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Abstract—In this paper, we propose a new semifragile watermarking algorithm for the authentication of 3D models based on integral

invariants. A watermark image is embedded by modifying the integral invariants of some of the vertices. In order to modify the integral

invariants, the positions of a vertex and its neighbors are shifted. To extract the watermark, all the vertices are tested for the embedded

information, and this information is combined to recover the watermark image. The number of parts of the watermark image that can be

recovered will determine the authentication decision. Experimental tests show that this method is robust against normal use

modifications introduced by rigid transformations, format conversions, rounding errors, etc., and can be used to test for malicious

attacks such as mesh editing and cropping. An additional contribution of this paper is a new algorithm for computing two kinds of

integral invariants.

Index Terms—Semifragile watermark, 3D model watermarking, integral invariants.

Ç

1 INTRODUCTION

DIGITAL watermarking has been studied over many years
for digital content copyright protection and authenti-

cation. As 3D models are used in a wide variety of fields,
the necessity to protect their copyrights becomes crucial.

The first article on 3D model watermarking was

published in 1997 by Ohbuchi et al. [3]. Several years

passed, and a lot of new algorithms were developed.

Theoretically, there are two categories of watermarking

algorithms: spatial-domain methods and frequency-domain

methods. Spatial-domain methods embed the watermark by

directly modifying the positions of vertices, the colors of

texture points or other elements representing the model.

The frequency-domain methods embed the watermark by

modifying the transform coefficients.
There is no unified standard to test which algorithm is

better. There are some applications where one method is

found to be better suited than another. Nevertheless,

watermarking algorithms are usually characterized by the

four following properties:

. Validation. The watermark can be fully extracted
from the unattacked model.

. Invisibility. Watermarked models should look similar
to the original model.

. Capacity. This corresponds to the amount of in-
formation that can be embedded in the models.

. Robustness. The watermark should survive different
types of attacks.

Spatial-domain algorithms work on certain 3D model
invariants like Triangle Similarity Quadruple (TSQ), Tetra-
hedral Volume Ratio (TVR) [3], [4], [5], [6], Affine Invariant
Embedding (AIE) [7], [8], etc., to embed the watermark. But
most of them are very sensitive to noise. Most frequency-
domain algorithms provide better robustness and use
wavelet analysis [9], [10], Laplace transforms [11], [12],
and other such transforms [14], [15], [16]. Nevertheless, the
3D model distortions making up the watermark fail to be
invisible, or extraction routines require the original water-
marked model in order to obtain hidden information.

Robust watermarking of 3D models has been widely
researched in recent years, and great developments have
been achieved in both frequency-domain algorithms [17]
and spatial-domain algorithms [18]. Although the problems
have been well defined by researchers working on image
watermarking, there has been little research into fragile
watermarking until recently [13], [19], [20]. This kind
of watermarking scheme focuses on finding where and
how the models have been modified or attacked. For many
applications, this watermarking scheme is often too
restrictive to be usable, as model compression and format
conversion are not permitted. It is desired that the hidden
data be robust to unintentional changes like model
compression, rigid transformation, and random noise
originating from format conversion. Similar to image
watermarking nomenclature [21], we characterize water-
marking algorithms showing this property as semifragile.

In this paper, we propose a new semifragile spatial-
domain watermarking algorithm for the authentication of
3D models based on integral invariants. It can survive
under rigid transforms and certain noise attacks. Our idea
mainly comes from other spatial-domain algorithms like [3],
[7], and [13]. Since we wish to embed the watermark with
geometrical invariants, we use integral invariants to achieve
this. Based on the good character of integral invariants that
have proven useful in parameterization [22], registration
[23], and classification [24] applications, we believe that
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they can also be used in our problem. With each vertex that
will undergo watermarking, the integral invariants of the
unwatermarked model are calculated. These invariants are
then slightly changed to embed the watermark image parts.
In order to change the integral invariants to the new value,
the positions of the vertex and its neighbors are modified.
The extraction routine is the inverse process of the insertion
routine. All the vertices are traversed, computing the
integral invariants and trying to match the embedded
information. Once matched, the embedded information is
extracted at each vertex from the two integral invariants,
and this data is combined to form the extracted watermark.
By analyzing the false-positive probability, the final
authentication decision can be made.

