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Abstract— Developments in optical microscopy imaging have
generated large high-resolution datasets that have spurred med-
ical researchers to conduct investigations into mechanisms of
disease, including cancer, at cellular and sub-cellular levels. The
work reported here demonstrates that a suitable methodology
can be conceived which isolates modality- dependent effects from
the larger segmentation task and that 3D reconstructions can
be cognizant of shapes as evident in the available 2D planar
images. In the current realization, a method based on active
geodesic contours is first deployed to counter the ambiguity
that exists in separating overlapping cells on the image plane.
Later, another segmentation effort based on a variant of Voronoi
tessellations improves the delineation of the cell boundaries
using a Bayesian formulation. In the next stage, the cells are
interpolated across the third dimension thereby mitigating the
poor structural correlation that exists in that dimension. We
deploy our methods on three separate datasets obtained from
light, confocal and phase-contrast bright field microscopy and
validate the results appropriately.

Index Terms— cellular reconstruction, segmentation, tessella-
tions, microscopic imaging

I. INTRODUCTION

In this work, we focus on the three-dimensional recon-
struction of microscopic cellular structures. A reconstruction
of cellular structures when combined with genetic/molecular
expressions will further the understanding of disease [2], [19].
More importantly, three-dimensional reconstruction will allow
biologists to see beyond the 2D image planes that they are
accustomed to.

Figure 1(a) shows a typical image of a tissue employed in
prototypical phenotyping studies [14]. Note the clear lack of a
global 3D description of microscopic structures that populate
each of the image planes. The cells on each plane are best
identified by the presence of nuclei; however, the extent and
proliferation of the nuclei in typical cellular constellations
is not easily demarcated in 3D. Further, tubular structures
(e.g., ducts) which are prevalent in lesser numbers can only
be identified on each slide as a projection of a complex
tortuous 3D object. The imaging plane does not slice the 3D
object normal to its axis and hence the profile on consecutive
projections is prone to rapid changes in consecutive slices
(Figure 7a). Transfer function based visualization fails to
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resolve hidden 3D structures since the structural correlation
across image planes is only partial (see Figure 1(c)).

The process of acquisition (slicing, staining etc) creates poor
3D correlation in image color, gradients and structures. Even
after corrective registration procedures, one realizes that the
sections are not fine or thin enough to capture 3D profiles
of cells/nuclei. Reconstruction of microscopic structures, on
the other hand, allows for the easy location and measurement
of changes in the cellular complex as a result of biological
events including phenotyping. The end result of such an effort
is a set of segmented and labeled structures. Rendering these
segmented and labeled structures allows for further visual
interpretations of the data.

Figure 2 motivates the recurring problems with yet another
microscopy dataset — confocal images of the zebra fish em-
bryo. The dataset describes an evolving embryo from seed
cells into a significant critical mass. Nevertheless, we observe
that renderings of raw data cause the cells to appear diffused in
space. In confocal microscopy, the sectioning is accomplished
optically. However, the optical resolution along the z-axis is
limited and results in poor resolution of structures across the
principal xy planes.

Proposed Approach: Our framework is composed of three
conceptual stages. The first stage is modality-dependent,
wherein a coarse segmentation result is obtained. This stage
uses a shape model of a nucleus. The second stage is less
dependent on the modality and improves the results of segmen-
tation by exploiting knowledge of cellular arrangements. The
third component allows the extrapolation of shapes into the
third dimension (z—axis). This separation of the reconstruction
process into these three stages permits the development of
robust and flexible algorithms. Thus, a single methodology
and a comprehensive software suite can effectively process
and analyze microscopy data from a variety of sources and
our approach marks a departure from normal practice, whereby
tools are developed separately for each modality.

i. Modality-dependent Segmentation: Given the variability
in microscopy data, segmentation is usually the first step of
any analysis protocol. The nucleus/cell forms the fundamental
biological entity of interest. Often, nuclei appear as overlap-
ping or touching each other on 2D image planes. An image
of a nucleus is formed from an orthographic projection of
the 3D structure in a slice when light traverses through it.
Hence, in reality, it is possible that the nuclei do not even
touch each other in 3D. Identifying each nucleus separately
in a biologically consistent fashion is non-trivial. While some
histological stains provide viable clues in the form of sharp
color-space gradients at the boundaries [4], others exhibit a
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Reconstruction challenges of histological serial sections from light microscopy. (a) A section of a mice mammary duct with labeling. (b) Zoomed

versions showing two nuclei that appear coalesced together. The yellow contour represents the nucleus foreground. Note the presence of a neck region (white
arrows) marked by color intensity gradients. (c) Visualization of a duct axial cross-section reveals no cellular information. (d) Enhanced visualization showing

ductal epithelial nuclei after applying our framework.

narrow neck at the site of overlap between two nuclei [25].
Please refer, for example, to Figure 1(b) wherein a pair of
nuclei are shown with color gradients and a narrow neck
indicated by the white arrows. Nevertheless, there is no
approach that elegantly incorporates all available cues and
shapes into a viable segmentation exercise. We implement a
geodesic active contours solution incorporating shape priors
in a level-set framework to provide coarse segmentations that
can distinguish and mark neck regions. It should be noted that
the initial segmentation for the active contours evolution can
be achieved from the use of a modality-dependent threshold
or a template (derived from the point-spread function of the
instrument).

ii. Modality-independent Segmentation: The above-
described level-set framework provides tuneable parameters
to account for modality-specific effects such as image
intensities, gradients, and nucleus shapes in determining a
coarse segmentation. However, there is tremendous variation
of the nucleus entity as captured in digital form in the
same data. There are several biological reasons as to why
the color and shape of a given entity varies; the stage in
the cell-division cycle, the effect of malignancy and other
reasons. At best, the parameter settings of the earlier stage
describe an average cell in the given ensemble.

One of the novel contributions of this work, is the use
of tessellations to provide refined segmentations. Rather than
trying to capture boundaries correctly, a more meaningful
solution is to tessellate the image into regions that house
an individual nucleus completely. This stage makes use of
the coarse segmentations from the earlier stage. Our initial
tessellation-of-choice is based on the centroidal Voronoi tes-
sellations (CVT) [7]. The optimal placement of the tessellating
lines are guided by a Bayesian probabilistic model of nuclei
separation. There is yet another motivation for using the
tessellation strategy.

