
Interactive High Resolution Isosurface Ray
Tracing on Multi-Core Processors

Qin Wang, Student Member, IEEE and Joseph JaJa, Fellow, IEEE

Abstract—We present a new method for the interactive rendering of isosurfaces using ray tracing on multi-core processors. This
method consists of a combination of an object-order traversal that coarsely identifies possible candidate 3D data blocks for each
small set of contiguous pixels, and an isosurface ray casting strategy tailored for the resulting limited-size lists of candidate 3D data
blocks. Our implementation scheme results in a compact indexing structure and makes careful use of multithreading and memory
management environments commonly present in multi-core processors. While static screen partitioning is widely used in the literature,
our scheme starts with an image partitioning for the initial stage and then performs dynamic allocation of groups of ray casting tasks
among the different threads to ensure almost equal loads among the different cores while maintaining spatial locality. We also pay
a particular attention to the overhead incurred by moving the data across the different levels of the memory hierarchy. We test our
system on a two-processor Clovertown platform, each consisting of a Quad-Core 1.86 GHz Intel Xeon Processor, and present detailed
experimental results for a number of widely different benchmarks. We show that our system is efficient and scalable, and achieves
high cache performance and excellent load balancing, resulting in an overall performance that is superior to any of the previous
algorithms. In fact, we achieve interactive isosurface rendering on a screen with 10242 resolution for all the datasets tested up to the
maximum size that can fit in the main memory of our platform.

Index Terms—Ray tracing, interactive isosurface, multicore.

1 INTRODUCTION

Rendering isosurfaces is widely recognized as an
effective approach for the visual exploration, com-
putational analysis, and manipulation of volumetric
datasets. Such datasets are appearing at a very fast
rate with increasingly larger sizes due to the dra-
matic advances in imaging instruments and comput-
ing technologies. In particular, as the speed of pro-
cessors continues to improve, researchers are per-
forming large scientific simulations to study very
complex phenomena at increasingly finer resolution
scales. Such simulations end up generating very
large datasets that need to be examined at a rela-
tively fine scale. One such set is the Richtmyer-
Meshkov instability dataset produced by the ASCI
team at Lawrence Livermore National Labs (LLNL),

• Qin Wang is with ECE department and UMIACS at the
University of Maryland, College Park, E-mail:
qinwang@umiacs.umd.edu.

• Dr. Joseph JaJa is with ECE department and UMIACS at
the University of Maryland, College Park, E-mail:
joseph@umiacs.umd.edu.

Manuscript received 31 March 2007; accepted 1 August 2007;
posted online 2 November 2007.
For information on obtaining reprints of this article, please
send e-mail to: tvcg@computer.org.

consisting of 270 time steps, each consisting of
20482×1920 volume of one-byte scalar field 1. The
most commonly used method for visualizing isosur-
faces is to compute a triangular mesh approximation
of the isosurface followed by rendering the triangles
through a graphics hardware. This method was pop-
ularized by the introduction of the Marching Cubes
algorithm in [9], and has since been improved using
a wide number of different techniques (e.g., [1, 16]).
The resulting efficient schemes create either spatial
or range-based indexing structures through a prepro-
cessing step in such a way as to enable the extraction
and rendering of the isosurface in time that primar-
ily depends on the size of the triangular mesh of the
isosurface rather than the size of the input dataset.

A major drawback of the above scheme is the ex-
traction of a possibly very large triangular mesh for
each specific isovalue, a large part of which may not
be visible from any specific viewpoint. The size of
this view-independent triangular mesh tends to in-
crease significantly as the size of the dataset grows
or as the structure of the isosurface becomes more
complex. In fact, it is not uncommon to encounter
isosurfaces whose triangular meshes, as generated by
any variant of the Marching Cubes algorithm, con-
sist of hundreds of millions of triangles such as the

1http://www.llnl.gov/CASC/asciturb/



Richtmyer-Meshkov instability dataset from LLNL
or some of the visible human datasets from National
Library of Medicine 2. One way to address this
drawback is to only extract and render the triangles
that cover the portions of the isosurface, which are
visible from the viewpoints of interest. A scheme
for view-dependent rendering was introduced in [8],
in which they showed that the view dependent visu-
alization can significantly reduce the complexity of
the rendered surfaces. Unfortunately, view depen-
dent isosurface generation algorithms tend to be rel-
atively slow in extracting triangles as they have to
deal with two different types of constraints. The first
involves a range search relative to the given isovalue,
while the second constraint amounts to a spatial fil-
tering to identify the visible portion of the isosurface.
In order to achieve interactive rendering, researchers
have resorted to parallel algorithms such as those that
appeared in [4, 24]. A recent method based on an
elaborate data structure for a persistent octree was
described in [17]. We should note that the quality
of the generated isosurfaces using triangular meshes
may be poor especially for complex regions as the
triangular mesh is just a polygonal approximation of
the surface.

In this paper, we consider the alternative approach
of generating isosurfaces by using ray tracing. Such
an approach was first proposed in [14], using a
brute-force ray tracing on the SGI Reality Monster,
which is a shared memory multiprocessor. A dis-
tributed memory version was described in [2], and
schemes based on kd-trees and octree are described
in [3, 19, 6]. In the next section, we will provide
an overview of the isosurface ray tracing algorithms
since they are directly related to the algorithm de-
scribed in this paper, and then proceed to describe
our algorithm.

2 PREVIOUS WORK

Isosurface ray tracing directly computes the isosur-
face by shooting rays from the viewpoint through
the pixels and computing the intersections of these
rays with the isosurface. This method, coupled with
various techniques for improving visual effects such
as shading, reflection, and global illumination, can
generate extremely high quality visualization of iso-

2http://www.nlm.nih.gov/research/visible/

surfaces. However, the method is computationally
demanding, especially for high resolution screens,
since it is pixel-by-pixel approach and hence its com-
plexity depends on the number of rays and the size
of the dataset as well as on the scheme used for ray
traversal and for computing and shading the intersec-
tion voxels of the rays with the isosurface. Note that
in general the memory access is relatively expensive
as the voxels are not processed in the same order as
the data layout, and cache performance can be poor
since the cells intersected with cast rays are not eas-
ily predictable.

