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Abstract— We present an efficient and automatic image-recoloring technique for dichromats that highlights important visual details
that would otherwise be unnoticed by these individuals. While previous techniques approach this problem by potentially changing all
colors of the original image, causing their results to look unnatural to color vision deficients, our approach preserves, as much as
possible, the image’s original colors. Our approach is about three orders of magnitude faster than previous ones. The results of a
paired-comparison evaluation carried out with fourteen color-vision deficients (CVDs) indicated the preference of our technique over
the state-of-the-art automatic recoloring technique for dichromats. When considering information visualization examples, the subjects
tend to prefer our results over the original images. An extension of our technique that exaggerates color contrast tends to be preferred
when CVDs compared pairs of scientific visualization images. These results provide valuable information for guiding the design of
visualizations for color-vision deficients.
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1 INTRODUCTION

Individuals with normal color vision, called trichromats, present three
kinds of cone cells (retinal photoreceptors associated with color sen-
sation). People who are missing one class of cones are called dichro-
mats, and can be further classified as protanopes, deuteranopes, and
tritanopes, depending on whether the missing cones are more sensi-
tive to the long, medium, or short wavelengths of the visible spec-
trum, respectively. Natural variations of some proteins may result in
changes in the cones’ photopigments, making them more sensitive to
a different band of the visible spectrum [26]. Individuals with altered
photopigments are called anomalous trichromats and, likewise, can be
classified as protanomalous, deuteranomalous, or tritanomalous. A
much rarer situation is characterized by individuals having a single or
no kind of cone cells, who are called monochromats. Some estimates
indicate that for the male population, approximately 7.40% of Euro-
pean descendents, 4.17% of Asians, and 2.61% of Africans have some
kind of red-green color vision deficiency (CVD) [26]. For the female
population, the numbers are smaller: 0.50%, 0.58%, and 0.54%, re-
spectively. According to these numbers, approximately 200 million
people should have some kind of CVD. Among the European descen-
dants, the only ethnic group for which one can find detailed statistics,
the numbers are summarized in Table 1.

Color vision deficiency tends to impose several limitations, espe-
cially for dichromats and monochromats. Children often feel frus-
trated by not being able to perform color-related tasks [8], and adults
tend to face difficulties to perform some daily activities. Some pro-
fessional fields, such as biology, chemistry, geology, fashion design,
electronics, and others that require interpreting scientific and infor-
mation visualization data may be especially challenging for color
vision deficients [20]. Recently, several techniques have been pro-
posed to recolor images highlighting visual details missed by dichro-
mats [11, 13, 23, 24, 31]. Although these techniques use different
strategies, they all approach the problem by potentially changing all
colors of the original image. In consequence, their results tend to look
unnatural to color vision deficients. Moreover, they tend to present
high computational costs, not scaling well with the number of colors
and the size of the input images.

• Giovane R. Kuhn, Manuel M. Oliveira, and Leandro A. F. Fernandes are
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We present an efficient and automatic technique for enhancing color
contrast for dichromats that preserves, as much as possible, the natu-
ralness of the original colors (Section 3). Given the dichromats’ re-
duced color gamut, in the context of this paper naturalness preserva-
tion should be understood under the as much as possible constraint.
Our algorithm is based on a mass-spring optimization and presents
several other desirable features: (i) it is deterministic; (ii) it satisfies a
global consistency property (i.e., all pixels with the same color in the
original image will be mapped to the same shade in the recolored im-
age); (iii) it preserves the original image luminance and (iv) it can be
efficiently implemented on modern GPUs. A paired-comparison eval-
uation with fourteen color-vision deficients indicated their preference
for the results produced by our technique for information visualization
examples. For a set of scientific visualization images, the subjects pre-
ferred an extension of our technique that exaggerates color contrast.

Figure 1 illustrates a result produced by our technique and compares
it with an image obtained using the approach of Rasche et al. [24].
Figure 1 (a) shows a photograph (839×602 pixels) used as reference,
while (b) is a simulated view of a protanope for the same image. The
simulation was performed using the algorithm described by Brettel et
al. [1]. Figure 1 (c) shows a simulated view of a protanope after the im-
age in (a) has been recolored using Rasche et al.’s approach. Figure 1
(d) shows the simulated view of a protanope for the result produced
by our technique for the same image. Note that although the colors
of the petals have changed to enhance contrast, the colors of the flow-
ers’ nuclei and the background foliage have been preserved as much as
possible. For this example, the GPU implementation of our algorithm
performs about 2,000× faster than Rasche et al.’s approach. Our CPU
implementation is still approximately 370× faster than Rasche et al’s
implementation.

2 RELATED WORK

Recoloring techniques for color-vision deficients can be broadly clas-
sified as user-assisted and automatic techniques.

