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Abstract— Computing smooth and optimal one-to-one maps
between surfaces of same topology is a fundamental problem i
graphics and such a method provides us a ubiquitous tool for
geometric modeling and data visualization. Its vast varigt of
applications includes shape registration/matching, shag blend-
ing, material/data transfer, data fusion, information reuse, etc.
The mapping quality is typically measured in terms of angula
distortions among different shapes. This paper proposes ah
develops a novel quasi-conformal surface mapping framewér
to globally minimize the stretching energy inevitably introduced
between two different shapes. The existing state-of-therainter-
surface mapping techniques only afford local optimizationeither
on surface patches via boundary cutting or on the simplified bse
domain, lacking rigorous mathematical foundation and anaysis.
We design and articulate an automatic variational algorithm that
can reach the global distortion minimum for surface mapping
between shapes of arbitrary topology, and our algorithm is slely
founded upon the intrinsic geometry structure of surfaces.To
our best knowledge, this is the first attempt towards rigoroisly
and numerically computing globally optimal maps. Consequaetly,
we demonstrate our mapping framework offers a powerful
computational tool for graphics and visualization tasks seh as
data and texture transfer, shape morphing, and shape matcinig.

Index Terms— Quasi-conformal surface mapping, harmonic
map, uniformization metric, surface parameterization.

I. INTRODUCTION
A. Surface Mapping

When surfaces deform and are mapped to others, the strgtchin
energy caused by the elastic distortion can be formulated as
harmonic energy. Among all possible mappings, a harmonic
map minimizes the stretching energy and has its direct physi
meaning. Also, the harmonic map minimizes angular distor-
tions. For example, conformal mappings are harmonic, which
are free of angular distortion.

Besides the physical intuition, harmonicity and conformal
mapping have other merits which are critical for real-world
applications. First, the dimension of conformal mappings
between two given surfaces is finite; by fixing the images
of finite points, the mapping can be uniquely determined.
Therefore, these kinds of mapping are easy to control. Skcon
conformal mappings can transform arbitrary surfaces tersé¢v
canonical domains, and convert all geometric processitay in
these domains. This greatly simplifies the complexity osthe
geometric processing algorithms. Third, the theoreticnfou
dation and algorithms of conformal mappings are relatively
mature.

In contrast, area-preserving mappings lack the physical
meaning, lack analytic methodology as well as practical-com
putation algorithm, and are hard to control. Therefore,un o
current work, we use the harmonic maps and try to minimize
the angular distortion.

How to compute surface mappings is one of the moBt State-of-the-art Techniques and Challenges

fundamental problems in graphics and visualization fields. |n terms of finding optimal mapping between two gen-
It aims to find a bijective (one-to-one and onto) map fromaral surfaces under some specific criteria, current state-o
one surface to another. Numerous applications such as shgeart techniques lack mathematically rigorous discussi
registration, matching and comparison, shape morphind, aind analysis in principle. On the other hand, the criteria of
texture/attribute/motion transfer all benefit from SUChijﬂ(b mapp|ng quahty on angu|ar distortions have been ana|yndd a
tive correspondence between two given surfaces. Researchgtimized in the surface flattening or surface parametéoiza
usually measure the mapping quality using angular or argssearch area. Surface parameterization aims to find ditiiec
distortions, because such criteria dictate the end efféct [ﬂap between surfaces and p|anes (Or other Simp|e canonical
the enabling applications (e.g., texture mapping). Giwea t domains such as spheres), thus it can be treated as a special
surfaces with different geometry, distortions are usually case of surface mapping since its target surface is usuesty j
evitable; we naturally want to seek the mapping that caiplane or a sphere. Parameterization arises from the pirpos
minimize distortions as much as pOSSible. However, if tW@f texture mapp|ng and Synthesis where the angu|ar distorti
given surfaces are not isometric to each other, there does @othe most critical concern to quantify the mapping quality
exist a mapping that can eliminate the angle and area d@tort pespite its earlier connection with surface parametednat
simultaneously. over canonical domains, finding a minimally-distorted aoef

In this work, we choose the harmonicity (measuring angulgiapping between two general surfaces are much more tech-
distortion) as the criterion because it is most physicalgam njcally challenging. There are three key reasons as follows
ingful. If we assume surfaces are made of elastic materials.l:irst’ there are topological differences. Surface paramet
zation usually “flattens” a surface onto the plane, spedifica
the surface is sliced apart into a topological disk, and the
parameterization refers to a map from that disk to the plsme,
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it has only one topological type. For mapping between genetesually not globally unique. Some harmonic maps are local
surfaces especially with high genus, a handle of one surfaoeima of the stretching energy.

being mapped to which handle of the second surface need3o globally reduce the stretching distortion without geiti

to be considered. This topological factor has to be explicitstuck locally, we propose to use the so-caliedformization
determined and it gives rise to the mapping complexity fanetric Under their uniformization metric, surfaces with non-
shapes with nontrivial topology. Rigorously speaking, mafrivial topology have constant non-positive Gaussian ature
pings between two given surfaces are classified into infinikeerywhere, so that the harmonic map becorgésbally
homotopyclasses [1]. Two maps are isotopic to each other, i.@mique [2]. (Please refer to Section IlI-A and the Appendix
belonging to a same homotopy class, only if one can defoffior more theoretic details and Section VII-D for experimen-
to another smoothly. A rigorous surface mapping framewotl demonstrations). Uniformization theory states thatdth
should be able to handle an arbitrarily given homotopy typsurfaces, such uniformization metric does exist; and we can
On the other hand, only topologically equivalent mappireys c compute this metric efficiently by using existing technigue
be compared together; mappings from different classesldhou Under surfaces’ uniformization metric, we conduct our
be considered separately since a best mapping may exisbfnimization process. It is guaranteed to converge to uniqu
each class. In the following discussion, we shall considgpsn global harmonicity under surfaces’ uniformization metric
that are within the same homotopy class. Specifically, our algorithm has the following important riter

Second, due to the topological inequivalence betweendlose Optimality. Harmonicity under uniformization metric

surfaces and the plane, as we mentioned above, paramegerizi  -an pe globally optimized without worrying about any
surfaces onto planer domains cuts the surface along a bound- |5cal optima. The resultant map minimizes the stretching

ary. The simplified target canonical shape not only leads to  energy and distortion.

some well-established numerical solving techniques, aat a Uniqueness. The global harmonic map in hyperbolic
unavoida_ibly pushes di;tortions tow_ards its cutting bor:mda_ space is unique; our algorithm converges to the same
a collection of some singularity points. In contrast, magpsi result starting from arbitrarily different initial mapggs,
between surfaces with same topology should prohibits the 5q long as they belong to the same homotopy class.
cutting, and find a “seamless” re_sult. '_I'herefore, we are not, conformality. For genus-zero surfaces, arbitrary har-
pursuing a map from a topological disk to the plane, but  monic map is free of angle distortions. In genus-one case,
a continuous map between two surfaces with complicated our optimized map minimizes the angle distortion among
t0I00|_09)/- _ _ _ all possible maps. Between two general surfaces, if exists
Third, the most important reason of lacking globally opti- g angle-distortion-free map between them, our method
mized surface mapping techniques is the complex geometry of guarantees to find such a conformal map.
the general target surfaces. The non-smoothness of thettarg, Efficiency. Harmonicity relaxation under the uniformiza-
shape actually leads to the technical obstacle in finding the tion metric is performed in 2D, which is much more
global optimum among all possible mappings. A natural way  efficient and robust compared with any other iterative

is to follow ideas in surface parameterization: we can ojzém methods directly conducted over curved surfaces.
the map between surfaces by simply constructing an initial

map, and then locally adjust it using a variational procedur )

until the distortion energy is reduced to the minimum. Wel- We propose and articulate a novel approach to compute a
can call this technique “the naive method”. When the target 9lobally optimal map minimizing distortions between two
surfaces are genus zero (e.g., parameterization onto tiezesp ~ Surfaces with the same non-trivial topology. This process
or plane), this approach can reach a globally optimizeditesu 1S fully automatic and requires no user interaction. To the

