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Abstract— Systems biologists use interaction graphs to model the behavior of biological systems at the molecular level. In an
iterative process, such biologists observe the reactions of living cells under various experimental conditions, view the results in the
context of the interaction graph, and then propose changes to the graph model. These graphs serve as a form of dynamic knowledge
representation of the biological system being studied and evolve as new insight is gained from the experimental data. While numerous
graph layout and drawing packages are available, these tools did not fully meet the needs of our immunologist collaborators. In this
paper, we describe the data information display needs of these immunologists and translate them into design decisions. These
decisions led us to create Cerebral, a system that uses a biologically guided graph layout and incorporates experimental data directly
into the graph display. Small multiple views of different experimental conditions and a data-driven parallel coordinates view enable
correlations between experimental conditions to be analyzed at the same time that the data is viewed in the graph context. This
combination of coordinated views allows the biologist to view the data from many different perspectives simultaneously. To illustrate
the typical analysis tasks performed, we analyze two datasets using Cerebral. Based on feedback from our collaborators we conclude
that Cerebral is a valuable tool for analyzing experimental data in the context of an interaction graph model.

Index Terms—Graph layout, systems biology visualization, small multiples, design study.

1 INTRODUCTION

Systems biology is a paradigm for biological experimentation in which
researchers model biological systems by looking at the behavior of
the thousands of biological entities that influence each other, rather
than single biomolecules or reactions. These interactions are modeled
as a graph, where the nodes represent biomolecules such as proteins
and genes, and the edges represent interactions between them. This
interaction graph model is used to interpret the results of experiments,
and in turn experiments help biologists further refine the model.

Systems-level experimentation in cellular biology involves observ-
ing the response of cells to events by making large numbers of quan-
titative measurements. Examples of events are the introduction of a
drug, the detection of a chemical signal from other cells, a change in
environmental temperature, or the simple progression of time. A com-
mon way to observe the cell response is to measure the change in gene
expression level, or abundance of proteins, in the cell across thousands
of genes under a specific experimental condition. Interpreting these
measurements in the context of an interaction model can help a biol-
ogist generate hypotheses about how the parts of the system influence
each other.

We distinguish between two classes of interaction models available
to biologists. Pathway diagrams are small directed graphs contain-
ing between ten and a few hundred nodes. These pathways show
the interactions that comprise a specific biological event, such as a
signaling pathway or a metabolic process. However, they provide a
poor substrate for the hypothesis discovery process that drives sys-
tems biology. By limiting their representation to a small set of canon-
ical biomolecules and interactions, the possibility of discovering new
components of the process or interconnections with other processes
is eliminated. Thus, systems biologists often prefer to work with the
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second class of data: larger undirected graphs that contain all the in-
teractions between thousands of nodes. Graph models such as these
require more effort to interrogate, but ultimately yield more novel bi-
ological insights. For example, by combining quantitative data and
these large graph models, systems biologists have made discoveries
ranging from the activities of new regulatory and signaling proteins,
to the identification of similarly-behaving cliques that are predictive
for the metastasis of cancerous tumors, to network modules that gov-
ern the aging process.

Information visualization can play an important role in the iterative
model refinement process. In this domain, visualization is typically
used for hypothesis generation, not hypothesis verification. Visually
displaying the gathered quantitative measurements in the context of the
graph model supports the hypothesis discovery process by allowing
researchers to spot trends or subnetworks of interest. Testing these
hypotheses then takes months or years of slow and expensive lab work.

We began a collaboration with a group of systems biologists ex-
ploring the human immune response. The primary contribution of this
paper is the design of Cerebral, a new visualization tool that supports
faster and richer hypothesis discovery for this group of immunologists
in particular, and other systems biologists who need to see data from
multiple experimental conditions in the context of an interaction graph
model in general. We embarked on an iterative design process to un-
derstand the visualization needs of these immunologists that included
interviews about their previous workflow and feedback from them on
successive interactive prototypes.

While there are many graph layout and display systems that ably
represent generic graphs [14} 16, 39], and even several aimed at bi-
ologists [36]], none meet the targeted needs of our collaborators. We
identified two visual requirements not currently met by existing explo-
ration systems. First, the graph layout must use biological metadata to
position nodes in biologically meaningful ways. A secondary contri-
bution of this paper is a graph layout algorithm that incorporates bio-
logical metadata. (The existence of a tool using the layout algorithm
was announced in a short Application Note [6], but algorithmic de-
tails were not given.) The second requirement is that the system must
be able to simultaneously represent data gathered from multiple ex-
periments, because the comparison between two or more experiments
overlaid on a graph is a common analytical step.