User-Assisted Recoloring Techniques: Daltonize [4] uses three
user-provided parameters for recoloring images for protanopes and
deuteranopes. Such parameters specify how much of the red-green
channel should be stretched, projected into the luminance channel,
and projected into the yellow-blue channel, respectively. Working on
the HSL color space, Iaccarino et al. [9] modulate the original image
colors using six user-provided parameters. The quality of the results
obtained with user-assisted recoloring techniques is highly dependent
on the user-provided parameters.

Automatic Recoloring Techniques: Ichikawa et al. [10] used an
objective function to recolor web pages for anomalous trichromats
preserving the ratio between the color differences perceived by trichro-
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Fig. 1. Images of natural flowers: (a) Photograph. (b) Same image as perceived by protanopes (i.e., individuals without red cones). (c) Simulated
view of a protanope for a contrast-enhanced version of the photograph recolored by Rasche et al.’s [24] approach. (d) Simulated view of a protanope
for the result produced by our technique. Note how our approach enhanced the overall image contrast by selectively changing only the colors for
which there is a significant perceptual difference between trichromats and dichromats. As a result, it preserved the naturalness of the colors (from
the perspective of the dichromat) of the flowers’ nuclei and of the background foliage (compare images (b) and (d)). For this 839×602-pixel image,
our approach performs approximately 2,000× faster than Rasche et al.’s technique.

mats and by anomalous trichromats. A genetic algorithm was used to
minimize the objective function. Ichikawa et al. [11] extended their
previous technique for use on color images, but they did not consider
the preservation of color naturalness. Wakita and Shimamura [31] pro-
posed a technique to recolor documents (e.g., web pages, charts, maps)
for dichromats using three objective functions aiming, respectively, at:
(i) color contrast preservation, (ii) maximum color contrast enforcing,
and (iii) color naturalness preservation. However, the colors for which
naturalness should be preserved must be specified by the user. The
objective functions are then combined by weighting user-specified pa-
rameters and optimized using simulated annealing. They report that
documents with more than 10 colors could take several seconds to be
optimized. Jefferson and Harvey [13] select a set of key colors from
the difference between the trichromat’s and dichromat’s image his-
togram and use four objective functions to preserve brightness, color
contrast, colors in the available gamut, and color naturalness. Again,
the user must specify the set of colors whose naturalness should be
preserved. They optimize the combined objective functions using a
method of preconditioned conjugate gradients. They report times of
several minutes to optimize a set of 25 key colors on a P4 2.0 GHz
using a Matlab implementation.

Rasche et al. [23] proposed an automatic recoloring technique for
dichromats as an optimization that tries to preserve the perceptual
color differences between all pairs of colors using an affine transfor-
mation. Such transformation, however, does not capture color varia-
tions along many directions and does not ensure that the mapped col-
ors are all within the available gamut. Rasche et al. [24] addressed
these limitations using a constrained multivariate optimization proce-
dure applied to a reduced set of quantized color, which are in turn used
to optimize the entire set of colors. The authors did not consider the
problem of naturalness preservation and the technique can arbitrarily
change the colors of the original images (Figure 1 c). Moreover, the
algorithm does not scale well with the number of quantized colors and
the size of the input images. Our technique can optimize hundreds of
colors in real time, and can be used to create images that have a much
more natural look (Figure 1 d). Contrary to all previous automatic
techniques, our approach is deterministic, always producing the same
result for a given input image.

Recoloring images for dichromats is a dimensionality reduction
problem and, as such, is somehow related to recent techniques used
to map color to grayscale techniques [6, 7, 14].

2.1 Mass-Spring Systems
A mass-spring system consists of a set of particles (nodes) connected
by springs that deform in the presence of some external forces. When
compressed or stretched, the springs apply internal reaction forces
to maintain their rest length [5]. Mass-spring systems are simulated
by assigning some position and mass to each particle, and some rest
length to each spring. The system must obey Newton’s second law:

Fi = miai (1)

Classification Incidence (%)
Male Female

Anomalous trichromacy 5.71 0.39
Protanomaly 1.08 0.03
Deuteranomaly 4.63 0.36
Tritanomaly 0.0001 0.0001
Dichromacy 2.28 0.03
Protanopia 1.01 0.02
Deuteranopia 1.27 0.01
Tritanopia 0.002 0.001
Monochromacy 0.003 0.00001

Table 1. Incidence of CVD among caucasians [26, 25].

where mi is the mass of node Pi, ai is the acceleration caused by force
Fi, which is the composition of internal and external forces. Therefore,
Fi can be obtained from Hooke’s law by summing the tensions of all
the springs that connect Pi to its neighbors Pj:

Fi = ∑
j∈N

ki j(1−
li j

l′i j
)(p j − pi) (2)

where N is the set of neighbors linked to Pi, li j and l′i j are, respectively,
the rest length and current length of the spring between Pi and Pj, ki j
is the stiffness of that spring, and pi and p j are the current positions of
Pi and Pj, respectively. Verlet integration is often used to express the
dynamics of each node. This type of integration is frequently used in
simulations of small unoriented mass-points, being especially interest-
ing when it is necessary to place constraints on the distances between
the points. With a time step Δt, the new position of a node Pi at time
t +Δt can be computed as:

pi(t +Δt) =
Fi(t)
mi

(Δt)2 +2pi(t)− pi(t −Δt) (3)

Recently, some researchers have demonstrated efficient implementa-
tions of mass-spring systems on GPUs [3, 5, 28]. In each integration
step, the forces acting on each mass point Pi are accumulated in a frag-
ment shader, requiring information about the system topology, which
is usually stored in two textures [3, 28]. Our recoloring approach is
modeled as a mass-spring system with every mass point Pi connected
to every other mass point Pj by a spring Si j . This fixed and implicitly
defined topology lends itself to an efficient GPU implementation, with
no topology setup needed.