Given the high computational requirements of iso-
surface ray tracing, Parker et. al. [14] describe an
implementation on the SGI Reality Monster, which
is a shared-memory multiprocessor with up to 128
processors, and show interactive isosurface render-
ing of the 1GB Visible Woman dataset. The screen
size used is 5122. Their algorithm uses a simple
multi-level spatial hierarchy with a 3D tiling of the
input data to improve cache performance. More re-
cently, Wald et. al. [19] describe an implementa-
tion using a combination of a kd-tree and coherent
ray tracing that exploits the SIMD extensions that
are available on many of the current multi-core pro-
cessors. A kd-tree is a binary tree that represents a
spatial partitioning of the volume data. Each node,
except for the leaves, represents a splitting plane that
is closest to the center of the largest dimension. Each
node contains the minimum and the maximum of the
densities contained within the subtree. This structure
is very similar to the octree as described in [21, 6],
except that the authors claim that the kd-tree more
easily enables a simple handling of packets of rays
used in coherent ray tracing. Coherent ray tracing
traverses packet of rays through the kd-tree in or-
der to make effective use of the SIMD extensions.
However this comes at the cost of creating an index-
ing structure that is at least twice as large as the in-
put data size. For example, their most compact kd-
tree representation of the 8GB LLNL dataset is of
size 18GB. The authors illustrate the performance
of their scheme on a single and on a 5-node clus-
ter of dual-1.8 GHz AMD Opteron, with a default
screen size of 5122. A more compact kd-tree is in-
troduced in [3] and used for isosurface ray tracing
on two-processor platform, each is a dual-core 2.6
GHz AMD Opteron with 16GB RAM. They show



interactive rate isosurface rendering for a variety of
datasets of sizes up to 8GB but using half the mem-
ory used in [19]. The multi-layer ray tracing method
using frustum traversal proposed in [15] utilizes spa-
tial coherence in image space to speedup the render-
ing of geometric objects of a few million triangles
(basically involving coherent scenes) but it is unclear
whether the method will perform well on complex
(and possibly incoherent) isosurfaces in large scale
datasets such as LLNL. In fact, it has been noticed
that the packet ray traversal technique (including
the exploitation of SIMD instructions) may perform
poorly on incoherent complex scenarios where fre-
quent ray splitting and merging could lead to a worse
performance than just using a single-ray [6, 7, 3].
As the most recent implementation of the single-
ray scheme, an octree representation that contains
the scalar data as well as the range information is
used in [6] to generate competitive performance on
multi-core processors. Its multi-resolution level of
detail(LOD) version that incorporates coherent ray
tracing to work around the problem of incoherent
scenes appears in [7], resulting in faster rendering
of LOD data in some cases.

Additional work that is somewhat related to our
work but addressing the general direct volume ren-
dering problem appears in [18, 20]. To improve the
efficiency of ray tracing for direct volume render-
ing, a two-step method is proposed in [18]. The first
step consists of projecting the boundary cells onto
the image plane using graphics hardware, and the
second step applies the standard ray tracing but now
slightly more constrained. In [20], 3D-textures are
used to estimate the start of ray traversal. Some other
schemes use quantized voxels to accelerate volume
rendering [11], or object-order projection to speed up
ray casting for parallel view port volume rendering
[12], as well as cache-efficient layouts of bounding
volume hierarchies [23] to improve kd-tree access
during ray casting for some medium size of datasets.
The direct volume rendering and ray casting imple-
mented on GPUs also appeared in the past few years
with the advent of improved GPU programmability.
Some recent related advances are reported in [5].
However, the GPU-based approach is constrained by
its on-board memory size (usually 512MB) and its
fairly strict SIMD programming model.

3 A NOVEL HYBRID STRATEGY

In general, there are several main features that have
been exploited in the literature to speed up the com-
putation of isosurfaces through ray tracing. These
are:

• The use of spatial decomposition indexing
structures augmented by the range of the den-
sities at each node. Such a structure enables the
culling away of large parts of the data, which
are not part of the visible portion of the isosur-
face. The input data can be incorporated into
the structure to generate a multiresolution rep-
resentation of the volumetric data.

• The mapping of the inherent parallelism of ray
tracing into pipelined and parallel architectures
since the ray traversal corresponding to any
pixel can be performed independently of any
other ray traversal.

• An attempt to optimize cache performance by
processing chunks of the input data of suitable
sizes.

• The exploitation of the SIMD extensions on
some of the newer multi-core processors, which
led to the idea of shooting a packet of rays (typ-
ically, 4 rays corresponding to 2× 2 adjacent
pixels) as the unit traversal through the volumet-
ric dataset.

Except for applying the above techniques in differ-
ent ways, all the known isosurface ray tracing algo-
rithms follow more or less the same basic strategy.
As to the isosurface visualization, tracing primary
ray is the most time-consuming part of ray tracing
but also most effectively delivers the visual infor-
mation of isosurface. In this paper, we introduce a
new strategy to greatly improve tracing primary rays.
Our method is a combination of object-order projec-
tion of a coarse version of the data and a very effi-
cient ray tracing restricted to a few data blocks for
each packet of rays (corresponding to adjacent pix-
els). For clarity, we start by presenting the single ray
version, which will be extended to packets of rays in
the next section. At a high level, our scheme consists
of the following two phases.



Phase I: We perform a traversal of a 3D-tiled ver-
sion of our volumetric dataset, using a very com-
pact data structure, to identify, through projection
from object space onto the image space, the visi-
ble and isosurface-intersecting 3D-tiles correspond-
ing to each pixel. From now on, we refer to a 3D-
tile of the input data as a data block or simply a
block. At the end of this phase, we will have, for
each pixel, a list of data blocks that are visible from
the ray through this pixel and that intersect the iso-
surface, organized in a front to back order relative to
the viewpoint.
Phase II: We now shoot a ray from each pixel
through its ordered list of data blocks constructed
during Phase I (assuming the list is non-empty;
otherwise there is no work to be done), checking
whether an intersection voxel with the isosurface lies
within a block from the list . There is no need to
proceed further once an intersection voxel is found.
This will be followed with a trilinear interpolation
and shading of the corresponding voxel.

We now proceed to provide more details about
each phase and to explain how such a strategy can be
optimized on multi-core processor architectures and
how it can make effective use of their memory hier-
archies. As a result, we will obtain an algorithm that
achieves superior performance relative to the previ-
ous algorithms while using a smaller indexing struc-
ture.

We organize our volumetric data into a coarse grid
of equal-sized blocks, where the scalar field values
within each block are stored contiguously in a pre-
defined order and the block is identified by the coor-
dinates of a pre-specified corner. We use an octree
to index the data within a block such that the leaves
correspond to 2×2×2 cells. That is, each leaf will
contain a pointer to such a cell. As usual, each node
of the octree will contain the minimum and maxi-
mum of the values of the voxels lying within the re-
gion represented by the node. In addition, we build
a BONO (Branch-On-Need Octree) [21] tree for the
coarse grid, augmented as usual by the appropriate
value ranges. The BONO structure is very similar to
the octree except that, for data resolutions other than
powers of two, BONO avoids allocating nodes of
empty subtrees, and hence it is more space-efficient
than the original octree. Note that the blocks are al-
ways chosen so that each dimension is a power of

two, and hence the use of octrees to index their scalar
data.

Phase I is implemented as follows. For efficiency
reasons, we limit the size of the list of blocks as-
sociated with each pixel to a fixed constant k. We
later show that k ≤ 20 seems to give the most effi-
cient implementation. We note that we will always
obtain the correct visible isosurface regardless of the
value of k. The BONO tree representing the coarse
grid is traversed starting from the root. Assume we
reach a node v of the tree. If the range stored in v
contains the isovalue, we project the minimum axis-
aligned bounding box (AABB) of v onto the screen.
Such a 3D AABB is computed by the coordinates
of a pre-specified corner, whose x, y, and z exten-
sions can be deduced from the level of v. We con-
sider all the pixels falling within the projected area.
If the size of the list of any such pixel is less than
k, we traverse the children in a front to back order
relative to the view point. Otherwise, we skip the
subtree rooted at v. Once a leaf is reached, the list of
each pixel falling within the projection of the min-
imum bounding box of the corresponding block is
augmented with a pointer to this block unless the list
already has k blocks. Notice that at the end of this
phase, we have a list of size at most k blocks associ-
ated with each pixel, and organized in a front to back
order since this is how the BONO tree was traversed.
The limit imposed by the value k makes this phase
quite efficient.