In this paper, we will first discuss the workflow of our biologist
collaborators, who used some existing visualization tools but under-
took significant manual intervention to create the visual representa-
tions required for their tasks. From these processes, we extract infor-
mation design decisions and contrast alternative methods for viewing



the quantitative data. After reviewing the related work, we present
Cerebral, a new system designed to meet our collaborators’ need to in-
teractively explore experimental data in the context of a graph model.
We then present an immunology-specific scenario in which Cerebral is
used to investigate the protective effects of a new therapeutic molecule,
contrasting an earlier manual analysis of this data with the improved
Cerebral analysis. We conclude with a more general example in which
Cerebral is used to examine the passage of time in budding yeast, the
first time that a visual approach has been used to explore this dataset.

2 IMMUNOLOGY WORKFLOW

Our immunologist collaborators use a systems biology approach to
investigate human responses to bacterial infection, as well as the ef-
fects of novel therapeutic compounds on these responses. Their ulti-
mate goal is to understand and be able to predict host responses, as
well as identify therapeutic compounds that modify the immune re-
sponse. Therapeutic compounds could help to resolve bacterial infec-
tions while minimizing potentially harmful side effects of the immune
response, such as inflammation and septic shock.

In a typical experiment, cells are divided into a control and a treat-
ment group. The treatment group is given a candidate therapeutic com-
pound and then both cell populations are exposed to a simulated bac-
terial infection. Expression levels are measured using microarrays or
other measurement technologies to determine how each gene in the
cell is responding to the infection. Often a time series experiment is
done, where an assay is performed at several time points to investigate
how the immune response progresses.

The collected data is overlaid onto an interaction graph that models
the immune response, derived from databases of known biomolecu-
lar interactions. Although tens of thousands of genes are typically
measured, the immunologists do not usually work with an interaction
graph model covering that entire dataset because of its overwhelming
complexity. They instead consider simplified graphs of only the most
interesting genes, ranging from the few dozen involved in some spe-
cific process to the few thousand involved in immunity.

Undirected edges represent the chain of interacting proteins which
propagate a signal from infection-detecting proteins at the surface to
the nucleus of the cell. Directed edges represent the binding of pro-
teins to nuclear DNA, which either activates or represses the expres-
sion of genes in response to the infection signal. This ultimate re-
sponse is of greatest interest to our collaborators, as it is the nature
of the genes responding at this stage that determines whether the im-
mune response will clear the infection without engaging any harmful
inflammatory mechanisms.

As an example, we consider the results of an experiment previ-
ously published by our collaborators [30]. Human monocytes, a type
of white blood cell associated with immunity, were stimulated with
lipopolysaccharide (LPS), a molecule that can mimic the effect of bac-
terial infection. One batch of cells was treated with the candidate ther-
apeutic compound LL-37, while one batch was left untreated. The
gene expression level was measured using microarrays at four time
points for each of these two conditions.

The figure showing this data in the published paper [30] is reprinted
here as Figure[T] Although the biological graph viewer Cytoscape [33]]
was used to make Figure[I] creating this figure took several hours be-
cause significant manual intervention was required. Similar analyses
using larger process graphs have taken days to construct.

In Figure |1} the left hand graph depicts the signaling cascade that
begins with the detection of LPS by Toll-Like Receptor 4 (TLR4),
proceeds through a series of intermediates, and ultimately ends in the
regulation of several immune response genes. In order to create a lay-
out reflecting the location within the cell of these biomolecules, as
found in many textbooks and publications, the biologists positioned
each node in the graph by hand. They thus used a very simple TLR4
graph model with only 66 nodes.

Figure [2] shows the same data displayed in our exploration tool
Cerebral. Using a completely automatic algorithm, a larger TLR4 net-
work model with 91 nodes is laid out in only a few seconds. Cerebral

uses existing knowledge of where a biomolecule is found in a cell to
position nodes in a biologically relevant position. The target nodes of
directed protein-DNA edges are placed at the bottom of the diagram, in
a layer representing immune response outcomes. The Cerebral layout
groups these outcome nodes according to known biological function,
enabling the biologists to easily categorize the nature of the immune
response to the bacterial stimulus in the presence or absence of the
therapeutic LL-37 compound.

Figure [T also features small multiple [38]] views, with each mini-
graph colored according to the expression level of a gene at a specific
time point. According to biological tradition, genes whose expression
was significantly increased are colored red, while decreased expres-
sion levels are signified by green. As Cytoscape only loads a single
experimental condition at a time, the multiple views were created one
at a time by coloring the graph according to each of the eight exper-
iments, taking a screenshot of each, and then assembling the results
into a composite figure. In contrast, the small multiple views shown in
Figure 2] fully support interactive exploration, with linked navigation
and brushing across all windows. The coloring in the main window
was chosen by clicking in two of the small multiple windows to show
an automatically computed difference between those conditions.

