
Generation of Accurate Integral Surfaces
in Time-Dependent Vector Fields

Christoph Garth, Hari Krishnan Student Member, IEEE, Xavier Tricoche, Member, IEEE,
Tom Bobach Student Member, IEEE and Kenneth I. Joy, Member, IEEE

Abstract—We present a novel approach for the direct computation of integral surfaces in general vector fields. As opposed to
previous work, which we analyze in detail, our approach is based on a separation of integral surface computation into two stages:
surface approximation and generation of a graphical representation. This allows us to overcome several limitations of previous
techniques. We first describe an algorithm for surface integration that approximates a series of timelines using iterative refinement
and computes a skeleton of the integral surface. In a second step, we generate a well-conditioned triangulation. The presented
approach allows a highly accurate treatment of very large time-varying vector fields in an efficient, streaming fashion. We examine
the properties of the presented methods on several example datasets and perform a numerical study of its correctness and accuracy.
Finally, we examine some visualization aspects of integral surfaces.

Index Terms—3D vector field visualization, flow visualization, time-varying and time-series visualization, surface extraction

1 INTRODUCTION

Integral surfaces, as a natural generalization of integral lines, are a
basic yet powerful tool for insightful vector field visualization. Rep-
resenting a continuum of integral lines, they constitute a surface and
allow for the application of surface shading techniques. Hence, in
comparison to streamlines or other line-based techniques, they sup-
port depth perception and greatly facilitate the visual understanding of
complex three-dimensional structures.

Integral surfaces appear quite naturally in many problems that in-
volve vector fields; the most prominent example is flow visualization
that centers on the visual analysis of datasets generated by simulation
(Computational Fluid Dynamics) or measurement. In the context of
flows, the groundbreaking drawing work of Dallmann [3] has shown
that many types of flow patterns may be well understood in terms of
so-called flow sheets. These sheets represent precisely chosen integral
surfaces that emanate from specific lines on the surface of objects em-
bedded in a flow, and often take on the role of flow separators that di-
vide regions of differing behavior. In the broader context of dynamical
systems, integral surfaces appear as separatrices of three-dimensional
vector fields, where they represent the two-dimensional stable or un-
stable manifolds associated with critical points. However, even if not
coupled to such specific interpretations, integral surfaces have been
shown to possess great illustrative power (cf. [2, 4, 8]). In the case
of flows, they can accurately depict folding, shearing and twisting and
impart an intuitive understanding of the flow geometry.

In recent years, several approaches have been presented for the
computation and graphical representation of integral surfaces in CFD
datasets. However, with the notable exception of [14], this work has
focused on the computation of stream surfaces, i.e. integral surfaces
in steady vector fields, as opposed to path surfaces, which denote the
time-dependent case. Much of this prior work has concentrated on the
generation of a viable graphical representation using advancing front

• C. Garth, H. Krishnan and K. I. Joy are with the Institute of Data Analysis
and Visualization, University of California, Davis, E-mail:
{cgarth,hkrishnan,kijoy}@ucdavis.edu.

• X. Tricoche is with the Computer Science Dept., Purdue University,
E-mail: xmt@cs.purdue.edu.

• Tom Bobach is with the Geometric Algorithms Group, University of
Kaiserslautern, E-mail: bobach@informatik.uni-kl.de.

Manuscript received 31 March 2007; accepted 1 August 2007; posted online
27 October 2007.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

methods, based on adaptive refinement heuristics that are aimed at pro-
ducing good surface meshes. However, the accuracy of the resulting
surface, which is a crucial property for some application scenarios, has
not been examined in detail. This is in part attributed to the generally
complex form of the resulting algorithms that make such discussion
difficult.

In this work, we present a novel algorithm for the computation of
integral surfaces in a general context. Our method is based on the
adaptively-refined advancing front paradigm, and is applicable to both
stationary and time-varying vector fields. Treatment of the latter is
achieved in a streaming fashion, thus allowing our method to work
even on extremely large datasets with thousands of time steps.

After reviewing the basic concepts underlying integral surfaces and
fixing terminology in Section 2, we review previous work and perform
an analysis of its limitations in Section 3. We then proceed to develop
a generic two-step integral surface approximation scheme in Section 4,
and discuss practical issues of its application in Section 5. Finally, in
Section 6 we briefly examine some visualization aspects of integral
surfaces, before we conclude on the presented material in Section 7.

2 CONCEPTS

In the following, we assume that v is a three-dimensional vector field,
defined over a domain Ω ⊂ R3 and a time interval [T0,T1]. An inte-
gral curve S(t0,x0; t) of v is the solution to the ordinary differential
equation

d
dt

S(t0,x0; t)
∣∣∣∣
t=τ

= v(τ,S(t0,x0;τ)). (1)

Simply put, it is a curve that contains the point (t0,x0) and is tangent
to the vector field at every point over time. The intuitive understanding
associated with such integral curves is that of massless particles that
are advected through a domain by a vector field with time. For the
class of Lipschitz-continuous vector fields, existence and uniqueness
of S can be proven (cf. [1, 6]), and numerical integration methods can
be used to approximate the solution. Note that for the overwhelming
majority of application datasets, this condition holds true.

Now, let C be a space curve, contained in Ω and parameterized by
s, and T0 < t0 < T1. Then, an integral surface I is defined by

I(s, t) := S(t0,C(s); t).

In words, I is the union or continuum of integral curves passing
through the seeding curve C at time t0. While I(s, ·) coincides with
an individual integral curve, the surface lines given by I(·, t) are called
time lines. Figure 1 provides a more graphical explanation of these
terms.