The main contributions of this work are:

However, for mapping surfaces with non-trivial topologyed best of our kno_wledg_e, this is the fir§t_ attempt to compute
to the nonexistence of canonical target domain (see Sel¢tion surface mapping with globally minimized energy for
C), any local optimization process will inevitably get stuat arbitrary high genusy(> 1) models.

some local minima. This is the primary reason that otheestat 2- USing the intrinsic geometric structure of surfaces, the
of-the-art methods use base meshes or hierarchical steuctu convergence of our algorithm is guaranteed. We quanti-

to circumvent this problem, while giving up searching foeth ~ tatively evaluate its performance, and then design taolkit
global optimum. to clearly visualize the mappings, as well as analyze their

converging effects.
_ 3. We use our surface mapping as a powerful tool for
C. Our Novel Solution data and texture transfer, shape morphing, cross-surface

In this work, we introduce a novel computational frame- ~ Parameterization onto canonical shape domains, shape
work to tackle the aforementioned challenging problems. Ou ~ Matching, and shape comparison. Our globally optimized
method, based on the theories of Riemannian uniformization Mapping demonstrates its great efficacy in these graph-
and harmonic maps, is both theoretically rigorous and pract  i€s and visualization applications, with potentials in the
cally efficient. broad scope.

Considering two general surfaces with nontrivial topol- The remainder of this paper is organized as follows. We
ogy, under their induced Euclidean metric, the target shapdl briefly review the related literatures in Section II. &in
may have complicated geometry, and the harmonic maps areSection Ill, we introduce the theory and algorithm of our



method. Our algorithm proceeds in three main steps, as distensive surveys of state-of-the-art techniques in thd.fie
cussed in Section IV, Section V and Section VI, respectivelWe only briefly review some most related work, and refer
We then discuss our mapping performance and propertiesinterested readers to these surveys for details.

Section VII. Finally, we demonstrate our experimental lissu Angle preservation is typically addressed either from the
with some applications in Section VIII and conclude ouharmonic point of view (Dirichlet energy) [22]-[24] or from
work in Section IX. In the accompanying appendix, we provihe conformal point of view (Cauchy-Riemann equation) [24]
the existence, global uniqueness, and the one-to-one nyop§5]. Most recently, the hyperbolic structure of Riemamia

of the harmonic map and we also show our algorithm wiurfaces has been introduced to surface parameterization.

converge to such an optimized map uniquely. Thurston firstly introduced circle packing in [26]. An effee
algorithm and implementation is presented by Stephenson
Il. RELATED WORK in [27]. Circle packing has also been generalized to circle

Our current research builds upon previous work in surfag@tterns [28] and used for surface parameterization in.[29]
mapping, conformal geometry, and non-Euclidean geometHamilton first introduced Ricci flow on surfaces in [30]. Theo
Earlier work on establishing a bijective mapping is mostlgetical results of combinatorial Ricci flow are later gerieesd
motivated by the need of blending two shapes. A naturial [31], and applied in surface parameterization fields 8][3
approach is to use some canonical shape such as a sphere
or the plane as the intermediate domain. Kent et al. [3] I1l. THEORY AND ALGORITHM
mapped star-shaped surfaces onto spheres, and merged tRemniformization Metric

On a surface, aetric, or Riemannian metriés a tensor that
‘YRfines inner product on the tangent plane at each point. With

genus-zero closed or open surfaces. Alexa [S] wrapped R metric, the length of a tangent vector can be determined,

genus-zero su.rfgcgsf onto a umt sphere, apd CO”_‘p“ted éﬂ‘a the angle between two tangent vectors can be explicitly
mapping by minimizing some distance function. Aswvathargomputed

et al. [6] us_ed _progressive mesh and their constrained aher Supposes is a smooth surface embeddedHf: it has the
parameterization to map genus-zero surfaces onto the comma, o4 Euclidean metrig. We denote the surface together
spherical domain. These types of techniques are usualgdb

. . ) aRith its equipped metrig as(S,g). If A: S — R is a scalar
on spherical parameterization techniques [5], [71-{9] tlangr function geflionped on the sur(face) thegn= e>'g is another
parameterization techniques [10]. '

Spheres and planar disks are natural domains for comput{rage;ttric ons. Any angles on the surface measuredgbgquals
maps with minimized stretching energy directly. Howeueeyt hose measured by, therefore, we sag is conformal to

) . A meaning that changing between these two metrics is angle-
can only serve as intermediate domains when the two surfa%? 9 ging 9

! ) serving.
are of. genus zero. For high genus surfac.es, these kinds o iven two surfacesS; and S,, the uniqueness of the
canqmc;al doma|n§ can r)ot- be found. In this work, we foc farmonic map fromS; to Sy, as we will discuss in the
on fln_d|_ng stretching-optimized maps between surfaces WB coming section, is determined by the distribution of the
non-trivial topology.

Approaches for surfaces with non-trivial topoloav are us Gaussian curvatur® of Ss. It is important to note thak is
P pology l’fully determined by the equipped metric of the surface. The

ally applied through another direction ( [11}-[18]). Theipt relation between the curvaturésé and K underg and g is
ically segment the meshes into subregions first. For exampje AN+ K)

in [12] and [13], a common coarse basg domalr! mesh has %Riemann uniformization states that for an arbitrary closed
be constructed manually by the user with domain knOWIedgﬁrface there exists a unigdesuch that:?*g induces constant

in topological surgery; in [14], [16]-[18], feature poinise .Gaussian curvature. Furthermore, the constant is one of the

firstl_y provid_ed by users, th.en some automatip SUbreg'?ﬁree choices{+1,0, -1} for surfaces with zero, one, and
tracing algorithms or progressive meshes are applied fanseo higher genus, respectively. Such kind of metiidg is called

base mesh generation. The advantage of these approaCh?ﬁe'ﬁniformization metricof the surface. The uniformization

that fea_ture correspondencg can be intuitively InCorFEBEmatmetric can be computed using Ricci flow method (see Sec-
by making the feature vertices the corners of the patch

The common drawbacks are that constructing the patch Iayolup V):

oftentimes involves a number of fragile heuristic algarith i )

Furthermore, the mappings are generally oy continuous B: Euclidean Harmonic Map and Conformal Map

across the patch boundaries. In applications such as bgildi Given two surfaces embedded i®* with the induced
domains for splines, a global continuity is critical. Therwo Euclidean metricgS;,g1) and (S2,g2), f : S1 — Sz is a

of [19] addresses the continuity problem by taking into antto map between them, the harmonic energy (stretching energy)
linear transition functions across patch boundaries. ks&hi is defined as

concept in mapping is introduced in [20], which primarily E(f) :/ |V fI2dA;, (1)
focuses on topology instead of geometry, thus is difficuit fo S1
designing optimization algorithms. whereV f is the gradient of the map. A harmonic map is a