4hr 24 hr
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Fig. 1: Original Cytoscape analysis with manually laid out graph and
manually created small multiple views, from [30].

3 CEREBRAL DESIGN DECISIONS

When designing an automated system to display multiple experimen-
tal conditions in the context of an interaction model, we considered
several alternate data representations. We now examine our design
choices.

3.1 Graph layout with biological context

Graph layout quality has historically been evaluated with a number of
heuristics such as edge length, crossings between nodes and edges, and
uniformity of node distribution. While many graph viewers [2} (7} 33]]
implement several layout algorithms that are favorably evaluated us-
ing these heuristics, none of these layout algorithms were acceptable
to our immunologist collaborators when applied to their biological in-
teraction graphs.

The nodes in biological graphs represent physical compounds in
a cell that are separated by physical membranes, creating compart-
ments defining their subcellular location. Biologists typically diagram
biological processes with a stylized cross-sectional view of the cell
according to this subcellular location: nodes corresponding to the out-
ermost membrane layer of a cell are placed at the top of the graph,
nodes that are found in the innermost nucleus are placed at the bot-
tom, and the remaining nodes are placed in the center of the graph
arranged neatly to show the step-wise series of interactions that occur
as a signal moves from membrane to nucleus. Layout algorithms that
only use graph topology to position nodes would place some nodes
near each other that are always positioned in separate compartments
in hand drawn immunology diagrams, causing confusion and extra in-
terpretation effort for the biologist. Cerebral restricts the placement of
nodes to these subcellular location layers, with each layer representing
a distinct membrane-bound biological compartment in the cell.
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Fig. 2: The Cerebral display of the TLR4 graph (V=91, E=124) with associated LPS and LPS+LL-37 time series. The small multiples show an
overview of all 8 experimental conditions. The most noticeable differences between the LPS and the LPS+LL-37 condition occur at hour 4. By
selecting the hour 4 conditions, the main window shows the computed difference between the two conditions.

Furthermore, the biologists’ assessment of what constitutes a good
layout varies depending on the nature of the biomolecules involved. In
the undirected portion of the graph, which comprises protein-protein
interactions that propagate a signal from membrane to nucleus, they
wish to see the network structure so that they can follow the signaling
cascade. Thus for this section of the graph, it is important to minimize
edge crossings, even if it places interacting nodes somewhat far apart.
In contrast, for the directed portion of the graph, representing the genes
whose expression was altered in response to the signaling cascade, the
biologists want to see the nodes grouped tightly by function, even at
the expense of not being able to clearly see the interactions between
them. Translating these desires into automated graph layout requires
an algorithm that uses metadata associated with the nodes, in addition
to the direct graph structure, for node placement. Positioning nodes
according to biological meta-data defines a semantic substrate [34]
so that node position reveals biological function. We wrote a sim-
ple simulated annealing-based graph layout algorithm that uses node
metadata to guide node placement.

3.2 Small multiple views for multiple conditions

Cerebral uses small multiples [38] to simultaneously display multiple
experimental datasets. Each small multiple contains a complete copy
of the interaction graph with the same spatial layout, but with differ-
ent coloring according to the experimental data it is displaying. Our
design target was to handle from two to a few dozen gene expression
conditions, and from 50 to 3000 nodes in the interaction graph.

One obvious alternative to multiple small views would be a sin-
gle changeable or animated view, where the color coding changes
over time rather than being distributed over space [33} [32]. Com-

paring something visible with memories of what was seen before is
more difficult than comparing things simultaneously visible side by
side [31]. Thus, the limitations of human memory make comparing
the few dozen conditions of our design goal through animation quite
difficult [40]]. Although small multiples would not scale to hundreds
of conditions, they handle the current usage of 8-10 easily and will
certainly accommodate the projected usage of few dozen conditions.

A second alternative is to embed a glyph, such as a line graph or
heat map, near or within the node itself [24}132]141]]. While embedded
glyphs provide good detail when zoomed in for a local view, they be-
come indistinguishable when zoomed out for a global view of graphs
larger than a few dozen nodes. The biologists often need to see such
a view, as it more readily allows for the identification of interacting
genes/proteins whose expression behaves similarly across several con-
ditions. Thus, glyphs would not be appropriate in this domain.