Fig. 1. Schematic overview of integral surface constituents.

Observe that I has a natural parameterization in the form of (s, t)-
coordinates. Every point on the surface, given its parametric coor-
dinates (s, t), can be computed by propagating the unique stream-
line starting at C(s) through the application of a numerical integration
method until it reaches t. The goal of any integral surface algorithm is
to construct a geometric approximation I using a sparse set of integral
curves.

Remark that I (and in turn its time lines) need be continuous in
s, e.g. if the surface encounters a boundary of Ω. In this case, the
corresponding integral curve cannot be continued. Similar behavior
is induced by critical points in the flow; while those integral curves
converging to a critical point take infinite time to reach it, other parts of
the surface may flow past and diverge strongly. We refer to both these
phenomena as tearing, and correct approximation of must be treated
with some care. In practical applications, it is safe to assume that an
integral surface exhibits only a finite number of such occurences.

In the next section, we proceed to discuss several approaches that
have been proposed in previous work.

3 PREVIOUS WORK

In the following, we give a brief overview of existing techniques for
integral surface computation, and analyze specific shortcomings that
preclude their application to large time-varying datasets.

3.1 An Overview of Computation Techniques
The research on efficient generation of stream surfaces was essentially
started by Hultquist in [8]. He was the first to describe surface inte-
gration in terms of an advancing front. In his approach, the starting
curve is discretized through a finite set of points, each of which is
used to seed a streamline integration, forming a skeleton of the stream
surface. The streamlines are advanced a single (fixed) integration step
at a time, resulting in a sequence of points for each streamline, and
the advancing front is defined as the polyline connecting the current
streamline points. Each adjacent pair of streamlines form a ribbon,
and the ribbon contains a front segment connecting two streamline
points in a line segment. This segment is advanced by considering the
two diagonals formed by the current front points and the next integra-
tion points on both streamlines, and the shorter diagonal is selected as
the new front segment. Then, to ensure that the front remains continu-
ous, adjacent ribbons are advanced in turn until the front is consistent
once more. This process is repeated until all streamlines have reached
their maximum integration length. During the front advancement, the
triangles spanned between old and new front segments are stored in a
list and make up the final geometric representation of the surface.

Adaptive front refinement was handled by Hultquist in two ways:
First, to adapt the front resolution to stretching of the stream surface,
he proposed a simple criterion based on the distance between adjacent
streamlines; if it exceeds a user-prescribed threshold, a new streamline
is inserted in the middle of the current front segment, and the corre-
sponding ribbon is split in two. Furthermore, a threshold criterion is
applied on the direction of neighboring streamlines, and if they appear
to move in opposing directions, the ribbon is terminated. This crite-
rion reflects the fact that stream surfaces may become discontinuous
at or near saddle-like structures. This method performs well for mod-
erately complex flows, is however limited in efficiency by the use of
fixed step-size integration. Furthermore, it does not cope well with

Fig. 2. Arc length and time parameterization of integral curves can di-
verge over time and span multiple time steps.

folding, shearing or twisting of stream surfaces, since the refinement
strategy does not take these issues into account.

Hultquist’s algorithm was augmented by Stalling in [17] by incor-
porating local topological information into the triangulation process
and slightly modifying the refinement criteria to address some of the
cases mentioned above. For the case of tetrahedral grids, Scheuer-
mann et al.[15] exploited the existence of an analytic flow solution
for tetrahedral grids endowed with linear interpolation to compute a
stream surface on a per-tetrahedron basis. Due to the linear nature of
the vector field inside every grid cell, streamline paths are available in
closed form. While this technique is conceptually elegant, the reso-
lution of the resulting surface is closely tied to that of the underlying
mesh, and the limitation to vector fields given on tetrahedral meshes
is a serious impediment to the treatment of application cases that base
model computations on other interpolation schemes.

Most recently, Garth et al. [4] introduced several modifications to
Hultquist’s original scheme to allow stream surface computation in the
presence of very complex flow structures. By moving from time-based
streamline integration to arc length-based integration and incorporat-
ing front refinement criteria based on curvature, better resolution con-
trol is achieved, and complex flow patterns can be adequately resolved.

In contrast to these methods that compute the surface geometry ex-
plicitly as a triangle mesh, van Wijk[18] gave a global approach that
implicitly represents a family of stream surfaces. Through advection
of a scalar field from the domain boundary through the flow domain,
the computation of a particular stream surface is transformed into the
extraction of an isosurface. The latter problem is well understood,
and many reliable methods are available (e.g. [12]). The generation
of the scalar field itself, however, requires extensive processing. Fur-
thermore, selecting stream surfaces is very non-intuitive, and defining
a suitable boundary field is hard. Cai and Heng[2] have shown that for
a very limited class of flows, so-called principal stream surfaces can
automatically select and compute interesting surfaces.

Aside from explicit construction of stream surface geometry, meth-
ods exist that create the visual impression of a stream surface by us-
ing particles, e.g. [19]. While simple to implement and broadly ap-
plicable, the visual clarity of these schemes is often lacking, as the
depth-enhancing quality of shaded surfaces is lost. More recently,
Schafhitzel et al. [14] described an approach for both stream sur-
faces and path surfaces that relies on the massive integration of par-
ticles on the GPU and renders the resulting point set through a splat-
ting method. While this method offers fast surface integration, it was
demonstrated only for regular meshes, and its suitability for large un-
structured datasets is uncertain. Additionally, by not obtaining an ex-
plicit representation of the surface geometry, point-based methods for-
feit the use of integral surfaces as building blocks for advanced visu-
alization techniques (e.g. [4]).