Cells as opposed to nuclei are not visible under popular
staining protocols such as those used in histology (H&E) or
confocal images (Draq5). In such circumstances, the follow-
ing question arises: how does one place limits on the cell
extents. Cell membranes have complex topology that is not

yet completely understood. Hence, each demarcated region in
a tessellated space neatly encapsulates a cell (containing the
nucleus) ideally and elegantly delineates all natural neighbors
(necessary for characterizing). Our philosophy of using such
an approach originated after long interactions with the biolo-
gists and determining their needs.

iii. Intermediate Slice Interpolation: The correspondence
of nucleus profiles is not maintained along the stacking
direction. Assuming that a nucleus is roughly spherical in
shape, the inter-slice thickness is much larger than the nucleus
diameter. Under-sampling artifacts are visible during the 3D
visualization of the stack. For instance, all the nuclei profiles
are only visible as a dark ductal wall in Figure 1(c). Similarly,
in Figure 2(b), nuclei appear to be linearly stretched. In our
approach, intermediate slices are interpolated between any two
existing slices based on a derived nucleus shape model and
nuclei locations observed in the terminal image planes.

Thus, we obtain effective high-resolution reconstruction
of the micro-cellular anatomy as shown in Figure 1(d) and
Figure 2(d). Note the clearly demarcated ductal walls and
cell boundaries, thus mitigating the two prominent ill-effects of
serial-section imaging depicted in Figure 1(b), Figure 1(c) and
Figure 2(b). Figure 8 and Figure 10 show additional renditions
of the reconstructed cellular environments in light and confocal
data respectively.

The rest of the paper is organized as follows. In Section II,
we describe related work in visualization and imaging forums.
Section III explains our 2D cellular segmentation methods,
while Section IV introduces our method of tessellations. Later
Section V describes the generation of intermediate slices
with a nucleus model. Section VI showcases some of our
reconstruction and validation efforts when applied to three
different microscopy modalities. Finally, in Section VII, we
provide a summary and describe our plans for the future.

II. RELATED WORK

In this section, we will review work relevant to 3D visu-
alization and reconstruction of cellular data from microscopy.
Where necessary, other relevant work pertaining to level-set
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Fig. 2. Reconstruction challenges in confocal images. (a) A typical image showing biological structure composed of cells of the embryo of a zebra fish. (b)
A 3D rendering of a small volume in the original data with appropriate voxel spacing. (c) A reconstruction of the same volume using cell segmentations and

interpolation. (d) A rendering of all the segmented cells.

techniques, general cell segmentation approaches and tessel-
lations will be described.

Our goals require us to achieve reconstruction at a cellular
level in the presence of serious under-sampling. A 3D visual-
ization/reconstruction algorithm may only be deployed when
the dataset is registered, has sufficient sampling resolutions
in all three dimensions and presents sufficient continuity in
colors, gradients and illumination etc. Hence, direct volume
rendering using transfer functions has limited scope of applica-
tion. Early visualization research of confocal microscopy data
takes cognizance of these difficulties [13]. Existing visualiza-
tion research in this domain has been restricted to developing
GPU-based techniques [27], hardware accelerated rendering
software and algorithms [5], [22] and texture-based transfer
functions [26].

In serial-section microscopy, information is available on a
per image basis with little or no correspondence of structures
at a cellular level. Typically, one segments each image into
various components and regions and then achieves alignment
across the images through a process of registration [3], [9].
Work presented in [8] follows this mantra successfully to
achieve tangible reconstructions. We employ a similar strategy
towards reconstructing 3D cellular geometry. However, as
mentioned earlier in Section I, we address specific challenges
that these tasks pose for the given data.

Previously, in [23], we described a pipeline to visualize
histological stacks derived from the mice placenta organ.
The emphasis therein was not on reconstructing the cellular
geometry. We use level set methods to obtain coarse 2D
cellular segmentation. The geodesic active contours approach
with a level-set implementation causes the contour to halt at
object boundaries exactly. Leventon et al. [15] extended the
geodesic active contours method with an additional shape-
influenced term in the driving PDE using a maximum a-
posteriori (MAP) estimate of the position and shape of the
object in the image.

We refine our coarse segmentations using tessellations em-
bedded in the image. Tessellations divide a region using geo-
metric hyperplanes thereby isolating the entities-of-interests

(e.g., nuclei). The centroidal Voronoi tessellations (CVTs)
have inspired the development of several useful segmentation
and visualization algorithms [7]. Recently, Du et al. [7]
showed the applications of CVT-based vector quantization
to the visualization of flow vectors. In our case, the CVTs
are not always the optimal tessellations in the presence of
overlapping and anisotropic nuclei shapes. Mosaliganti et
al. [17] developed a new representation of the CVTs for
clustering applications. The CVTs were parameterized in a
barycentric coordinate representation space of the Voronoi
centers. This provided flexibility in re-defining a Voronoi cell
for more meaningful tessellations.

The segmentation of overlapping nuclei in a biologically
consistent manner is an active topic of research. There is a
plethora of reported work that uses morphological operators
and application/modality specific features. These approaches
are not often generalizable. In [16], the image is treated as
a height field and watershed segmentation is performed to
determine cell boundaries. This approach is fragile because
small islands of noisy pixels can cause over-segmentations.
Tscherepanow et al. [25] presented an active contour approach
with a snakes formulation wherein overlapping cells are seg-
mented as dictated by a 2D elliptical model. Jones et al. [4]
presented a novel method that first defines a metric in the
image plane for calculating distances from seed regions. Pixels
are then assigned to cells according to their distance from
the corresponding nucleus under that metric. The metric uses
information about image edges, both their strength and their
orientation, as well as a regularization term corresponding to
inter-pixel distance within the image. In the ideal case, their
method will create tessellations similar to ours. However, their
chosen metric is not often very discriminating when the neck
cues are weak.

All of the approaches discussed above rely on using infor-
mation derived either from cellular shape models [25] or inter-
nuclear gradients [4] or neck shape cues [24]. It is interesting
to note that no single approach elegantly incorporates all the
cues into the segmentation process. In contrast, our active
contour approach implements the three aspects into a compre-
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Nuclei segmentation using geodesic active contours. (a) A pair of overlapping nuclei. (b) Applying a threshold 7 = 100 on the red channel of the

color image provides the nuclei foreground /; and background /,. (c) Unsigned distance field P of the nuclear contour. The nuclei centers (’x’) are located at
maxima and the neck region is in a directional minimum (white line segment). (d) High gradient magnitudes |VI| typically exist in the neck region although
this is not guaranteed. (e) Segmentation obtained using geodesic active contours. (f) Improving the segmentation by using linear tessellations.

hensive framework through suitably defined speed functions in
the level-set formulation. Additionally, the use of tessellations
will increase the robustness of our approach. We now describe
our methods in subsequent sections.