Saraiya et al. [32] evaluated four approaches to integrating graph
and time series data, comparing one versus two views and slider-
controlled animation versus embedded glyphs. While they used 10
time series data points, in a good match for our problem domain, their
graph contained only 50 nodes. They found many tradeoffs between
task type, speed, and accuracy. Our design can be considered an at-
tempt to combine the strengths of the four different interfaces they
studied into a single interface for a problem where the tasks are com-
plex, accuracy outweighs raw speed, and the graph is large.

3.3 Parallel coordinates and clustering for data-driven ex-
ploration

Cerebral’s main views focus on the interaction graph model of the
biological system or process of interest. We also provide a data-



driven view and tools to help suggest areas for exploration. Each ex-
perimental condition corresponds to an axis in a parallel coordinates
view. Each biomolecule, or node, in the graph is represented as a
line that crosses each of these axes at points corresponding to that
gene/protein’s expression level under that condition, resulting in what
the biologists refer to as an expression profile.

A frequent analysis of expression profile data involves clustering
the profiles to identify genes/proteins that behave similarly across con-
ditions, implying that they have related functions or are regulated by
the same set of proteins. New and enhanced clustering algorithms are
developed each year [42], but provide notably different results. Many
of these methods are sensitive to noise, and the measurement technolo-
gies employed in systems biology often produce highly noisy results.
Furthermore, the complex internals of a clustering algorithm — most
often based on statistical rather than analytical decisions — make it
hard for a biologist to understand and trust the clusters.

Despite these weaknesses, automatically detected clusters can be
complementary to the visualization of the interaction graph in direct-
ing the biologist towards interesting groups of proteins to explore.
The potential for uncovering related or novel functions and regula-
tory mechanisms is valuable, as is the increased confidence in the
statistically-generated cluster assignments if the clustered genes are
found to biologically interact with each other.

Because our immunologist collaborators do not consider any cur-
rent clustering algorithm to be a clear winner, we implemented simple
k-means clustering as a proof of concept. It would be straightforward
to substitute a more sophisticated clustering algorithm into Cerebral.
The focus in this paper is on the design choices for the multiple coor-
dinated views [4], and the layout algorithm in the graph view.

4 RELATED WORK

Many visualization systems aimed at biological problems follow the
well-established practice of using multiple linked coordinated views.
For example, analysis tools such as SpotFire and HCE [23] provide
a rich set of statistical tools including scatterplots, parallel coordinate
views, and heat maps. However, they do not contain a biomolecular
interaction graph view.

Several previous tools do allow visualization of gene expression
data from a single experimental condition on a biomolecular interac-
tion graph, including Cytoscape [33]], Visant [22]], GeneSpring, Bio-
logicalNetworks [3], and GenMapp [10]]. However, they are limited to
visualizing data from a single experimental condition on the graph at
a time and do not support automatically positioning nodes according
to biological metadata. Although Cytoscape does have a graph lay-
out algorithm that incorporates biological context, it requires manual
intervention.

Interviews revealed that our immunologist collaborators were com-
pletely unwilling to experiment with layout parameters for graph
drawing algorithms to obtain optimum performance. We required a
robust algorithm that works well with a range of different biological
datasets, without the need to change any parameters.

We thus ruled out the class of force-directed placement techniques.
The straightforward approaches do not adequately support layers and
groups [16]. Several attempts have been made to extend force-directed
placement to accommodate grouping, for example Fruchterman and
Reingold [[17] use repulsive walls to contain nodes within an external
boundary and Genc and Dogrusoz [18] use mobile internal walls to
separate the graph into compartments. However, these methods suffer
from fragility. They require parameter adjustment to work across a
range of datasets. As the graphs scale up in size, it becomes a problem
to balance forces. If the repulsive forces of the walls are too large,
the nodes are pushed strongly away from the walls and cluster in the
middle. If the wall forces are too low, all of the nodes cluster against
the walls. Moreover, they have only been shown to work on small
datasets of less than 100 nodes.

In contrast, Dwyer et al. have proposed the powerful IPSep-CoLa
constraint-based approach whose running time scales well to very
large graphs [14]. However, this method also requires considerable
parameter tweaking to work well in this application domain. In partic-

ular, adjusting the ideal edge length parameter has considerable effect
on the visual layout quality. Even after multiple rounds of personal
communication with the authors, we did not obtain competitive results.
Moreover, the complex algorithm is quite involved to implement, and
has more power than our problem requires.

We thus chose to create a new layout algorithm that was as sim-
ple as possible to handle layering and grouping, fast enough to handle
datasets of up to several thousand nodes, and would work on a range
of datasets without the need for parameter changes. It is based on
simulated annealing, making it straightforward to implement. Previ-
ous approaches using simulated annealing for graphs were limited to
roughly 100 nodes because they required O(V?) time[T1} 27, 25, 28].
We use a discretization-based framework based on a uniform grid [1]]
to lay out graphs with thousands of nodes in a few minutes. Tunkelang
[39] also used a uniform grid to accelerate the evaluation of edge cross-
ings when drawing undirected graphs, but assumed that edges would
be short. In our approach, we use a modified version of the uniform
grid that remains efficient even as edge length and expected number
of crossings increases, thereby allowing a more global search of the
configuration space.