Note that it is needed to compute the integral invariants
of some of vertices once in the insertion procedure, and the
integral invariants of all the vertices once in the extraction
procedure. In practice, we find that the previous algorithm
given in [2] to compute the integral invariants is inefficient
for this application. Therefore, we have developed a faster
algorithm for computing integral invariants.

The structure of this paper is organized as follows: In
Section 2, we briefly introduce integral invariants theory for
3D models and provide a new algorithm for computing two
kinds of invariants used in our watermarking method. In
Section 3, we explain the watermark insertion and extrac-
tion algorithms in detail. In Section 4, we show some of our
experimental results. Finally, in Section 5, we conclude and
mention potential improvement in future work.

2 INTEGRAL INVARIANTS

2.1 The Concept of Integral Invariants

The concepts of integral invariants were first introduced by
Manay et al. [1]. They studied integral invariants for curves
in a plane. An example of such an invariant is the area
invariant. It is suitable for estimating the curvature of a
curve C at a point p, where C is assumed to be the boundary
of a planar domain D (see Fig. 1). Consider the circular disk
BrðpÞ of radius r, centered at p, and compute the area ArðpÞ
of its intersection with the domain D. This is obviously a
way to estimate curvature on a scale defined by the kernel
radius r. Manay et al. show the superior performance of this
and other integral invariants on noisy data, especially for
the reliable retrieval of shapes from geometric databases.

Pottmann et al. [2] extended the concept of integral
invariants from R2 to R3. They introduced integral invar-
iants for surfaces with the integral of a local neighborhood
in 3D space (see Fig. 2). Here, we state two kinds of integral
invariants, which will be used in the following sections.

If we extend the area invariant from R2 to R3, we get the
volume invariant (see Fig. 3). Considering the local
neighborhood as a ball BrðpÞ of radius r, centered at p,
the volume invariant is defined as V rðpÞ, which is the
volume of BrðpÞ intersected with the domain D, which is
the inner part of the model.

Similarly, considering the local neighborhood as a sphere
SrðpÞ of radius r, centered at p, the area invariant (see Fig. 4)
is defined as SArðpÞ, which is the area of SrðpÞ intersected
with the domain D.

These kinds of integral invariants have been proved to be
more robust against noise than traditional differential
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Fig. 1. Area invariant for planar curves ArðpÞ is the area of the cross-

hatched part, which is the intersection of the circular disk BrðpÞ and

domain D.

Fig. 2. Local neighborhood in R3 is a ball BrðpÞ around p.

Fig. 3. Volume invariant in R3 is the volume of BrðpÞ intersected with

domain D.

Fig. 4. Area invariant in R3 is the surface area of SrðpÞ intersected with

domain D.
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invariants such as curvature [22], [23], [24]. Explicit proofs
and experimental results can be found in [2].

2.2 A Faster Algorithm for Computing Integral
Invariants

When integral invariants were extended into the R3 case
in [2], an algorithm for computing integral invariants was
given. Its main idea is to discretize the area invariant and
the volume invariant. For the area invariant SArðpÞ, a
triangle-mesh model of a sphere with radius r is used as a
discretization of the sphere’s local neighborhood. The
algorithm moves the center point of the sphere model to
the vertex p and tests each vertex of the sphere model
whether it is inside the domain D. The value of the area
invariant is obtained by summing the area of the triangles
inside domain D. For the volume invariant V rðpÞ, the
algorithm first represents the sphere model and domain D
with 3D bitmaps where 1 means inside the sphere/
domain and 0 means outside the sphere/domain. The
volume invariant is then computed by the fast Fourier
transform (FFT).

In this section we introduce a faster algorithm for
computing integral invariants. For convenience, in the
following section, we will suppose that invariants are
computed with a local neighborhood of radius r, centered at
vertex p.

The area invariant is computed first, and then, the
volume invariant is computed based on the area invariant.

Area invariant. For a 3D mesh model, we assume that
the sphere SrðpÞ can intersect the surface of the model with
a set of arcs on SrðpÞ. This is always true when the model is
closed and when the radius is not large enough to let BrðpÞ
include the whole model.

The purpose of the algorithm is to compute the area
surrounded by this set of arcs. The two endpoints forming
each arc are the intersection of SrðpÞ with edges of the
model, which are easy to obtain. Then, an approximation of
the area is computed by replacing each of these arcs with the
great arc on SrðpÞ with the same endpoints. Therefore, the
intersection surface becomes a polygon on the sphere. Note
that this polygon can be disconnected or a polygon with
holes. These cases should be treated specially as sum or
subtraction of several simple polygons, which are connected
and without holes. For convenience, the following sections
will only discuss the simple polygon case.