III. MODALITY-DEPENDENT SEGMENTATION: ACTIVE
CONTOURS MODELS

Three-dimensional segmentation algorithms will incorrectly
delineate complete cells given the problems of under-sampling
that exist in the image data. We use the active contour models
with a level-set implementation for obtaining an initial 2D
segmentation of the nuclei. The two key steps for the level-set
method are:

1) Embedding the surface: we represent a given nucleus
contour I'(¢) as the zero level-set of the signed distance
function y(x,¢). Formally, I'(z) = {x: y(x,t) = 0}.

2) Embedding the motion: we derive the update equation
1 such that the motion of the zero level set has certain
desired properties described later. For this purpose, we
use the active contour formulation with shape priors
developed by Leventon et al.:

%‘f = fD)(oc+Br)[VY[+/VEVY+8y(y" —y) (D)

The function f refers to the image-based feature function
that is minimized at a nucleus boundary and remains high
elsewhere. The function f involves information drawn from
the image gradients and neck artifacts. We will return to it
later in the discussion.

The first speed term (c+ k)|Vy]) consists of the curvature-
dependent and propagation-dependent speed terms. The pa-
rameter ¢ is a balloon force that is added to evolve the curve
outwards and k is the curvature along the normal to the level-
set contour. Since the boundary is characterized by a local
minimum in f, the term Vf.Vy constitutes the boundary
attraction term. This ensures that the contour lies on the
nucleus boundary upon convergence. The final term (y* — y)
is a recent addition by Leventon et al. [15] wherein they
incorporated principal components of the segmentation shape
model to drive the update equation. The surface y* is the
maximum a-posteriori shape given the current segmentation
and image information. The parameters a, 3, ¥ and O are

user-defined settings for the relative scaling of the three speeds
and the model-driven update.

We incorporate three ideas from literature that were de-

veloped independently namely, (i) shape models (already de-
scribed in the third speed term), (ii) inter-nuclear boundary
gradients and (iii) neck shape cues.
Shape Model: Training data consisting of manually segmented
nuclei from 2D images was used in estimating a PCA-based
shape model with three modes of variation in a manner similar
to that described in [15]. The advantage of using this model is
that a good number of cells within a phenotype share similar
sizes, shapes and even orientations. Hence this information is
incorporated as the MAP shape y* in guiding the evolution
in Equation 1.

Image feature function f: Please refer to Figure 3 for
an illustration of the associated concepts. Let I represent a
typical image with well-contrasted nuclei that needs to be
segmented (Figure 3a). A threshold is applied to separate the
nucleus foreground (/) from the background (/) (Figure 3b).
Formally:

0, ifI(x,y)>T

I, ifI(ey)<T @

e = {
Let D(I) and D(I,) represent the unsigned distance fields
emanating from the threshold contour that exist outside and
within the contour respectively. Consider the image formed
by P = D(Iy)+ D(I,) shown in Figure 3(c). D(I,) causes the
appearance of a directional minimum in the neck region as
represented by a white line segment. The appearance of a
directional minimum is a direct consequence of the neck shape
resulting in lower magnitudes of the distance field. At the
same time, the nucleus-background boundary is marked by a
0 isovalue in P by definition, and positive elsewhere. Both
these reasons contribute in halting the evolution that results
in nuclei segmentation. While the presentation so far accounts
for the neck cues, we also observe that some nuclei exhibit
high gradients at the site of overlap as shown in Figure 3d.
As in standard practice, we take the gradient information, g(7)
into account. Our feature function is therefore defined as:

Fo g() +n(D(y) +D(lp))
14+n

- 1

~ 14+|VGg +I?

3)

g() 4)
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The gradient information g(7) is the reciprocal function of
the image gradient magnitudes. The image gradients are
computed using a standard derivative-of-Gaussian (DoG) filter
with an appropriate o. The parameter 1 represents a scaling
factor ranging from [0,e0). For large values, the neck cues
are assigned more weight than the inter-nuclear gradients
g(I). The level-set initialization occurs inside each nucleus.
Hence we apply a threshold on image P and choose the
resulting iso-contour lying within the nucleus foreground as
our initialization.

IV. MODALITY-INDEPENDENT SEGMENTATION: USING
TESSELLATIONS

We observe that the level-set segmentation procedure de-
scribed earlier does not produce consistent boundaries when
separating nuclei clusters as shown in Figure 3e. This is
because the feature function is defined using distance maps
that are, in turn, sensitive to noisy contours. Furthermore, the
standard level-set parameter settings do not effectively capture
the variations in nuclear shape and inter-nuclear gradients.
This leads to inconsistent segmentations especially at bound-
aries.

While it may be argued that this is a consequence of using
the level-set methodology, related work in literature shows that
this problem has been a recurring one as far as microscopic
datasets are concerned. As we motivated earlier in Section I,
the staining protocol, the slicing methods etc. take a heavy toll
on the quality of the images generated. The variations are ubiq-
uitous to microscopy datasets and prove to be an Achilles’ heel
for standard segmentation algorithms. For example, Adiga et
al. [1] reported on an advanced watershed segmentation with a
post-processing mechanism to correct the over-segmentations.
A rule-based merging scheme based on heuristics was setup.
Unfortunately, these heuristics are application-specific and
lack a rigorous framework of implementation. In a similar
vein, Raman et al. [20] reported on the use of morphological
operators and connected components to obtain a coarse seg-
mentation. A set of heuristics were applied that naturally led
to an approach similar to one based upon tessellations. Their
groupings required placing lines across novel contour points
of positive curvature and enforcing constraints such as the
non-intersection of separating line segments, convexity, and
average area of the partitioned nuclei.

We now describe a rigorous, novel post-processing tech-
nique that seeks to correct the boundaries. We make use of
the naturally occurring Voronoi tessellations to generate our
line segments. These segments are altered using a Bayesian
probabilistic framework. As a result, new heuristics that may
occur in specific applications are naturally incorporated into
the model. It marks a significant shift in philosophy — isolate
image regions having a salient nucleus rather than extracting
individual nucleus from a large image.