We announced an earlier version of Cerebral in a short Applica-
tions Note [6] to speed its adoption by the bioinformatics community.
That version featured the layout described here, but did not support the
analysis of multiple conditions of gene expression data. The note did
not provide any details of the layout algorithm, and did not provide a
rationale for any of our visual encoding choices.

5 CEREBRAL VIEWS

The Cerebral interactive analysis system has three views of the data.
The primary view shows a large representation of the interaction graph
model. The user interactively chooses which single experimental con-
dition, or computed difference between two experiments, controls the
coloring of the graph nodes. A side panel shows small multiple views
of the experimental conditions, with each view containing a copy of
the graph model colored according to the condition data. Finally, a
data-driven parallel coordinates view at the bottom shows the experi-
mental condition data directly, visually encoded with spatial position.

5.1 Graph model views

Both the main view and the small multiple views use the biological
graph as the main visual substrate.

5.1.1

We used simulated annealing [[11] to lay out the graph using biological
annotations to guide the placement of the nodes. Simulated annealing
is a search strategy that repeatedly tests new configurations of a graph
layout, keeping configurations that improve the quality of the graph.
Worsening configurations are kept according to a temperature depen-
dent probability function to avoid local minima in the search. The
probability that a worsening change will be accepted declines by mod-
ifying the temperature with a cooling schedule. To complete our cus-
tomization of simulated annealing graph layout for biology, we now
define the initial state, how new configurations are chosen, how the
layout quality is evaluated, and the cooling schedule.

The initial graph layout is a random distribution of the nodes. Each
node’s y coordinate is restricted to a layer, based on the subcellular
localization annotation associated with the node. Nodes without anno-
tation can be placed freely throughout the diagram or contained within
a layer at the user’s discretion. A new graph configuration is generated
by selecting a single node at random and moving it to a new random
position within its allowed layer.

According to our discussions with the immunologists, we evaluate
the quality of the node in its new position depending on the node’s
function. Most nodes are evaluated based on edge length, edge cross-
ings, and node-edge crossings. Nodes which are response proteins are
evaluated primarily on distance to other response proteins sharing the
same biological function, and then only weakly on edge length, edge
crossings, and node-edge crossings. The classifications of nodes as

Graph layout



response proteins and the assignment of biological functions are pro-
vided as metadata to our tool from biological databases. We weight
our scores as follows: the unit weight is an edge length of 1, edge-
edge crossings have weight 3, node-edge crossings have weight 9, and
biological function grouping has weight 90, which encourages group-
ing even at the expense of node and edge overlaps. These settings were
chosen by visually inspecting several graphs and choosing parameters
that produced nice layouts. Though the specific choice of parame-
ters is somewhat arbitrary, they provide good visual results for a wide
range of interaction graphs containing 50 to 10,000 nodes. Further,
the algorithm is robust to these parameters, continuing to give good
results when they are modified by 50% to 200%. They are thus fixed
in Cerebral, and do not require user tweaking.

Finally, we follow a geometric cooling schedule with a temperature
decrease of 0.6 per cooling step, with 30 cooling steps, and 50V new
configurations per cooling step, based on typical values from previous
simulated annealing algorithms.

Profiling a simple implementation showed that over 98% of the al-
gorithm running time was spent testing for edge intersections. We
therefore employed the optimization technique of dividing our layout
space into a uniform grid [1]] and restricting possible node placements
to grid centers. Each square of the grid stores a count of the number
of edges that pass through the square. The squares an edge passes
through are rapidly determined by using an extension of Bresenham’s
line drawing algorithm [8] modified to include corners. We update
the grid each time a node is moved. In our evaluation function, we
approximate edge crossing counts by accumulating edge counts from
all grid squares that an edge passes through. We assume that all these
edges cross our test edge; that is, we are computing edge crossings
at the resolution of the grid and never perform an expensive floating
point line intersection test. The error term in Bresenham-style algo-
rithm keeps track of how far the edge is from the center of the square,
giving us a fast way to check for node-edge intersections.

Placing nodes at grid centers has the added benefit of preventing
node overlaps, leaving space for labels, aligning nodes into even lines,
and assuring a compact layout by keeping nodes within the boundary
of the grid.