The formula for computing the area of a spherical
triangle is

S ¼ ð�þ � þ � � �Þ � r2; ð1Þ

where �, �, and � are the three spherical angles of the
spherical triangle. It is easy to extend this formula to any
spherical polygon as

S ¼
X

�i � ðn� 2Þ�
� �

� r2; ð2Þ

where �i is the spherical angle between two adjacent great
arcs and n is the total number of great arcs.

Volume invariant. After we get the area invariant, we
start to compute the volume invariant. Fig. 5 provides
sketches of this computational procedure to help explain it.
In Figs. 5a, 5b, and 5c are 2D sketches, and Fig. 5d is a 3D

sketch. First, we multiply the area invariant by r=3, which is
the volume of an irregular cone (the shaded part in Fig. 5a).

To compute the volume invariant, the volume of the
irregular cone should be modified by adding or subtracting
the parts labeled “þ” or “�” in Fig. 5b. Directly determining
these parts requires computationally expensive operations
to find the intersections between the irregular cone and the
model surface. Instead, the volume modification can be
computed more easily by converting the problem to adding
or subtracting the tetrahedron volumes (denoted as “þ” or
“�” in Fig. 5c) constructed with all the triangular facets
inside BrðpÞ as base and p as apex.

Note that special processing will be needed near the
boundary of the ball BrðpÞ (for convenience, later, this kind
of balls are named as neighbor balls when point p is not
designated). The volume of the outer tetrahedron part
should be removed. There are two cases: one vertex of the
triangular facet is outside the ball BrðpÞ, or two vertices of
the triangular facet are outside (the triangle at the right or
left in Fig. 5d, together with the common case at the
middle). Finally, we get the volume invariant.

The algorithm flow is shown in Fig. 6. By repeating this
algorithm at each vertex of the model, we will generate the
invariants for all the vertices.

2.3 Algorithm Analysis

The complexity of the algorithm can be derived from the
analysis below.

In step 1 of the algorithm, we traverse all vertices
around point p. If the number of vertices is m, this step
costs OðmÞ in time. m is proportional to the intersection
surface area ðOðr2ÞÞ and inversely proportional to the
average facet area (Oðl2Þ, where l is the average edge
length). We conclude that m ¼ Oððr=lÞ2Þ, so the time
complexity in this step is Oððr=lÞ2Þ.

In steps 2 and 3 of the algorithm, we compute the
intersection points, as well as the spherical angle formed by
these points. Similar to the last step, the time complexity
here is Oðr=lÞ.
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Fig. 5. Computing the volume invariant from the area invariant.
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In step 4 of the algorithm, we compute the area invariant
value. The time complexity is Oð1Þ.

In steps 5 and 6 of the algorithm, we traverse all the
facets around point p. Similar to the analysis of step 1, the
time complexity is Oððr=lÞ2Þ.

At last, in step 7, we compute the volume invariant
value. The time complexity is Oð1Þ.

Overall, the time complexity for computing the area and
volume invariants of a single vertex is Oðr2 � l�2Þ. The total
time complexity is Oðv � r2 � l�2Þ, where v is the number of
vertices of the mesh model.

Fig. 7 shows that the computing time increases with the
number of facets. We have tested our method with seven
sphere models composed of different numbers of facets. In
Fig. 7, the horizontal axis is the number of facets, while the
vertical axis is the computing time (in milliseconds). The
seven curves respectively represent seven different values
for r (from average edge length to seven times the average
edge length).

Table 1 shows the total computing time for different
models for a radius five times the average edge length. In
this table, column “Time cost” shows the computing time
using our algorithm, while columns “Grid Build,” “A. Inv.,”
and “V. Inv.” respectively show the computing time for the

three steps given in [2]. The grid size parameter in [2] we
used is 1/256 of the largest dimension. The time unit is in
milliseconds. The timings in Fig. 7 and Table 1 were
measured on a 2.8-GHz Pentium 4 running Windows XP.

We can see that as the number of vertices and facets
increases, the computing time increases as well on the
whole yet is still shorter than the total computing time for
the algorithm in [2].