A. Algorithm Overview

The algorithmic intuition is best explained as a sequence of
steps along with a running example drawn from the mammary
duct dataset. Please refer to Figure 4. We deploy the geodesic

active contours algorithm on the given data to obtain coarse
nuclei segmentations (Figure 4(b)). To correct, we do as
follows:

1. The Voronoi tessellation of the image (Figure 4(c)) is
constructed using the centroid of the identified nuclei as the
generator set. The nucleus that is housed in a Voronoi cell may
infiltrate into neighboring Voronoi cells and vice-versa (Figure
4(d)). We now rectify the tessellation to correctly separate
nuclei.

2. The set of Delaunay triangles dual to the Voronoi map is
used in modulating the tessellations. We obtain the parameter-
ized barycentric representation of the Voronoi tessellation line
using a local Delaunay triangle as outlined in Section I'V-C.
3. We determine the maximum a posteriori (MAP) line param-
eters given image information, preliminary segmentations and
a set of heuristic rules. As a result, more viable tessellation
lines are chosen for the final segmentation as shown in Figure
4(d). Now, the nuclei are deemed to be separated and used in
the interpolation framework.

B. Voronoi Tessellations - Step 1

Given a set of generating points V; € R2, the Voronoi map is
a partitioning of R? using line segments into salient regions.
Each region Z; corresponding to the generator V; is defined
by:

Zi={V e Q: V-V <|[V-Vj|Vjni#j} ()

Please refer to Figure 4(c). Having obtained preliminary
nuclei segmentations using active contours, Voronoi partition-
ing of the image is accomplished using the nuclei centroid as
generating points. Ideally, each individual nucleus lies within
a corresponding Voronoi cell. In reality, this is not the case.
A nucleus is anisotropic in shape, tends to overlap and stray
across the Voronoi cell boundaries. Figure 4(d) provides one
such example. Our methods alter the Voronoi tessellations to
provide better nuclei separation by accounting for the overlap
in various regions. The output from this stage is shown in
Figure 4(e).

Note that the Voronoi representation of the tessellations
given by Equation 5 is implicit and not parameterized. We
instead use a framework that explicitly represents the Voronoi
tessellations using parameters that in turn, can be suitably
modified.

C. Barycentric Representation of Tessellations - Step 2

We review some basic aspects of barycentric coordinates
with the help of Figure 5(a). Given the vertices V = {V},V,,V3}
of a Delaunay triangle T, any point P(x,y) can be parameter-
ized in terms of the barycentric coordinates ¢ = (c1,c¢2,c3).
The following equation when solved for ¢ gives us this
representation:

Vie Vax Vi 1 x
Viy Vay V3 o | =1y (6)
11 e 1

Note that the barycentric coordinates form a partition of
unity, i.e, c¢; +c2 +c3 = 1. By definition, the vertices V
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Fig. 4. Cellular segmentation pipeline (a) An example image of a duct cross-section formed by epithelial nuclei. (b) Segmentation of nuclei using level sets.
(c) Voronoi tessellation of the image plane.(d) Zoomed version of the Voronoi tessellations shown in yellow. (e) Optimal tessellation placement with nuclei

well separated.

| V3

Fig. 5.

L3
(b)

(a) Barycentric coordinates based subdivision. (b) Tessellations unique to a Delaunay triangle T are shown. The lines meet a at Voronoi vertex C and

are perpendicular bisectors of the triangle formed from the associated nuclei centroid.(c) Possible tessellation movements are shown with translated (green)

and rotated (blue) edges starting from the Voronoi tessellation (red).

have barycentric coordinates of (1,0,0), (0,1,0) and (0,0,1)
respectively. Using the barycentric variables (cy,cz,c3), the
equation of a general line is given by:

LT:Ci—le:6 l,] 6{1a273}7l#‘] (7)

The parameters (A, 0) represent the two degrees of freedom
that are afforded in a equation describing a line. For example,
by setting (A, &) as (1,0) in the above equation results in three
equations for the triangle medians which meet at the centroid
M (Figure 5a).

In Figure 5(b), we show a Voronoi cell vertex C as local to
a Delaunay triangle T and common to three tessellation line
segments Lj>, Ly3 and L3; (solid lines). Using the barycentric
representation, the equation of each tessellation line is:

Vi, je{1,23},i#j (8

The Voronoi parameters (li‘;, 51-‘}) are uniquely solved by
invoking the property that the tessellation line segments pass
through mid-points M;; and C (circumcenter of Delaunay
triangle 7). The work in [17] presents the solution in detail.

By changing the Voronoi parameters (A}},6;;) — (i, ;)),
the slope and intercept of each tessellation line L;; is adapted
to achieve better nuclei separation. An example of the result-
ing line placements obtained by translating and rotating the
Voronoi boundaries is shown by the dashed lines in Figure
5(c).

Changing the Voronoi tessellations in each Delaunay trian-
gle and repeating this process over all triangles leads to better
descriptions of the overall Voronoi tessellation (Figure 4(d)
and 4(e)). Delaunay triangles have been marked in red in the

T . . V.. _ SV
Lij'cl_a’ijc]_aij

figure. The new tessellations optimally house the nuclei and
are more representative of the extent of nuclei infiltration.

D. Estimating (A,8) - Step 3

We automate the procedure of changing tessellation line
parameters using a Bayesian probabilistic model of nuclei
separation. This procedure is novel and allays the hesitancy in
using global partitions like the Voronoi tessellations. For each
line segment, we seek to estimate the maximum a posteriori
parameters (A*,8%).

(A,5%) = argmaxP(1, 8[S.17. £ (1)) 9

In this equation, S is the initial coarse segmentation (Section
I, Iy is the nuclei foreground and f(7) is as defined in
Equation 3. Using Bayes rule,

P(S, 1y, f(I)|A,8)P(4,8)
P(Svlf’f(l))
 P(S|A,8)P(I|A,8,8)P(f (DA, 8,8, 1;)P(A, 5)

a P(S,Iy, f(I))

We discard the normalization term in the denominator as it
does not influence A or & and explain the remaining terms in
turn.

