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Globally Optimal Surface Mapping for Surfaces
with Arbitrary Topology

Xin Li, Yunfan Bao, Xiaohu Guo, Miao Jin, Xianfeng Gu, and Hong Qin

Abstract— Computing smooth and optimal one-to-one maps
between surfaces of same topology is a fundamental problem in
graphics and such a method provides us a ubiquitous tool for
geometric modeling and data visualization. Its vast variety of
applications includes shape registration/matching, shape blend-
ing, material/data transfer, data fusion, information reuse, etc.
The mapping quality is typically measured in terms of angular
distortions among different shapes. This paper proposes and
develops a novel quasi-conformal surface mapping framework
to globally minimize the stretching energy inevitably introduced
between two different shapes. The existing state-of-the-art inter-
surface mapping techniques only afford local optimizationeither
on surface patches via boundary cutting or on the simplified base
domain, lacking rigorous mathematical foundation and analysis.
We design and articulate an automatic variational algorithm that
can reach the global distortion minimum for surface mapping
between shapes of arbitrary topology, and our algorithm is solely
founded upon the intrinsic geometry structure of surfaces.To
our best knowledge, this is the first attempt towards rigorously
and numerically computing globally optimal maps. Consequently,
we demonstrate our mapping framework offers a powerful
computational tool for graphics and visualization tasks such as
data and texture transfer, shape morphing, and shape matching.

Index Terms— Quasi-conformal surface mapping, harmonic
map, uniformization metric, surface parameterization.

I. I NTRODUCTION

A. Surface Mapping

How to compute surface mappings is one of the most
fundamental problems in graphics and visualization fields.
It aims to find a bijective (one-to-one and onto) map from
one surface to another. Numerous applications such as shape
registration, matching and comparison, shape morphing, and
texture/attribute/motion transfer all benefit from such a bijec-
tive correspondence between two given surfaces. Researchers
usually measure the mapping quality using angular or area
distortions, because such criteria dictate the end effect of
the enabling applications (e.g., texture mapping). Given two
surfaces with different geometry, distortions are usuallyin-
evitable; we naturally want to seek the mapping that can
minimize distortions as much as possible. However, if two
given surfaces are not isometric to each other, there does not
exist a mapping that can eliminate the angle and area distortion
simultaneously.

In this work, we choose the harmonicity (measuring angular
distortion) as the criterion because it is most physically mean-
ingful. If we assume surfaces are made of elastic materials.
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When surfaces deform and are mapped to others, the stretching
energy caused by the elastic distortion can be formulated as
harmonic energy. Among all possible mappings, a harmonic
map minimizes the stretching energy and has its direct physical
meaning. Also, the harmonic map minimizes angular distor-
tions. For example, conformal mappings are harmonic, which
are free of angular distortion.

Besides the physical intuition, harmonicity and conformal
mapping have other merits which are critical for real-world
applications. First, the dimension of conformal mappings
between two given surfaces is finite; by fixing the images
of finite points, the mapping can be uniquely determined.
Therefore, these kinds of mapping are easy to control. Second,
conformal mappings can transform arbitrary surfaces to several
canonical domains, and convert all geometric processing into
these domains. This greatly simplifies the complexity of these
geometric processing algorithms. Third, the theoretic foun-
dation and algorithms of conformal mappings are relatively
mature.

In contrast, area-preserving mappings lack the physical
meaning, lack analytic methodology as well as practical com-
putation algorithm, and are hard to control. Therefore, in our
current work, we use the harmonic maps and try to minimize
the angular distortion.

B. State-of-the-art Techniques and Challenges

In terms of finding optimal mapping between two gen-
eral surfaces under some specific criteria, current state-of-
the-art techniques lack mathematically rigorous discussions
and analysis in principle. On the other hand, the criteria of
mapping quality on angular distortions have been analyzed and
optimized in the surface flattening or surface parameterization
research area. Surface parameterization aims to find a bijective
map between surfaces and planes (or other simple canonical
domains such as spheres), thus it can be treated as a special
case of surface mapping since its target surface is usually just
a plane or a sphere. Parameterization arises from the purpose
of texture mapping and synthesis where the angular distortion
is the most critical concern to quantify the mapping quality.

Despite its earlier connection with surface parameterization
over canonical domains, finding a minimally-distorted surface
mapping between two general surfaces are much more tech-
nically challenging. There are three key reasons as follows.

First, there are topological differences. Surface parameteri-
zation usually “flattens” a surface onto the plane, specifically,
the surface is sliced apart into a topological disk, and the
parameterization refers to a map from that disk to the plane,so
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it has only one topological type. For mapping between general
surfaces especially with high genus, a handle of one surface
being mapped to which handle of the second surface needs
to be considered. This topological factor has to be explicitly
determined and it gives rise to the mapping complexity for
shapes with nontrivial topology. Rigorously speaking, map-
pings between two given surfaces are classified into infinite
homotopyclasses [1]. Two maps are isotopic to each other, i.e.,
belonging to a same homotopy class, only if one can deform
to another smoothly. A rigorous surface mapping framework
should be able to handle an arbitrarily given homotopy type.
On the other hand, only topologically equivalent mappings can
be compared together; mappings from different classes should
be considered separately since a best mapping may exist in
each class. In the following discussion, we shall consider maps
that are within the same homotopy class.