3.2 Analysis
In practice, Hultquist’s method and its derivatives are most commonly
used. This can be attributed to the fact that they offer reasonable effi-
ciency and applicability to moderately complex flows. However, there
are a number of drawbacks to this class of algorithms.

First and foremost, they do not generalize efficiently to time-
dependent settings, i.e., they do not allow the computation of path
surfaces in large time-varying datasets. An analysis of the original
method shows that in order to achieve a viable triangulation of the
surface, the front advances non-uniformly with time. Therefore, a sin-

gle front advancement pass must potentially make use of many time
steps simultaneously to achieve the necessary temporal interpolation
required for the propagation of the individual front pathlines. While
it is theoretically possible to compute many pathlines in a single pass
over all time steps, a reformulation of the algorithm along these lines
is not efficient since the adaptive refinement mandates the insertion
of new pathlines during the front advancement, requiring (potentially
arbitrarily many) further passes over the dataset. The same drawback
can be observed on the arc length-based integration scheme from [4],
as the varying velocity magnitude of a vector field induces a diver-
gence between the time- and arc length-parametrizations of an integral
curve. Figure 2 illustrates this effect for both schemes.

Secondly, the implementation complexity of Hultquist-type
schemes is enormous. The combination of iterative advancement of
single front segments and the recursive advancement of neighboring
ribbons poses a significant obstacle to the incorporation of different re-
finement criteria. While refinement based on a pair of adjacent integral
curves is straightforward, incorporating more complex criteria such as
curvature (which must be computed from a triple of neighboring front
points) requires a reformulation of the algorithm in a purely iterative
shape. It is our experience that such implementations are highly com-
plex and can be quite fragile with respect to the ordering of different
refinement criteria.

Third, the use of fixed step sizes in the numerical integration of the
underlying integral curves precludes the use of integration techniques
that make use of adaptive step size control, such as the very popular
Runge-Kutta-Fehlberg method (cf. [7]). Therefore, the step size pa-
rameter is subject to a choice between the accuracy of the surface ap-
proximation and the invested computational effort. For complex vec-
tor fields, this typically results in either a too coarsely resolved surface
that may exhibit visual artefacts and is likely incorrect, or a very finely
resolved surface with many millions of triangles that is hard to depict
at interactive speeds and requires extended computation times.

The root cause of many of the outlined problems is to be found
in a lack of separation of surface approximation on one hand and the
generation of a representative mesh that is suitable for rendering on
the other. In this work, we address the outlined issues by effectively
providing separate algorithms for both of these tasks.

Last, we wish to point out that the correctness and accuracy of inte-
gral surface algorithms have not been systematically examined in the
past. As the advancing front is approximated by a curve segment (typ-
ically a line segment or a spline), inserting new integral curves on the
midpoint of such a segment leads to a small error, since its initial posi-
tion is not an actual surface point. This error is propagated throughout
the integration and can, in the worst case, result in a surface geometry
that does not adhere to the vector field under consideration. This prob-
lem is especially aggravated if the surface inherits its interpretation in
terms of the application from the seeding curve, as is the case for e.g.
surface or saddle separation surfaces. Hence it is critical to assess the
qualitative behavior of the overall surface algorithm and specifically
the refinement strategies.

3.3 Integral Surface Visualization

Regarding the topic of visualization, several visualization techniques
have been proposed beyond direct display of the surface. Löffelmann
et al. [11] introduced the concept of stream arrows, i.e. a specific
texture map on stream surfaces that generates arrow-shaped holes in
the surface to address occlusion problems and indicate flow direction.
Garth et al. [4] examined the use of stream surfaces as a generaliza-
tion of slicing planes and employed color mapping to visualize derived
flow quantities on such surfaces. In the same work, stream surfaces
were also applied as a building block for a vortex extraction scheme.
More recently, the application of texture-based flow visualization tech-
niques on stream surfaces in the form of Image-Space Advection was
demonstrated by Laramee et al. [10], and recently generalized to Line
Integral Convolution on point-based path surfaces by Schafhitzel et
al. [14].

4 DIRECT APPROXIMATION OF INTEGRAL SURFACES

In the following, we present a novel technique for the approximation
of integral surfaces in general settings. This approximation is achieved
by the successive approximation of timelines. We first describe a
generic curve refinement algorithm and then use it to construct the
surface approximation.

4.1 Generic Curve Refinement
Let f : [smin,smax]→R3 a piecewise smooth curve with at most finitely
many points of discontinuity, and (si) a monotonic sequence of pa-
rameters covering [smin,smax]. Denote by fi = f (si) the corresponding
sequence of curve points. Then, the piecewise linear interpolant L f of
the fi is an approximation of f .

We next describe a generic algorithm for the adaptive refinement
of this approximation by incremental insertion of new parameters into
the sequence of parameters (si). To achieve this in the presence of
discontinuities, we introduce two predicates

Qdiscont : (si−1, fi−1),(si, fi),(si+1, fi+1) $→ {true, false}

and

Qrefine : (si−1, fi−1),(si, fi),(si+1, fi+1) $→ {true, false}.

that estimate the properties of the approximation over a triplet of ad-
jacent parameters/curve points. The first predicate responds true if
a discontinuity of first or second order is estimated from the current
sequence of points, and the second predicate indicates where the ap-
proximation quality may be insufficient and new parameters should be
inserted to generate a better approximation.