Phase II is implemented as follows. For each pixel
with non-empty list , we shoot a ray from this pixel
through the list of its blocks, one block at a time in
the order they appear on the list. If the list is empty,
the ray does not intersect the isosurface. Otherwise,
if the ray intersects a voxel on the isosurface, we per-
form a trilinear interpolation using the unit cell con-
taining the voxel followed by (diffuse) shading. The
ray voxel intersection is computed using the method
described in [10] while the normals are computed us-
ing forward difference. If the ray reaches the end
of the list without finding such a voxel (and hence
the list is of size k), we revert to the traditional ap-
proach by resuming the traversal of the BONO tree
from where we stopped during the first phase, which
is indicated at the end of each k-sized list. Lastly,
if the list is of size less than k with no intersection
found at this stage, which implies that this ray does



not intersect the isosurface. Clearly we will always
end up with the correct intersection points of all the
rays with the isosurface regardless of the value of k.
However, we will later show that the case when we
have to resume the traversal of the BONO tree (as in
the traditional approach) occurs rarely if k is chosen
appropriately. Among the advantages of our scheme
are:

• The traversal of the BONO tree of the coarse
version of the volumetric data can be performed
extremely fast since its size is very compact and
each projection enables us to increase the sizes
of the lists of many nearby pixels simultane-
ously. Also, the upper bound imposed by the
value of k restricts the traversal significantly.

• Almost all the pixels with rays not intersect-
ing the isosurfaces will be identified through
the first phase of our algorithm, and we only
shoot very few non-intersecting rays during the
second phase. We will later show that the per-
centage of the non-intersecting rays cast is ex-
tremely small.

• The traversal of a ray is now conducted through
visible blocks in a front to back order, and hence
we are skipping in general a substantial fraction
of irrelevant portions of the volumetric data up
front and between.

• Nearby pixels will likely have a number of com-
mon blocks on their lists and hence we can use
spatial locality of pixels to achieve high perfor-
mance caching. That is, processing nearby pix-
els can make effective use of caching since their
corresponding lists are short and are likely to
share tiles. We will show how to exploit this
feature to significantly improve performance.

We next consider a couple of optimization tech-
niques to this basic scheme.

4 IMPROVEMENTS ON BASIC SCHEME

4.1 Extension to Packets of Rays
Our scheme builds for each pixel a small size list of
data blocks that are visible from the ray through this
pixel and that intersect the isosurface. In general,
we expect the lists of adjacent pixels to significantly

overlap, especially for close views. We exploit this
feature by combining the lists of each group of ad-
jacent pixels (say 2× 2 as used in our experimental
results) into a single list. This is somewhat similar
in spirit to the use of packet of rays in [19, 7]. How-
ever in this work we do not make use of SIMD in-
structions to process the packet of rays for ray cast-
ing since its success depends upon scene coherency
and the use of such instructions may lead to poorer
rendering performance on complex incoherent sce-
narios as pointed out in [6, 7]. Instead, our emphasis
here is on high level algorithmic techniques. But, our
scheme and implementation are fully compatible and
extensible with existing packet ray technology, and
we will explore in the future the additional benefits
of our algorithm with SIMD instructions exploited to
process each grouped list for coherent scenes.

During the Phase I creation of the lists, we tra-
verse the BONO tree as before. However we create
lists for each packet of rays (corresponding to an ad-
jacent group of pixels typically 2× 2) rather than a
separate list for each pixel. Whenever such a group
of pixels overlaps with the projection of the current
node being traversed, the group’s list is processed as
before. Since we are now creating fewer lists, the
performance of Phase I improves substantially as il-
lustrated in Table 1, which shows the execution times
corresponding to different values of k to generate re-
spectively 10242 lists (one list per pixel) and 5122

lists (one list for each 2×2 adjacent pixels) .

Table 1. List generation time on single-core for Far and Close views
with various upper bound k using single pixels (resulting in 1024×1024
lists) and groups of 2× 2 of adjacent pixels (resulting in 512× 512 lists)
on a 10242 screen. To make the comparison fair, the list upper bound
k is adjusted so that two cases generate relatively the same number of
shaded pixels after rays are cast through the data blocks on the lists.

View List upper bound k Time (msec)
Type 10242 lists 5122 lists 10242 lists 5122 lists Ratio

3 6 273 110 2.48
Far 7 14 362 142 2.55

11 22 434 169 2.57
3 6 228 68 3.35

Close 7 14 334 92 3.63
11 22 449 119 3.77

During Phase II, a slight overhead will be incurred
as the upper bound k on the size of the list needs to be
increased for the grouped list. However we will show
later that we achieve the best performance when k is



around 20, compared to 12 in the single pixel case,
and therefore the overhead will be minimal.

4.2 Adaptive Block Size

Another improvement to our basic scheme is to make
the size of the data block adaptive. For far views, we
can use relatively large size blocks especially when
processing large volumetric data. For example, we
use 8×8×8 blocks for the LLNL dataset to handle
the rendering of far views, which results in 6×6 pix-
els on average being covered by the projection of a
data block, and this seems to achieve the best perfor-
mance when generating the lists for groups of 2× 2
adjacent pixels. However when we zoom in for close
views, the smaller size blocks are more effective es-
pecially that the number of BONO nodes visited and
the number of projected blocks are much smaller but
the projection of a block covers more pixels (e.g.
12× 12 on average when we use 4× 4× 4 blocks
for a 16 : 1 zoom-in close view). Figure 1 illustrates
the performance of each of Phase I and Phase II on
the LLNL dataset as a function of the block size and
the viewpoint.

Fig. 1. Execution time of List generation(PhaseI) and ray cast-
ing(PhaseII) on single-core as we vary the zoom-in from far-view to
close-view for block sizes 83 and 43.

We make our scheme adaptive as follows. We visit
the BONO nodes as before, except that, for close
views, at the end of the traversal of the BONO tree,
we proceed with the octree traversal of the BONO
tree leaves until we reach the desired block size. Af-
ter reaching the desired size, we proceed using the
current blocks to compute the minimum bounding
box and construct the lists for the various packets of
rays.