3 THE RECOLORING ALGORITHM FOR DICHROMATS

Our algorithm uses a mass-spring system to optimize the colors in the
input image to enhance color contrast for dichromats. The color gamut
of each class of dichromacy can be represented by two half-planes in



the LMS color space [1], which can be satisfactorily approximated by
a single plane passing through the luminance axis [30]. Thus, for each
class of dichromacy, we mapped its color gamut to the approximately
perceptually-uniform CIE L*a*b* color space and used least-squares
to obtain a plane Π that contains the luminance axis and best represents
the corresponding gamut. This is similar to what has been described
by Rasche et al. [24], who suggested the use of a single plane for both
protanopes and deuteranopes as a further simplification. The angles
between the recovered planes and the L*b* plane are θp = −11.48◦ ,
θd = −8.11◦, and θt = 46.37◦ , for protanopes, deuteranopes, and tri-
tanopes, respectively (Figure 2). These angles are used to align their
corresponding planes to the L*b* plane, reducing the optimization to
1D along the b* axis (the luminance values are preserved). After the
optimization, the new colors are obtained by rotating the correspond-
ing plane back to its original orientation.

Fig. 2. Approximating each dichromatic color gamut by a plane in the
CIE L*a*b* color space. θp = −11.48◦, θd = −8.11◦, and θt = 46.37◦ .

Our algorithm has three main steps: (1) image quantization,
(2) mass-spring optimization of the quantized colors, and (3) recon-
struction of the final colors from the optimized ones. The first step
consists in obtaining a set Q of quantized colors from the set of all
colors C in the input image I. This can be performed using any color
quantization technique, such as uniform quantization, k-means, mini-
mum variance, median cut, or color palettes.

3.1 Modeling the Problem as a Mass-Spring System
Working in the CIE L*a*b* color space, each quantized color �qi ∈ Q
is associated to a particle Pi with mass mi. The position �pi of the
particle Pi is initialized with the coordinates of the perceived color by
the dichromat after the rotation of plane Π:

�pi = Mθ D �qi (4)

where D is the matrix for orthographic projection onto the dichromat’s
plane Π (see Appendix A), and Mθ is a rotation matrix that aligns Π
with the L*b* plane. We connect each pair of particles Pi and Pj with
a spring Si j with elasticity coefficient ki j = 1 (Equation 2), and rest
length li j = ‖�qi − �q j‖, the (Euclidean) distance between colors �qi and
�q j in the L*a*b* space. At each optimization step, we update the po-
sitions �pi and �p j and compute Si j’s current length as l′i j = ‖�pi − �p j‖.
Given the restoring forces of the springs, the system will try to con-
verge to a configuration for which l′i j = li j for all Si j . Thus, after sta-
bilization (or a maximum number of iterations has been reached), the
perceptual distances between all pairs of new colors/positions (�pi, �p j)
will have approximately the same perceptual distances as their cor-
responding pairs of quantized colors (�qi, �q j) from Q. The set T of
optimized colors�ti is obtained by applying, to each resulting color �pi,
the inverse rotation used in Equation 4:

�ti = M−1
θ �pi (5)

In order to enforce color naturalness preservation, we define the
mass mi of each particle Pi as the reciprocal of the perceptual distance
(in the L*a*b* space), between �qi and D �qi:

mi =
1

‖�qi −D �qi‖ (6)

This equation enforces that any color perceived similarly by both
trichromats and dichromats will have larges masses, causing their

corresponding particles to move less. If trichromats and dichromats
perceive �qi exactly the same way (e.g., achromatic colors), the particle
would have infinite mass. In this case, we simply set the forces acting
on the particle to zero (i.e., Fi = 0 in Equation 1).

3.2 Dealing with Local Minima
Like other optimization techniques, mass-spring systems are prone
to local minima. Figure 3 (left) depicts the problem with a con-
figuration obtained right after the quantized colors �qi have been ro-
tated: �qri = Mθ D �qi. Particles P1 and P2 have large masses (m1
is infinite) since they are perceived as having, respectively, the same
and very similar colors by trichromats and dichromats. The springs
(S13,S14,S23,S24) connecting P1 and P2 to P3 and P4 apply forces that
constrain P3 and P4 from moving to the other half of the b* axis. Fig-
ure 4 illustrates this situation, where the resulting optimized image (c)
does not represent any significant improvement over the original im-
age perceived by the dichromat (b).