The reason why our algorithm is faster comes from our
use of (2). We compute the area and volume invariants with
a less complex and, therefore, faster method.

From the results, we can also see the advantage of the
algorithm in [2]: if we do not need the area invariant, the
total computing time for the volume invariant is almost
constant. This constant time may be shorter than the
computing time from our algorithm when models become
large enough (see the value for Buddha and AsianDragon).
Still, there is a bottleneck in the algorithm in [2] for
computing area invariants.

Furthermore, when we analyze why the algorithm in [2]
performs in an almost constant time, we find that the time is
determined by the grid size. The grid size can also
determine the error of the algorithm. An error occurs when
BrðpÞ intersects a grid cube. As the grid size gets smaller, so
does the error. However, memory costs and computing
time increase significantly.

In the algorithm presented in this article, the error in
computing the volume invariant occurs when the model
facets intersect BrðpÞ. If a facet occasionally passes through
the center point p, there is no error.

Although we have no method for precisely computing
the invariants, we can compare computed volume invariant
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Fig. 6. Algorithm flow for computing integral invariants of a single vertex.

Fig. 7. Computing time increases with increasing numbers of facets.

TABLE 1
Computing Time Comparison with the Algorithm
in [2] with Different Models (Unit: Milliseconds)
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values from these two algorithms and estimate the distance
between these two algorithms. For the bunny model, the
maximum distance is 0.005695, while the maximum error of
the algorithm in [2] for this grid size is 0.008. We can
conclude from this example that the error of our algorithm
is relatively small.

3 WATERMARKING FOR A 3D MODEL

As we mentioned earlier, the integral invariants are robust
against noise. Therefore, if we somehow modify the integral
invariants to a specific value by changing the vertices’
positions, we can apply to the model a watermark strong
enough to resist noise attacks.

In this section, we will give more details about how to
change these invariants first and then show how these
procedures serve as subroutines of a model watermarking
algorithm. Our current work modifies the area invariant
and the volume invariant.

For convenience, we name O the vertex at the center of
the sphere, R the sphere radius, N the average normal of O,
and T the point that satisfies OT ¼ R �N .

3.1 Changing the Area Invariant

If the model surface around point p is a conical surface
(Fig. 8a), the formula giving the area of the spherical
intersection is S ¼ 2�Rh, where S is the area, R is the sphere
radius, and h is the height of the cap. Thus, to change the
area invariant, we have to change the value of h.

Furthermore, if we only have part of a conical surface
(Fig. 8b), we reach the same conclusion for the area of the
partial cap with the vertex at the top: we have to change the
value of h.

For any 3D surface (Fig. 8c), the area of spherical
intersection can be approximated by a number of partial
caps like in the last step. Therefore, if we change the value
of h for every cap, we change the spherical area.

Therefore, in order to change the area invariant of a 3D
mesh model, we can approximately change the value of h
of all outer and cross vertices (see the algorithm shown in
Fig. 6). The shifting distance is determined by

�h ¼ �S

2�R
: ð3Þ

3.2 Changing the Volume Invariant

The basic idea is to move the inner vertices (see the
algorithm shown in Fig. 6) along the direction of N . Note
that for inner vertices, if we move them along the direction
of N for a certain distance, the influence to the volume can

be easily calculated. Each movement is independent of the
movement of other vertices of the same type. As a result, if
we specify how many vertices we move and by how much
they are moved along the direction of N , the changed
volume can be calculated using the formula given below:

�V ¼ � 1

3

X
Aidi; ð4Þ

where Ai is the area of the polygon formed by neighbors of
vertex i projected in the direction of N , and di is the distance
that vertex i is moved along the direction of N . We can see
that this is a linear formula for the specified model.

The opposite problem is stated as follows: for a given
volume change, by how much should the vertices be
moved, while ensuring the watermark invisibility? This is
an optimization problem. Since there is no well-proven
standard to evaluate invisibility, this optimization problem
cannot be formalized easily. The current method we use is
to optimize the moving distance to a special function (5) of
the distance from the vertex to O (represented with ri). The
modified model is obtained from the original one stamped
with the shape shown in Fig. 9. We think that this method is
suitable for human vision: especially referring to the effect
known as Troxler fading (Troxler, 1804), which states that if
you attempt to focus on the center point, the surrounding
circles will fade after a few seconds. The special function is
given as follows:

di / 1� cos 2�
ri
R

� �
: ð5Þ

The optimization problem is solved as follows: since (5)
shows a direct ratio relationship, if we set one of the di (for
example, d0), all other di and the volume change �V ðd0Þ for
that particular d0 can be computed. Let d00 be the value of d0

that gives the volume change �Vwatermark for our watermark.
The ratio of �V ðd0Þ and �Vwatermark is equal to the ratio of d0

and d00. From

d00 ¼
�Vwatermark

�V ðd0Þ
d0; ð6Þ

we get the d00. Next, we compute all the d0i, and the new
vertex positions are found.
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Fig. 8. Examples of changing the area invariant.