Similarity Term: The first term P(S|A,8) denotes the poste-
riori conditional probability of achieving the coarse segmen-
tation, S, given tessellation parameters Nl and 8. Consider the
illustration in Figure 6(a). We denote (A4,0) as the parameters

P(A,8(S,15, f(I) =

(10)
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of the least-squares fitted line separating the coarse segmen-
tation boundary. Therefore, we write:

P(S|A,8) = P(A,5|2,9) (1)

Now, it is reasonable to assume that line parameters (A,6)
when similar to (A,0) results in a high probability of better
segmentation as depicted in the figure. Again, dissimilar
parameters means a displaced tessellation from the coarse
segmentation case and therefore has a low probability. Hence,
we model this term as a Gaussian density function over the
squared difference in parameters:

P(S|A,8) = ¢ [(A-2)+(6-8) (12)

(a) (b)

Fig. 6.  (a) Illustration showing the optimal and segmented lines in the
similarity term. (b) Q shown as the intersection of nuclei foreground and the
tessellation line

Overlap term: The neck region is defined as Q =IyNL(4,0),
i.e. the intersection of the nuclei foreground and the tessella-
tion line. For an illustration, refer to Figure 6(b). Typically,
the neck region is optimally narrow at the point of nuclei
separation (see Figure 1(b) and Figure 3(c)). Hence, we model
this term as:

P(If[2,8,8) = ¢ ¢ (13)

Gradient Term: The third term P(f(1)|A,8,S,Iy) computes
the conditional probability of the observed feature function
f(I) given the segmentation (S) and optimal tessellation line
(A,0). Typically, the function was designed in Equation 3 to
have low values in Q. Hence, we write:

P(f(D)|A,8,8,If) = e~ Ja/(Dd2 a4

Parameter priors: The last term is the Voronoi tessellation
(AY, 8") applied as a prior. Recall that the tessellation is
initialized as a Voronoi tessellation and hence in the absence
of any information, we would like to maintain status quo.

P(A,68) = o [(A=2"7+(8-8")] as)

A gradient descent optimization is applied on Equation 9
to guide us to an optimal set of parameters (1*,6%). The
barycentric parametrization serves to normalize all the tessel-
lation lines to have the same optimal step lengths of the line
parameters and convergence criterion. Normally, a Cartesian
representation (y = mx+c) of the lines would have different
slope (m) and intercept (c¢) values. This causes the setting of
initial parameters in the optimizer and in the MAP formulation
to be line-specific, thereby making the problem intractable.
The optimization procedure is repeated over all the tessellation
line segments leading to new partitioning of the image space.

In Table II, we have listed parameter settings of our opti-
mizer in our experiments. We have now obtained final nuclei
segmentations on 2D serial section images. The tessellations
optimally house each nucleus and provide a better separation
boundary in case of overlap. The 2D nucleus segments form
profiles of a 3D nucleus whose shape parameters are estimated
in the next section.

V. INTERMEDIATE SLICE INTERPOLATION

One of the major problems in reconstructing serial-sections
has been different image plane and stacking resolutions. This
problem is likely to be exacerbated in future, when in-plane
resolutions improve exponentially while slicing thickness is
likely to remain the same. A reduction of slice thickness is
limited by the delicate nature of the soft tissues (in light
microscopy) and the point-spread function of the optics (in
confocal imaging).

For example, consider the situation in light microscopy.
Typical inter-pixel spacing of about 0.46um or even less
is achieved normally. Meanwhile, the inter-slice spacing is
limited to a range of 3-5um. As a result, serial section stacks
in histology present skewed voxel dimensions (1 :1:10). In
confocal microscopy, the image planes are resolved by the
point-spread function (PSF) of the optics. The optics records
light emanating from neighborhood of a physical voxel. Hence,
image planes are once again constrained to be separated by a
fixed depth albeit smaller than in light microscopy. However,
the problems still persist.

Under-sampling artifacts arise when a nucleus is not sliced
by a sufficient number of imaging planes. For example, the
top row in Figure 7(a) displays a pair of consecutive sections
with widely varying cellular arrangement patterns. Notice that
the ductal cross-sections have changed significantly along with
the arrangement of nuclei. The process of stacking the images
will not allow the profiles of nuclei to correspond. Figure 1(c)
and Figure 2(c) show other examples where stacking creates a
linear interpolation of the nuclear material without any notion
of its shape being considered. Patches with rapid intensity
variation are then observed. However, 3D cellular profiles
are not visible since a nucleus is not sliced sufficiently fine
(thin) by the sectioning process. Hence, there is no scope of
reconstructing the intermediate variation between slices using
information from two serial sections alone. We utilize a 3D
shape model in reconstructing the arrangement in intermediate
slices as shown in the bottom row of Figure 7(b).

A. 3D Cellular Shape Model

A nucleus in a cell appears as a convex shape unless the
cell is undergoing division. Depending on the state of a cell
in the cell cycle, the shape of nucleus changes. Hence, an
image plane is a snap-shot of cells at different phases in
the cell cycle. These nuclei conform to a complex temporal
shape model that is not known. We instead choose an average
shape model to represent a general nucleus. To reconstruct 3D
nuclear shapes, we use a simple probabilistic model that treats
a nucleus as an ellipsoid and its 2D observations as the result
of an orthographic projection [12].
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(a)

Fig. 7.

(b)

(a) The top row shows two serial sections of the duct with significant variation in ductal shape and nuclei arrangement. The bottom row shows a

interpolated sequence of processed nuclei profiles that gradually evolve from the start to the terminal image. (b) Ellipsoid nucleus model. (c) Isosurfaces of
the nucleus-extracellular material are extracted after stacking. Notice the 3D conic profiles of the nucleus are observable.

The model begins with the observation that nuclei observed
in the images are an orthographic projection of their shapes
onto the image plane. This is quite different from a cross-
sectional sample of a nucleus. Figure 7(b) shows the subject of
our model, the ellipsoid with axis lengths a, b, c. The equation
of a triaxial ellipsoid is given by:

2 2 2

Xy oz

Sttt =1 (16)

For an ellipsoid with rotation and tilt angles 68, ¢, the
above equation is modified by applying a transformation to
the coordinate axes. The transformation in the new reference
frame is given by:

X sin@ cosOcos¢ cosOsing X
y | = | cos@ sinBcos¢ —sinBsing Y
Z 0 —sin¢ cos ¢ V4

a7

By substituting Equation 17 in Equation 16, we get the 3D

equation of an oriented ellipsoid. By setting Z = 0, the 2D

orthographic projection of the ellipsoid on the X —Y plane is
obtained as:

(X sin@ +Y cos B cos ¢)? (X cos® +Ysin@cos¢)?
a? b?
—Ysing)?
(Z¥sing)” Slzn‘i’) =1 (18)
c

It is easy to see that the two-dimensional ellipse parameters
involves quadratic combinations of the ellipsoid parameters
(a,b,c,0,¢) [11].