We formulate the following iterative refinement algorithm, based
on midpoint insertion:

1. Let (si) and (fi), i = 0, . . . ,M an (externally provided) initial ap-
proximation, and let Sinsert = /0.

2. For each triplet of adjacent points (si−1, fi−1), (si, fi),
(si+1, fi+1) where Qdiscont evaluated true, split the interval
[smin,smax] into two subintervals [smin,si] and [si+1,smax], and
recurse to step 1 for each of them.

3. For each triplet of consecutive points (si−1, fi−1), (si, fi),
(si+1, fi+1) where Qrefine evaluates true, insert 1

2 (si + si+1) and
1
2 (si−1 + si) into Sinsert.

4. If Sinsert = /0, finish.

5. Compute the sequence Finsert by evaluating f at the parameters
in Sinsert, and merge the Sinsert and Finsert into the sequences (si)
and (fi), respectively. Continue at step 2.

Depending on the choice of predicates, this algorithm refines the
parameter sequence until a certain level of quality, as measured by the
predicates, is reached. If a point of discontinuity is detected, the prob-
lem is split into two subproblems, which are then recursively refined.
If no a priori information about f is available, a uniform sequence of
(si) of a minimum resolution is a good choice.

Remark that in the above description, since the predicate Qre f ine
is evaluated over two adjacent segments, and without additional infor-
mation. Hence, we must insert both interval midpoints into (si), as
inserting either midpoint might not improve the curve discretization.
While limited choices of Qre f ine allow a reformulation of the above
algorithm in terms of point pairs or single segments, we opt for the
above more general description in the interest of uniform presentation.

The present algorithm is built on the requirement that after a finite
number of refinement iterations, Qrefine will evaluate false for every
triplet of nodes. To guarantee this, we limit our choice of predicates to
the thresholding of curve properties, derived from triplets of sequence
points, that converge to zero as a smooth curve is increasingly refined.

Typical choices that fulfill this requirement are distance between suc-
cessive fi, second differences of fi, inter-segment angle, triplet triangle
area, or any combination of these.

Conversely, the presence of discontinuities of f will inhibit the con-
vergence of such criteria. Therefore, Qdiscont must serve as a robust es-
timator of curve discontinuities, such that refinement is not attempted
across the discontinuity and proceeds only over the smooth regions of
f . A good choice is a large upper bound on the magnitude of the first
derivative and second derivative of f , as approximated by the finite
differences over point triplets.

Given such a choice of predicates, the refinement algorithm is very
robust, even in the presence of numerical errors. In the next section, we
will apply this algorithm to the incremental refinement of time lines.

4.2 Successive Time Line Approximation
We now formulate integral surface computation in terms of succes-
sive approximation of time lines. In the following, the notations of
Section 2 apply.

Let (tn), n = 0, . . . ,N a sequence of time parameters covering the
interval [T0,T1], and we assume that the time line In is given as a finite
number of linear or smooth segments. Then, the next time line

In+1(s) := S(tn,LIn(s) ; tn+1)

is approximated using the algorithm given above, where again L de-
notes the piecewise linear interpolant of In,

The sequence is started by letting I0 := C and terminated once In

is approximated. Remark that, in order to approximate the time line
In+1, instead of performing refinement with a uniform parameter se-
quence, we reuse the sequence of parameters of In. This guarantees
that the time lines are increasingly refined as their complexity in-
creases. Hence, the set of parameters of In+1 is always a superset
of the parameters of In.

Since timeline points result from solutions of the ordinary differen-
tial equation (1 and v is assumed Lipschitz-continuous, local approxi-
mation errors between successive time lines In and In+1 are bounded.
Hence, the accumulated, global approximation error for IN is also
bounded and a function of the local error. This ensures that correct-
ness and accuracy of integral surfaces is achievable by limiting the
local error. Unfortunately, except for the simplest choices of v, it is
not possible to quantify the above statement. We examine this issue in
more detail through numerical experiment in Section 5.2.

Before we proceed to discuss more practical aspects of integral sur-
face approximation, we wish to point out two important properties of
the above scheme. First, it is local in time, in the sense that to approx-
imate In+1 from In, the algorithm makes use of the values of v only
over the interval [tn, tn+1]. Second, once In+1 has been approximated,
the set of integral curves corresponding to the set of parameters of
In+1 after refinement form a skeleton of the surface over the interval
[tn, tn+1].

4.3 Efficient Surface Computation
The above surface approximation scheme is built on the integral curves
propagating along the sequence of time lines, and they must be approx-
imated through numerical integration.

Typically, for each of these curves, a chosen numerical integration
scheme outputs a sequence of points, according to either fixed or adap-
tive choices of step size, that are then used to represent the integral
curve in piecewise linear fashion. If graphical requirements must be
met, such as an upper bound on the angle of successive line segments,
the step size must be forcibly chosen to fulfill these requirements, or
the curve must be resampled. This in general stands in the way of max-
imum efficiency and accuracy of the numerical computation of integral
curves. In order to avoid this limitation, we make use of a certain class
of integration schemes with dense output, for which the output is not
a sequence of points but rather a sequence of polynomials, typically
globally at least C1-continuous and provably convergent to the actual
solution (we refer the reader to e.g. [5, 16] for an in-depth discus-
sion). For the specific class of Runge-Kutta methods that are typically

Fig. 3. Overview of the integral surface computation through successive
time line approximation (top image) and resulting surface triangulation
(bottom image) in the Delta Wing dataset.

used for vector field visualization, these piecewise interpolants can be
constructed directly from the Runge-Kutta stages, and thus incur no
further computational cost. We make use of the fourth-order adaptive
DOPRI5 integration scheme described by Prince and Dormand in [13].
It is then a simple matter to postpone the generation of a discretization
of each integral curve for graphical purposes until it is actually needed.
Hence, the integration process can proceed with maximum efficiency
over the time intervals [tn, tn+1] as discussed above.