Conformal maps have been extensively studied in the litagritical point of the harmonic energy. Harmonic maps depend
ature of the surface parameterization field. [10], [21] jlev on the Riemannian metrics. However, jf : (S1,g81) —



(S2,g2) is a harmonic map, thefi : (S1,e**g;) — (S2,g2) their uniformization metrics and compute a harmonic map
is also a harmonic map. f : (S1,81) — (S2,82). The computational algorithm of

If a map preserves angles, then the map is called a cdryperbolic harmonic maps is based on theoretic results3h [3
formal map. Analytically, if thepull back metric f*go on We denote the parameters 8f on the Poincaré disk as
S, is conformal tog;, e**g; = f*gs, then f is conformal. (z,y), the parameter ofS, as (u,v), then the mapf is
A conformal map must be harmonic. For closed genus-zerpresented ag(x,y) = (u(z,y),v(x,y)). The harmonic
surfaces, harmonic maps are also conformal. In genera) casgergy is
if S; and Sy are with complicated topology, then there may 9 9

: : X . - |Vul|* 4+ [V

not exist a conformal map. But there is a special map, which E(f) = / 4 ——————dady, 2
minimizes the maximum of the angle distortion; such a map is s, (I—w?—0?)
called the extremal quqsi-conformal map. For genus-one, cas \yhere vy is (%7 %) and Vv is (%’ %).
such anextremal guasi-conformal mais the harmonic map t oy Ty
under uniformization metric. Therefore, if the given sgda

The harmonic energy in hyperbolic space (2) has more
X complicated form than harmonic energy in Euclidean space
are genus-one, our algorithm converge to the extremal quagh we simplify the problem using the following two merits

conformal map. of hyperbolic harmonic energy:
. _ 1. In a small neighborhood of the origirf + v* < ¢, since
C. Uniqueness of Harmonic Maps (1-u?—v?)~2 — 1, the hyperbolic metric is close to the

The uniqueness of harmonic maps between surfaces is Euclidean metric, the hyperbolic harmonic energy is close
determined by the shape of target objects. For genus-zero to the Euclidean harmonic energy. We can optimize the

surfaces, there are infinite harmonic (conformal) mapsyid hyperbolic energy by minimizing the Euclidean energy.
zero angular-distortion. Each two of these maps differ by a2. If ¢ is a Mobius transformation of the Poincaré disk, then
mobius transformation on the sphere domain. the compositionp o f and f have the same hyperbolic

Harmonic maps between surfaces with non-trivial topology —harmonic energy. This is because Mobius transformation
are also not unique if the Gaussian curvature of the target is the rigid motion in the hyperbolic space, harmonic
surface is positive somewhere. However, if the target sarfa  energy is invariant under such isometries of the target
has non-positive Gaussian curvature everywhere, then the surface.
harmonic map exists and isique. For example, if the Euler  We describe our computational methodology for hyperbolic
number x(S;) < 0,7 = 1,2, and we apply uniformization harmonic maps as follows.

metric g on Sz, then harmonic mag exists and is unique, 1 The surfaces are tessellated to many small triangular

with its energyE(f) reach[ng the global minimu_m. patchesS; = | J, T}, whereT; is a triangular patch, then

Therefore, between arbitrary two surfaces with gerU, e harmonic energy is decomposed to the summation
there uniquely exists such a stretching-minimized harmoni ¢ the energy of the map restricted on these patches, the
map. For genus-one surfaceg,= 0, under uniformization sub-mapsE(f) = 3, E(f), fi : Ti — H>.

metric, the harmonic maps are not unique, but only differ by
a rigid translation on th&2 universal covering space, and we 2. Each sub-map/, is composed with a Mébius
. )

can use one feature point to uniquely determine it. transformation ¢;, such that the imagep; o f;(T})
is in the neighborhood of the origin.

D. Poincagé Disk Model and its Harmonic Maps

3. If the tessellation is refined enoudh, is small, and the
diameter of its image under the corresponding sub-map
is within an e-threshold, the hyperbolic energy can be
approximated by Euclidean harmonic energy with high
accuracy.

Therefore, computing the harmonic map under hyperbolic
metric, equivalent to minimizing hyperbolic harmonic ener
(@) (b) (c) is now converted to optimizing a collection of Euclidean
Fig. 1. (a) The yellow patch represents a chart on the twe-tawls model; harmonic energies Of, SUb_m_aps' We Can usean Vaflue
(b) Embed the two-hole torus model in the Poincaré disk; Acnobius Property of the harmonic function to minimize the Euclidean
transformation moves the chart to the center of the Poindisk. harmonic energy.

If given surfaces are with higher genus, their uniformizati . )
metrics can only be embedded in hyperbolic space. We havetto Discrete Algorithm
carry out our computation in this space, which can be modeledWe summarize our approach as the following discrete

by the Poincaré disk as follows. algorithm:
The Poincaré disk is the unit disk on the complex plane The inputs are the source surfae and the target surface
zz < 1, with the Riemannian metrids®> = (ffi‘éz)z. Our S;. The output is the harmonic magpunder the uniformization

goal is to compute a map : (S1,81) — (S2,82). We use metric of Ss.
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Construct an initial mag : 51 — S» (See Section 1V).

2. Compute the conformal deformation (uniformization met-
ric) of Sy using the technique introduced in [32], then
embedsS, in the canonical domai or H2, ¢ : S5 — C
or ¢, : Sy — H2. (See Section V)

3. Compose thef and ¢, to getw : S; — C or w :

S1 — H?, and apply heat diffusion on dynamic charts

to minimize the harmonic energy:

dw

== Aw. @) _ ,

dt Fig. 2. Local Refinement on the System of Loops Computatioheit\the

. blue cut path intersect with the existing red pathVi, we apply a local
(See Section Vi) o refinement. The intersected pdtH , V>, V3] segment is replaced by the new

4. Whenw converges to the global minimum, ¢ty = w  green path. Yellow segments are new edges inserted durige slits in the

and get the final mag = ¢, ' o fix. refinement.

IV. INITIAL MAPPING

We first build up an initial mapping between the given
surfaces. The initial mappings determine the homotopysclas
of the resultant surface mapping (which will be discusséer la
in Section VII-B). Our pipeline for creating the initial map
has two steps: (1) we unfold both surfaces to disks through a
cut graph called theystem of loopgSee Section IV-A); (2)
we map two surfaces via the disk domain (See Section 1V-B).

A. Cutting a Surface into a Topological Disk

An orientable closed surface of genys(¢g > 1) can be
cut into a single topological disk by removing a so-calted
graph Computing a special case of cut graphs which pag'g. 3. Refinement on the System of Loops Computation.
through a common given base point, call®gtems of loops
is studied in computational geometry field. One of the stat&éherefore, a robust algorithm has to adaptively change the
of-the-art techniques, [34], used an efficient greedy aigor connectivity.
to get an optimal cutting loop. We refine their algorithm for As shown in Figure 2, locally, if a cut path (blue) intersects
our surface cutting. with an existing path (red) in one point. We apply the

We first briefly describe their algorithm for computing dollowing algorithm on the blue curve to make it bypass the
system of loopd. on the given mesl$ and the base point: red one:

(1) Compute the shortest paths trBeof S from z. Algorithm 1:

(2) For each edge € S\T (i.e. e ¢ T), compute the shortest(1) Spin around the intersected vertex, enqueue all faces
loop that contains:, denoted ass(e), which consists of2 betweenVi, V5] and[Va, Vs](For examplefi, fa, f3, fa here).
shortest paths from to endpoints ok plus thee itself. (2) SetV; as the current poing.