5 MULTITHREADED IMPLEMENTATION

As the multi-core processors begin to dominate the
computing market, new programming paradigms are
needed to fully exploit the performance opportuni-
ties offered by these processors. In general, parallel
programming remains a difficult task in spite of the
considerable related research efforts undertaken dur-
ing the past several decades. Unfortunately, this task
becomes even more difficult for multi-core proces-
sors given the limited on-chip memory, and the typ-
ical complex memory hierarchies present in such ar-
chitectures. Moreover, there are currently no widely
adopted mechanisms for communication or mem-
ory accesses. Compare this for example with dis-
tributed memory multiprocessors for which the mes-
sage passing MPI communication libraries have been
quite successful in supporting many applications. On
the other hand, multi-core processors present an op-
portunity for speeding up the computation by parti-
tioning the load among the cores, but a careful man-
agement of the memory hierarchy (including what-
ever caches are available) is critical to the overall
performance, in addition to the usual problem of try-
ing to ensure balanced loads among the cores with
as little communication as possible. In this paper,
we will focus on programming a single multi-core
processor rather than a cluster of these processors
since we believe this is where the main challenge is,
and moreover a multi-core processor will soon be the
common platform for most people. Programming
clusters of such processors will probably be a rela-
tively easy extension of that of the single multi-core
processor case since we can make use of the many
cluster programming techniques that have been de-
veloped over the past twenty years or so.

We use the Clovertown platform, consisting of two
Quad-Core Intel 1.86 GHz Xeon Processors 5320.
Each dual-core on a Quad-core shares an L2 cache
of size 4MB, and hence the total L2 cache available
is 8MB. Our Clovertown platform has 8GB of main
memory, which constitutes an upper bound on the
size of the datasets used in our experiments.

In general, assume we have p cores on a multi-
core processor, with some local (possibly shared)
cache or memory available for each core. Using p
threads, our scheme is implemented as follows.
Step1. To handle Phase I, the screen is divided



into almost equal image contiguous regions, with
each thread responsible for creating the lists of 3D
data blocks corresponding to the pixels in its region.
Each thread traverses the BONO tree and creates the
lists of blocks corresponding to its groups of pixels.
Hence a traversal of a node is followed by travers-
ing the children nodes in a front to back order only if
the projection of the minimum bounding box of the
node intersects with the thread’s screen region and
there is at least one list associated with the region
which is not full (i.e., its size is less than k). Note
that our BONO tree is small and only a fraction (no
more than 10%) of the total BONO tree nodes are
actually accessed during Phase I due to the imposed
list upper bound k.
Step2. To handle Phase II, we start by partitioning
the ray casting tasks through all the lists as follows.

2.1 Partition the screen into small image-size tiles
(for example 8× 8 or 16× 16) and order these
tiles using a Z-order (or a space-filling curve
such Hilbert space filling curve). Such order-
ing will ensure a high degree of spatial locality
of nearby tiles and will result in high cache per-
formance as we will show later. This step is
performed during the preprocessing stage and
takes a few milliseconds.

2.2 After the lists are generated in Step1, assign a
weight to each small-size image tile, which is
equal to the number of non-empty lists within
the tile, and compute the total weight W of all
the tiles.

2.3 Following the Z-order of the image tiles, group
the tiles as follows. The first set of tiles whose
total weight is W

2 are grouped into p equal
groups, each group consisting of a contiguous
set of tiles following the Z-order. A group is
identified by a pair of indices indicating the first
and the last image tile in the group. The second
set of remaining tiles whose total weight is W

4 is
grouped equally as before into p groups. This
process is repeated until each image tile is asso-
ciated with a group, and hence we need at most
logarithmic number of iterations in screen size,
each iteration creating p groups. The result is a
list LI of pairs of indices, each pair delineating
a group of image tiles.

Step3. We perform ray casting dynamically as fol-
lows. Initially, each thread will grab a group of im-
age tiles from the ordered list LI created in Step2. A
thread will then process its group by shooting rays
through the pixels in the group using the data block
lists generated in Step1. Once a thread completes
the processing of its group, it grabs the first available
group of tiles from the list LI , and start processing
the corresponding group. The process continues un-
til all the image tiles are processed.

Our dynamic allocation of the ray casting tasks
attempts to achieve an optimal trade-off between
two conflicting requirements. The first is the desire
to have fine-grain tasks to be assigned dynamically
with the goal of achieving tight load balancing. The
second requirement is to make the number of jobs
as small as possible with the goal of minimizing the
amount of coordination and synchronization among
the threads. In our list LI , we start with jobs (corre-
sponding to groups of image tiles) that are relatively
large, and decrease the sizes until we reach fine-grain
jobs at the last p positions of LI . Therefore our strat-
egy seems to strike an optimal balance between the
two requirements. In the next section, we will illus-
trate the performance of each step, and show in par-
ticular that we are able to achieve a fairly tight load
balancing among the different threads as well as very
high cache performance.

6 EXPERIMENTAL RESULTS

We have conducted extensive testing of our algo-
rithm on six datasets whose sizes range from about
100MB to 8GB, which is the largest dataset that can
fit into the main memory of our Clovertown plat-
form. Although the isosurface can be generated from
an arbitrary viewing point, we report our test re-
sults for two typical views: Far-view that enables
the viewing of the complete isosurface on the screen;
and Close-view that consists of a zooming by a ra-
tio of 16 : 1 to view details of regions of interest.
These two view settings will typically involve signif-
icantly different numbers of voxels intersecting the
isosurface, which directly influence the performance
of any isosurface rendering algorithm. Hence, we
measure the corresponding performance separately
to shed more light into the robustness of our scheme.
In addition, we take six different viewing angles for
both Far-view and Close-view, specified by zenith



angle φ = {15o,45o,75o} and azimuth angle θ =
{22.5o,45o} in spherical coordinates. Due to the
high topological complexity of most generated iso-
surfaces, the screen resolution for our testing is typ-
ically set at 10242, which for example enables the
highlighting of the fine details of the complex LLNL
dataset. As described before, our scheme consists of
an initial phase that generates a list of data blocks
for each packet of rays, followed by a dynamic allo-
cation of groups of Z-ordered image tiles among the
processor cores, and ending with ray casting through
the lists associated with groups of adjacent pixels. If
the ray intersects the isosurface, the intersection po-
sition is calculated by solving a trilinear interpolation
equation as in [10], then the pixel is shaded by com-
puting the forward difference gradient as the normal
at the intersection position and applying the diffuse
shade model. We measure the execution time of each
phase as well as the overall frame rate rendering of
the corresponding isosurfaces. We will show scala-
bility both in data output size and number of cores
used. In particular, we run our tests on 1,2,4,8 CPU
cores of our Clovertown platform and measure the
performance for each case separately.

At this point, we note that comparing our exper-
imental results with those of previous algorithms
is not straightforward (except when comparing the
sizes of the indexing structures) since prior work
did not provide sufficient details about their testing
scenarios and they used different processors (which
sometimes were faster in CPU clock speed than our
1.86 GHz Quad-core processors and had more main
memory). However we will see later that our perfor-
mance numbers suggest significantly better perfor-
mance than any of the published algorithms. To illus-
trate the relative increased performance achieved by
our techniques in a concrete way, we implemented
a standard ray casting algorithm using the octree
indexing structure, while trying to make as effec-
tive use of the memory hierarchy and multithread-
ing as much as possible. All the detailed steps for
ray traversal, computing the intersection points, and
shading are the same as in our algorithm. In partic-
ular, our multi-threaded implementation of the stan-
dard algorithm is based on a dynamic allocation of
static small screen tiles (16×16 pixels) to the differ-
ent processor cores. Therefore the comparison be-
tween the two algorithms running on the same ma-

chine with identical datasets, viewpoints, and screen
sizes will highlight the differences in the strategies
used by both algorithms rather than the small imple-
mentation details. Moreover, it appears that the per-
formance of this standard octree algorithm is rather
very similar to that achieved by the octree algorithms
reported in [6].