In practical applications, v may contain critical points or object
boundaries, hence integral lines may not continue from In to the next
time line In+1. Such cases, as well as integral curves converging to a
critical point, are indicated by an error condition of the underlying nu-
merical scheme. Owing to the robustness of the described refinement
scheme, we can still perform time line approximation in an unchanged
way in these cases. Then, to approximate In+2, we remove the inter-
vals containing terminated integral curves from the initial approxima-
tion of In+2 and proceed with the refinement process.

Any discontinuities of first or second order introduced by this pro-
cedure into the time line are automatically handled by the refinement
scheme, and the timeline is refined until the accuracy estimate is met.
Besides conceptual simplicity, this approach has two further advan-
tages. First, the intersection curves of the integral surface with object
boundaries are resolved according to the refinement criteria, and thus
artifacts are avoided near boundaries. Second, the overall determinism
and error analysis of the surface approximation process remains valid,
and accuracy of the resulting surface is not adversely impacted by the
presence of boundaries.

Note that in comparison to Hultquist’s stream surface algorithm, we
do not attempt to remove points from the advancing front (coarsening),
but instead only perform refinement. This is based on the following
observations. First, in any but specifically chosen analytic cases, the
complexity of the front usually increases as it is advected through the
flow. It is typically heavily deformed, but cases where it flattens out
in a nice manner are very unlikely in practice. Hence, there is typi-
cally very little opportunity for coarsening. Second, accuracy of the
resulting surface can suffer greatly from overeager coarsening, and
parameters required to steer the coarsening process add an additional
layer of complexity and make analysis of the surface approximation
algorithm much harder. In our opinion, the minimal gain achievable
through coarsening does not warrant the additional complexity.

By performing integral surface approximation as outlined above,
we have effectively achieved a decoupling of the approximation
through a sequence of time lines and connecting integral curves on one
hand, and the generation of a graphical representation on the other. We
next turn our attention to the latter problem.

4.4 Graphical Representation
After all time lines have been iteratively approximated, we obtain a
skeleton of the surface, consisting of a number of piecewise polyno-
mial integral curves. Each of these curves corresponds to a unique
s-parameter of the canonical integral surface parameterization. To find
a good discrete approximation of these curves, we apply the iterative
refinement scheme of Section 4.1 to each integral curve to generate a
sequence of time values tk

s for the specific purpose of graphical rep-

resentation of the integral curve corresponding to s, and we choose
the sequence of time values given by the numerical integral as an ini-
tial discretization. In other words, integral curves are refined with the
same predicates that were before used for time lines.

We then generate a triangulation from this set of integral curves
by grouping them into ribbons, and triangulating each ribbon using a
shortest diagonal approach.

More specifically, we begin with partitioning the set of all integral
curves into two disjoint sets NA and NI , where NA (active set) contains
all integral curves that start at T0, and NI (inactive set) contains the
remainder. Then for each pair of integral curves S0 and S1 in NA that
belong to an adjacent pair s0 and s1 of s-parameters, we choose an ac-
tive edge consisting of the first two points of the integral curves. Then,
we examine the two diagonals connecting the current edge points and
next points on both curves, and take the shorter one as new active edge,
simultaneously generating a triangle formed by the old and new active
edge points. Before the active edge is advanced, we determine whether
the new active edge will cross a timeline, in which case we must de-
cide if the ribbon needs to be split. This is determined by looking at
the subset of inactive integral curves in NI with s-parameters spanned
by the ribbon; If the starting time of one of these is crossed by the
active edge, the ribbon is split into a number of ribbons correspond-
ing to the number of crossed integral curves, and the corresponding
curves are removed from NI . Consequently, a merging triangulation is
created, and each of the ribbons resulting from the split is triangulated
recursively. The algorithm terminates if the active edge moves beyond
the last point of either integral curve.

This algorithm generates a crack-free triangle-based representation
of the integral surface approximation obtained Section 4.1, which can
then be directly rendered to achieve a visual representation of the ap-
proximated integral surface. Figure 3 depicts both the original se-
quence of time lines and the triangle mesh generated from it. The
triangulation is directly derived from the timeline approximations.

Note that while it is possible to post-process the generated triangle
mesh to reduce its size or generate level-of-detail representations for
faster rendering, we have not explored these issues here due to limited
space.

After having presented our algorithm in a more theoretical fashion
above, we now turn to its application on concrete application datasets.

5 PRACTICAL CONSIDERATION

In the following, we will describe the application of our integral sur-
face approximation scheme to compute stream surfaces and path sur-
faces in application datasets. The implementation of the algorithms
presented above is easily achieved if facilities for interpolation in large
datasets are available.

5.1 Choice of parameters
The successive time line approximation that is the core of our integral
surface algorithm requires as input a number of parameters. We adopt
the philosophy that the selection of parameters should first and fore-
most accomplish correct and accurate integration of the surface and
address efficiency as a secondary concern.