Once the plane that approximates the dichromat’s gamut has been
aligned to the L*b* plane, pairs of ambiguous colors with consider-
able changes in chrominance will have their a* color coordinates with
opposite signs (e.g., the red and green colors in Figure 3 left). We use
this observation and the topology of our mass spring system to deal
with local minima using the following heuristic: we switch the sign of
the b* color coordinate of all rotated quantized colors whose a* coor-
dinates are positive and whose perceptual distance between the color
itself and how it is perceived by the class of dichromacy is bigger than
some threshold τ (Equation 7).

pb∗
i =

{
−pb∗

i if (qra∗
i > 0) and (‖�qi −D�qi‖ > τ)

pb∗
i otherwise

(7)

The threshold τ enforces that colors that are perceptually similar to
both dichromats and trichromats should not have the signs of their b*
coordinates switched.

Although at first this might look too naive because one would just be
replacing some ambiguities with another ones, it has some rationale:
(i) it avoids the ambiguities among some colors found in the origi-
nal image and (ii) although there is the possibility of introducing new
ambiguities, as we switch the sign of the b* coordinate for some col-
ors, we are also compressing and stretching their associated springs,
adding to the system a lot of potential energy that will contribute to
drive the solution. Although such a heuristic cannot guarantee that the
system will not run into a local minimum, it works well in practice.
Figure 3 (right) illustrates the configuration obtained by applying our
heuristics to the example shown to its left. Figure 4 (d) shows the
corresponding result of applying this heuristic to the example shown
in Figure 4 (a). According to our experience, τ = 15 tends to produce
good results in general and was used for all images shown in this paper
and in the accompanying video.

Fig. 3. Dealing with local minima. (left) A configuration, obtained right
after plane rotation, which leads to a local minimum: since P1 cannot
move at all (it is an achromatic color) and P2 can only move a little bit,
they will constrain the optimization to the yellow portion of b* axis. (right)
By switching the sign of the b* coordinate of �qr4, the system escapes the
local minimum.
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Fig. 4. Color naturalness preservation: (a) Reference image. (b) Sim-
ulation of a deuteranope’s view of the image in (a). (c) Simulation of a
deuteranope’s view after recoloring the reference image using the mass-
spring optimization without the heuristic described by Equation 7. (d)
Result produced by our technique with the use of Equation 7.

3.3 Computing the Final Color Values
The last step of the algorithm consists in obtaining the color values for
all pixels of the resulting image from the set of optimized colors tk,
k ∈ {1, ..,‖T‖}, where ‖T‖ is the cardinality of T . For this task, we
have developed two distinct interpolation solutions: projection of the
perceptual difference and an optimization with respect to T .

Projection of the perceptual difference: Let Ck ⊂ C be a cluster
formed by all colors in C that are represented by the optimized color
�tk. The final value �tk

m associated to color �ck
m ∈Ck is then obtained as

�tk
m =�tk +(�d.L∗,rk �d.a∗,rk �d.b∗) (8)

where �d.L∗, �d.a∗, and �d.b∗ are respectively the L*, a*, and b* coordi-
nates of the difference vector �d = (�ck

m − �qk). �qk ∈ Q is the quantized
color associated to the optimized color �tk. Equation 8 guarantees that
the final color �tk

m has the same luminance as �ck
m. rk is an interpolation

of ratios that indicates how close the transformed value �tk is to the op-
timal solution. This interpolation is guided by Shepard’s method [27],
a standard technique for distance-weighted interpolation:

rk =
∑‖T‖

i=1 wki
‖�tk−�ti‖

‖�qk−�qi‖+ε

∑‖T‖
i=1 wki

(9)

where ε is a small value just to avoid division by zero, and
wki = 1/(‖�qk −�qi‖2 + ε) is the distance-weighted term suggested
by Shepard [27]. Equation 8 can be efficiently implemented both on
a CPU and on a GPU. On the CPU, the cost to compute all cluster
ratios using Equation 9 is O(‖Q‖2) for the set Q of quantized colors,
and the cost to interpolate each pixel using Equation 8 given an image
with N ×N pixels is O(N2). Thus, the total cost of this strategy is
O(‖Q‖2 +N2).

Since the final colors are computed by optimizing the set of quan-
tized colors Q, the quality of the results depends directly on the quality
of the quantization algorithm used. According to our experience, the
transformation expressed by Equation 8 produces excellent results in
combination with k-means. Unfortunately, k-means is not very fast.
Table 2 compares uniform quantization and k-means execution times
for various image resolutions and number of clusters. In the case of
uniform quantization, we discretize the RGB space using a uniform
10×10×10 grid. The quantized color is given by the grid color clos-
est to the input one. Uniform quantization is fast, but tends to lead
to poorer results when used in combination with the transformation
defined by Equation 8.