Second, due to the topological inequivalence between closed
surfaces and the plane, as we mentioned above, parameterizing
surfaces onto planer domains cuts the surface along a bound-
ary. The simplified target canonical shape not only leads to
some well-established numerical solving techniques, but also
unavoidably pushes distortions towards its cutting boundary or
a collection of some singularity points. In contrast, mappings
between surfaces with same topology should prohibits the
cutting, and find a “seamless” result. Therefore, we are not
pursuing a map from a topological disk to the plane, but
a continuous map between two surfaces with complicated
topology.

Third, the most important reason of lacking globally opti-
mized surface mapping techniques is the complex geometry of
the general target surfaces. The non-smoothness of the target
shape actually leads to the technical obstacle in finding the
global optimum among all possible mappings. A natural way
is to follow ideas in surface parameterization: we can optimize
the map between surfaces by simply constructing an initial
map, and then locally adjust it using a variational procedure
until the distortion energy is reduced to the minimum. We
can call this technique “the naive method”. When the target
surfaces are genus zero (e.g., parameterization onto the sphere
or plane), this approach can reach a globally optimized result.
However, for mapping surfaces with non-trivial topology, due
to the nonexistence of canonical target domain (see SectionIII-
C), any local optimization process will inevitably get stuck at
some local minima. This is the primary reason that other state-
of-the-art methods use base meshes or hierarchical structure
to circumvent this problem, while giving up searching for the
global optimum.

C. Our Novel Solution

In this work, we introduce a novel computational frame-
work to tackle the aforementioned challenging problems. Our
method, based on the theories of Riemannian uniformization
and harmonic maps, is both theoretically rigorous and practi-
cally efficient.

Considering two general surfaces with nontrivial topol-
ogy, under their induced Euclidean metric, the target shape
may have complicated geometry, and the harmonic maps are

usually not globally unique. Some harmonic maps are local
minima of the stretching energy.

To globally reduce the stretching distortion without getting
stuck locally, we propose to use the so-calleduniformization
metric. Under their uniformization metric, surfaces with non-
trivial topology have constant non-positive Gaussian curvature
everywhere, so that the harmonic map becomesglobally
unique [2]. (Please refer to Section III-A and the Appendix
for more theoretic details and Section VII-D for experimen-
tal demonstrations). Uniformization theory states that for all
surfaces, such uniformization metric does exist; and we can
compute this metric efficiently by using existing techniques.

Under surfaces’ uniformization metric, we conduct our
optimization process. It is guaranteed to converge to unique
global harmonicity under surfaces’ uniformization metric.
Specifically, our algorithm has the following important merits.

• Optimality. Harmonicity under uniformization metric
can be globally optimized without worrying about any
local optima. The resultant map minimizes the stretching
energy and distortion.

• Uniqueness. The global harmonic map in hyperbolic
space is unique; our algorithm converges to the same
result starting from arbitrarily different initial mappings,
as long as they belong to the same homotopy class.

• Conformality. For genus-zero surfaces, arbitrary har-
monic map is free of angle distortions. In genus-one case,
our optimized map minimizes the angle distortion among
all possible maps. Between two general surfaces, if exists
an angle-distortion-free map between them, our method
guarantees to find such a conformal map.

• Efficiency. Harmonicity relaxation under the uniformiza-
tion metric is performed in 2D, which is much more
efficient and robust compared with any other iterative
methods directly conducted over curved surfaces.

The main contributions of this work are:

1. We propose and articulate a novel approach to compute a
globally optimal map minimizing distortions between two
surfaces with the same non-trivial topology. This process
is fully automatic and requires no user interaction. To the
best of our knowledge, this is the first attempt to compute
surface mapping with globally minimized energy for
arbitrary high genus (g ≥ 1) models.

2. Using the intrinsic geometric structure of surfaces, the
convergence of our algorithm is guaranteed. We quanti-
tatively evaluate its performance, and then design toolkits
to clearly visualize the mappings, as well as analyze their
converging effects.

3. We use our surface mapping as a powerful tool for
data and texture transfer, shape morphing, cross-surface
parameterization onto canonical shape domains, shape
matching, and shape comparison. Our globally optimized
mapping demonstrates its great efficacy in these graph-
ics and visualization applications, with potentials in the
broad scope.

The remainder of this paper is organized as follows. We
will briefly review the related literatures in Section II. Then
in Section III, we introduce the theory and algorithm of our
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method. Our algorithm proceeds in three main steps, as dis-
cussed in Section IV, Section V and Section VI, respectively.
We then discuss our mapping performance and properties in
Section VII. Finally, we demonstrate our experimental results
with some applications in Section VIII and conclude our
work in Section IX. In the accompanying appendix, we prove
the existence, global uniqueness, and the one-to-one property
of the harmonic map and we also show our algorithm will
converge to such an optimized map uniquely.

II. RELATED WORK

Our current research builds upon previous work in surface
mapping, conformal geometry, and non-Euclidean geometry.
Earlier work on establishing a bijective mapping is mostly
motivated by the need of blending two shapes. A natural
approach is to use some canonical shape such as a sphere
or the plane as the intermediate domain. Kent et al. [3]
mapped star-shaped surfaces onto spheres, and merged them
by clipping one sphere to the other. Kanai et. al. [4] used
harmonic map on disk to build correspondence between two
genus-zero closed or open surfaces. Alexa [5] wrapped two
genus-zero surfaces onto a unit sphere, and computed the
mapping by minimizing some distance function. Asirvatham
et al. [6] used progressive mesh and their constrained spherical
parameterization to map genus-zero surfaces onto the common
spherical domain. These types of techniques are usually based
on spherical parameterization techniques [5], [7]–[9] or planar
parameterization techniques [10].