First, a sequence of time parameters must be supplied which deter-
mines at which points in time a time line is approximated. In the case
of a discretely represented time-varying vector field, the time values
of individual time steps that cover the interval [Tmin,Tmax] are a natu-
ral choice, and we have adopted it in our experiments. In the case of
a stationary or analytically described vector field, however, no such a
priori choice exists, and we generally use an equally spaced sequence
of time steps over [Tmin,Tmax] that is determined by the user through
the specification of a ∆t parameter that reflects the dataset characteris-
tics. Usually, such parameters are available by considering the context
in which the dataset was generated or described. If ∆t is chosen much
smaller than optimum, algorithm efficiency may suffer since increased
effort is required for the numerical integration of the surface skeleton;
however, in our experience such a choice does not negatively influ-
ence the accuracy of the resulting surface. On the other hand, if ∆t

is much larger than required, time line refinement may not occur fre-
quently enough to detect the necessity of refinement, and the resulting
surface may not be correct. By using the simple heuristic of examin-
ing the average number of integration steps that the DOPRI5 scheme
takes over the interval [tn, tn+1] = [tn, tn + ∆t], it is possible to check
whether the time step may be much larger than desirable. In our case,
if the average number of steps per integral curve exceeds 10, we halve
the time step and retry. This simple logic has worked very well in our
experiments.

At first glance more difficult is the selection of adequate refinement
predicates. While underrefinement can lead to incorrect surfaces, over-
refinement is equally undesirable. As discussed in Section 4.1, we
have in this work considered threshold predicates on curve properties
derived from time line point triplets. More specifically, in the notation
of Section 4.1, we have examined the following quantities:

inter-node distance δ := || fi+1− fi−1||

inter-segment angle γ := % (fi−1, f i, fi+1)

triangle area A := 1
2 |(fi− fi−1)× (fi+1− f i)|

The refinement predicate Qrefine is then given in terms of one or
more of these quality criteria and associated thresholds. If any of these
thresholds is exceeded, the predicate evaluates true. While δ basically
indicates refinement in regions of time line strecthing, and hence re-
sponds to a large derivative along the time line, γ is essentially a mea-
sure of time line curvature. The triangle area A combines aspects of
both derivative and curvature. While all of these refinement criteria
are used successfully in various applications of curve refinement, the
empirical nature of vector field datasets and the strongly non-uniform
shape of time lines does not permit a clear statement or analytical ex-
amination to determine which of these criteria is best chosen for time
line refinement. We have therefore turned to numerical experiment to
examine these criteria more closely.

5.2 Numerical Experiments
To verify the correctness of our refinement scheme and to be able to
compare different refinement criteria in terms of correctness and accu-
racy, we perform the following numerical experiment. Given a dataset
and a seeding curve C and a time interval [Tmin,Tmax], we first com-
pute a highly resolved time line ĨN by propagating a very large number
K of integral curves directly from the seeding curve. These integral
curves are seeded equidistantly with respect to s on C. We interpret
the time line spanned by these integral curve endpoints as the ground
truth against which to compare the results of our method. Then, for
each experiment, we select a fixed sequence of time parameters (tn),
a fixed quality criterion from the list given in the previous section,
and a sequence of progressively lower thresholds that should require
increasing refinement. We then compute the sequence of time lines
as outlined above, resulting in the final timeline IN . To measure the
approximation quality of our algorithm, we then compare ĨN and IN

using the error measures

E∞ := max
k=1,...,K

∣∣∣
∣∣∣LIN(sk)− ĨN(sk)

∣∣∣
∣∣∣

and

E2 :=
1
K ∑

k=1,...,K

∣∣∣
∣∣∣LIN(sk)− ĨN(sk)

∣∣∣
∣∣∣
2
.

Figure 4 (a)-(c) illustrates the results of these experiments for the
case of the time-varying Ellipsoid dataset (see Section 6 for a descrip-
tion of this dataset). It is fairly smooth, but contains many time steps
and therefore allows integral surfaces that span a large time interval.
We observe that decreasing area and distance thresholds lead to in-
creased refinement and a decrease in overall error, while the angle cri-
terion does not induce a significant reduction in error. The distance cri-
terion apparently allows for a quicker reduction in error (Figures 4(a)

 0.001

 0.01

 0.1

 1

 10

 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

m
ax

. e
rro

r

threshold magnitude

area refinement
dist. refinement

angle refinement

(a)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

av
g.

 e
rro

r

threshold magnitude

area refinement
dist. refinement

angle refinement

(b)

 0.001

 0.01

 0.1

 1

 10

 10 100 1000 10000 100000

m
ax

. e
rro

r

number of integral curves

area refinement
dist. refinement

angle refinement

(c)

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

m
ax

. e
rro

r

threshold magnitude

area refinement
dist. refinement

(d)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

av
g.

 e
rro

r

threshold magnitude

area refinement
dist. refinement

(e)

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1 10 100 1000 10000

m
ax

. e
rro

r

number of integral curves

area refinement
dist. refinement

(f)

Fig. 4. Results of numerical experiment in the Ellipsoid (top row) and Delta Wing (bottom row) datasets. Note that for the Delta Wing results, the
angle refinement failed to produce approximate surfaces and hence no results are shown.

and 4(b)), a plot of error against the number of integral curves (Fig-
ure 4(c)) demonstrates that distance and area criteria perform equally
well, and we conclude that the area criterion offers more gradual con-
trol of refinement.