Optimization with respect to T : One can benefit from the speed of
uniform quantization by performing a more expensive reconstruction
of the final set of colors, achieving results similar to the ones obtained
when using k-means. In this case, the final shading of each pixel is
obtained by optimizing it against the set of already optimized colors
T . This is modeled by setting up a mass-spring system, and creating
springs between the current pixel (treated as a particle initialized with
Equation 7) and all optimized colors tk, k ∈ [1, ..,‖T‖]. For this
refining optimization stage, we force the particles associated to the

Quantization Image resolution (pixels)
technique 640x480 800x600 1024x768
Uniform 0.055 0.087 0.150
K-means 64 2.082 3.338 5.517
K-means 128 3.932 6.029 10.432
K-means 256 7.545 11.972 20.049

Table 2. Time (in seconds) to quantize images with various resolutions
and numbers of clusters on a 2.2 GHz PC.

shades in T to remain stationary by setting the forces acting on them
to zero (Fi in Equation 1). For each color �cm ∈ C, we define its mass
as mcm = 1/‖�cm −D �cm‖. This way, we allow a color to change by an
amount directly proportional to the difference of how it is perceived
by trichromats and dichromats. This mechanism guarantees the color
naturalness in the resulting image.

The cost of this optimization procedure is O(‖Q‖2 + ‖Q‖N2) for
an N ×N image and can be significantly higher than the mapping de-
fined by Equation 8. However, since the color of each output pixel
can be computed independently of each other, the computation can be
efficiently implemented in a fragment program. Table 3 compares the
times for recoloring images with various resolutions using different al-
gorithms. MS CPU and MS GPU are respectively the CPU and GPU
versions of our mass-spring algorithm using Equation 8 to obtain the
final colors. MS GPU full optimizes the final colors with respect to
T as described in the previous paragraph. Table 3 shows that in all
of its variations, our approach is a few orders of magnitude faster than
Rasche et al.’s approach. All images (and execution times) reported for
the technique of Rasche et al. [24] were obtained using the software
available at [22]. Since Rasche et al.’s technique is not deterministic,
for each example shown in the paper, we ran their software three times
and selected the best image result.

Recoloring Image resolution (pixels)
technique 640x480 800x600 1024x768
Rasche 225.16 349.31 580.49
MS CPU 0.41 0.46 0.54
MS GPU 0.20 0.22 0.26
MS GPU (full) 0.22 0.23 0.27

Table 3. Performance of various algorithms on images of different res-
olutions. Times measured in seconds on a 2.2 GHz PC with 2 GB of
memory and on a GeForce 8800 GTX GPU. Quantization times not in-
cluded. All techniques used 128 quantized colors. Mass-spring (MS)
optimized the set of quantized colors using 500 iterations. The full ver-
sion obtained the final colors using 100 iterations per pixel.

3.4 Exaggerated Color Contrast
For applications involving non-natural images (e.g., scientific and in-
formation visualization) contrast enhancement is probably more im-
portant than preserving color naturalness. This comes from the fact
that colors used in such applications tend to be arbitrary, usually hav-
ing little connection to the viewer’s previous experiences in the real
world. In scientific visualization, the details presented by the datasets
are interactively explored via transfer functions [21]. Until now, trans-
fer function design has largely ignored the limitations of color-vision
deficients. Popular color scales usually range from red to green, colors
that are hard to be distinguished by most CVDs.

By supporting real-time recoloring of transfer functions and im-
ages, our approach can assist color-vision deficients to exploit the ben-
efits of scientific visualization. Such assistance can be even improved
with the use of some color contrast exaggeration, achieved with the
following changes in our image-recoloring algorithm:

1. Modifying the springs’ rest lengths to exaggerate the contrast be-
tween colors during the optimization process: li j = α ‖�qi − �q j‖,
where α is a scalar used to exaggerate the perceptual difference
between any pair of colors �qi and �q j;



2. Defining the mass of particle Pi as: mi = 1/‖(a∗i ,b∗i )‖, where
‖(a∗i ,b∗i )‖ is the distance from color �qi to the luminance axis
L∗. Thus, less saturated colors present bigger masses and tend to
move less. This preserves achromatic colors;

3. Initializing the mass-spring system with τ = 0 (Equation 7),
since we do not need to preserve the naturalness of colors.

4 RESULTS

We have implemented the described algorithms using C++ and GLSL,
and used them to recolor a large number of images. The reported times
were measured using a 2.2 GHz PC with 2 GB of memory and on a
GeForce 8800 GTX with 768 MB of memory. Figures 1, 5, and 6
compare the results of our technique against Rasche et al.’s approach,
which is the only truly automatic competing technique. Table 4 sum-
marizes the performances of both algorithms. For these experiments,
we used two different quantization techniques for the purpose of il-
lustration: k-means and uniform quantization. For k-means we al-
lowed up to 128 clusters. Uniform quantization was performed on a
10×10×10 grid, allowing up to 1,000 clusters. The actual numbers
of quantized colors (clusters) were obtained automatically by these
algorithms observing the specified limits. k-means and uniform quan-
tization were used in combination with the following reconstruction
strategies: projection of the perceptual difference, and optimization
with respect to T, respectively. Figure 1 (Flowers) used uniform quan-
tization with 227 colors; Figure 5 (Bell Peppers) used k-means with
127 colors; Figure 6 (Chinese Garden) used k-means with 128 col-
ors; Figure 7 (Flame) used uniform quantization with 84 colors; and
Figure 8 (Carp) used uniform quantization with 131 colors.