Spheres and planar disks are natural domains for computing
maps with minimized stretching energy directly. However, they
can only serve as intermediate domains when the two surfaces
are of genus zero. For high genus surfaces, these kinds of
canonical domains can not be found. In this work, we focus
on finding stretching-optimized maps between surfaces with
non-trivial topology.

Approaches for surfaces with non-trivial topology are usu-
ally applied through another direction ( [11]–[18]). They typ-
ically segment the meshes into subregions first. For example,
in [12] and [13], a common coarse base domain mesh has to
be constructed manually by the user with domain knowledge
in topological surgery; in [14], [16]–[18], feature pointsare
firstly provided by users, then some automatic subregion
tracing algorithms or progressive meshes are applied for coarse
base mesh generation. The advantage of these approaches is
that feature correspondence can be intuitively incorporated
by making the feature vertices the corners of the patches.
The common drawbacks are that constructing the patch layout
oftentimes involves a number of fragile heuristic algorithms.
Furthermore, the mappings are generally onlyC0 continuous
across the patch boundaries. In applications such as building
domains for splines, a global continuity is critical. The work
of [19] addresses the continuity problem by taking into account
linear transition functions across patch boundaries. Manifold
concept in mapping is introduced in [20], which primarily
focuses on topology instead of geometry, thus is difficult for
designing optimization algorithms.

Conformal maps have been extensively studied in the liter-
ature of the surface parameterization field. [10], [21] provide

extensive surveys of state-of-the-art techniques in the field.
We only briefly review some most related work, and refer
interested readers to these surveys for details.

Angle preservation is typically addressed either from the
harmonic point of view (Dirichlet energy) [22]–[24] or from
the conformal point of view (Cauchy-Riemann equation) [24],
[25]. Most recently, the hyperbolic structure of Riemannian
surfaces has been introduced to surface parameterization.
Thurston firstly introduced circle packing in [26]. An effective
algorithm and implementation is presented by Stephenson
in [27]. Circle packing has also been generalized to circle
patterns [28] and used for surface parameterization in [29].
Hamilton first introduced Ricci flow on surfaces in [30]. Theo-
retical results of combinatorial Ricci flow are later generalized
in [31], and applied in surface parameterization fields by [32].

III. T HEORY AND ALGORITHM

A. Uniformization Metric

On a surface, ametric, or Riemannian metricis a tensor that
defines inner product on the tangent plane at each point. With
the metric, the length of a tangent vector can be determined,
and the angle between two tangent vectors can be explicitly
computed.

SupposeS is a smooth surface embedded inR3; it has the
induced Euclidean metricg. We denote the surfaceS together
with its equipped metricg as(S,g). If λ : S → R is a scalar
function defined on the surface, then̄g = e2λ

g is another
metric onS. Any angles on the surface measured byg equals
to those measured bȳg, therefore, we saȳg is conformal to
g, meaning that changing between these two metrics is angle-
preserving.

Given two surfacesS1 and S2, the uniqueness of the
harmonic map fromS1 to S2, as we will discuss in the
upcoming section, is determined by the distribution of the
Gaussian curvatureK of S2. It is important to note thatK is
fully determined by the equipped metric of the surface. The
relation between the curvaturesK and K̄ underg and ḡ is
K̄ = e2λ(−∆λ + K).

Riemann uniformization states that for an arbitrary closed
surface, there exists a uniqueλ such thate2λ

g induces constant
Gaussian curvature. Furthermore, the constant is one of the
three choices{+1, 0,−1} for surfaces with zero, one, and
higher genus, respectively. Such kind of metrice2λ

g is called
the uniformization metricof the surface. The uniformization
metric can be computed using Ricci flow method (see Sec-
tion V).

B. Euclidean Harmonic Map and Conformal Map

Given two surfaces embedded inR3 with the induced
Euclidean metrics(S1,g1) and (S2,g2), f : S1 → S2 is a
map between them, the harmonic energy (stretching energy)
is defined as

E(f) =

∫

S1

|∇f |2dA1, (1)

where∇f is the gradient of the map. A harmonic map is a
critical point of the harmonic energy. Harmonic maps depend
on the Riemannian metrics. However, iff : (S1,g1) →
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(S2,g2) is a harmonic map, thenf : (S1, e
2λ

g1) → (S2,g2)
is also a harmonic map.

If a map preserves angles, then the map is called a con-
formal map. Analytically, if thepull back metric f∗

g2 on
S1 is conformal tog1, e2λ

g1 = f∗
g2, thenf is conformal.

A conformal map must be harmonic. For closed genus-zero
surfaces, harmonic maps are also conformal. In general case,
if S1 and S2 are with complicated topology, then there may
not exist a conformal map. But there is a special map, which
minimizes the maximum of the angle distortion; such a map is
called the extremal quasi-conformal map. For genus-one case,
such anextremal quasi-conformal mapis the harmonic map
under uniformization metric. Therefore, if the given surfaces
are genus-one, our algorithm converge to the extremal quasi-
conformal map.

C. Uniqueness of Harmonic Maps

The uniqueness of harmonic maps between surfaces is
determined by the shape of target objects. For genus-zero
surfaces, there are infinite harmonic (conformal) maps, allwith
zero angular-distortion. Each two of these maps differ by a
möbius transformation on the sphere domain.

Harmonic maps between surfaces with non-trivial topology
are also not unique if the Gaussian curvature of the target
surface is positive somewhere. However, if the target surface
has non-positive Gaussian curvature everywhere, then the
harmonic map exists and isunique. For example, if the Euler
numberχ(Si) < 0, i = 1, 2, and we apply uniformization
metric g2 on S2, then harmonic mapf exists and is unique,
with its energyE(f) reaching the global minimum.