Given the nuclei segmentations, we first perform a least
squares ellipse fit to each nucleus using [12] and resolve the
axis lengths (o, f,0). Our task is to then estimate the five
ellipsoid parameters given the three ellipse parameters. There
are three non-linear, non-polynomial equations for estimating
five parameters, which is clearly indeterminate.

We make simplifying assumptions to help our case. We
assume that the projected ellipse has the same minor axis
(B = b) and X —Y plane orientation (6 = 0). Based
on these assumption, the major axis is expressed as o =
Va2cos2(¢) + c2sin(¢). Note that they share the same (x.y)

center location. To enforce a roughly circular cross-section, a
is drawn from a normal distribution with a mean value b. To
retain the roughly prolate shape, ¢ is assigned from a normal
distribution with mean 7/2. The values of o, a and 8 uniquely
determine ¢ from the relation & = a’cos®(¢) + c2sin(¢).

B. Shape Interpolation

Given a serial-section image stack, cellular segmentation
is conducted on the 2D images using the methods outlined in
Section III. Shape parameters (a,b,c, 0, ¢) for every nucleus in
the segmentation is then estimated based on the ellipsoid pro-
jection model. Please refer to the bottom row in Figure 7(a).
Between any two pair of serial sections, at least 9 intermediate
slices are inserted. In other words, at least 9 extra slices of
each 3D nucleus are captured. Therefore, each nucleus, as
abstracted by its ellipsoid parameters (a,b,c,0,¢) is sliced
along the intermediate slice planes. Hence, the skew in voxel
dimensions in the resulting stack of images is reduced to a
isotropic ratio of 1:1: 1. Depending on the application, other
cellular structures such as the duct tissue areas, vasculature
etc. may also be interpolated onto the slides using appropriate
models.

To reiterate, the end goal of the interpolation framework is
to provide meaningful reconstructions of cell biology. While
the 3D information is captured by the 2D images, simple
stacking of the images does not resolve the issue. A cellular
shape model allows us to extract the relevant information and
therefore interpolate to provide 3D descriptions. Please refer
to Figure 7(c) wherein we show nuclei as salient isosurfaces
embedded in the extracellular matrix. The nuclei surround a
mammary duct that was earlier shown in Figure 1(c).

VI. RESULTS

In this section, we describe our results on three separate
studies that invoke recurring themes of cell segmentation,
3D reconstruction and visualization. Our methods are easily
applied with changes in parameter settings to each of the
data obtained from very different sources. In each study,
we describe the data, the pertinent validation results, the
computational performance of the reconstruction pipeline, and
the resulting visualization.
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Fig. 8. Enhanced visualization of duct sequences in comparison to Figure Ic.
(A) Segmented volume consisting of nuclei, extracellular matrix, lumen and
the duct. (B) True color rendering showing the epithelial nuclei surrounding
the duct. (C) Epithelial nuclei lying around a branching duct. A cut-away
section reveals the underlying lumen. (D) Top-view of the duct with the see-
through hole.

A. Mouse Model Phenotyping Studies

In this work, our collaborator (co-author: Leone, The Ohio
State University) is interested in understanding the role of the
PTEN tumor suppressor gene in the regulation of normal cellu-
lar processes. Phenotyping experiments on mouse mammary
models have revealed that suppression of PTEN gene leads
to abnormal cellular transformations. Our collaborator seeks
to understand the orchestrated sequence of events leading to
tumor initiation and progression at a cellular as well as a
molecular scale. In this context, a full fledged spatial recon-
struction of the ductal tissue can significantly reduce the time
required to generate new hypotheses regarding the cellular
mechanisms. A pair of wild-type mouse mammary glands
were harvested and prepared using a standard histological
protocol. They were fixed in formalin, embedded in paraffin
and sectioned at Sum thickness using a microtome to yield
about 1000 sections per dataset. Serial sections were mounted
on glass slides and scanned at 200x magnification (0.46
Um inter-pixel spacing) using a light microscope. The image
dimensions on average were (15Kx15K) in RGB format.

Mammary ductal tissue is composed of concentric layers
of epithelial in a matrix of extracellular material. The ducts
are identified on each section as a distinct conic or quadric
projection of a complex tortuous 3D object (Figure 1(a)). We
used the N-point correlation functions as feature vectors to
classify ductal tissue regions [21]. These functions measure
the packing of the cells and are shown to provide robust
classification. Rigid registration was accomplished using a

global alignment procedure [18] followed by a refined local
matching of individual ductal areas [6]. 3D profiles of the ducts
were extracted from the large dataset to yield smaller volumes
of 300x300x34 per duct for processing. We then apply the
tools described in this work to the problem of providing duct
reconstructions at a cellular scale.

Individual nuclei were identified in 2D images and over-
lapping nuclei clusters were split consistently using the two
successive segmentation stages based on active geodesic con-
tours and tessellations. We then performed interpolation of
intermediate slice locations as described in Section V to
reconstruct 3D ductal volumes for visualization. A total of
18 contiguous duct sequences were reconstructed using the
above automated procedure.

Figure 8 provides examples of 4 such sequences. Panel A
is a volume rendering of a segmented duct using a cutting
plane parallel to the duct axis. The elliptic nuclei profiles are
visible in the ductal wall. Panel B is the true color rendering
with interpolated textures of the ductal tissue. It is easy to
notice the lack of any cellular descriptions in the rendering.
Panel C shows yet another branching duct with nuclei and
lumen alone. A hemi-cylindrical cut away section was used
to reveal the underlying lumen. Panel D is a top-view of the
duct revealing a constellation of cells along the duct akin to a
brick chimney wall.

B. Cell Colonies in Clonogenic Assays

It is quite well established that tumors have a clonal origin
— all of the affected and transformed cells can be traced to
a small set of mutated precursor cells that lose the ability to
die (apoptosis — programmed cell death) and hence continue
to proliferate [10]. In in-vitro cell cultures, it is observed that
mutated cells tend to form colonies due to rapid proliferation.
Given their need to develop novel therapies for cancer, our
collaborators (Jian Chen and Weiming Xia, Harvard Medical
School) are interested in determining the effect of certain
chemicals in preventing or reducing the colony growth in
mutated cells. Hence, normal cells in culture were exposed
to radiation to undergo mutation and later treated with an
appropriate chemical. The wells were then observed using
phase-contrast microscopy at various fixed time-points. The
goal of image analysis is to detect cells, determine their
membership to different cell colonies and track their growth
across the frames. We do not report on any tracking results
here.