The rest of this section is organized as follows. We
first present the attributes of our indexing structures
for the datasets used, illustrating their substantially
smaller sizes than those kd-trees used in previous
work. We then demonstrate the critical importance
of the size limit on the lists of data blocks by focus-
ing on the rendering of the complex LLNL isosur-
faces on high resolution screens. We end with an
illustration of the overall performance of our algo-
rithm for all the six datasets, and demonstrate adapt-
ability to the complexity of the rendered scenes,
high cache performance, and scalability in number
of cores.

6.1 Datasets Used

We selected six datasets for our tests, which can gen-
erate spatially sparse or dense, topologically smooth
or complex isosurfaces, and which represent most
types of isosurfaces encountered in various applica-
tions (Figure 2). The sizes of these datasets vary
from 87MB to 8GB, which is the largest that can
fit into our main memory. These datasets illustrate
our scheme’s adaptivity to various types of isosur-
faces and data sizes. Table 2 illustrates the block size
used for each dataset and the corresponding number
of blocks for each case. In all cases, the number of
blocks is relatively small and does not exceed a few
millions, and hence the corresponding BONO tree
is very compact and can be constructed extremely
quickly. In fact, our largest BONO tree is around
46MB for LLNL 8GB dataset. On the other hand,
the accumulated size of the finer indexing structures
(that is, octrees) for all the data blocks is just a frac-
tion of original dataset, no more than 1

4 as shown in
Table 3. Note that the total sizes of our indexing
structures are substantially smaller than those used
for the kd-tree algorithms(such as [19, 3]). The pre-
processing times are also much better than any of the
published preprocessing times even when the previ-
ous algorithms are run on faster clocked processors.



Fig. 2. The six datasets used in our experiments. From left to right, top
to down, the datasets are: Aneurism, Bunny, Skull, Abdominal, LLNL
and VisMale respectively.

6.2 Performance Implication of the Upper
Bound on the Lists of Tiles

In addition to our new strategy that combines object
order traversal followed by ray tracing, we make use
of a novel trick by putting a limit k on the number
of blocks computed for each group of adjacent pix-
els (corresponding to a packet of rays). We examine
here the critical importance of such an upper bound.

The total execution time of our algorithm con-
sists of four main components: (i) the time it takes
to traverse the BONO tree and to generate the lists
of blocks; (ii) the time it takes to group the small-
sized image tiles into groups for dynamic allocation
among the processor cores; (iii) the time to perform
ray casting through the data block lists; and (iv) the
time needed for ray casting of the unfinished pix-
els (that is, those pixels whose lists were of size k
with no intersecting voxels found in step (iii)). The

Table 2. Parameters of various datasets used

Data Field Grid Data Block # of
Sets Size Size Size Size Blocks

Abdominal 2 bytes 5122×174 87 MB 43 302,068
Bunny 2 bytes 5122×360 180 MB 43 1,181,401

Aneurism 2 bytes 5122×512 256 MB 43 1,620,088
Skull 2 bytes 5122×512 256 MB 43 1,680,896

VisMale 2 bytes 5122×1882 941 MB 83 663,745
LLNL 1 bytes 20482×1920 7.5 GB 83 5,655,909

Table 3. Size of our indexing structure for Blocks and BONO tree along
with their preprocessing time

Data Indexing Size (MB) Preprocess Time (Sec) Space
Blocks BONO Blocks BONO Overhead

Abdominal 11.52 2.97 7.1 0.172 13.24 %
Bunny 45.07 11.43 15.2 0.332 25.04 %

Aneurism 61.80 15.68 23.4 0.407 24.14 %
Skull 64.12 16.26 25.6 0.427 25.05 %

VisMale 187.37 6.43 88.3 0.221 19.91 %
LLNL 809.08 46.79 520.0 1.950 10.53 %

amount of work involved in grouping the image tiles
is small (in the order of 2 ∼ 3 milliseconds). The
bulk of the time is spent on steps (i), (iii), and (iv).
In order to illustrate the trade-off involved relative
to the upper bound k and the various stages of the
algorithm, we ran a number of experiments on the
LLNL dataset of time step 250 using the isovalue of
70 and screen resolution 10242 for Far-view settings
on our Clovertown platform. We measured the exe-
cution time on a single core for different values of k,
ranging from 0 to 42 (note that standard ray casting
is the same as the case when k = 0). The correspond-
ing results are illustrated in Figures 3.

From these results, we can make the following
observations. First, the standard ray casting corre-
sponding to the case when k = 0 has the longest ex-
ecution time by a factor of approximately 40% rel-
ative to our algorithm for the best value of k. Sec-
ond, the time it takes to generate the block lists (indi-
cated in blue) increases with the value k almost lin-
early because the depth complexity of LLNL data
is high (∼ 50) but its contribution to the total time
is less than 10% for k ≤ 30. Third, the ray casting
on the block lists (indicated in red) takes an increas-
ingly larger fraction of the total execution time as
k increases, and is significantly larger than the time
it takes to generate the lists. Fourth, and perhaps



Fig. 3. Execution times of the different stages of our algorithm on a
single core vs. the value of upper bound k. The results are for the Far-
view of the LLNL dataset of time step 250 using 10242 screen resolution.

Fig. 4. Percentage of pixels left to shade after going through k blocks
from the lists for the 20482×1920 LLNL dataset at time step 250. Screen
size is 10242.

most importantly, the number of rays that have no
intersection with the isosurface after going through
exactly k blocks (indicated in yellow) drops very
quickly initially as k increases and then somewhat
levels off, which can be verified more clearly by ex-
amining the curve shown in Figure 4. The combined
effect of these properties lead to an optimal value
for k that in our experiments has been in the range
16 ∼ 22. For example, the optimal value of k is
around 20 ∼ 22 for the LLNL dataset, while for the
Visible Male dataset, the optimal value of k is around
16∼ 18 because of a smaller complexity depth.

Another important benefit of our scheme is the sig-
nificant decrease in the number of rays cast which do
not intersect the isosurface relative to the standard
strategy. The traversal of the BONO tree effectively
identifies the area on the screen where the isosur-

Fig. 5. Analysis of the percentage of rays having no intersection with the
isosurface in our scheme using the 20482 × 1920 LLNL dataset at time
step 250 under Far-view. Screen size is 10242.

face is mapped, passing this information for ray cast-
ing through the block lists. Figure 5 illustrates the
dependence of the non-intersecting rays cast upon
the value of k. The blue curve represents the num-
ber of non-intersecting rays determined when go-
ing through the lists containing less than k blocks,
while the red curve represents the number of non-
intersecting rays determined at the very last step of
the algorithm after their k-size lists were completed.
Obviously, the total number of non-intersecting rays
cast is the sum of these two numbers, and does not
depend upon the value k > 0. The percentage is
out of the total number of rays cast by our algo-
rithm. As shown in Figure 5, the value of k directly
impacts these two numbers, while the total number
of non-intersecting rays cast by our algorithm (for
k > 0) is about 5.2% of the total number of rays cast.
On the other hand, the standard ray casting doesn’t
filter out any ray initially and simply shoots a ray
through each pixel. When the isosurface doesn’t oc-
cupy most of the screen, which is not uncommon
in Far-view, the percentage of non-intersecting rays
over total number of rays cast could be large (such
as in Aneurism and Abdominal datasets). For the
same LLNL dataset and the same screen resolution,
standard ray tracing ends up with around 45% non-
intersecting rays on average over the six tested view-
points under Far-view. This clearly illustrates the
power of our hybrid strategy that manages to almost
eliminate the casting of non-intersecting rays.