Figure 4 (d)-(f) shows the results of the same experiment for the
time-varying Delta Wing dataset, which is described below in Sec-
tion 6. It is quite challenging from a numerical point of view, as in-
tegration may be unreliable in close vicinity of the wing and delivers
noisy results. Therefore, this dataset is ideally suited to determine
the robustness of our method. The first interesting result is that us-
ing the inter-segment angle criterion, we are unable to obtain a correct
and accurate surface with a reasonable number of integral curves. If
the threshold on γ is chosen very conservative, refinement is very ag-
gressive and available memory is quickly exceeded before the surface
computation finishes. Choosing a looser bound, however, does not re-
sult in an accurate surface, as the timelines diverge quickly from the
reference timelines. Hence, we conclude that the inter-segment angle
is not a viable criterion in this setting. For the area and distance cri-
teria, however, the conclusions of the first experiment are essentially
confirmed.

5.3 Performance

In general, it is hard to give a direct performance metric for integration-
based techniques, since the empiric nature of vector field datasets does
not allow for a straightforward estimate of e.g. the length of integral
curves. Hence, results for different datasets are not comparable. We
therefore limit ourselves to general observations on the performance
characteristics of the present scheme.

Our algorithm allows the treatment of even very large time-varying
datasets on a typical commodity workstation. The limiting factor in
our case is not overall dataset size, but rather the number of time steps
that must be kept in memory at any given time to interpolate in the
interval [tn, tn+1] in order to perform numerical integration. Typically,
linear or cubic temporal interpolation is used, and hence this number
is small. As the time line at tn+1 is completed, no longer required time
steps can be evicted from main memory and newly required ones can
be loaded. Overall, our algorithm possesses streaming characteristics
and requires only a single pass over the time steps required to perform

the integral surface approximation.
Furthermore, in the case of unstructured meshes, computational

cost is dominated significantly by the cost of vector field interpolation.
Various approaches exist to accelerate such vector field queries, and
we employ a technique by Langbein et al. [9] that makes use of a kd-
tree based domain decomposition and offers very good performance
and reduced memory footprint compared to other such schemes. In
addition, by using the DOPRI5 integration scheme, we make maxi-
mal use of adaptive integration and avoid unnecessary step reductions
that would in turn generate more interpolation queries. The memory
overhead introduced by storing complete polynomial representations
of individual integral curves until the surface is triangulated is in our
experience negligible.

5.4 Datasets
In this section, we briefly describe the datasets we have used for nu-
merical experiments and to generate the images in the remainder of
this work.

Ellipsoid The Ellipsoid dataset results from an unsteady simula-
tion of the flow around an ellipsoid, where the angle of the surrounding
flow changes over time. Vortex shedding can be observed on the el-
lipsoid boundary. The data consists of a uniform unstructured mesh of
2.6 million points, over which the flow field is given in 400 time steps.

Delta Wing In order to study the effects of vortex breakdown in
aviation, an unsteady simulation of a delta wing configuration exhibit-
ing vortex breakdown was performed. We have selected this dataset
since it has proven difficult from a numerical perpective in previous
work. Hence, it represents an ideal numerical testcase for the robust-
ness of our method. The dataset consists of 1000 time steps over a
constant grid with 18 million tetrahedral elements.

Car This steady simulation models the flow around a car. Vortex
shedding can be observed on various parts of the car, and the flow
around the rear view mirrors poses a difficult case for adaptive timeline
refinement, which our algorithm accomplished well (see Figure 7(b)).
The flow vector field is represented on an unstructured mesh with 15
million elements.

Fig. 5. Path surface self-intersection in the Ellipsoid dataset. Transpar-
ent surface ambiguity is resolved by explicit representation of intersec-
tion curves (yellow).

6 VISUALIZATION

In the following section, we briefly turn our attention to integral sur-
face based visualization and discuss some approaches, and proceed to
give some examples.

Transparency and Color Maps Immediate display of integral
surfaces allows one to grasp the folding, shearing and twisting na-
ture of the flow sheet spanned by the surface. Such behavior can be
observed even in static images through surface depth cues given by
lighting and shading (cf. Figure 6(a)). However, typical application
vector fields such as those resulting from flow simulations often in-
duce the surface to wrap around itself, creating occlusion problems.
Transparent rendering can provide a partial solution in this case. We
have however found it beneficial to make use of the natural (s, t)-
parameterization of an integral surface to employ gradual color map-
ping, such that different layers in a transparent image differ by color.
This greatly enhances perception of the depth structure of such a trans-
parently rendered integral surface. Figure 6(b) shows the same path
surface as Figure 6(a) in a color mapped rendering. The depth of the
different layers of the surface wrapping around the forming vortex can
be clearly identified by color. Figures 7 demonstrates the same type of
rendering on the car dataset.

Self-Intersection In the case of a stationary vector field, a stream
surfaces cannot transversally intersect itself or any other stream sur-
face. This is a consequence of the fact that at any intersection point,
both surfaces or surface parts must be parallel to the vector field, rul-
ing out the transversality. However, for time-dependent vector fields,
this restriction does not hold. We have found that the resulting self-
intersections can be visually confusing, especially in transparent sur-
face renderings. We therefore choose to explicitly incorporate the self-
intersection curves into the rendering in these cases to resolve the am-
biguity created by surface transparency. Figure 5 shows an example
from an early time step of the Ellipsoid dataset in which the vortex
behind the ellipsoid is in the process of forming.

Texture Mapping Texture mapping provides a simple way to
make parts of an integral surface partially or fully transparent. We
make use of this property in the following way. By applying a texture
map that is fully transparent except for a set of thin lines, and mapping
this texture onto the surface such that the lines coincide with surface
lines of constant t-parameter, we effectively obtain a depiction of time
lines. Conversely, mapping along lines of constant s-parameter results
in a depiction of pathline or stream ribbon character. Furthermore, if
the texture is continuously shifted along s or t, respectively, an anima-
tion is obtained that illustrates the change of such lines as they traverse
the surface. Figures 6(c) and 6(d) show the resulting visualizations.

