing users to 
‘immediately’ see complex relations and suggest some guidelines for
designers who are interested in depicting causality.
7.1 ‘Immediate’ perception of causal relations
The second experiment was designed to test whether our 
representations would elicit an ‘immediate’ inference of the
information embedded by the graphs. The results of experiment 2 
support our hypotheses that animations can describe causal relations
better than static diagrams. The accuracy rates of both the static and
animated representations were similar and this can be attributed to 
the simplicity of the causal semantics being depicted. However,
significant differences can be seen with the response times, where 
participants were able to provide accurate answers in less time when
the causal relations were displayed using animations. When 
comparing the results based on statement type, we see that 
participants performed best (~88% accuracy rate) in comprehending
statements of type S1 (i.e. identifying whether there was a positive or 
negative outcome). This may suggest that we have a potentially 
strong representation for showing semantics of causal amplification 
and causal dampening. We found that participants took the longest 
amount of time for responding to statements of type S3 (i.e.
identifying the magnitude of the outcome) in comparison to the 
others. This is highly attributed to the difficulty in distinguishing and
recalling the different absolute sizes of the influences being 
displayed. An alternative would be to present labels for showing 
numbers or specific values. As per our predictions, statements of 
type S4 (combination of all types of causal relations) were the most 
difficult to comprehend with an accuracy rate of 79%). This may
suggest that with larger or more complex diagrams, other forms of 
representations or interactions may be necessary [13].
7.2 Applicability of our visualizations in practice 
One concern with any new visualization design is its applicability in
practice and its usability in different areas of information science.
We have addressed these issues, some of which will form part of the
future work for our research. 

One of the major issues is the concern of scalability. Our causal
designs are simple, and can be easily created. Even though, we have
used small graphs in our experiments, we infer from our studies that
the visualizations will perform similarly with larger graphs.
However, we do acknowledge that as the graphs increase in size, 
additional interaction techniques would be necessary for improving
the comprehensibility of the semantics. Interaction techniques will
be useful as the users will be able to isolate and animate only those
parts of the large graph that are of interest at any time. Finally, with
the use of interaction users can create different what-if scenarios and
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view the effects in the causal graphs. 
Several application areas will also benefit from our 

visualizations. In the medical and pharmaceutical fields, the 
animations can be used in radio therapy, surgery, and in drug 
research to visualize the effects of medication on diseases. In the 
educational field, the animations can be used in the form of 
educational games in children’s hospitals to educate the children on 
how to control symptoms of their diseases. In computer science, the 
visualizations can be used to show program structures, timelines, 
workload division, and system by-products. In general, causal 
semantics are applicable to numerous daily activities. Our 
visualizations are simple but powerful enough to capture some of the 
more complex semantics that are encountered on a regular basis. 
7.3 Recommendations to designers 
Based on our findings we provide several recommendations: 

Animated representations based on Michotte’s rules for 
perceiving causality can assist in showing complex causal 
relationships. In particular accurate spatio-temporal rules should be 
utilized in the construction of animated causal graphs.  

In the absence or impracticality of displaying animated 
representations, static graphs that can accurately contain and depict 
an equivalent amount of information as the animated graphs, can be 
constructed.

Semantics of causal amplification and dampening can be 
accurately captured by increasing or shrinking the nodes representing 
the causal outcomes.  

Causal multiplicity and causal strength need to be carefully 
designed to avoid possible ambiguities. 

8 CONCLUSION
This paper reports on the construction and evaluation of visual 
semantics that enhance information content in causal diagrams. Our 
representations are based on perceptual rules for recognizing causal 
occurrences, as suggested by Michotte and Thinés [7]. In this study 
we have short-listed some commonly encountered causal events, and 
have created static and animated visual semantics to represent them.  

In two experiments we study and compare the effects of our 
novel designs. In the first experiment we study the causal 
relationships for their influence and efficiency in memory recall 
situations. In our experiment we created several arbitrary causal 
situations and tested the ability of participants to recall the semantics 
with and without visual aids. The results of our study show that 
accuracy rates did not improve significantly when the causal 
passages were complemented with static diagrams; the reasons 
mainly attributed to limitations of colour and on-screen clutter. 
However, the results showed that the accuracy rates increased by 8% 
over the passage-only condition and by 10% over the passage + 
static condition, when the passages were supplemented with 
animations. We believe that the spatiotemporal properties of 
animation can enhance information content and improve 
comprehension of complex causal relations.  

In a second study we evaluate the ‘immediacy’ of perceiving 
causal relationships. We compare users’ ability to understand and 
match, without training, the visual representations to the correct 
causal statements. Our results show that participants are 9% faster 
with the animated representations than with the static graphs. Our 
results also show that participants were equally accurate with both 
types of representations, suggesting that both designs are 
informationally equivalent.  

The study reported in this paper constitutes the first step in 
identifying whether animations based on perceptual theories of 
causality are effective for showing complex causal relationships. In 
future work we will explore the scalability of our representations to 
larger datasets, will identify and create semantics for more causal 
events such as causal transitivity and threshold causality, and 
evaluate our representations with real-world data.  
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