We will assume for the rest of this paper that an
optimal value of k has been selected and report the



performance corresponding to this value.

6.3 Overall Performance
In this section, we give an overview on the overall
performance of our algorithm with different view-
points and different datasets. The tests conducted are
for both the Far-view and the Close-view, each from
six viewing angles specified by (φ , θ ), using a 10242

screen resolution. A variable number of cores, up to
8, are used by running the multi-threaded version of
our algorithm. While the scalability of our algorithm
and a detailed analysis of the load balance achieved
are described in the next section, we report here on
the overall performance and compare it with the best
published results. The performance, expressed in
terms of f ps to render the LLNL dataset (time step
250 and the isovalue is equal to 70), is listed in Ta-
ble 4 for the Far-view and the Close-view at the six
different viewing angles. As can be seen, we achieve
interactive rates regardless of the viewpoint or the
viewing angle for a very complex isosurface on a
high resolution screen. These results illustrate the
robustness of our scheme regardless of the complex-
ity and of the scene. Note that the number of cores
is supposed to steadily increase in the future (per-
haps doubling every 18∼ 24 months), and hence our
scheme will easily achieve interactive rates on future
desktop or laptop processors.

Table 4. Performance of our algorithm on the Clovertown in f ps for the
LLNL dataset with screen resolution 10242 and isovalue 70 under Far
and Close views.

10242 Screen φ −θ

View Core 15-22 15-45 45-22 45-45 75-22 75-45
Far 2-core 0.87 0.87 0.84 0.81 1.36 1.35

8-core 3.41 3.44 3.28 3.20 5.29 5.24
Close 2-core 1.32 1.27 1.08 1.00 1.04 0.98

8-core 5.08 4.85 4.15 3.85 4.12 3.83

As already noted in previous research [14, 19], the
ray traversal across the spatial acceleration structure,
such as kd-trees or octrees, constitutes the major
portion of the total execution time (usually around
65%∼ 70%) in standard ray casting. Yet, Phase I of
our algorithm uses efficient object-order projection
of blocks to considerably reduce the number of ray
traversal steps in Phase II, which in large part leads
to our superior performance. In Table 5 the compari-
son of number of ray traversal steps in our algorithm

and standard ray casting for various datasets clearly
elucidates this aspect.

Table 5. Number of ray traversal steps undertaken during ray casting in
standard ray casting and our algorithm for a screen size of 10242 screen
using all the datasets considered in this paper.

10242 Screen standard ray ours
Dataset casting (×103) (×103) ratio

Abdominal 39,992 5,865 6.82
Bunny 22,547 2,585 8.72

Aneurism 45,237 3,291 13.75
Skull 37,648 5,463 6.89

VisMale 21,421 3,174 6.75
LLNL (far) 42,228 12,944 3.26

LLNL (close) 42,868 6,129 6.99

We now report a summary of our performance re-
sults on the other datasets, which were listed in Ta-
ble 6. These results, expressed in terms of f ps under
the Far-view setting and taking the average over the
different viewing angles, are shown in Table 6. Since
these datasets have lower depth complexity than the
LLNL dataset, combined with the fact that their iso-
surfaces cover the screen unevenly, our algorithm de-
livers a faster interactive rendering rate and achieves
further performance improvements over the standard
ray casting algorithm. Note also the significant per-
formance achieved for the lower resolution screen of
size 5122.

Finally, we compare our algorithm to the algo-
rithm reported in [6], which uses the 16-core NUMA
2.4 GHz Opteron workstation. As far as the au-
thors know, the performance numbers published in
[6] are the best known for the isosurface ray tracing
problem. Since our platform is different than theirs,
we need to calibrate the two processors. Compar-
ing the SPEC benchmark 3 performance on the AMD

3http://www.spec.org/benchmarks.html

Table 6. Measured performance on 8-core Clovertown in f ps for our
scheme and the standard octree ray tracing algorithm under Far-view
setting for various datasets

Screen size 5122 10242

Dataset standard ours ratio standard ours ratio
Abdominal 12.99 24.65 1.90 3.80 7.87 2.07

Bunny 22.22 38.56 1.74 6.49 12.66 1.95
Aneurism 13.89 39.33 2.83 3.77 12.35 3.27

Skull 13.70 25.02 1.83 3.76 7.19 1.91
visMale 18.52 29.68 1.60 5.52 9.26 1.68



Opteron 2.6 GHz and the Intel Xeon 1.86 GHz with
the same number of cores (8 in each case) as shown
in Table 7, we note that the Opteron runs slightly
faster and has significantly better throughput than
the Intel Xeon. Listed in Table 8 are the raw per-
formance numbers reported in [6] on their 16-core
NUMA and the raw numbers of our algorithm on the
Clovertown 8-core using the same dataset, the same
viewpoint, and the same screen size. While the num-
ber of cores on their platform is twice the number of
cores on our platform and they have access to 64GB
of memory compared to 8GB on our platform, our
performance is significantly better for close views
and only slightly worse for far views. As we show
later, our algorithm is highly scalable and hence we
expect our performance to almost double on a 16-
core Clovertown, and hence resulting performance
will be significantly better than the algorithm of [6].

Table 7. Performance comparison between an 8-core Opteron 8218 and
an 8-core Xeon E5320 using the SPEC benchmark.

AMD Intel
CPU Model Opteron 8218 Xeon E5320
CPU Clock 2.6 GHz 1.86 GHz
Multi-Core 4 processors 2 processors

2-core per die 4-core per die
L1 Cache per core 64 KB I + 64 KB D 32 KB I + 32 KB D
L2 Cache per die 2 MB I+D 4 MB I+D

Main memory 32 GB 16 GB
SPECint 11.3 11.1

Speed SPECfp 11.9 9.57
Through- SPECint rate 85.3 58.5

put SPECfp rate 83.2 41.3

Table 8. Performance Comparison in f ps for LLNL datasets on 10242

screen resolution. NUMA is Knoll’s platform consisting of AMD 2.4GHz
16-core Opteron with 64GB memory, Clovertown is our platform con-
sisting of Intel 1.86GHz 8-Core with 8GB memory. The LLNL datasets
and testing views correspond to their settings with isovalue = 20.