7 CONCLUSION

In the present work, we have introduced a novel algorithm for the
computation of integral surfaces. Our method is based on the clean
separation of integral surface approximation from the generation of a

graphical representation. This separation allows us to overcome the
limitations of earlier techniques and successfully treat the computa-
tion of path surfaces in large time-varying datasets. The presented
technique is generic with respect to the refinement criteria, and we
have examined several choices and provided numerical experiments
that allowed us to judge their respective performance as well as verify
the overall correctness of our approach.

For future work, we are interested in applying our algorithm to the
problem of surface separation and a computation of the resulting sepa-
ration surfaces in the case of unsteady flows. Regarding the generated
surface triangulation, we would like to examine the suitability of post-
processing to optimize the triangulation. Furthermore, extension of
this work to streak surfaces and time surfaces seems achievable.

ACKNOWLEDGEMENTS

The authors wish to thank Markus Rütten from DLR Göttingen for
supplying some of the datasets treated here and insightful discussion.
We are also very much indebted to our colleagues at the Insitute for
Data Analysis and Visualization for discussion and feedback.

REFERENCES

[1] A. A. Andronov. Qualitative Theory of Second-Order Dynamic Systems.
John Wiley & Sons, 1973.

[2] W. Cai and P.-A. Heng. Principal stream surfaces. In VIS ’97: Pro-
ceedings of the 8th conference on Visualization ’97, pages 75–ff., Los
Alamitos, CA, USA, 1997. IEEE Computer Society Press.

[3] U. Dallmann. Topological Structures of Three-Dimensional Flow Sepa-
rations. Technical Report 221-82 A 07, Deutsche Forschungs- und Ver-
suchsanstalt fuer Luft- und Raumfahrt, 1983.

[4] C. Garth, X. Tricoche, T. Salzbrunn, and G. Scheuermann. Surface tech-
niques for vortex visualization. In Proceedings Eurographics - IEEE
TCVG Symposium on Visualization, May 2004.

[5] I. Gladwell, L. F. Shampine, L. S. Baca, and R. W. Brankin. Practical
aspects of interpolation in runge-kutta codes. SIAM J. Sci. Stat. Comput.,
8(3):322–341, 1987.

[6] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Sys-
tems, and Bifurcations of Vector Fields. Springer-Verlag, 1983.

[7] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential
Equations I, second edition, volume 8 of Springer Series in Comput.
Mathematics. Springer-Verlag, 1993.

[8] J. P. M. Hultquist. Constructing stream surfaces in steady 3d vector fields.
In A. E. Kaufman and G. M. Nielson, editors, Proceedings of IEEE Visu-
alization 1992, pages 171 – 178, Boston, MA, 1992.

[9] M. Langbein, G. Scheuermann, and X. Tricoche. An efficient point loca-
tion method for visualization in large unstructured grids. In Proceedings
of Vision, Modeling, Visualization, 2003.

[10] R. S. Laramee, C. Garth, J. Schneider, and H. Hauser. Texture advection
on stream surfaces: A novel hybrid visualization applied to cfd simulation
results. In Data Visualization, Proceedings of the Joint EUROGRAPHICS
- IEEE VGTC Symposium on Visualization (EuroVis 2006), 2006.

[11] H. Löffelmann, L. Mroz, E. Gröller, and W. Purgathofer. Stream arrows:
enhancing the use of stream surfaces for the visualization of dynamical
systems. The Visual Computer, 13(8):359 – 369, 1997.

[12] G. M. Nielson. Dual marching cubes. In VIS ’04: Proceedings of the
conference on Visualization ’04, pages 489–496, Washington, DC, USA,
2004. IEEE Computer Society.

[13] P. J. Prince and J. R. Dormand. High order embedded runge-kutta formu-
lae. Journal of Computational and Applied Mathematics, 7(1), 1981.

[14] T. Schafhitzel, E. Tejada, D. Weiskopf, and T. Ertl. Point-based stream
surfaces and path surfaces. In GI ’07: Proceedings of Graphics Interface
2007, pages 289–296, New York, NY, USA, 2007. ACM.

[15] G. Scheuermann, T. Bobach, H. Hagen, K. Mahrous, N. Hahman, and
K. Joy. A tetrahedra-based stream surface algorithm. In IEEE Visualiza-
tion Proceedings, 2001.

[16] L. F. Shampine. Interpolation for runge-kutta methods. SIAM J. Numer.
Anal., 5, 1985.

[17] D. Stalling. Fast Texture-Based Algorithms for Vector Field Visualization.
PhD thesis, Freue Universität Berlin, 1998.

[18] J. van Wijk. Implicit stream surfaces. In Proceedings of IEEE Visualiza-
tion ’93 Conference, pages 245–252, 1993.

[19] J. J. van Wijk. Rendering surface particles. In IEEE Visualization Pro-
ceedings, pages 54 – 61, 1992.

(a) Opaque surface, inner structure occluded. (b) Transparent surface, different layers identified by color mapping.

(c) Time line texture mapping. (d) Pathline-type texture mapping.

Fig. 6. Path surface visualization of vortex shedding on an ellipsoid. The surface consists of 508.169 triangles.

(a) Overview with a single stream surface. (b) Close-up of the flow structure behind the mirror.

Fig. 7. Visualization of flow around a car using a single transparent stream surface, consisting of 1.031.111 triangles.