Fig. 9. The optimization function used in changing the volume invariant.
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3.3 Watermarking a Model

We now use these two integral invariants to insert water-
marks into the mesh model, as well as to extract water-
marks from models.

First, we choose a monochrome image as the watermark
image. This image may be the logo of a company or a group
that owns the copyright of the model. Before inserting the
watermark into the mesh, we transform it with an Arnold
transformation. This is a scrambling procedure that makes
the image look like white noise [25]. We will show its
usefulness later in this section.

Insertion. The watermark is inserted as follows: First,
place neighbor balls centered on the model vertices, making
sure that none of them intersect each other. Here, intersec-
tion means not only that the balls themselves do not
intersect but also that the related vertices of the three classes
(see the algorithm in Fig. 6) do not overlap. This can be
accomplished with the following steps. Traverse all the
vertices, trying to place a neighbor ball around each of
them. If a new neighbor ball does not intersect any other
existing neighbor ball, we add it to the neighbor ball set;
otherwise, we discard it. Repeat this procedure on all
vertices until no more neighbor balls can be placed. This
makes the process of changing invariants in each neighbor
ball independent of changes in the other neighbor balls.

Then, we change each invariant value (treated as a
floating-point number) by modifying its bit notation, as
Fig. 10 shows. The modified bit positions in the invariants
are parameters of the algorithm, namely, PL and PH are
respectively the distance from the point to the lower bit and
to the higher bit. For example, in Fig. 10, PL ¼ 12, and
PH ¼ 6. PL � PH þ 1 will be the number of embedded bits.
Higher positions may cause lower invisibility, and lower
positions may cause lower robustness against noise attacks.

The inserted information is part of the scrambled
watermark image and its sequence number. We use the
indexed localization technique used in [3]. Since we can
change two kinds of invariants, there is enough capacity for
both the watermark image and the sequence number
information. In practice, we change the area invariants to
embed the sequence number and change the volume
invariants to embed the watermark image.

Note that changing the area invariant will potentially
change the volume invariant. Therefore, the area invariant
should be changed first, and the volume invariant should
be changed after changing the area invariant and updating
the vertices’ coordinates. By changing the invariants of each
neighbor ball, the insertion process is accomplished.

Extraction. The input to the extraction procedure is a
model and a watermark image, and the goal is to decide
whether the input model has been watermarked with the
input watermark image and what kind of attack the model
has been subject to. This is why we consider this algorithm

as a semifragile watermarking method: it is able to detect
which area of the model is attacked.

First, we prepare an output image with the same size as
the input watermark image. Then, all the vertices are
traversed to extract the watermark. With each vertex, we try
to place a neighbor ball around it. If the ball intersects an
existing neighbor ball, it is discarded. Otherwise, we
compute the invariants and check the inserted bits. This is
the opposite of the insertion procedure. We assume these
bits to be the watermark image part and its sequence
number. If the assumed sequence number is in the range of
the expected sequence number, we test whether the
assumed watermark image part is the same as the input
watermark image part. If both match, we identify the
current neighbor ball as one of the original neighbor balls of
the insertion procedure, add this neighbor ball to a set, and
copy the assumed watermark image part to the output
image at the same position. Otherwise, if the sequence
number or the watermark image part do not match, we
discard that neighbor ball and continue the traversal. The
procedure ends when all the vertices have been traversed.

Model authentications can be done by evaluating how
many output image parts have been recovered. We
compute the probability of false-positive claims, corre-
sponding to the incorrect assertions that a model is
watermarked when it is not. This probability can also act
as a confidence level. The method to compute this
probability is presented in the Analysis procedure, and
a practical example is also given.