The full details of this algorithm and its pseudocode are available
[S], but are not included in this design study because of space con-
straints. After optimization, we were able to lay out small graphs of up
to 100 edges in under 10 seconds, medium graphs of up to 500 edges
in under 30 seconds, and large graphs of up to 2000 edges in under 5
minutes on a 3GHz Pentium running Linux with 2GB of RAM.

5.1.2 Graph interaction

Cerebral supports mouseover highlighting in the graph views, where
the node under the cursor is highlighted in red and its graph-theoretic
neighbors one hop away are highlighted in orange.

Cerebral allows users to interactively drag nodes around to override
the automatic layout, and to rerun the layout after pinning down the
position of an arbitrary set of nodes. This allows users to manually
build a skeleton of important nodes, or incrementally layout the graph
after refining the interaction model.

The graph views support panning and zooming. The label drawing
algorithm guarantees that labels do not overlap at any zoom level, and
the density of labels is interactively controllable via a slider. Labels
are always legible: they are drawn at a fixed size in screen space, so
their size varies in world space in accordance with the zoom level. We
use a greedy algorithm to draw labels, using a bitmap to keep track of
occupied screen space, and only drawing a label if its bounding box
does not intersect any previously drawn one. We draw the label un-
der the cursor first, then its graph-theoretic neighbors, then any nodes
selected by the user, and then traverse the list of all nodes sorted by
degree.

5.1.3 Using color to overlay data

We overlay gene expression or other quantitative measurements on
each node of the graph by coloring the node. The appropriate color

scale depends upon the reliability of the source data. Certain technolo-
gies provide accurate measurements for which a continuous gradient
color scale is appropriate. Other faster and cheaper technologies will
have large error bars associated with each measurement, for which a
binning color scale is more appropriate. Other measurement process-
ing pipelines will include a machine learning algorithm that outputs
a simple binary value indicating whether protein level is significantly
altered under the experimental condition, for which a simple two-color
scheme is appropriate.

To allow maximum flexibility, our color scale editor allows the user
to assign measurement value intervals to fixed or gradient color map-
pings. To simplify color scale creation, the editor includes a gallery of
useful color scales created with ColorBrewer [19]. We provide both
the red-green color scheme traditionally used for gene expression data,
and a colorblind-friendly orange-purple color scale.

5.1.4 Comparing conditions

We provide a comparison view to show how gene/protein levels
change between two conditions, A and B. If the data measurements are
ratio values, then the difference is also shown as a ratio with condition
A chosen as the new baseline. The main view colors each node as the
ratio of B versus A computed as Cy = (By —Ay)/|A|. In the case where
the data are absolute measurements, then the main view shows each
node color coded by the simple computed difference Cy, = By —Ay. A
separate user-defined color scale is used for the comparison view.

5.2 Parallel coordinates view

Whereas the small multiple views show a large number of nodes over
a small number of experimental conditions, the parallel coordinates
view can focus on a small number of nodes over a large number of
conditions. Each experimental condition maps to an axis in the parallel
coordinates view. Each measured gene or protein maps to a line.

Outliers stand out in the parallel coordinates view, but normal val-
ues are generally occluded by the large number of lines. We have
three filtering methods to extract nodes of interest. First, selection of
the parallel coordinate lines is linked to the graph views. Second, we
have range filters that can be set for each axis. Finally, we provide
k-means clustering to find clusters of similar expression values across
conditions. The current clustering dynamically creates a set of buttons
allowing the user to select or deselect all members of a cluster, each
with a thumbnail glyph showing the expression profile for that cluster.

Our k-clustering algorithm uses normalized expression values and
Euclidean distance as the distance measure to find linearly correlated
expression patterns. The k value is user selected by a slider. A standard
desktop machine was able to cluster at interactive speeds, allowing the
user to easily explore various values of k.

5.3 View Coordination

All graph views support linked navigation: panning and zooming in
one also moves the viewpoint in all of the others. All views support
linked selection and mouseover highlighting. When the user selects
items, Cerebral dims the nonselected items so that they are perceived
as a background layer. Selected biomolecules can be added to user-
defined groups through a right-click menu. Members of the group can
later be selected by clicking the group name in the Cerebral control
panel. Group membership can be shown visually using attributes such
as node color, node shape, or node size.

The small multiple windows and parallel coordinate axes support
linked reordering through dragging. When a window is dragged to
another location the axes are reordered, and vice versa.

Clicking on the titlebar of a small multiple view changes the color-
ing of the main view to match the selected condition, and shift-clicking
a second multiple triggers the comparison coloring.