Image (size) Rasche CPU GPU
Time Time Time

Flowers (839×602) 315.84 0.85 0.16
Bell Peppers (321×481) 114.63 0.27 0.09
Chinese Garden (239×280) 44.06 0.23 0.08
Flame (288×184) 52.15 0.19 0.08
Carp (629×241) 121.25 0.26 0.09

Table 4. Performance comparison between our technique and Rasche
et al.’s for images of various sizes and different quantization strategies.
Time (in seconds) shows that our technique scales well with image size.

Figure 1 (Flowers) has 839×602 pixels and shows an example of an
image recolored for protanopes. Our GPU implementation recolored
this image in 0.158 seconds. This is 2,000× faster than Rasche et al.’s
approach. Our CPU implementation was still 372× faster than Rasche
et al.’s for this example.

Figure 5 (Bell Peppers) illustrates the case of image recoloring for
deuteranopes. While Rasche et al.’s approach (c) enhanced the con-
trast among the colors of the peppers, our technique also preserved
the colors of the crates, yellow peppers, and other vegetables in the
background as much as possible (d).

(a) (b) (c) (d)

Fig. 5. Color peppers: (a) Original image. (b) Simulation of a deuter-
anope’s view of image (a). (c) Simulation of a deuteranope’s view for
the results produced by Rasche et al.’s technique. (d) Simulation of a
deuteranope’s view for the results produced by our approach.

(a) (b) (c) (d)

Fig. 6. Photograph of a chinese garden: (a) Color image. Simulated
views of tritanopes for: (b) the original image, (c) the recolored image
by Rasche et al.’s approach, and (d) the recolored image using our tech-
nique. Note the blue sky and the enhanced contrast for the flowers.

Chinese Garden (Figure 6) provides an example of image recoloring
for tritanopes. Note how our technique preserved the blue sky, while
enhancing the contrast of the flowers. Rasche et al.’s approach, on the
other hand, recolored the sky as pink and did not sufficiently enhanced
the contrast of the flowers.

Figures 7 and 8 illustrate the use of our exaggerated color-contrast
approach. Figure 7 shows our results on a simulated flame. Note how
difficult it is for protanopes to distinguish the red and green regions
(b). Figures 7 (c) and (d) show the simulated views of a protanope for
the results produced by our image-recoloring and exaggerated color-
contrast approaches, respectively. Note how these two images help
color vision deficients to see the dataset details.

Figure 8 shows the visualization of the carp dataset (a) and how it
is perceived by deuteranopes (b). Figures 8 (c) and (d) show simu-
lated views of a deuteranope for the results produced by our image-
recoloring technique for dichromats and by our exaggerated color-
contrast approach, respectively.

4.1 Evaluation by Color Vision Deficients
In order to assess the quality of our results, we performed an evaluation
with fourteen individuals selected from a group of fifteen male volun-
teers who declared themselves as color vision deficients. The sub-
jects had no previous experience with scientific visualization. First,
the volunteers were submitted to an Ishihara test [12]. The results
of the test indicated that the deficiency of one of the volunteers was
very mild and, for this reason, he did not participate of the evalu-
ation of the proposed technique. For the other volunteers, the Ishi-
hara test suggested the following classification: 4 protanopes (ages 20
to 29), 4 protanomalous (ages 24 to 58), 2 deuteranopes (ages 17 to
32), and 4 deuteranomalous (ages 22 to 27). One should note, how-
ever, that a precise diagnosis of protanopia and deuteranopia cannot
be achieved using only the Ishihara test and would require the use of
an anomaloscope. The volunteers were then arranged into two groups:
protans (protanopes and protanomalous) and deutans (deuteranopes
and deuteranomalous). Each group evaluated a set of recolored im-
ages for its related class of dichromacy. Even though our recolor-
ing strategy was designed for dichromats, we decided to also include
anomalous trichromats (i.e., protanomalous and deuteranomalous) in
our study. The reason is twofold: (i) we would like to evaluate the
effect of the recoloring for these individuals, whose cones’ spectral
sensitivities tend to be similar to dichromats’, and (ii) to have a larger
number of subjects.