If the input model is watermarked and it is not attacked,
the output image should be the same as the watermark
image. There is no more room for neighbor balls. Otherwise,
if some parts of the model are attacked, there should be
room for neighbor balls in the attacked area. Or if the model
is cropped, the extracted watermark image would be
incomplete.

After the extraction process is finished, all the vertices
are traversed to test if there is any room for a new neighbor
ball. Then, the decision can be made by applying the rules
described in Table 2.

Finally, since the watermark image is first scrambled, the
output image after descrambling may lose some random
pixels yet still show the information representing the
copyright. (See the results in Section 4.)

The flowchart of the insertion process and the extraction
process is shown in Fig. 11.

Analysis. The following analysis will compute the
probability that a model is not watermarked and an
N-size watermark image is recovered with n-size parts.
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Fig. 10. Replacing bits of a floating-point number to insert information.

TABLE 2
Judgement Rules in Testing Procedure
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We consider that the integral invariant values’ bits for a

model that was not watermarked are absolutely random.

The probability that the value of a single vertex matches a

certain sequence number and the corresponding watermark

image part is p ¼ 1=2CaþCv , where Ca ¼ PLa � PHa þ 1 and

Cv ¼ PLv � PHv þ 1 (see the insertion procedure) are, respec-

tively, the capacity of the area and volume invariants. The

probability that at least one of the vertices’ invariants

(numbering V ) matches a certain sequence number and

corresponding watermark image part is P ¼ 1� ð1� pÞV .

Since there are nwatermark image parts, the total probability

is ð1�ð1� pÞV Þ � ð1�ð1� pÞV2Þ; . . . ; ð1�ð1� pÞVnÞ, where Vi
is V minus the number of vertices that have matched one of

the previous i� 1 parts of the watermark image. Since every

Vi is smaller than V , we get an upper bound of this

probability, as ð1� ð1� pÞV Þn ¼ Pn. For a given problem, p

and V are constants, but we can adjust the value of n in order

to have this probability small enough.
For instance, let us embed a 24 � 24 watermark image

into a model of 34,834 vertices (the bunny model). If we set
PLa ¼ PLv ¼ 12 and PHa ¼ PHv ¼ 6, we have Ca ¼ Cv ¼ 7

and p ¼ 2�14. d24� 24� 7e ¼ 83 watermark image parts
will be embedded into the model. For the model made up of
34,834 vertices, if we set the radius of the neighbor ball to
five times the average edge length, a single neighbor ball
will cover approximately 100 vertices. Therefore, there will
be at most V ¼ 34;834=100 ¼ 348 neighbor balls. We can
then deduce that P ¼: 2 percent. If we want to reduce the
probability to less than 10�10, we should set the threshold to
seven parts (49 bits). This means that after the extraction
procedure, if there are less than seven (8 percent) water-
mark image parts recovered, we conclude negatively on the
model authentication (the model was not watermarked).

Otherwise, we conclude positively when the false-positive
probability is lower than 10�10.

If the model is larger, we can either increase the capacity
of the invariants or increase the radius of the neighbor ball.
Increasing the capacity of the invariants will decrease the
value of the probability p but may lower the robustness.
Increasing the radius of the neighbor ball will decrease the
maximum number of neighbor balls but will decrease the
information capacity. Another solution is to increase the size
of the watermark image, which will have the threshold
relatively unchanged. We chose our final parameters by
finding a trade-off between these three solutions. Some
other cases are shown in Table 3, where r=l is the radius
divided by average edge length, size is the minimal
watermark image size, and capacity is the maximal water-
mark image size. The data is obtained assuming that the
false-positive probability is lower than 10�10. Note that the
case marked with a “�” is an impossible case: it is not
possible to have the false-positive probability lower than
10�10, so we should change one or more parameters.

4 EXPERIMENTAL TEST

In this section, we show some experimental test results,
including the visualization of watermarked models, the
distortion error results, and the comparison results of
robustness against noise and cropping. If there is no
special mention, the tests are done on the bunny model
(34,834 vertices and 69,451 facets) using a 24 � 24 mono-
chrome image as the input watermark image (see Fig. 12).
Parameters are set as follows: PLa ¼ 12, PHa ¼ 6, PLv ¼ 13,
PHv ¼ 6, and the radius of the neighbor ball is five times
the average edge length.