Therefore, between arbitrary two surfaces with genus≥ 2,
there uniquely exists such a stretching-minimized harmonic
map. For genus-one surfaces,χ = 0, under uniformization
metric, the harmonic maps are not unique, but only differ by
a rigid translation on theR2 universal covering space, and we
can use one feature point to uniquely determine it.

D. Poincaŕe Disk Model and its Harmonic Maps

(a) (b) (c)

Fig. 1. (a) The yellow patch represents a chart on the two-hole torus model;
(b) Embed the two-hole torus model in the Poincaré disk; (c)A möbius
transformation moves the chart to the center of the Poincar´e disk.

If given surfaces are with higher genus, their uniformization
metrics can only be embedded in hyperbolic space. We have to
carry out our computation in this space, which can be modeled
by the Poincaré disk as follows.

The Poincaré disk is the unit disk on the complex plane
zz̄ ≤ 1, with the Riemannian metricds2 = 4dzdz̄

(1−zz̄)2 . Our
goal is to compute a mapf : (S1,g1) → (S2,g2). We use

their uniformization metrics and compute a harmonic map
f̄ : (S1, ḡ1) → (S2, ḡ2). The computational algorithm of
hyperbolic harmonic maps is based on theoretic results in [33].

We denote the parameters ofS1 on the Poincaré disk as
(x, y), the parameter ofS2 as (u, v), then the mapf̄ is
represented as̄f(x, y) = (u(x, y), v(x, y)). The harmonic
energy is

E(f̄) =

∫

S1

4
|∇u|2 + |∇v|2

(1 − u2 − v2)2
dxdy, (2)

where∇u is (∂u
∂x

, ∂u
∂y

) and∇v is ( ∂v
∂x

, ∂v
∂y

).
The harmonic energy in hyperbolic space (2) has more

complicated form than harmonic energy in Euclidean space
(1). We simplify the problem using the following two merits
of hyperbolic harmonic energy:

1. In a small neighborhood of the originu2 + v2 < ǫ, since
(1−u2−v2)−2 → 1, the hyperbolic metric is close to the
Euclidean metric, the hyperbolic harmonic energy is close
to the Euclidean harmonic energy. We can optimize the
hyperbolic energy by minimizing the Euclidean energy.

2. If φ is a Möbius transformation of the Poincaré disk, then
the compositionφ ◦ f̄ and f̄ have the same hyperbolic
harmonic energy. This is because Möbius transformation
is the rigid motion in the hyperbolic space, harmonic
energy is invariant under such isometries of the target
surface.

We describe our computational methodology for hyperbolic
harmonic maps as follows.

1. The surfaces are tessellated to many small triangular
patches,S1 =

⋃

i Ti, whereTi is a triangular patch, then
the harmonic energy is decomposed to the summation
of the energy of the map restricted on these patches, the
sub-maps,E(f̄) =

∑

i E(f̄i), f̄i : Ti → H2.

2. Each sub-map f̄i is composed with a Möbius
transformation φi, such that the imageφi ◦ f̄i(Ti)
is in the neighborhood of the origin.

3. If the tessellation is refined enough,Ti is small, and the
diameter of its image under the corresponding sub-map
is within an ǫ-threshold, the hyperbolic energy can be
approximated by Euclidean harmonic energy with high
accuracy.

Therefore, computing the harmonic map under hyperbolic
metric, equivalent to minimizing hyperbolic harmonic energy,
is now converted to optimizing a collection of Euclidean
harmonic energies of sub-maps. We can usemean value
propertyof the harmonic function to minimize the Euclidean
harmonic energy.

E. Discrete Algorithm

We summarize our approach as the following discrete
algorithm:

The inputs are the source surfaceS1 and the target surface
S2. The output is the harmonic mapf under the uniformization
metric of S2.
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1. Construct an initial map̃f : S1 → S2 (See Section IV).
2. Compute the conformal deformation (uniformization met-

ric) of S2 using the technique introduced in [32], then
embedS2 in the canonical domainC or H2, φ2 : S2 → C

or φ2 : S2 → H2. (See Section V)
3. Compose thef̃ and φ2 to get ω : S1 → C or ω :

S1 → H2, and apply heat diffusion on dynamic charts
to minimize the harmonic energy:

dω

dt
= −∆ω. (3)

(See Section VI)
4. Whenω converges to the global minimum, letf1H = ω

and get the final mapf = φ−1
2 ◦ f1H .

IV. I NITIAL MAPPING

We first build up an initial mapping between the given
surfaces. The initial mappings determine the homotopy class
of the resultant surface mapping (which will be discussed later
in Section VII-B). Our pipeline for creating the initial map
has two steps: (1) we unfold both surfaces to disks through a
cut graph called thesystem of loops(See Section IV-A); (2)
we map two surfaces via the disk domain (See Section IV-B).

A. Cutting a Surface into a Topological Disk

An orientable closed surface of genusg, (g ≥ 1) can be
cut into a single topological disk by removing a so-calledcut
graph. Computing a special case of cut graphs which pass
through a common given base point, calledsystems of loops,
is studied in computational geometry field. One of the state-
of-the-art techniques, [34], used an efficient greedy algorithm
to get an optimal cutting loop. We refine their algorithm for
our surface cutting.