5.4 Implementation

Cerebral is an interactive system implemented in Java 1.4.2 as a plugin
for Cytoscape [33]. Cytoscape is a popular biomolecular graph editor
in the biology community, which loads graphs and metadata from sev-
eral standard biology file formats. The Cytoscape framework allows
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Fig. 4: Interactive selection, panning, and zooming shows the expres-
sion of cytokines and chemokines across time points in the context of
the larger MAPK graph.

mapping node and edge metadata to visual appearance rules such as
shape, size, and color. We replaced the standard Cytoscape renderer
with our own implemented using the Prefuse toolkit [21]. Prefuse pro-
vides us with a framework for managing nodes and edges, displaying
nodes, and responding to user events. We use its convex hull outlining
capability to surround the functional groups in the bottom layer with
colored blobs. We wrote custom code for node layout, edge bundling,
edge rendering, and label positioning.

Integration with Cytoscape allows Cerebral users to take advantage
of the large community of Cytoscape plugin developers. For example,
the Enhanced Search plugin lets biologists select nodes with a simple
query language on node metadata, and BinGO [28§]] creates clusters
of nodes by testing for over represented gene ontology terms in the
datasets.

6 RESULTS

We present two sample sessions using Cerebral to analyze microarray
experimental data in the context of a biomolecular interaction graph.
We begin with an immunology-specific dataset, and then move on to a
more general cellular time series dataset.

6.1 Immune response and LL-37

We now return to the LL-37/TLR4 dataset previously published by our
immunologist collaborators. Figure [2] shows the data displayed with

Cerebral, which performs an automatic layout exploiting the cell local-
ization data, and displays an overview of all the datasets in the small
multiple views. The outcomes of the cascade are shown at the bottom
of the diagram grouped by previously known function and visually
distinguished with a light green outline.

The small multiples are ordered to place each LL-37-treated time
point beside the untreated condition, allowing the user to quickly spot
how the peptide affects the cell’s response to bacterial infection. Scan-
ning these pairs, we see that the differences in the two conditions are
most pronounced at hour 4. We note there are many more nodes
colored solid green in the LPSLL-37_4 condition than the untreated
LPS_4 condition. Rather than scanning back and forth between the
two conditions to search for differences, we have Cerebral compute
the direct difference between the two hour 4 conditions. The differ-
ence view is colored with an orange/purple color scale.

Most of the significantly changed nodes in the difference view are
colored orange, indicating that the expression levels are reduced in the
presence of LL-37. Furthermore, it is easy to see that the response
proteins that show such changes primarily belong to the cytokine and
chemokine functional categories. Many of these are implicated the
harmful inflammatory side effects of the immune response to bacterial
infection, thus it appears that the protective LL-37 molecule is working
to minimize these side effects.

Recreating the same data views as the original paper took seconds in
Cerebral, compared with many hours of manual manipulations. More-
over, the subcellular localization in Cerebral exposed a longstand-
ing error in this well-studied small graph that was not apparent in
previous automatically produced layouts using generic force-directed
layout algorithms. A long edge from the top extracellular
layer crossed all three middle compartments to end in the bottom
transcriptionally regulated genes layer. After seeing
the layout, the immunologists were prompted to double-check the an-
notation of the nodes connected to the long edge, realized that it was
incorrect, and refined the interaction graph model in their database.

The automatic layout and interactive exploration capabilities of
Cerebral allows the immunologists to productively use more complex
and complete graph models. Figure 3] shows the same LPS gene ex-
pression experiment data overlaid on the MAPK model graph, a super-
set of the TLR4 graph containing 1269 edges and 760 nodes. While the
overview of the complete graph is quite complex, the interactive selec-
tion and navigation allow the immunologists to easily explore across
multiple time points, as shown in Figure [d]

6.2 Yeast cell cycle: Time series analysis

This example uses publicly available gene expression data from a time
series study of the cell cycle of yeast published by Spellman et al. [35]].
This expression data was combined with a yeast cell cycle protein in-
teraction graph constructed by de Lichtenberg et al. [12]] and available
from the Cell Circuits database [29]]. Cellular location information was
obtained from the Yeast Protein Localization Server [13]]. Data from
these sources were then combined to form an integrated data set suit-
able for analysis by Cerebral. Though the Spellman study investigated
how gene expression varied according to cell cycle phases, they did
not examine the data in the context of a biological network. This ex-
ample illustrates that the network context shown with Cerebral allows
clear and fast detection of correlated expression changes.

Figure[3]shows the initial Cerebral display generated when we first
load the data. We simultaneously view the entire set of expression data
across all time points using the parallel coordinate display as well as
the small multiples display. The automated Cerebral layout of protein
interactions is arranged by cellular location as well as by interactions.
We have clicked in the cdc050 small multiple window, so the main
view shows the coloring for that condition.