(3) Compute the dual graph of\7, denoted ag(S\T)*. (3) Pop facef out from the head of queue. V3, V3] is in f,
Compute its maximum spanning trd&, where the weight add edgep, V3] to the new path and STOP; else GOTO (4).

of each dual edge* is o(e). (4) Split the edge opposite to the current veriexThe new

(4) Get the sete’ which contains every edge that is neithesplit point is denoted ag. Add the edgelp, ¢] into the new

in T' nor crossed byl™. path, move ta;: setp := ¢q. GOTO (3).

(5) E' has2g edgeseq,es, -, ez, Compute shortest loop After applying this algorithm, we replace the intersected
o' (e;) containing eacke;. These loops constitute the systenpath[Vi, Va2, V3] segment by the new path (as shown in green).
loop L. The yellow segments are edges newly inserted onto the mesh

In [34], they assumed that all the shortest paths from eadhring the edge split procedure.
point on the cut path to the base point only intersect at theln general, if the intersected parts have more than one point
common base point. This assumption holds in the smooth cage apply the above algorithmiteratively on each intersected
but often fails for triangular mesh representations. Thustép vertex. Figure 3 illustrates this. In the small picture (epp
(5), shortest paths on triangle meshes may intersect eheh otleft), a cut path (blue) passes through an existed cut path).(r
especially for high genus surfaces. For example, on a genWée apply the following algorithm on the intersected segreent
six surface,12 loops will go through the base point, meaning Refinement Algorithm:
that the valence of the base point should at leasbdo (1) Find out the point right before the intersectio,] and
prevent paths’ intersections outside the base point. Sigih hthe first point right after this intersectiofy). Push all vertices
density connectivity is hardly satisfied in ordinary meskada on the current path betwedn, andV; into a queu&y).



Fig. 4. Slice both meshes open and map them to a canotyjegbn; compose
these two maps; get the initial mapping. Mappings of différeolor-coded)
regions are shown respectively with different colors.

Fig. 5. Side-by-side omparison between Distortions ofdhi¥lap (left) and
. . . Optimized Map (right).
(2) Pop each vertex i), and apply Algorithml on it. P P (right

Intersections usually happen near the base point beca
cutting paths are dense in this region. ThHein such case is
the base point, and the same refinement process is applied. +1 x(S)>0

K=¢0 x(8=0,
-1 x(S) <0

t8Rstant Gaussian curvaturé and zero geodesic curvature,

B. Initial Mapping via4g-gon . o ) o
_ ) where y is the Euler characteristic. Such kind of metric is
With the system of loops, we slice each surface onto & ed theuniformization metric
topological disk. For a genug surface, the cut graph passes compute the uniformization metrié“g using the Ricci

through the base poidy times, making the disk a topologicalfjow method [30]. Ricci flow is defined as
4g-gon. We map two given surfaces via thig-gon, as the

procedure illustrated in the Figure 4. du_(t) = 2K(1), 4)
1. Slice each surface along its system of loops to open it up dt
onto the4g-gon. where K (t) is the Gaussian curvature induced by the metric
2. Flatten each sliced surface to the canonigagion, using e**(Y'g, under the area preserving constraint
the harmonic map with fixed boundary.
3. On the canonical planar parameter domain, iafo S, / do = / e do.
s s

via barycentric coordinates. Unlike [1], we dot extract

a meta-mesh by overlaying the two planar domains. In practice, all surfaces are represented as triangulaneses
Instead, we use an approximation mesh with only Basically, for a triangular facel BC' on the mesh with edge
the connectivity ofS; (though its shape is liké,), and lengthsa, b, c, we donot treat it as a planar triangle in the
we may later employ an adaptive remeshing procedureiclidean space but rather a triangle itHyperbolic space
(Section VII-E) for mapping refinement in areas wherdll the angles in the triangle can then be calculated using

under-sampling occurs. hyperbolic cosine law, and the discrete Gaussian curvature
4. Stitch the topological disl6’, along the original cutting each vertex is defined as the difference betw2erand the
boundary back to the closed surfaces. summation of all the corner angles surrounding the vertex.

By the above algorithm, we get an initial mapping from We gssomate each vertex with a C|.rcle of radius~;.
S, to S. This initial mapping is only used to determine thd WO Circles centered at the end vertices of an edge
homotopy type. In the following sections, we will prove andersect at an angle;;. The edge length ok;; equals
demonstrate that if two initial cuts induce two maps beloggi /i; = \/%-2 + %2» + 2cos ¢y .
to the same homotopy class, then the final results are idéntic Conformal maps transform infinitesimal circles to infinites
imal circles and preserve the intersection angles among the
circles. Therefore, we only modify the circle radii and keep
the intersection angles;;. Let

According to our previous discussion, given a surface Inv; X(8)=0

R? and its induced Euclidean metric (represented by its first U = { 1 — ,
) ntanh ¥ x(S5) <0

fundamental formg), let v : S — R be a globally defined
function onS, thene?“g is another Riemannian metric & The discrete Ricci flow is similar to the continuous Ricci flow
which is aconformal metricto the original induced Euclideanin the form:
metric. du; - _K,

Riemann uniformization theorem [35] states that for &hy dt
there exists a unique conformal metric, such that it inducesere K; is the Gaussian curvature at

V. COMPUTING UNIFORMIZATION METRIC




The Ricci flow will converge [32], such that all discrete
Gaussian curvatures are constant, and the edge lengths
proximate the uniformization metric.

If the surfaceS is equipped with the uniformization metric,
then S can be isometrically and periodically embedded in th
following three canonical spaces, the unit spheredd’) > 0,
the plane fory(S) = 0, and the hyperbolic space(S) < 0.
Whenx(S) = 0 the metric is calledlat metricsince curvature
is zero everywhere, and wheiiS) < 0, it is calledhyperbolic
metric. In Figure 1, we demonstrate the hyperbolic embeddir
of the two-hole torus model. _

We use the Poincaré hyperbolic disk model to represepi: 6 The Dynamic Covering Chart ofi;. Given a vertexV and its
one-ring onS1, the left figure shows a covering chart 6h: the vertexV' is

. 9 . . . L
the hyperbqllc spaceél”. Th? P0|r_10are hyp_erbpllc disk is amapped to the red face; its one-ring neighbors are mappéub tpeflow faces.
two-dimensional space defined in the unit disk € C : The right figure shows the domain of the chart. The white ariraicates the

|z| < 1} on the complex plan€& with hyperbolic metric. 9radient direction of the harmonic energy.