We first briefly describe their algorithm for computing a
system of loopsL on the given meshS and the base pointx:
(1) Compute the shortest paths treeT of S from x.
(2) For each edgee ∈ S\T (i.e. e /∈ T ), compute the shortest
loop that containse, denoted asσ(e), which consists of2
shortest paths fromx to endpoints ofe plus thee itself.
(3) Compute the dual graph ofS\T , denoted as(S\T )∗.
Compute its maximum spanning treeT ∗, where the weight
of each dual edgee∗ is σ(e).
(4) Get the setE′ which contains every edge that is neither
in T nor crossed byT ∗.
(5) E′ has 2g edgese1, e2, · · · , e2g. Compute shortest loop
σ′(ei) containing eachei. These loops constitute the system
loop L.

In [34], they assumed that all the shortest paths from each
point on the cut path to the base point only intersect at the
common base point. This assumption holds in the smooth case
but often fails for triangular mesh representations. Thus in step
(5), shortest paths on triangle meshes may intersect each other,
especially for high genus surfaces. For example, on a genus-
six surface,12 loops will go through the base point, meaning
that the valence of the base point should at least be24 to
prevent paths’ intersections outside the base point. Such high
density connectivity is hardly satisfied in ordinary mesh data.

Fig. 2. Local Refinement on the System of Loops Computation. When the
blue cut path intersect with the existing red path inV2, we apply a local
refinement. The intersected path[V1, V2, V3] segment is replaced by the new
green path. Yellow segments are new edges inserted during edge splits in the
refinement.

Fig. 3. Refinement on the System of Loops Computation.

Therefore, a robust algorithm has to adaptively change the
connectivity.

As shown in Figure 2, locally, if a cut path (blue) intersects
with an existing path (red) in one point. We apply the
following algorithm on the blue curve to make it bypass the
red one:

Algorithm 1:
(1) Spin around the intersected vertexV2, enqueue all faces
between[V1, V2] and[V2, V3](For example,f1, f2, f3, f4 here).
(2) SetV1 as the current pointp.
(3) Pop facef out from the head of queue. If[V2, V3] is in f ,
add edge[p, V3] to the new path and STOP; else GOTO (4).
(4) Split the edge opposite to the current vertexp. The new
split point is denoted asq. Add the edge[p, q] into the new
path, move toq: setp := q. GOTO (3).

After applying this algorithm, we replace the intersected
path[V1, V2, V3] segment by the new path (as shown in green).
The yellow segments are edges newly inserted onto the mesh
during the edge split procedure.

In general, if the intersected parts have more than one point,
we apply the above algorithm1 iteratively on each intersected
vertex. Figure 3 illustrates this. In the small picture (upper
left), a cut path (blue) passes through an existed cut path (red).
We apply the following algorithm on the intersected segments:

Refinement Algorithm:
(1) Find out the point right before the intersection (Vh) and
the first point right after this intersection (Vt). Push all vertices
on the current path betweenVh andVt into a queueQ.
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b

Fig. 4. Slice both meshes open and map them to a canonical4g-gon; compose
these two maps; get the initial mapping. Mappings of different (color-coded)
regions are shown respectively with different colors.

(2) Pop each vertex inQ, and apply Algorithm1 on it.
Intersections usually happen near the base point because

cutting paths are dense in this region. TheVt in such case is
the base point, and the same refinement process is applied.

B. Initial Mapping via4g-gon

With the system of loops, we slice each surface onto a
topological disk. For a genusg surface, the cut graph passes
through the base point4g times, making the disk a topological
4g-gon. We map two given surfaces via this4g-gon, as the
procedure illustrated in the Figure 4.

1. Slice each surface along its system of loops to open it up
onto the4g-gon.

2. Flatten each sliced surface to the canonical4g-gon, using
the harmonic map with fixed boundary.

3. On the canonical planar parameter domain, mapS1 to S2

via barycentric coordinates. Unlike [1], we donot extract
a meta-mesh by overlaying the two planar domains.
Instead, we use an approximation meshS′

2 with only
the connectivity ofS1 (though its shape is likeS2), and
we may later employ an adaptive remeshing procedure
(Section VII-E) for mapping refinement in areas where
under-sampling occurs.

4. Stitch the topological diskS′
2 along the original cutting

boundary back to the closed surfaces.

By the above algorithm, we get an initial mapping from
S1 to S2. This initial mapping is only used to determine the
homotopy type. In the following sections, we will prove and
demonstrate that if two initial cuts induce two maps belonging
to the same homotopy class, then the final results are identical.

V. COMPUTING UNIFORMIZATION METRIC

According to our previous discussion, given a surfaceS ⊂
R3 and its induced Euclidean metric (represented by its first
fundamental formg), let u : S → R be a globally defined
function onS, thene2u

g is another Riemannian metric onS,
which is aconformal metricto the original induced Euclidean
metric.

Riemann uniformization theorem [35] states that for anyS,
there exists a unique conformal metric, such that it induces

Fig. 5. Side-by-side omparison between Distortions of Initial Map (left) and
Optimized Map (right).

constant Gaussian curvatureK and zero geodesic curvature,

K =







+1 χ(S) > 0
0 χ(S) = 0
−1 χ(S) < 0

,

where χ is the Euler characteristic. Such kind of metric is
called theuniformization metric.

We compute the uniformization metrice2u
g using the Ricci

flow method [30]. Ricci flow is defined as

du(t)

dt
= −2K(t), (4)

whereK(t) is the Gaussian curvature induced by the metric
e2u(t)

g, under the area preserving constraint
∫

S

dσ =

∫

S

e2u(t)dσ.