The images were acquired by General Electric IN CELL
Analyzer 1000 microscope with a 10X objective. The images
were collected over cultured cells that were placed in 96-well
plates. Each dataset consists of three (3) time frames each
of which having image dimensions of approximately 1000 x
1000 (on average). We applied our 2D cell segmentation
methods to /0 images. This data is employed for the sole
purpose of testing the segmentation methods. Additionally,
the nuclei in this data are not typically spherical like other
data. However, it should be noted that our methods can be
deployed quite easily. Figure 9 provides examples of the
segmentation performance on a single dataset. Figure 9(a-c)
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Fig. 9.

()

Image frames of cells at (a) 0" hour, (b) 12" hour and (c) 24" hour. (d,e,f) Cell segmentations of images at respective time steps. (g) Feature

function f(I) of the zoomed portion of cells from Figure 2. It is easy to notice the role of gradients and the distance field in creating minima at regions
of overlap. (h) Voronoi partitioning overlaid on the original figure. (i) Modified tessellations. (j) Final cell segmentations obtained after splitting overlapping

cells.

are the original raw acquisitions from the microscope while
(d-f) show the segmentations of each cell. Note that each cell
is represented by a unique number in the range [0-255]. Since
the number of cells are more than 255, some of the colors are
repeated in the images although they correspond to different
cells. It is easy to notice that in the first frame, cells cluster
together in small colonies. In Figure 9(d) and Figure 9(e),
these colonies multiply and consist of exponentially increasing
number of cells. In Figure 9 (g-j), we provide a slide-show
of the intermediate steps in the cell segmentation pipeline
using a zoomed version of the data. Figure 9(g) shows the
feature function f on the set of colony cells. The tessellations
are then used to refine the segmentation and are overlaid on
the original image for verification (h,i). Figure 9(j) depicts
the result of the application of the tessellation for getting the
final segmentation. The later stages of our pipeline including
interpolation and 3D reconstruction were not applicable in this
study.

C. Zebra Fish Phenotyping Studies

Our collaborators at The Center of Excellence in Ge-
nomic Science at California Institute of Technology (Cal-
tech) (Alexandre Gouaillard, Titus Brown, Marianne Bronner-
Fraser, Scott E. Fraser and Sean Megason) have initiated the
Digital Fish Project. Their goal is to use in foto imaging of
developing transgenic zebrafish embryos to acquire digital,
quantitative, cell-based, molecular data suitable for modeling
the biological circuits that turn an egg into an embryo. In
toto imaging uses confocal microscopy to capture the entire
volume of organs and eventually whole embryos at cellular
resolution every few minutes in living specimens through-
out their development. 4D image sets (x —y —z —1t) with
dimensions 1024 x 1024 x80x60 are generated. The plan is
to use in toto imaging to digitize the complete expression
and subcellular localization patterns of thousands of proteins
throughout zebrafish embryogenesis. We provide 3D results
from applying our methods at select time-points chosen at 0
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Fig. 10.
and (c) cell segmentations.

(beginning) and 60 (ending) respectively.

Figure 10(a-c) depict the rendering of original raw data,
foreground and cell segmentation respectively. Note that once
again the repetition in colors is owing to the large number of
cells.

D. Validation

We evaluate the utility of the segmentation framework in
effectively segmenting nuclei that appear as clusters. Vali-
dation studies are performed with manually marked nuclei
areas. It is very difficult to manually identify all the valid
nuclei in a dataset. Typically, the number of nuclei can be
in the order of several thousands. Therefore, we sample ten
regions of dimensions 100x 100 in an unbiased fashion from
each dataset. All the nuclei in these windowed regions are
marked out to obtain classified masks that serve as ground-
truth. The matched pair of nuclei can be separated and counted
in three categories: (i) a counts the number of true-positive
results. (ii) b counts the number of false-negative results. (iii)
¢ counts the number of false-positive results. Note that false-
negative results cannot be determined since we have no a
priori information on where a nuclei should not have existed.
Thus, one can define the sensitivity and positive predictive
value (PPV) of our framework as follows:

a

e . a
sensitivity = = (19)
a+b a+c
Dataset Dimension Cells
Clonal 1 1024x 1024 378
Clonal 2 1024x 1024 610
Clonal 3 1024x 1024 794
Ducts 300x 300x34 1710
ZebraFish | 1024x1024x80 | 4130
TABLE 1

TEST DATASETS CHOSEN FOR VALIDATION STUDIES

Table I lists our test datasets with dimensions and the total
number of nuclei actually segmented throughout the dataset.

(b)

3D cellular reconstructions from confocal images of the zebrafish embryo at time-point 60. (a) Raw data renderings, (b) foreground extractions,

The test datasets include a clonal assay dataset consisting of
three (3) temporal frames, a mammary duct dataset containing
thirty four (34) slices and a zebrafish confocal dataset having
eighty (80) slices.

Dataset Cells Sens. PPV
Clonal 1 74 0.9324 | 0.9452
Clonal 2 117 0.8547 | 0.9259
Clonal 3 174 0.8996 | 0.9455
Ducts 217 0.9724 1
ZebraFish 252 0.8968 | 0.9826
TABLE 11

SENSITIVITY AND PPV VALUES FOR CELL SEGMENTATION

From Table II, we observe that our methods yield an average
value 94% and 96% for sensitivity and PPV respectively.
Sensitivity measures the effectiveness of the algorithm in
detecting the true-positives. A high value indicates that it is
easy for the algorithm to rule out a spurious match with a
high probability. On the other hand, the positive predictive
value estimates the proportion of segmented nuclei which are
bona fide ones. The false-positives are mostly due to under-
segmentation - the true cell region is found to be grouped in
a single larger segmented region. Similarly, the true-negatives
are due to over-segmentation - the true cell region is found to
have multiple segmentations.