The hyperbolic metric is defined as o )
_ the redistribution globally; or directly flow over local dts
ﬂ_ equipped with uniformization metric. In this work, we use th
(1—2z2) second method: dynamically construct a set of overlapping
The geodesics (hyperbolic lines) in the Poincaré disk al@cal charts onS; and perform relaxation within these charts.
Euclidean circular arcs perpendicular to the boundafy= 1. Compared with using one global patch, the dynamical local
The rigid motions in the hyperbolic plane are the Mobiusharts method has two importaalvantages
transformations: — w, z € C with the form « The vertices may need to flow across the cutting boundary
to relax the energy. On one parameter patch domain, it is
difficult to perform the relaxation across the boundary.
« Globally embedding the target mesh onto a large patch
is numerically less accurate, especially for hyperbolic
metric. The local embedding of small charts is more

ds? =

w=e?Z 20 (5)
1-— Z0
where 2y is an arbitrary point inside the unit disk, is a
rotation angle. This formula rigidly transforms the hypaib
disk so that the point, is moved to the origin (Figure 1 (b)

and (c)) precise.
For each vertex; on .S, we create at least one chart Sp
VI. M AP OPTIMIZATION that covers the images of itsring on Sy, meaning that the

, . o . . hart contains all faces onto which thgs 1-ring are mapped.
With the uniformization metric defined on the target mes% R e 9 bp
As shown in Figure 6, to construct a covering chart for the

S2, we can perform the heat diffusion procedure tO.Op.timiZF—ring of a vertex onSy, we first map the vertices of the
thedlmtltal mapf. Be<_:aut.se of thte_ constantlcur\t/_atureﬁﬂintt:u ring to S,. Each vertex in thisl-ring is mapped to a face
under the uniformization metric, our relaxation will nottge , So. Given this set of faces, we find a patch 6 that

stuck in local minima. An arbitrary initial map can be used %ontains these faces and is homeomorphic to a disk. We first

the start of our optimization procedure; it can be stretchred . - . ,
compute an approximate geodesic distance from the ‘center

distorted, or even contain local flip-overs. Our_ optimiaat! ¢, o (red) to all other faces. Then we add the faces to the
procedure (Section VI-B) converges to a unique bijectiv

. ) i . _ PUECINVG a1t through Breadth First Search (BFS) while maintaining
global optimum robustly; more discussion about this will b‘aisk topology. Faces which are closer to the ‘center face

given in Section VII-D, and the rigorous proof is given in th%re given higher priority during the BFS. After the chart

Aﬂﬁel:n.d'xr'es e visualize the distortion of the initial Manoi has been constructed, we tile it i@ (or H?, according
Igure 5, we visualiz ! ! it a1 the genus of the mesh). In this way, we getoaally

from the amphora model to the vase model by texture mappi .
and displaying the connectivity. The checkerboard textu(r[;e‘9 nstructed yet globally parameterized chart, extracted as

A . . a_small subset of the continuous global parameter domain.
mapped is distorted (irregular pattern as shown in the t?_'Puring the relaxation, the mapping of vertices and thieir
left image) by this initial mapping. This initial mappingké ring can change nev,v charts are dynamically created when
all methods based on cutting, induces great distortions n%%cessary' old c’harts which are unused for a user-specified
the boundary. By relaxing each vertex on dynamic charés '

. . . . : ) mount of time are removed from memory on the fly.
discussed in the following section, we alleviate the di&aS i i Not Local Parameterization. Note that chart-based
all over the mesh and reach a global minimum.

approaches have been used in local-parameterizationtbase
_ remeshing [36], [37]. And our approach is fundamentally
A. Chart Construction different from them in that we are nédcally parameterizing

In order to smooth the mapping betwegnand.S,, we need these one-ring charts, but direcdynbeddinghe pre-computed
to redistribute vertices of; on the domain ofS; following uniformization metric. Local parameterization compuths t
the heat diffusion flow. We can either embed the wholgattening of charts every time separately, while we use the
Sy onto C (genus one) ofl? (higher genus) and performglobal metric so that a globally consistent covering is agéd.



During the iteration procedure, the harmonic energy (from
the source mesh to the target domain) monotonically de-
creases. For genus one meshes, they are embeddéd in
under uniformization metric, these operators can be used
directly. For higher genus meshes embeddedlfy we still

use this Euclidean Laplacian operator to relieve the haiton
energy after an isometric transformationk, which is also
called theMbbius transformation The reason that we can
approximate hyperbolic Laplacian operators using Eualide
Laplacian operators had been discussed in the previous Sec-
tion IlI-D. By the Mobius transformation we rigidly trarfm

the domain of the local chart so that the parameterizatidheof

¥ vertex being relaxed coincides with the center of the Pagnca
N | B e diskﬁFigure 1). Near the origin, the hyperbolic metie =
terations hersions 214zl only differs by a constant factor from the Euclidean
Fig. 7. Local Parameterization VS Global Uniformization thite (Map the Lt i i i i

9. 7. 2 . . P metric and thus our Euclidean Laplacian operator is a linear
Torus to the Rocker Arm). Top row: side-by-side comparisetween local . . . . . .
approach and global approach. Bottom row: temporal statisf convergence @PPproximation to the Hyperbolic Laplacian operator in this
performance. relaxation region. (The local chart is usually small, so the

approximation is with high precision.) For numerical issue

With th formizati " wiviall t the flats we change thef value on each vertex to the target using a
i e uniformization metric, we trivially get the flattieng step sized.5, i.e. f'(v;) = f(vi) + %_

of each local chart by tiling it in a proper local patch domain
(Figure 1). In other words, pre-computed metric already de-
fines all the edge lengths in the mesh of the given chart; we
only conduct a tiling of this triangular mesh.

The relaxation result demonstrates the key difference b&- Mapping Quality Measurement

tween local parameterization and our approach: relaxationHarmonic energy is a natural energy to measure the stretch-
based on local parameterization will get stuck locally, l&hiing energy induced by the mapping. A physically meaningful
using a globally consistent uniformization metric guaest mapping in reality ought to minimize the harmonic energy.
the global convergence. To demonstrate this, we perform exyyhen the conformal mapping frosy to S» does not exist,
periments as shown in Figure 7. Compared with the relaxatimb quasi-conforma] mappmg maps circular regions around
on the uniformization metric (right), the relaxation usiegal 3 |ocal point into ellipses. The ratio of the major to the ntino
parameterization(left) will get stuck in some local optimum, axis is called thalilatation D at this point. We use a discrete

Local Mean-value Parameterization of Charts 4 Using Global Uniformization Metric

Quasi-conformal Distortion
Quasi-conformal Distortion

VIl. DISCUSSIONS ONMAPPING PERFORMANCE AND
PROPERTY

and cannot produce the desirable result. varianceD’ to measure the conformality of this mapping. The
definition is as follows.
B. Relaxation Given a local triangle(q1, g2, q3), ¢ = (zi,y:, z;) of the

We let the skin ‘flow’ on the target planar domain so thaRginal mesh mapped onto a triangle , p2, ps), pi = (ui, vi)
the harmonic energy is minimized. This is performed via &N 2D. The interior discrete mappin§(p) = S(u,v) = g is
iterative heat diffusion (relaxation) procedure. The thise represented by
harmonic energy of & map is defined as S(p) = ({p, P2, p3)q1+(p, p3, P1)q2+(P, P1, P2)a3) / (p1, P2, P3)

E(f) = ZE(f) - Zwij|f(vj) = f@)l’, , where (a,b,c) denotes area of trianglebc. The partial
! - derivatives of Jacobian are
where| - | is the norm with respect to Euclidean metric and
w;;'s are the discrete harmonic cotangent weights. We use the = (q1(v2—v3)+qa(vs—v1)+gs(vi —v2))/(2(p1, P2, p3))-
gradient descent method to minimize the harmonic energy. i
each single relaxation step, a vertex is moved in the domain
following the gradient of harmonic energy by the Laplaciaf®, = (¢1(us—u2)+q2(u1—us)+qs(ua—u1))/(2(p1, p2, p3))-

operator, which is defined as The larger singular valug and smaller singular valug of

Af = Z wij (f(vj) — f(vs)), the Jacobian are given respectively [38]:
JEN;

— 02 2

whereN; is the index of neighboring vertices affid= w is the Iy = \/E + G+ (E-G)?+4F

composed map as given in Equation 3. Therefore, the vertex 2

in the domain is moving towards the new position: , whereE, F, G are terms for the first fundamental form.