In practice, all surfaces are represented as triangular meshes.
Basically, for a triangular faceABC on the mesh with edge
lengthsa, b, c, we do not treat it as a planar triangle in the
Euclidean space, but rather a triangle inHyperbolic space.
All the angles in the triangle can then be calculated using
hyperbolic cosine law, and the discrete Gaussian curvatureon
each vertex is defined as the difference between2π and the
summation of all the corner angles surrounding the vertex.

We associate each vertexvi with a circle of radiusγi.
Two circles centered at the end vertices of an edgeeij

intersect at an angleΦij . The edge length ofeij equals

lij =
√

γ2
i + γ2

j + 2 cosΦij .
Conformal maps transform infinitesimal circles to infinites-

imal circles and preserve the intersection angles among the
circles. Therefore, we only modify the circle radiiγi and keep
the intersection anglesΦij . Let

ui =

{

ln γi χ(S) = 0
ln tanh γi

2 χ(S) < 0
,

The discrete Ricci flow is similar to the continuous Ricci flow
in the form:

dui

dt
= −Ki,

whereKi is the Gaussian curvature atvi.



7

The Ricci flow will converge [32], such that all discrete
Gaussian curvatures are constant, and the edge lengths ap-
proximate the uniformization metric.

If the surfaceS is equipped with the uniformization metric,
thenS can be isometrically and periodically embedded in the
following three canonical spaces, the unit sphere forχ(S) > 0,
the plane forχ(S) = 0, and the hyperbolic spaceχ(S) < 0.
Whenχ(S) = 0 the metric is calledflat metricsince curvature
is zero everywhere, and whenχ(S) < 0, it is calledhyperbolic
metric. In Figure 1, we demonstrate the hyperbolic embedding
of the two-hole torus model.

We use the Poincaré hyperbolic disk model to represent
the hyperbolic spaceH2. The Poincaré hyperbolic disk is a
two-dimensional space defined in the unit disk{z ∈ C :
|z| < 1} on the complex planeC with hyperbolic metric.
The hyperbolic metric is defined as

ds2 =
dzdz̄

(1 − z̄z)2
.

The geodesics (hyperbolic lines) in the Poincaré disk are
Euclidean circular arcs perpendicular to the boundary|z| = 1.
The rigid motions in the hyperbolic plane are the Möbius
transformationsz → w, z ∈ C with the form

w = eiθ z − z0

1 − z̄0
, (5)

where z0 is an arbitrary point inside the unit disk,θ is a
rotation angle. This formula rigidly transforms the hyperbolic
disk so that the pointz0 is moved to the origin (Figure 1 (b)
and (c)).

VI. M AP OPTIMIZATION

With the uniformization metric defined on the target mesh
S2, we can perform the heat diffusion procedure to optimize
the initial map. Because of the constant curvature distribution
under the uniformization metric, our relaxation will not get
stuck in local minima. An arbitrary initial map can be used as
the start of our optimization procedure; it can be stretchedand
distorted, or even contain local flip-overs. Our optimization
procedure (Section VI-B) converges to a unique bijective
global optimum robustly; more discussion about this will be
given in Section VII-D, and the rigorous proof is given in the
Appendix.

In Figure 5, we visualize the distortion of the initial mapping
from the amphora model to the vase model by texture mapping
and displaying the connectivity. The checkerboard texture
mapped is distorted (irregular pattern as shown in the top
left image) by this initial mapping. This initial mapping, like
all methods based on cutting, induces great distortions near
the boundary. By relaxing each vertex on dynamic charts
discussed in the following section, we alleviate the distortions
all over the mesh and reach a global minimum.

A. Chart Construction

In order to smooth the mapping betweenS1 andS2, we need
to redistribute vertices ofS1 on the domain ofS2 following
the heat diffusion flow. We can either embed the whole
S2 onto C (genus one) orH2 (higher genus) and perform

Fig. 6. The Dynamic Covering Chart onS2. Given a vertexV and its
one-ring onS1, the left figure shows a covering chart onS2: the vertexV is
mapped to the red face; its one-ring neighbors are mapped to the yellow faces.
The right figure shows the domain of the chart. The white arrowindicates the
gradient direction of the harmonic energy.

the redistribution globally; or directly flow over local charts
equipped with uniformization metric. In this work, we use the
second method: dynamically construct a set of overlapping
local charts onS2 and perform relaxation within these charts.
Compared with using one global patch, the dynamical local
charts method has two importantadvantages:

• The vertices may need to flow across the cutting boundary
to relax the energy. On one parameter patch domain, it is
difficult to perform the relaxation across the boundary.

• Globally embedding the target mesh onto a large patch
is numerically less accurate, especially for hyperbolic
metric. The local embedding of small charts is more
precise.

For each vertexv1 on S1, we create at least one chart onS2

that covers the images of its1-ring on S1, meaning that the
chart contains all faces onto which thev1’s 1-ring are mapped.

As shown in Figure 6, to construct a covering chart for the
1-ring of a vertex onS1, we first map the vertices of the1-
ring to S2. Each vertex in this1-ring is mapped to a face
on S2. Given this set of faces, we find a patch onS2 that
contains these faces and is homeomorphic to a disk. We first
compute an approximate geodesic distance from the ‘center’
face (red) to all other faces. Then we add the faces to the
chart through Breadth First Search (BFS) while maintaining
disk topology. Faces which are closer to the ‘center’ face
are given higher priority during the BFS. After the chart
has been constructed, we tile it inC (or H2, according
to the genus of the mesh). In this way, we get alocally
constructed, yet globally parameterized chart, extracted as
a small subset of the continuous global parameter domain.
During the relaxation, the mapping of vertices and their1-
ring can change, new charts are dynamically created when
necessary; old charts which are unused for a user-specified
amount of time are removed from memory on the fly.