Screen 10242 NUMA 16-Core Clovertown 8-Core
View Time step Knoll et. al. ours

50 7.4 5.88
Far 150 5.7 4.90

270 4.7 4.15
50 4.3 7.04

Close 150 3.6 5.81
270 3.5 5.58

6.4 Adaptivity Upon Data Complexity
An overall critical issue regarding the performance
of isosurface rendering algorithms is the way they

Fig. 6. The illustration of the adaptivity of our scheme using isosurfaces
from Aneurism and Abdominal datasets. The pixels colored black or yel-
low are those from which non-intersecting rays are cast by our algorithm
(and no other non-intersecting rays are cast). Color black specifies the
area where rays do not intersect isosurface after processing the tile lists
having less than k blocks; Color yellow represents the area for which our
algorithm reverts to the standard ray casting algorithm but ends up with
non-intersecting rays.

depend on the input data size. The original MC al-
gorithm had to traverse all the unit cells of the vol-
umetric data and hence it was soon discovered that
the algorithm is too slow for large datasets. Efforts
were then directed toward reducing the rendering al-
gorithm execution time so that it primarily depends
on the size of the intermediate triangular mesh gen-
erated by the MC strategy rather than the whole in-
put data. Several such variations of the MC algo-
rithm already exist [1, 16]. However the triangular
mesh approximation is typically much larger than
what is needed to render the isosurface from a par-
ticular viewpoint, and hence come up the efforts for
efficient view-dependent algorithms. We argue that
our algorithm in general adapts extremely well to the
size of the visible portions of the isosurface rather
than to the size of the input dataset. In fact, any al-
gorithm has to examine the visible portions of the
isosurface in order to render it, and hence the run-
ning time has to be at least proportional to the size
of the visible portion of the isosurface (that is, pro-
portional to the number of visible voxels on the iso-
surface). For an optimal value of k, our algorithm
spends a small fraction of the overall time (less than
10%) to determine the lists of blocks for all the pix-
els through the BONO tree traversal, while almost all
the remaining time is spent on determining and shad-
ing the voxels that intersect the isosurface. Note that
after the first phase we don’t shoot rays for the pixels
with empty lists, skip a large number of ray traversal
steps that are otherwise required in standard ray cast-
ing algorithm, and just spend a negligible amount of



Table 9. Cache profiling of data request during Phase II for LLNL dataset
with isovalue 70 and screen resolution 10242. Data load request is the
number of requests issued for min/max and voxel values during the ray
casting; L2 cache miss is the number of requests that fail to find the
requested data inside the cache after the initial load.

Number of Cores Single-core 8-core
View # of data load # of L2 Miss # of L2 Miss
Type requests cache miss Rate cache miss Rate
Far 66,712K 768K 1.15% 770K 1.15%

Close 53,380K 750K 1.41% 788K 1.48%

time on a small number of rays that at the very last
step don’t end up intersecting the isosurface. This is
illustrated in Table 5 and Figure 6, which highlight
in black and yellow the areas explored by our algo-
rithms but they are not part of the isosurface.

6.5 Cache Performance

A critical factor affecting the performance of any
ray tracing algorithm is the irregular data access,
which makes it difficult to exploit caches. This is-
sue is even more critical on multi-core processors as
the overhead of memory accesses becomes relatively
more significant. During Phase I of our scheme, the
data access is relatively regular as we process the
data in object order and generate block lists. Dur-
ing Phase II, Our scheme sorts the small-size image
tiles (typically, 8× 8) into a Z-order, and group the
tiles into decreasing size groups that depend on the
weight of each tile, followed by dynamic allocation
of these groups to the different threads. We now
illustrate the resulting cache performance. Table 9
shows the cache miss rates achieved by our scheme
during Phase II both on a single core and on an 8-
core Clovertown for far and close views of LLNL
dataset. Here we have excluded the initial misses
caused by the first time access to the data. These re-
sults clearly show that a thread will rarely need to
access the main memory after the first time the data
was loaded.

6.6 Scalability of Our Algorithm

Our scheme achieves a very good scalability in terms
of the number of cores used. The first phase divides
the image equally among the core processors, and
hence the work load is distributed almost equally
among them. Before performing the ray casting
phase, we create an ordered list of groups of small-

size image tiles, which are then dynamically allo-
cated to the threads as they become available. While
the lists associated with each packet of rays are of
different sizes, they are upper bounded by the value
of k, which is typically less than or equal to 22.
Given the dynamic allocation, we expect the loads on
the different threads to be almost equally distributed,
resulting in scalable performance. This is indeed the
case as illustrated in Table 10, which shows the av-
erage frame rate over six views for the two different
settings of the viewpoint on the LLNL dataset using
a varying number of cores. The results are for 5122

and 10242 screen resolution respectively.

Table 10. Average frame rate of our algorithm on Clovertown for the
LLNL dataset at time step 250 under a varying number of CPU cores
using 5122 and 10242 screen resolution.

Screen Size 5122 10242

Cores Far-view Close-view Far-view Close-view
1 1.77 1.97 0.51 0.56
2 3.53 3.82 1.02 1.12
4 7.03 7.64 2.04 2.23
8 13.08 14.53 3.98 4.31

Scalability
over 8-core 92.4% 92.2% 97.5% 96.2%

In fact, an examination of Table 10 reveals that the
scalability of our algorithm is above 90% for both
views for up to the maximum number of cores avail-
able on our Clovertown platform. Clearly, the ad-
vantage of ray-redistribution in our scheme is more
useful for the sparse isosurfaces such as those gener-
ated by the Abdominal, Aneurism, and Skull datasets
since many of the block lists will be empty.

Another way to illustrate the scalability of our
scheme is through Table 11 that shows the loads on
the different threads for the LLNL dataset for both
the far and close views. We provide more details
for Phase II since it constitutes approximately 90%
of the total computational load. Note that the num-
bers of ray cast, octree traversal steps, and intersect-
ing voxels are almost evenly distributed among the
threads regardless of the viewpoint. Therefore the
loads are extremely well-balanced among the differ-
ent threads.

7 CONCLUSION

In this paper we presented a novel hybrid strategy
for rendering isosurfaces by ray tracing. The re-



Table 11. The work from two Phases distributed among eight threads
running among 8-core for 10242 screen and isovalue 70 along with their
corresponding individual execution time. The tests are done on LLNL
dataset for both far and close views. The work load is measured by the
number of projected blocks and the number of ray traversal steps and
voxel intersections respectively for Phase I and Phase II. Total includes
the synchronization time and writing time of the frame buffer.