1 H H r _ I
F'(wi) = fv) + Af. We computeD’ on each triangle using)” = ~. The

maximal value of D’ of the mapping on the surfaces is
LLocal parameterization of the charts onto circular disks. determined by their geometry. As we mentioned above, in



genus one case, the harmonic map we get is the extremwithout relaxing the feature points and prevent any neigh-
qguasi-conformal map, minimizing the angular distortione Whoring vertices movement that violates the validity of the
test our mapping performance against the theoretical boumidngular mesh during the relaxation.

using the following experiment. Given two torfi; and 75; The insertion of landmark definitely may cause larger dis-
T, has minor and major radii.5 and 2 respectively, while tortion in the neighborhood, because now the relaxationagn
T, has these radi).5 and1.5. T} andT» can be conformally be performed freely and the resultant mapping is not glgball
mapped onto twa®D rectanglesR;(a1,b2) and Ra(az2,b2), optimized. The detail discussion about feature correspocel
where(a;, b;) are the width and length of the rectangle. Thes beyond the focus of this work. We will explore along this
extremal quasi-conformal mapping betweéBnandT:, has the direction in our future work.

lowest theoretical bound given by the modules rati@’ofand
Ts. In our setting above, these two modules arg31 and
0.5762, meaning the theoretically optimd}) bound between Cut 1:
Ty andTy is 1.632. We plot the performance of our mapping
in Figure 9(c) (red curve). The-direction shows the iteration
numbers and theg-direction shows the global quasi-conformal
distortions.

D. Global Convergence and Performance

Final
Angular
Distortions

Initial
Angular
Distortions Final Maps

Initial Maps

B. Homotopy Classes of Initial Mappings

When an arbitrary initial mapping is built up, the homotopy
class of the mapping is determined. The subsequent optimiz:
tion procedure (Section VI) reaches a unique optimizedltresu
in this same class. The slicing order of loops in the two
systems of loops decides the homotopy class of the mapping. 8. Global Uniqueness of the Optimized Map in the same btopy
Usually, if we arbitrarily pick an order, an optimized resulClass.
will be reached in that corresponding homotopy class; but . L
this kind of arbitrary surface mapping may not be what we OUr surface mapping optimization converges robustly.
intuitively want. We naturally want handles mapped to haad| Under the same homotopy class, different initial cut-
consistently. To get consistent slicing orders of systeths $195/mappings reach the same global optimized result. A
loops, first, we can compute the canonical handle and tunfigerous proof is given in the appendix. We also perform
loops using the method of [39]; second, with these handle afgPeriments and visualize this in Figure 8: from left to tigh
tunnel loops, we can decide the homotopy class of each cloddf first column shows the original Amphora model and its
loop in the system of loops, this pair loops in two systems fexture; t_he second column are two different |,n|t|al cuthsat
loops, providing the consistent slicing orders in two sygte In the third column, we transfer the Amphora’s textures onto

of loops. In this way, we correspond handles in the souriiae target Vase model using the corresponding initial maps.

surface with handles in the target surface. For two gemusTheir angular distortion distributions (averag®) are color-

surfaces, there will be-factorial consistent mappings, any ofcoded in _the four'Fh column. Tra_nsferred te_xtures_on the Vase
them is visually reasonable. model using the final maps are illustrated in the fifth column.

Furthermore, in many applications, users may want motdeir final maps are almost the same and have the final

precise controls on the mapping. For example, sometim@§tortion color-coded in the rightmost column. _
handles of the source surface need to be mapped to somé/e plot more experimental performances on computation

specific handles of the target surface. Also, users may meqlf! ©Ur mappings in Figure 9: (a) and (b) show the harmonic

some feature points to be mapped. Both of these can be eaSIkFr9y and quasi-conformal distortion convergence dufieg

implemented in our framework as follows iteration, respectively. In(c), we perform experiments for
genusl to further quantatively test the robustness and validity

f our mapping. The mapping frori; to 75> discussed in
hEaO previous Section VII-A with a different initial cutting
onverges to the same result (green). The mapping from a toru
1 (different resolution withly) to 75 is plotted in the blue
.__.curve. The inverse mappingd{ — 71, which has the same
'Ey%asi—conformality bound in optimum) is plotted in brown.

C. Constraints and User Controls
To assure the handle-correspondence, users only nee

pick up a corresponding slicing order of two systems of loop
on the4g-gon disk, users can easily set up this order once t
systems of loops are computed.

parameterization techniques for topological disk suiagith

constraint points, for example, MAPS [14] can be applied for o )

the initial map. Also, many existing surface mapping framé=- Connectivity Refinement

work [1], [14]-[18] all allow the feature point correspone, Since we only use the connectivity of the source mé&gh

and they can be applied as the initial map. In our work, singeometry loss may happen in some areas due to under sam-

we use Carner et al’s method [1] to generate the initial mapljng, most likely in high curvature (e.g. sharp featuredaa

we also apply their method for the initial feature registnat on S,. In order to capture such geometric details, we simply
Starting from the initial mapping with feature pointsapply an adaptive remeshing algorithm similar to [17]. We

matched correspondingly, we can perform the optimizatidacally modify the connectivity of the mesh using edge split
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Greek/4-Torus
—— Knotty/2-Torus
—— 2-Torus/Amphora

2-Torus/Vase
3 —— Polycube/Buddha
—— RockerArm/Torus
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Fig. 9. Mapping Performance. (a) Harmonic energy duringaiiens. (b) and (c) Global quasi-conformal distortiongf@ge ofD’) during iterations.
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Fig. 11. Visualization of Surface Mapping between a Teapod# and a
Cup Model.

Fig. 10. Connectivity Refinement. Left column: the initialapping from
Star model to Rocker-Arm model; Right column: the refinednemtivity.

guided by the following two simple error terms which capture

the geometric proximity betwee8}, and Sa: Ejengin(€ij) =
|¢(vi) = (v))|, andEporm (€i5) = [1=N(vi)-N(v;)]/2, where

¢ : S — S and N(v) is the normal of vertex. The first

term measures the length of an edgednlonger edges are

more likely to miss geometric details and we prefer splitting; 1,
them early. The second term measures the normal deviation

of the two vertices of the edge: a greater value implies that

the edge crosses a more curved region or a region with shggdwell as the distortion are challenging. We use a texture
features. We iteratively split edges with large combine@rer wjith the color band marks embedded in coordinate lines to
The new vertex generated by the edge split is then mappge in this visualization. The texture is first mapped onto
back to the surface of the target mesh via the parameterizgel source model, each vertex on the source surface has its
chart that covers this edge. “UV” coordinates. When vertices are mapped to the target
In Figure 10, we can see that the model created by mappi§\gface, their “UV” coordinates are carried. In this way,
the ‘Star’ to the ‘Rocker Arm'’, after being refined fdi0  texture mapping on the source surface is transferred oeto th
iterations, approximates the geometry of the target mesthmygrget surface, the color bands on the target surface idsual
better: the left column is the initial mapping while the righthe region correspondence, and the perpendicularity of the
C0|umn ShOWS the reﬁned ConneCtiVity. The number Of Vatic@hecker board or Coordinate |ines ShOWS the angu|ar dmtort
only increases by a fraction of1.04%. Our simple error Figure 11 visualizes mapping effect from gertus: teapot
metric is easy to implement as we do not have to maintaifodel to a cup model.
the inverse map fron$, to S in this case. Texture as well as material transfer is straightforwardras a
application of our mapping. We show an example in Figure 12,
which transfers the texture from the amphora model to the
A. Texture Transfer and Mapping Visualization vase model. Since our mapping has the minimized distortions
We need an effective way to clearly visualize a mappinand global smoothness, such a transplant is physicallyalatu
between two surfaces because showing region correspoandesiich potentially provides a powerful tool for reusing or

Texture Transfer using the Global Optimized SwafMapping.