This is Not Local Parameterization.Note that chart-based
approaches have been used in local-parameterization-based
remeshing [36], [37]. And our approach is fundamentally
different from them in that we are notlocally parameterizing
these one-ring charts, but directlyembeddingthe pre-computed
uniformization metric. Local parameterization computes the
flattening of charts every time separately, while we use the
global metric so that a globally consistent covering is achieved.
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Fig. 7. Local Parameterization VS Global Uniformization Metric (Map the
Torus to the Rocker Arm). Top row: side-by-side comparison between local
approach and global approach. Bottom row: temporal statistics of convergence
performance.

With the uniformization metric, we trivially get the flattening
of each local chart by tiling it in a proper local patch domain
(Figure 1). In other words, pre-computed metric already de-
fines all the edge lengths in the mesh of the given chart; we
only conduct a tiling of this triangular mesh.

The relaxation result demonstrates the key difference be-
tween local parameterization and our approach: relaxation
based on local parameterization will get stuck locally, while
using a globally consistent uniformization metric guarantees
the global convergence. To demonstrate this, we perform ex-
periments as shown in Figure 7. Compared with the relaxation
on the uniformization metric (right), the relaxation usinglocal
parameterization1 (left) will get stuck in some local optimum,
and cannot produce the desirable result.

B. Relaxation

We let the skin ‘flow’ on the target planar domain so that
the harmonic energy is minimized. This is performed via an
iterative heat diffusion (relaxation) procedure. The discrete
harmonic energy of a mapf is defined as

E(f) =
∑

i

E(f) =
∑

i,j

wij |f(vj) − f(vi)|
2,

where | · | is the norm with respect to Euclidean metric and
wij ’s are the discrete harmonic cotangent weights. We use the
gradient descent method to minimize the harmonic energy. In
each single relaxation step, a vertex is moved in the domain
following the gradient of harmonic energy by the Laplacian
operator, which is defined as

∆f =
∑

j∈Ni

wij(f(vj) − f(vi)),

whereNi is the index of neighboring vertices andf = ω is the
composed map as given in Equation 3. Therefore, the vertex
in the domain is moving towards the new position:

f ′(vi) = f(vi) + ∆f.

1Local parameterization of the charts onto circular disks.

During the iteration procedure, the harmonic energy (from
the source mesh to the target domain) monotonically de-
creases. For genus one meshes, they are embedded inC

under uniformization metric, these operators can be used
directly. For higher genus meshes embedded inH2, we still
use this Euclidean Laplacian operator to relieve the harmonic
energy after an isometric transformation inH2, which is also
called theMöbius transformation. The reason that we can
approximate hyperbolic Laplacian operators using Euclidean
Laplacian operators had been discussed in the previous Sec-
tion III-D. By the Möbius transformation we rigidly transform
the domain of the local chart so that the parameterization ofthe
vertex being relaxed coincides with the center of the Poincarè
disk(Figure 1). Near the origin, the hyperbolic metricds =
2|dz|

1−|z|2 only differs by a constant factor from the Euclidean
metric and thus our Euclidean Laplacian operator is a linear
approximation to the Hyperbolic Laplacian operator in this
relaxation region. (The local chart is usually small, so the
approximation is with high precision.) For numerical issue,
we change thef value on each vertex to the target using a
step size0.5, i.e. f ′(vi) = f(vi) + ∆f

2 .

VII. D ISCUSSIONS ONMAPPING PERFORMANCE AND

PROPERTY

A. Mapping Quality Measurement

Harmonic energy is a natural energy to measure the stretch-
ing energy induced by the mapping. A physically meaningful
mapping in reality ought to minimize the harmonic energy.

When the conformal mapping fromS1 to S2 does not exist,
the quasi-conformal mappingf maps circular regions around
a local point into ellipses. The ratio of the major to the minor
axis is called thedilatation D at this point. We use a discrete
varianceD′ to measure the conformality of this mapping. The
definition is as follows.

Given a local triangle(q1, q2, q3), qi = (xi, yi, zi) of the
original mesh mapped onto a triangle(p1, p2, p3), pi = (ui, vi)
on 2D. The interior discrete mappingS(p) = S(u, v) = q is
represented by

S(p) = (〈p, p2, p3〉q1+〈p, p3, p1〉q2+〈p, p1, p2〉q3)/〈p1, p2, p3〉

, where 〈a, b, c〉 denotes area of triangleabc. The partial
derivatives of Jacobian are

Su = (q1(v2−v3)+q2(v3−v1)+q3(v1−v2))/(2〈p1, p2, p3〉).

and

Sv = (q1(u3−u2)+q2(u1−u3)+q3(u2−u1))/(2〈p1, p2, p3〉).