As we are not starting with a particular hypothesis, we begin explo-
ration by using the data-driven parallel coordinates view. We interac-
tively adjust the k-means slider until we see an interesting correlation
pattern in the cluster glyphs. We click a sinusoidal pattern in the lower-
right thumbnail cluster buttons, since this pattern is suggestive of cell
cycle phases. In Figure[f]the parallel coordinate display clearly shows



the sinusoidal nature of the selected cluster across the time series, in-
dicative of its involvement in the phases of the cell cycle.

In fact, we see that six of the molecules in this cluster correspond to
histone genes [37]. The graph view quickly and clearly conveys the
fact that these molecules interact with one another and are active in the
nucleus. Figure[7] shows the result of selecting this smaller subset for
closer inspection by dragging out a box in the main view. We now see
even more striking correlated behavior in the parallel coordinates plot.
Viewing the small multiples, we can scan the time series in the graph
context and see how the cluster shifts as a unit from showing green
under-expression to red over-expression. A trained biologist will im-
mediately recognize this pattern as following the cell cycle phases. We
note that while the parallel coordinate view can represent this corre-
lated behavior, it cannot show the relationship between the proteins.
The small multiple graph views show such correlation qualitatively,
but they do not present as precise an analytical display as the parallel
coordinate plot. By coordinating both views simultaneously, the user
can visualize and compare views for more complete analysis.

This analysis session shows how the simple interaction graph could
be extended to include temporal effects. We see how histone levels
rise and fall in time with the progression of the yeast cell cycle.

6.3 User Response

We gathered feedback from our immunologist collaborators on the de-
sign of Cerebral as they used a succession of interactive prototypes.
‘We began by attacking the problem of biologically-guided layout, with
a prototype that had only a single interactive graph view. After a pe-
riod of refinement, we made this early single-view version of Cerebral
publicly available in February 2007. The response from the bioinfor-
matics community was very encouraging: we have heard from many
groups who have used it, and three published biology papers include
figures created with Cerebral. One is from our collaborators [9]], and
two are by other researchers [15)[20]. We note that one of the latter
[20] explicitly mentions Cerebral in the methods section of the paper,
showing that it was considered integral to their analysis methodology
as opposed to simply being used for presentation.

We then continued on to the problem of handling multiple exper-
imental conditions, again refining the design through feedback on
prototypes. The final version of Cerebral tool documented in this
paper has been enthusiastically embraced by our immunology col-
laborators. They have integrated Cerebral as the visualization front
end for InnateDB (http://innatedb.ca), their hand-curated immunol-
ogy interaction database. Full source code and binaries for this ver-
sion were made publicly available as Cerebral v.2.0 in May 2008 at
http://www.pathogenomics.ca/cerebral.

We expect further user feedback now that the tool has been publicly
released to a larger audience. Cerebral was evaluated many times by
our collaborators during the iterative design process as we worked with
them to identify and satisfy their usability and visualization needs.
However, this close working relationship means that their favorable
final evaluation is not impartial, so formal user testing with more neu-
tral groups of biologists would be interesting future work.

7 FUTURE WORK AND CONCLUSIONS

Our tool met the design goal of analyzing a few dozen conditions with
a few thousand nodes, but has the limitation that it does not scale to
significantly larger numbers of conditions and graph nodes. As high-
throughput biomolecule measurement technologies become more scal-
able and cost effective, biologists will include increasing numbers of
experimental conditions in their study design. In order to support these
larger study designs, we would need to improve both the visual scala-
bility and the computational performance of the system.

Cerebral also has the limitation that the user interface only allows
nodes to be arranged into an ordered layered hierarchy. Some cell
compartments do not follow a linear hierarchy; for instance, mitochon-
dria and Golgi bodies are both found in the cytoplasm. Building an
input system that supports subregions within layers for organelles, and
circular regions for bacterial cells, should be a straightforward exten-
sion of our underlying layout algorithm. Another interesting area of
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future work would be to identify other application domains that have
graphs with linearly ordered classes of nodes and test whether this
simulated annealing layout approach is an adequate solution in more
generic contexts.

We have shown that overlaying experimental data on an interac-
tion graph with Cerebral provides systems biologists an opportunity
to evaluate the current biological system model, generate hypotheses,
and improve and refine the model. Cerebral has data displays cus-
tomized for systems biology tasks, providing an environment where
the data views are familiar and the graph nodes appear in biologically
sensible locations. By creating biologically meaningful graph layouts
automatically, systems biologists are now able to work with much
larger and more complete graphs. Interactive simultaneous viewing
of multiple experimental conditions allows for more in-depth analysis
of gathered data.
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