For each class of dichromacy, we selected eighteen images divided
into three groups of six images each. The first group (Natural) was
intended to contain natural elements that the volunteers could relate
to their previous experiences, and consisted of photographs of natural
scenes. The second group (InfoVis) consisted of information visual-
ization images, while the third group (SciVis) consisted of scientific
visualization images. For the second and third groups, the colors have
no particular association to the volunteers’ previous experiences. For
each selected image, we took the original one and recolored it using
both Rasche et al.’s and our technique. The images in the InfoVis and
SciVis groups were also recolored using the exaggerated-contrast tech-
nique described in Section 3.4. Figure 9 shows thumbnail versions of



(a) (b)

(c) (d)

Fig. 7. Simulation of a flame: (a) Color image. Simulated views of
protanopes for: (b) original image, (c) result produced by our image-
recoloring technique for dichromats, and (d) result produced by our ex-
aggerated color-contrast approach using α = 2.

(a) (b)

(c) (d)

Fig. 8. Visualization of a carp dataset using a multi-dimensional transfer
function: (a) Color image. Simulated view of deuteranopes for: (b) orig-
inal image, (c) result produced by our image-recoloring technique for
dichromats, and (d) result produced by our exaggerated color-contrast
approach using α = 2.

the images used in the experiment.
For the evaluation of the techniques, we used the method of paired

comparisons [29]. For each image in the Natural group, the volun-
teers were presented with the following pairs of side-by-side images:
(Or,R), (Or,MS), and (R,MS) and were asked to indicate their binary
preferences according to the following subjective questions: (i) Which
image looks more natural?, (ii) Which image has the most pleasant
contrast?, and (iii) What is your overall preference. Or, R, and MS
stand for original, recolored with Rasche et al. technique, and recol-
ored with the proposed technique, respectively. For the InfoVis and
SciVis groups, the pairs of images included all combinations of Or,
R, MS, and EMS (images with exaggerated contrast, recolored as de-
scribed in Section 3.4 using α = 2). For such groups, the volunteers
were asked to indicate their binary preferences only with respect to
questions (ii) and (iii). Each volunteer compared a total of 18 (i.e.,
6×3), 36 (i.e., 6×6), and 36 pairs of images for the Natural, InfoVis,
and SciVis groups, respectively. The order in which the pairs of images
were presented as well as the order of the images in each pair were de-
fined randomly. Each question was asked for all pairs of images before
changing to the next question. The order of the questions varied be-
tween subjects. The images were displayed on an LG L1953HS LCD
monitor (19 inches, 1280x1024 pixels, NVIDIA GeForce 9600 GT) at
approximated 50 cm from the subject. The average time for complet-
ing the experiment by the volunteers in the protans and deutans groups

were 24 and 29 minutes, respectively.
We analyzed the paired-comparison data using Turnstone’s

Law [29], Case V. Turnstone’s Law allows one to measure individ-
uals’ preference orderings for some stimuli, from a set of discrete bi-
nary choices. It is the classic tool for ranking items based on subjective
choices. For the protans, the ranking of the preferred technique was
based on 144 (8 ×18) binary choices for the natural images, and on
288 (8 ×36) binary choices for both the InfoVis and SciVis groups. For
the deutans, the number of binary choices were 108 (6 ×18) and 216
(6 ×36), respectively. We verified that Case V fits the data well by
also analyzing the results of our experiments using dual scaling [19]
and Mosteller’s χ2 test of goodness-of-fit [17], working with a signif-
icance test at the 5% level.

Figure 10 shows the average preference scores for the groups of
protans (left column) and deutans (right column). For the natural im-
ages, the χ2 has 1 degree of freedom (dof), causing the goodness-of-fit
for Thurstone’s Case V to be confirmed for χ2 < 3.84. For the InfoVis
and SciVis images, the χ2 has 3 dofs, satisfying Case V for χ2 < 7.81.
The numbers shown in parenthesis next to each evaluated criteria (at
the bottom of the graphs) are the corresponding computed χ2 values,
which satisfy the stated conditions. For the average preference scores
obtained using Case V, we also computed the corresponding 95% con-
fidence intervals (the vertical error bars in Figure 10) using [16].

Figure 10 (a) shows the scores for the protans group considering
only the set of natural images. As expected, the original images were
ranked best regarding naturalness. Considering the preferred contrast,
given the significant overlap of the confidence intervals, one can as-
sume a tie between the original image and the one recolored with our
technique. Overall preference of these subjects was for the original
image. Figure 10 (c) presents the scores of the protans group for the
set of InfoVis images. In this case, the images recolored with the mass-
spring algorithm without contrast exaggeration was preferred both in
terms of contrast and overall preference. It is interesting to note, how-
ever, that when comparing the SciVis images (Figure 10 e), protans
showed a clear preference for the ones with exaggerated contrast.

Figure 10 (right) shows the corresponding scores for the deutans
group, which are similar to the ones observed for the protans. The
only difference is that for the set of InfoVis images (d), the subjects
considered the contrast of the original images as good as the recolored
ones. This might be explained by the small number of subjects (six) in
this group, with only two deuteranopes.