4.1 Watermark Invisibility

Fig. 13 shows the model before and after embedding the
watermark. In the figure, green, yellow, and red vertices
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Fig. 11. (a) The insertion procedure. (b) The extraction procedure.

TABLE 3
False-Positive Probability in Several Cases

Fig. 12. (a) The watermark. (b) The scrambled watermark.
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represent the three vertex classes (inner, cross, and outer)
where the watermark is embedded.

But if we choose some “bad” parameters, the difference
between the original and watermarked model becomes
visible (Fig. 14).

Experimental tests using other models are shown in
Fig. 15. Fig. 15a shows the original model, Fig. 15b shows
the watermarked model, and Fig. 15c shows the appearance
if they are put together (the blue one is the watermarked).

Error measurements calculated using Metro [26] are
given in Table 4, where models 1 to 5 are respectively
Maxplanck, Armadillo, Bunny, Buddha, and AsianDragon.
In Table 4, the “AEL” row is the model average edge length,
the “Area” and the “Area W.” rows are the areas of all
triangles of the original model and the watermarked model,
the “Mean” row is the mean distance between the
corresponding points before and after watermarking, and
the “Haus.” row is the Hausdorff distance between the
original model and the watermarked model.

We conclude that the watermarking process is nearly
invisible.

4.2 Robustness against Additive Noise

As we stated above, the watermark can survive under noise
attacks. We can easily show that robustness against noise
increases with the radius of the kernel ball (see Fig. 16). In
this figure, the horizontal axis is the ratio of the neighbor
ball radius and the average edge length, while the vertical
axis is the noise amplitude when the watermark survives
with less than 1 percent bit error rate (BER). We add a
random number uniformly drawn from �a to þa to each
vertex coordinate, where a is the noise amplitude. In this
figure, the noise is applied to every model vertex.

In order to compare our results with that of other

algorithms from the literature, we use the method in [9] to

test robustness against noise. In Fig. 17, we compare our

method with those in [9] and [3]. The horizontal axis is the
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Fig. 13. (a) The original model. (b) The watermarked model.

Fig. 14. Bad parameters cause the changes to become visible. (a) The
original model. (b) The watermarked model.

Fig. 15. (a) The original model. (b) The watermarked model. (c) The

overlayed models.

TABLE 4
Distortion Error Cased by Watermark Insertion

Fig. 16. Robustness against noise increases with the radius of the
neighbor ball.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on February 14, 2009 at 23:13 from IEEE Xplore.  Restrictions apply.



noise amplitude, and the vertical axis is the BER result after

the previously described noise attack was applied to all the

vertices. In this figure, we can see that the method in [3] (the

red line), whose robustness to noise was unspecified, is

actually very sensitive to noise. This means that the

watermark can be totally broken by little noise. The

extracted watermark is a random binary string with a

nearly 50 percent BER. The figure also shows that our

method’s BER is lower than the result in [9] (the black line).

Note that for 10�2, our BER is nearly 100 percent instead of a

rate around 50 percent for the TSQ method. This can be

simply explained: if the watermark is completely broken,

our method outputs nearly no bits into the output image.
Similar to the experiments in [9], we test our method

when noise attacks are applied to some of the vertices. The

comparison result is shown in Fig. 18. In this figure, the

horizontal axis is the percentage of vertices that undergo a

noise attack of amplitude 10�5. The figure clearly shows

that our method (the blue line) is more robust against noise

than the wavelet method.

4.3 Robustness against Cropping

As we mentioned in Section 3, if the model is cropped, the

output image will be an incomplete watermark image.
We test the robustness against cropping as follows: First,

we use each plane from a set of parallel planes to produce a

cropped version of the model. For each model produced, its

degree of cropping is measured by counting the percentage

of remaining vertices. Fig. 19 shows some examples
demonstrating the effects of cropping. After the extraction

procedure, only a fraction of the watermark is recovered.

5 CONCLUSION AND FUTURE WORK

We have presented a semifragile watermarking method
based on integral invariants. It is a spatial domain method
robust against rigid transformations and noise attacks.
Experimental tests show that this method is suitable to
determine whether a model was attacked.

We could improve our algorithm by increasing its
embedding capacity, currently limited to two integral
invariants. One solution would be using multiresolution
analysis methods to simplify the model and embed a
watermark at the corresponding simplified model vertex.
Another solution would be to find a method to simulta-
neously change four kinds of integral invariants. These
solutions are the directions of our future work.
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