VIIl. RESULTS ANDAPPLICATIONS
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transferring information such as material properties, BRDalignments during the initial mapping process; then we khou
etc. between models towards information integration. keep this correspondence during the afterward optimiaatio

B. Shape Morphing C. Canonical Mapping from Surfaces to Simplified Domains

Fig. 14. Mapping from a Polycube to the Happy Buddha Modebnirieft
to right, we visualize the texture on the Polycube, the fiemsd texture on
(d) Optimized; 50% Morph the Bgddha by the initial mapping, and the transferred textwy the final
_‘ mapping.
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(c) Initial: Target (e) Optimized: Target

Fig. 13. Optimized Mapping for more Natural Morph. The seusurface
is shown in (a). If the initial map is used, the Morph genetagedepicted in
the left column: (b) shows the 50% morph, (c) shows the maphertdrget
surface. When the surface map is optimized using our algorithe result is
shown in the right column ((d) and (e)).

Fig. 15. Optimized Surface Mapping from the Greek Model t® 4hTorus.
The left column shows the front and back of the Greek modé itsttexture;

. . . . . the right column shows the front and back of the target sarf@Torus),
. Ar_]Othe_r mt_umye way to V_'Sual'ze mapping and to ?Valuat%spectively, with texture transferred by our mapping; thildle column
its distortion is via a morphing sequence. The behavior ef tlshows the 5% morph from the Greek to the 4-Torus under our mapping.

morph can be an intuitive visual judgement on the mapping
quality. Figure 13 shows an example. The initial mapping, asOur method conveniently creates canonical mappings from
indicated previously, is created by the the technique of [1§rbitrary surfaces to simplified domains with globally op-
Based on initial map, we can conduct linear interpolatiod arimized distortions. The canonical domain can be poly-
generate the morph as shown in the left column. The generatedbes [40], so that graphics processing such as parameteri-
sequence is obviously not attractive. We then optimize thkation with lower distortion, polycube spline generatiett.
surface map, and regenerate the morph. As shown in the rightt be applied based on our mapping. The domain can also
column, the new morph sequence demonstrates symmeléc some canonicalN-hole tori [20], so that topologically
deformation and is visually much more smooth and pleasineguivalent shapes can be processed or analyzed on thistsmoot
Rigorously speaking, the morphing sequence generateddmynmon domain.
mapping with lower distortions means that the deformation In Figure 14, we visualize the polycube map for the genus-
sequence is closer to the ‘geodesic’ in the space of shapg8uddha model. Our method successfully deforms arbitrarily
minimizes unnecessary distortion during the interpofaid built initial map with severe distortion to a global optimum
shapes, thus provides better visualization results. In Figure 15, we show our mapping from the geduG&reek
In graphics applications, shape morphing is widely studigdodel to a canonical-torus.
as a direct application for surface mapping. Users usuallyOur method has an important advantage over direct projec-
want to have control on the morphing via feature or corion methods of computing polycube map such as [40] in that
straint points. To achieve this goal, as indicated preWjours our method is intrinsic. Therefore it is more robust, ingati
Section VII-C, we can use the existing techniques for featuwith models’ spatial positions and sizes. Furthermore,whe
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shapes are with complicated topology and geometry, or thtep for various other matching techniques. It serves as a
source surface has great difference with the target sufface general shape registration and visualization tool.

example, Greek and Torus as shown above), direct projectiorShape Comparison and Retrieval.Given many shapes
method is highly error-prone but our method can robustiy database, we can match and compare them via canonical

handle it. domains. This provides an efficient and geometrically mean-
] ) ingful way to measure their differences. Here we perform
D. Shape Matching and Comparison an experiment on a database containingifferent genus2

geometric shapes: Vase, Amphora, Teapot, Cup, Feline, and
1 (¥ >/ ® (& Cube. We use a two-hole torus as the canonical domain for all
(O ( ( ((/ ‘g % “/> these genus two surfaces. We first compute mappings between
3 4 5 6 7 these surfaces and thetorus domain, and then pairwisely

; S 359 2272 2081 5970 19.43 Ccompare these surfaces via the domain using matching energy
3 0 2199 2129 5938 18,72 defined by the conformal representation:

4 0 10.98 39.66 19.65

5 0 4445 1691 BSi5)= [ M=)l +AlIH )~ Halp) P

6 0 3289 pet

7 0 where S; and Sy are two shapes being compardd,is the

Fig. 17. Shape Comparison using Conformal Representdfioa.first rows canonical torus domainy '_S the conformal factor, and/ is ]
show all shapes to be compared. The second row and the firsblemn are  the mean curvature. In Figure 17, we can see the models in
their indices. The table has the symmetry property, and timbers measure the first row. The matching energies, used as their distance,
the distance between models in a pairwise manner. . . . .
are shown in the table. Since the symmetry of the distance is

bviousl d, ly show th -right part ef th
Our optimal surface mapping creates global, low angula}?él;/lg)usy preserved, we only show the upper-nght part @

distortion correspondence between two models. With such a

non—rigid_regi.stration., we can easil_y matqh two shapgs apd Algorithm Performance

clearly visualize their difference distributions for potel S ) _ )

subsequent analysis purpose. Our optimization is an iterative algorithm; the total numbe
Conformal Representation.A natural way to characterize ©f itération steps is controlled by a user-defined threshlold

the matching between two surfaces is caltedformal repre- Figure 9, we set the threshold of quasi-conformality to be

sentation[41]. According to [41], when a surface is mapped® — 6; in real applications, we can use lower precisions.

onto a target surface, if the resultant conformal repregiem Ve perform our algorithm on a MS Windows XP PC with
is fixed, the original source surface is rigidly determingde dual Intel Xeon 2.6GHz CPUs, 2GB RAM. The one-iteration

conformal representation contains two terms: mean curatUnning time for most real examples we presented in thispape
H, andconformal factor). The conformal factod of a point &re shown in the following runtime table.