We have also performed a paired-comparison evaluation of the
same set of images using a group of 23 male trichromats (ages 18
to 35) with no previous experience with scientific visualization. One
should recall that the recolored images matched the reduced color
gamut of dichromats. Therefore, the original natural images were pre-
ferred by trichromats. When considering the set of InfoVis images,
trichromats found the contrast of the original images slightly better
than the ones of the images recolored using our approach (MS). How-
ever, when asked about their overall preference, there is a tie between
the original and the recolored images (Figure 11 left). For the SciVis
group, the original and recolored images with exaggerated contrast
(EMS) were equally preferred by trichromats both in terms of contrast
and overall preference (Figure 11 right). These rankings of trichro-
mats were computed using Thurstone Law, Case V, from a total of 828
binary choices.

5 CONCLUSIONS

We presented an efficient technique for enhancing color contrast for
dichromats based on mass-spring optimization. Contrary to previous
automatic techniques, our approach preserves, as much as possible,
the naturalness of the images as perceived by color vision deficients.
Our technique can be efficiently implemented on modern GPUs and
both its CPU and GPU versions are significantly faster than previous
approaches. We also described an extension to the proposed image-
recoloring algorithm for exaggerating color contrast.

We have evaluated the results produced by our technique using the
method of paired-comparison [29] with 8 protans, 6 deutans, and 23



Natural InfoVis SciVis
Original Rasche MS Original Rasche MS Original Rasche MS EMS Original Rasche MS EMS

Fig. 9. Thumbnail version of the images used in the paired-comparison test. The images were grouped in three classes of six images each:
Natural, information visualization (InfoVis), and scientific visualization (SciVis). Each image in the natural group contains three versions: (i) original,
(ii) recolored using Rasche et al.’s approach, and (iii) recolored using our approach (MS). The InfoVis and SciVis groups also contain a recolored
image with exaggerated contrast (EMS). This figure only shows the recolored images for deuteranopes. The ones for protanopes look similar.

trichromats. According to our user study, protans and deutans pre-
ferred the contrast-enhanced images recolored with the proposed regu-
lar and exaggerated-contrast algorithms when visualizing information
and scientific data, respectively. It is worth noting that even though the
recoloring algorithms were originally designed for dichromats, they
seem to be also applicable to anomalous trichromats. This could be
explained by the fact that for protanomalous and deuteranomalous the
spectral responses of the cones specialized in long and medium wave-
lengths tend to be very similar [2], causing these two kinds of cones to
behave almost as a single one.

The quality of the results produced by our techniques depends on
the quality of the quantization performed in its first stage. Although
we ensure a continuous mapping among the colors in any given clus-
ter, our approach does not guarantee a continuous mapping between
different clusters, which could result in false edges or spurious bands.
Obtaining the final colors of all pixels by optimizing them against the
set of already optimized quantized colors T (Section 3.3) minimizes
the occurrence of this problem. In practice, we have not noticed any
objectionable artifacts due to these limitations. The proposed tech-
niques do not incorporate the Helmholtz-Kohlrausch color appearance
effect [18], which causes a colorful stimulus to appear brighter than
another equiluminant but less colorful stimulus. As a result, there no
guarantee that for two isoluminant colors, the brighter color will al-
ways be perceived as brighter after the recoloring. This effect can be
observed in Figure 1, where the red petals in (a) appear brighter than
the blue petals in (d), even though the two images are pixelwise iso-
luminants. By preserving the luminance values of the original colors,
we avoid the undesirable occurrence of luminance polarity reversal be-
tween pairs of colors. A consequence of this design decision is that our
approach is not effective for enhancing contrast in images that already
span essentially all the chrominance plane (Figure 12).

We believe our techniques can have a positive impact on the way
dichromats interact with digital media, as it finally provides a practical
way of disambiguating colors without contradicting, as much as pos-
sible, their memories about how the world looks like. Our results also
provide important information for guiding the design of visualizations
for color-vision deficients. We hope they will inspire the design of
new applications and interfaces for CVDs. We are currently extending
these ideas to video sequences.

APPENDIX A: THE PROJECTION ONTO PLANE Π
The orthographic projection matrix D (Equation 4) for each class
of dichromacy is obtained by the following matrix composition:
D = Mθ

−1Mb Mθ , where Mb is the matrix for orthographic projection
onto the L*b* plane. Thus, Equation 4 can be rewritten as:

�pi = Mb Mθ �qi =

⎛
⎝ 1 0 0

0 0 0
0 0 1

⎞
⎠

⎛
⎝ 1 0 0

0 cos θ −sin θ
0 sin θ cos θ

⎞
⎠

⎛
⎝ qiL∗

qia∗
qib∗

⎞
⎠

For each class of dichromacy, θ is the negative of the angle shown in
Figure 2, as we need to align Π with the L*b* plane.
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Fig. 10. Average preference scores in a paired-comparison test, shown
with a 95% confidence intervals (vertical bars). The lengths of the in-
tervals are due to the small number of subjects (6 or 8 per test). Left
column shows the results for the protans. Right column shows the pref-
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the Lawrence Livermore National Labs). The colors span most of the
red-green and yellow-blue axes of the L*a*b* chrominance plane (a). In
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images using our regular and exaggerated techniques (b)-(d).
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