8-core / 10242 Number of (×103) Time (msec)
View Proc. Rays Traversal Intersect Phase Total
Type No. Cast Steps Voxels I II

0 98 1,380 277 19 223 250
1 102 1,353 274 22 223 250

F 2 99 1,365 276 22 223 250
a 3 97 1,393 274 18 224 251
r 4 96 1,355 278 16 223 250

5 101 1,344 275 22 223 250
6 100 1,365 273 21 223 250
7 94 1,361 275 18 223 250

σ/ Ave×100% 2.14 0.81 0.48 10.8 0.21 0.19
0 147 850 382 21 202 231
1 155 844 378 21 203 232

C 2 140 897 360 21 202 231
l 3 127 915 381 20 202 231
o 4 149 857 379 21 203 232
s 5 157 880 371 22 202 231
e 6 149 852 377 20 200 230

7 151 844 382 21 203 232
σ/ Ave×100% 4.39 2.61 1.39 2.32 0.31 0.27

sulting algorithm starts with an object order traver-
sal that eliminates almost all the pixels with non-
intersecting rays and creates short lists of ordered
small data blocks for the remaining pixels, then ap-
ply ray casting for relevant pixels on these lists. We
have shown that the total size of our indexing struc-
ture is very compact and that our performance is sig-
nificantly superior relative to the published isosur-
face ray tracing algorithms. We have also shown that
our algorithm can effectively exploit the memory hi-
erarchies and its multithreaded implementation can
efficiently utilize the multicore platform, which is
available on almost all new processors. We presented
the results of some of our extensive tests, showing in-
teractive rendering rates for a variety of datasets, of
widely different complexities, of size up to that of
our main memory on a high resolution 10242 screen.
All these results indicate that our scheme can easily
achieve interactive rendering of isosurfaces of large
scale volumetric scalar data on emerging multi-core
processors.

ACKNOWLEDGEMENTS

We would like to thank Amitabh Varshney for his
help and advice on this work. We would also like

to acknowledge Mark Duchaineau at the Lawrence
Livermore National Lab for making the Richtmyer-
Meshkov instability dataset available to us and for
guiding us through the initial stages of using it. This
work was supported by the NSF research infrastruc-
ture grant CNS-04-03313.

REFERENCES
[1] P. Cignoni, P. Marino, C. Montoni, E. Pupp and R. Scopigno, Speeding

up isosurface extraction using interval trees, IEEE Transactions on Visu-
alization and Computer Graphics Vol. 3, no. 2 April–June, pp. 158–170,
1997.

[2] D.E. DeMarle, S. Parker, M. Hartner, C. Gribble, and C. Hansen, Dis-
tributed Interactive Ray Tracing for Large Volume Visualization, Proc.
IEEE Symp. Parallel and Large-Data Visualization and Graphics (PVG),
pp. 87–94, 2003.

[3] M. Gross, C. Lojewski, M. Bertram and H. Hagen, Fast implicit kd-trees:
accelerated isosurface ray tracing and maximum intensity projection for
large scalar fields, to appear in Proceedings of Computer Graphics and
Imaging (CGIM), 2007

[4] J. Gao and H.-W. Shen, Parallel View-Dependent Isosurface Extraction
Using Multi-Pass Occlusion Culling, Proc. of 2001 IEEE Symposium in
Parallel and Large Data Visualization and Graphics. pp. 67–74, 2001.

[5] M, Hadwiger, C. Sigg, H. Scharsach, K. Bhler and M. Gross, Real-Time
Ray-Casting and Advanced Shading of Discrete Isosurfaces, Proceedings
of Eurographics 2005, pp. 303–312, 2005

[6] A. Knoll, S. G. Parker and C. D. Hansen, Interactive Isosurface Ray Trac-
ing of Large Octree Volumes, Proceedings of the 2006 IEEE Symposium
on Interactive Ray Tracing, pp. 115–124, 2006

[7] A. Knoll, C. D. Hansen and I. Wald, Coherent Multiresolution Isosurface
Ray Tracing, Scientific Computing and Imaging Institute, University of
Utah, Techinal Report No UUSCI–2007–001, 2007.

[8] Y. Livnat and C. Hansen, View Dependent Isosurface Extraction, Proc.
of Visualization ’98. pp. 175–180, 1998.

[9] W. E. Lorensen and H. E. Cline, Marching Cubes: A high resolution
3D surface construction algorithm, Maureen C.Stone, editor. Computer
Graphics (SIGGRAPH ’87 Proceedings), vol. 21, pp. 161–169, July
1987.

[10] G. Marmitt, H. Friedrich, A. Kleer and S. Parker, Fast and accurate ray-
voxel intersection techniques for iso-surface ray tracing, Proceedings of
Vision, Modeling and Visualization(VMV), pp. 429–435, 2004.

[11] B. Mora, J. P. Jessel and R. Caubet, Accelerating volume rendering
with quantized voxels, IEEE/ACM SIGGRAPH Volume visualization
and graphics symposium, pp. 63–70, Oct 2000

[12] B. Mora, J. P. Jessel and R. Caubet, A new object-order ray-casting algo-
rithm, Proceedings of the conference on Visualization 2002, pp. 203–210,
Oct 2002

[13] T. S. Newman and N. Tang, Approaches that exploit vector-parallelism
for three rendering and volume visualization techniques, Computer and
Graphics, Vol. 24, no. 5 pp. 755–774, 2000.

[14] S. Parker, P. Shirley, Y. Livnat, C. Hansen and P.-P. Sloan, Interactive ray
tracing for isosurface rendering, IEEE Visualization ’98, pp. 233–238,
Oct 1998.

[15] A. Reshetov, A. Soupikov and J. Hurley, Multi-level ray tracing algo-
rithm, ACM Transaction of Graphics, Proceedings of ACM SIGGRAPH
2005, 24(3), pp. 1176–1185, 2005.

[16] P. Sutton, C. Hansen, H. W. Shen and D. Schikore, A case study of iso-
surface extraction algorithm performance, 2nd Joint Eurographics-IEEE
TCCG Symposium on Visualization, May. 2000.

[17] Q. M. Shi, J. JaJa, Isosurface extraction and spatial filtering using persis-
tent octree (POT), IEEE Visualization and Computer Graphics 12(5), pp.
1283-1290, Oct 2006

[18] L. Sobierarjski and R. Avila, A Hardware Acceleration Method for Vol-
ume Ray Tracing, IEEE Visualization, pp. 27–34, 1995.

[19] I. Wald, H. Friedrich, G. Marmitt, P. Slusallek, and H.-P. Seidel, Faster
Isosurface Ray Tracing using Implicit KD-Trees, IEEE Transactions on
Computer Graphics and Visualization, 11 (5), pp. 562–572, 2005

[20] R. Westermann and B. Sevenich, Accelerated volume ray-casting using
texture mapping, Proc. IEEE Visualization, 2001



[21] J. Wilhelms and A.Van Gelder, Octrees for faster isosurface genera-
tion, Computer Graphics(San Diego Workshop on Volume Visualiza-
tion), vol. 24, pp. 57–62, 1990.

[22] J. Wilhelms and A.Van Gelder, A coherent projection approach for direct
volume rendering, SIGGRAPH, pp. 275–284, 1991

[23] S. E. Yoon and D. Manocha, Cache-efficient layouts of bounding volume
hierarchies, Computer Graphics Forum, Volume 25, Issue 3, 2006

[24] X. Zhang, C. L. Bajaj and V. Ramachandran, Parallel and out-of-core
view-dependent isocontour visualization using random data distribution,
Proc. Joint Eurographics-IEEE TCVG Symp. on visualization and graph-
ics, pp. 9–18, 2002.

Appendix A: Isosurface Images from LLNL
dataset

Fig. 7. 10242 Isosurface image of value 70 from Far-view of LLNL dataset
at time step 250.

Fig. 8. 10242 Isosurface image of value 70 from Close-view of LLNL
dataset at time step 250.