p under a mapping’ represents the local area change, i.e., | _M0dels6i/5) Genus| Ver # Time

the stretching of the map. Discretely, if we denote the are 2-Torus/Vase 2 3.5k/5k | 0.31s
of one ring neighbor op as A(p), and the area of one ring Amphora/Vase 2 10k/5k 14s

neighbor off (p) on the target surface a¥f(p)). A(p) can be RockerArm/Torus| 1 | 15k/14.4k| 6.88s
approximated by the ratio od(f(p)) over A(p). In our work, Teapot/Cup 2 7.5k/10k | 0.95s
although our surface map is not fully conformal (accordimg t | Polycube/Sculpture 3 3.5k/7K | 0.49s
Riemannian geometry, between most high genus models, these GreekA-Torus 4 14.8k/10K| 5.07s
kinds of conformal maps do not exist), our global optimiaati Polycube/Buddha| 6 18k/13.3k | 10.23s

aims to relieve angle distortions. Thus th#, \) defined on
our map is awel! approx[mated and megnlngful represemtan(']__' Comparison with Existing Work
Shape Matching. In Figure 16, we visualize our surface
matching between a torus and a Rocker Arm model usingCompared with other state-of-the-art techniques, our ap-
the above conformal representatiqa) and (b) color-code proach has several key improvements.
the mean curvature distributions of Rocker Arm and Torus, First, our surface mapping framework is based on rigorous
respectively. We color-code the mean curvature differdnce mathematical foundation and analysis, unlike most current
(c) and the stretching factor distribution if). The color- methods that only guarantee to reach local optima, our ndetho
coding of two terms of conformal representation shows ggdobally minimizes the stretchingand converges to anique
where and how much the two surfaces are intrinsically differesult.
ent in a visually meaningful way. Since the globally intdgch ~ Second, current techniques rely upon large amount of user
matching energy is smaller when the mapping is with lowéntervention for mapping surfaces with non-trivial topgjo
stretching/distortions, our optimized surface mappimyjites For example, mapping procedures need base mesh design (
a great registration for the above mechanism. On the oth&R], [13]) or a large number of user-specified landmarks (
hand, the registration by our mapping, with global smoo$isne[17], [18]). In contrast, our framework does not depend on
and low distortion properties, can be used as a preprogesdiser’s involvement, and is fullgutomatic.
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(b) (©) (d)

Fig. 16. Surface Registration for Matching (Torus vs Rockem model). (a) Mean curvature distributions of Rocker Armmad represents the maximum
while blue represents the minimum); (2) Mean curvatureriiistions of Torus; (c) Mean curvature difference disttibns, visualized on Torus; (d) Conformal
stretching factor, visualized on Torus.

Third, since the existing methods follow the general prirwe demonstrate thexistenceof the harmonic map between
ciple to slice the surface open into subregions, the indigg)- given surfacesS; and .Sy with same topology; (2) we show
mentation directly determines the mapping result. In awsitr if the final map we get is harmonic, then it is one-to-one,
our method, because of its global uniqueness, is not céedroland globally unique; (3) we will show our algorithm does
by the quality of initial mappings; therefore, it is much raorconvergeto such a unique mapping with minimal harmonic
general than other existing techniques. energy under uniformization metric.

Fourth, existing work primarily focuses on low genus sur- Existence.Given two high genus surfacet and.S; with
faces and few takes the homotopy types into account. Carsame non-trivial topology. The existence of the harmonip ma
et al. [1] also targeted on high genus surfaces, and they stiglguaranteed by the following theorem
ied the mapping with different homotopy classes. However, Theorem 1:Suppose thab; and.S; are compact surfaces
topology information is the primary information they used f without boundary and that : S; — S, is a diffeomorphism.
mapping computation and therefore their stretching energyThen there exists a harmonic diffeomorphigm S; — S,
not optimized. In our current work, the comparison betwedsotopic to 4. Furthermore,f is of least energy among all
initial and final mapping shows the great improvement fromiffeomorphisms isotopic td.
the initial mapping generated by their method to our globalDetailed proof can be found in [35], page 176. Since ourahiti
optimized result. This can be easily visualized through outiap is constructed as a diffeomorphism betwégrand S,

optimization procedure in the accompanying video. the existence of harmonic map is guaranteed.
One-to-one and uniquenessWe show if the final map is
IX. CONCLUSION harmonic, then it is @iffeomorphism (one-to-one and differ-

This paper has documented our new method for computingtﬁtiamei anddhas theh gI(;baI uniqueness_l._r\]Nef p”rov_e inth thir
globally optimal map between surfaces of non-trivial tayupl ep that we do reach a harmonic map. 1 he foiowing theorem

and demonstrated many valuable applications. Based on g&g\rantees the harmonic map calculated in our algorithm is a
i

mathematical advances in computing the uniformizatiorrimet Tehomorphlzs.nLﬂ. g S b h . b
using intrinsic geometric structure, we can globally perfo eorem 2:Let f : 51 — 5> be a harmonic map between

heat diffusion to alleviate the stretching and the averaggea closed oriented surfaces of the same genus with degreesequal

distortion of the map as much as possible. As we discussedit: And Ks, <0, thenf is a difeomorphism.

Section VIII-F, our algorithm have many key advantages ovi€tailed proof can be found in [35], page 187, or [2], page 15.
existing work. In our algorithm, the initial map is constructed by matchlng
Our mapping algorithm can also serve as a ubiquitous t&gle fundamental_polygon; Sh and.S;. Therefore, each point

for a wider range of applications such as shape registr,atic?fr]? 5_2 .has a unique pre-image Oﬁl hence, the degree of

morphing, matching, comparison, and spline surface coastr Ne |n|t|a_l map is1l. The Gaussian curvature (_)f the target
tion over generalized domains. We would like to apply OLﬁurface is0 (for ge’?”_s'l surfac_es) opl_(for high genus
mapping framework in more challenging research topics sugffaces), therefore if is harmonic, thery’ is one-to-one and

as deformable model tracking, animation transfer, etc.  differentiable. _
The following theorem postulates the uniqueness of the
APPENDIX map.
CONVERGENCE ONE-TO-ONE, AND UNIQUENESS Corollary 1: Let u1,us be harmonic maps/ — N of
In this appendix, we will show our algorithm converges tdegree one between compact surfaces without boundaribs, wi
a globally unique one-to-one map with the minimal harmonigenus greater than one, whekgy = —1. If w; andus are
energy under the uniformization metric. The pipeline isf (lhomotopic to each other, then = us.



The detailed proof can be found in [42], page 144 and [2],3]
page 16. In our algorithm, the homotopy class of the map is
determined by the way to match the fundamental polygons.
The map is harmonic, the curvature on the target surfacef[is]
—1, therefore, the harmonic map is unique. 15]
For genus-one surfaces, their uniformization metric is fla[t
which can be lifted to its universal covering space. Thigé]
universal cover can be embedded on the plane isometricarf\%
The fundamental polygons are parallelograms. A harmoni
map between two genus-one surfaces with their flat uris]
formization metrics induces a map between their univer !
covering spaces, which is an affine transformation from the
plane to itself. The affine transformation maps the fundaaien
polygon of the source surface to that of the target surfac¢é’]
Therefore, harmonic maps in a homotopy class only differ lpy;
a translation. Each one is the equally optimal result.
Convergence.We prove our algorithm converge to a hart22
monic map. Harmonic energy of a surface map is non-negative,
namely, it has lower bound. Our relaxation process reduces
harmonic energy monotonically; therefore, it convergesto[
critical point of the harmonic energy, which by definition
is a harmonic map. As the aforementioned theorems shd##]
there is no local minimum, and this critical point is glolyall .,
unigue. Therefore, our method converges to the global eniqu
harmonic map, and it is one-to-one and differentiable.

For genus-one surfaces, this convergence proof also appl%sl
and all the minima are globally equal and globally optimaj27]
Our minimization process will converge to one of them. 28]
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