Validation studies were also performed using the same
protocol as described in [4]. In this case, a histogram of signed
distances of the nucleus contour with respect to the ground-
truth contour is computed for all the true-positive results
generated from the previous study. In Figure 11, we plot the
distribution of distance of the segmentation boundary pixels
from the manual boundary. We observe that in the case of the
mammary ducts (red markers), ninety percent (90%) of the
boundary pixels in the automatic segmentation are within 3
pixels in distance from the corresponding manual boundary.
Similarly, seventy-five percent (75%) of the boundary pixels
are within 2 pixel distances. The figure also shows that similar
trends were observed in the case of the confocal images of the
zebra-fish (blue markers).
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Fig. 12. Instances of outliers in the segmentation process with the top
row showing a mammary duct sample with an inconsistent split, the middle
row showing a zebrafish image with over-segmentation and the bottom row
from a clonal colony with under-segmentation. (a,d,g) Original images, (b,e,h)
manual masks and (c,f,i) segmentations.

We also examined the segmentation outliers from the test
data sets as shown in Figure 12. We present three scenarios
that generate the outliers. In the top row, the automatic method
has ”chosen” to split a nuclei cluster differently (Figure 12(c))
from what an expert human would do (Figure 12(b)). On close
examination (Figure 12(a)), we found very weak gradient and
neck cues. This was a difficult case for performing manual
segmentation as well. The middle row (Figure 12(d-f)) is
marked by over-segmentation. Note that the active contour
parameter settings were uniformly applied for all nuclei.
However, certain nuclei present variations in shape, color

1 T T @ 9 9 2
—&— Mammary Duct
—a— 7ebra Fish

Fraction of pixels—»

0 L L L L L L L L L
0 1 2 3 4 5 6 7 g 9 10

Absolute Distance—

(b)

(a) Combined histogram for the signed distances found in the mammary and confocal datasets and (b) cumulative distribution of absolute distances

luminance and gradients. This leads to multiple segmentations
of the same nucleus. In the bottom row (Figure 12(g-i)), the
poor gradients and large overlaps cause an under-segmentation
and leakage of the level-set into neighboring nuclei.

E. Implementation

We implemented our framework using the National Library
of Medicine’s (NIH/NLM) Insight Segmentation and Registra-
tion Toolkit (ITK) and the Visualization Toolkit (VTK) from
Kitware Inc. The classified volumetric datasets are loaded into
Kitware’s VolView volume visualization software to render
the surface appropriately. All our tasks were conducted on
a 2.5GHz Pentium machines running Linux with 1GB main
memory.

Dataset Active Contours | Tesl. | Interp.
Clonal 1 201 131 -
Clonal 2 363 238 -
Clonal 3 442 376 -
Duct 1183 126 145
ZebraFish 2473 743 176
TABLE III

COMPUTATION PERFORMANCE FOR THE TEST DATASETS IN SECONDS

The total running time comprises of the time expended in
three stages, T = Tjeveiser + TTess + Tinterp- The active contour
segmentation was observed to be the most expensive phase of
the pipeline. In our implementation, the active contours routine
is realized as a function call with the nucleus initialization
and the speed image being provided as inputs. Since the
segmentation is local to the nucleus initialization, we operate
only on a small windowed neighborhood. The net result
effectively reduces the time consumed significantly. Using
our optimized implementation, we process a duct sequence
in under 1500 seconds (25 minutes). The active contour
segmentation expends 1200 seconds while tessellations and
interpolation expend less than 150 seconds each. Table III lists
our running times recorded on the validated test datasets in
seconds.
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Parameter Description Clonal | Duct | Confocal
T - Foreground threshold (eq. 2) 70 150 140
o - Gaussian kernel (sec. III) 1.0 1.0 1.0
a - Attraction term (eq. 1) 1 1 1
B - Advection term (eq. 1) 3 3 3
v - Diffusion term (eq. 1) 3 3 3
8 - Model update (eq. 1) 2 2 2
Njs - Max. level-set iters. (sec. III) 400 400 400
Rjs - Max. rms change (sec. III) 0.03 0.03 0.03
N - User-defined weights (eq. 3) 0.8 1 0.5
- Min. step length (sec. IV-C) 0.01 0.01 0.01
- Max. step length (sec. IV-C) 0.25 0.25 0.25
- Max. optimizer iters. (sec. IV-C) 10 10 10

TABLE IV
VALUES USED IN THE ITK IMPLEMENTATION.

Table IV lists the typical parameter settings that were used
in our experiments. The parameters 7 and 7} are the two most
critical settings that need to be explored for a given dataset. In
our datasets, the staining protocol (nuclei-specific) is designed
to provide a good contrast of the nuclei from the rest of the
image. Figure 13 shows the histograms of a duct cross-sectioal
image and a confocal zebrafish image respectively. There is
a distinct valley region (indicated by arrows) that separates
the nuclei from the rest of the image. Hence, the threshold
parameter T does enjoy a good dynamic range of operation.
The value of this parameter is dictated by the instrument or
the modality.

Our implementation explored a range of 1 values in Equa-
tion 1 depending on the dataset. For example, in the ductal
dataset, 7 was set to 1 thereby assigning equal weights to
the shape cues as well as the gradients. Figure 14 reports the
sensitivity and PPV values as a function of different values of
7N for the mammary duct dataset. We observe similar validation
results for a broad range ([0.5 , 1.5]) in the settings of 1.
Higher values tend to assign more importance to shape cues
leading to fragmentation of nuclei (over-segmentation) and
hence lower the value of PPV. Lower values tend to retain
nuclei clusters without splitting them (under-segmentation)
thereby lowering the sensitivity value. Hence, a judicious
choice is recommended.
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Fig. 14. A plot of the sensitivity and PPV values upon changing 1 values

for the mammary duct dataset.

VII. SUMMARY AND FUTURE WORK

In this paper, we addressed challenges in the 3D recon-
struction of cellular structures in microscopy datasets, namely:
providing scalable cell segmentations and correcting axial
under-sampling artifacts. We realized a segmentation approach
using active contour models that is refined by means of im-
age tessellations. Overlapping nuclei clusters are consistently
cleaved by the tessellations. Insufficient slicing resolution
is resolved by interpolating intermediate slices with a 3D
nucleus shape model. Our methods have been applied across
modalities to data generated from light, confocal and phase-
contrast microscopy. The algorithms were validated using
manually verified ground-truth. In future, we wish to generate
a realistic reconstructed model of the tumor microenvironment
and to provide the biomedical research community with a
phenotyping tool based on the imaging framework developed
here. Where possible we will explore the development of
complete 3D methods; this is can be achieved for confocal
microscopy of very small organ structures.
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