The larger singular valueΓ and smaller singular valueγ of
the Jacobian are given respectively [38]:

Γ, γ =

√

E + G ±
√

(E − G)2 + 4F 2

2

, whereE, F, G are terms for the first fundamental form.
We computeD′ on each triangle usingD′ = Γ

γ
. The

maximal value ofD′ of the mapping on the surfaces is
determined by their geometry. As we mentioned above, in
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genus one case, the harmonic map we get is the extremal
quasi-conformal map, minimizing the angular distortion. We
test our mapping performance against the theoretical bound
using the following experiment. Given two toriiT1 and T2;
T1 has minor and major radii0.5 and 2 respectively, while
T2 has these radii0.5 and1.5. T1 andT2 can be conformally
mapped onto two2D rectanglesR1(a1, b2) and R2(a2, b2),
where(ai, bi) are the width and length of the rectangle. The
extremal quasi-conformal mapping betweenT1 andT2 has the
lowest theoretical bound given by the modules ratio ofT1 and
T2. In our setting above, these two modules are0.3531 and
0.5762, meaning the theoretically optimalD′ bound between
T1 andT2 is 1.632. We plot the performance of our mapping
in Figure 9(c) (red curve). Thex-direction shows the iteration
numbers and they-direction shows the global quasi-conformal
distortions.

B. Homotopy Classes of Initial Mappings

When an arbitrary initial mapping is built up, the homotopy
class of the mapping is determined. The subsequent optimiza-
tion procedure (Section VI) reaches a unique optimized result
in this same class. The slicing order of loops in the two
systems of loops decides the homotopy class of the mapping.
Usually, if we arbitrarily pick an order, an optimized result
will be reached in that corresponding homotopy class; but
this kind of arbitrary surface mapping may not be what we
intuitively want. We naturally want handles mapped to handles
consistently. To get consistent slicing orders of systems of
loops, first, we can compute the canonical handle and tunnel
loops using the method of [39]; second, with these handle and
tunnel loops, we can decide the homotopy class of each closed
loop in the system of loops, this pair loops in two systems of
loops, providing the consistent slicing orders in two systems
of loops. In this way, we correspond handles in the source
surface with handles in the target surface. For two genusg
surfaces, there will beg-factorial consistent mappings, any of
them is visually reasonable.

Furthermore, in many applications, users may want more
precise controls on the mapping. For example, sometimes
handles of the source surface need to be mapped to some
specific handles of the target surface. Also, users may require
some feature points to be mapped. Both of these can be easily
implemented in our framework as follows.

C. Constraints and User Controls
To assure the handle-correspondence, users only need to

pick up a corresponding slicing order of two systems of loops,
on the4g-gon disk, users can easily set up this order once the
systems of loops are computed.

In order to have constraints on the feature points, existing
parameterization techniques for topological disk surfaces with
constraint points, for example, MAPS [14] can be applied for
the initial map. Also, many existing surface mapping frame-
work [1], [14]–[18] all allow the feature point correspondence,
and they can be applied as the initial map. In our work, since
we use Carner et al.’s method [1] to generate the initial map,
we also apply their method for the initial feature registration.

Starting from the initial mapping with feature points
matched correspondingly, we can perform the optimization

without relaxing the feature points and prevent any neigh-
boring vertices movement that violates the validity of the
triangular mesh during the relaxation.

The insertion of landmark definitely may cause larger dis-
tortion in the neighborhood, because now the relaxation cannot
be performed freely and the resultant mapping is not globally
optimized. The detail discussion about feature correspondence
is beyond the focus of this work. We will explore along this
direction in our future work.

D. Global Convergence and Performance

Fig. 8. Global Uniqueness of the Optimized Map in the same Homotopy
Class.

Our surface mapping optimization converges robustly.
Under the same homotopy class, different initial cut-
tings/mappings reach the same global optimized result. A
rigorous proof is given in the appendix. We also perform
experiments and visualize this in Figure 8: from left to right,
the first column shows the original Amphora model and its
texture; the second column are two different initial cut paths.
In the third column, we transfer the Amphora’s textures onto
the target Vase model using the corresponding initial maps.
Their angular distortion distributions (averageD′) are color-
coded in the fourth column. Transferred textures on the Vase
model using the final maps are illustrated in the fifth column.
Their final maps are almost the same and have the final
distortion color-coded in the rightmost column.

We plot more experimental performances on computation
of our mappings in Figure 9: (a) and (b) show the harmonic
energy and quasi-conformal distortion convergence duringthe
iteration, respectively. In(c), we perform experiments for
genus1 to further quantatively test the robustness and validity
of our mapping. The mapping fromT1 to T2 discussed in
the previous Section VII-A with a different initial cutting
converges to the same result (green). The mapping from a torus
T ′

1 (different resolution withT1) to T2 is plotted in the blue
curve. The inverse mapping (T2 → T1, which has the same
quasi-conformality bound in optimum) is plotted in brown.

E. Connectivity Refinement

Since we only use the connectivity of the source meshS1,
geometry loss may happen in some areas due to under sam-
pling, most likely in high curvature (e.g. sharp feature) areas
on S2. In order to capture such geometric details, we simply
apply an adaptive remeshing algorithm similar to [17]. We
locally modify the connectivity of the mesh using edge split,
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Fig. 9. Mapping Performance. (a) Harmonic energy during iterations. (b) and (c) Global quasi-conformal distortion (average ofD′) during iterations.

Fig. 10. Connectivity Refinement. Left column: the initial mapping from
Star model to Rocker-Arm model; Right column: the refined connectivity.

guided by the following two simple error terms which capture
the geometric proximity betweenS′

2 and S2: Elength(eij) =
|φ(vi)−φ(vj)|, andEnorm(eij) = [1−N(vi)·N(vj)]/2, where
φ : S1 → S2 and N(v) is the normal of vertexv. The first
term measures the length of an edge onS′

2: longer edges are
more likely to miss geometric details and we prefer splitting
them early. The second term measures the normal deviation
of the two vertices of the edge: a greater value implies that
the edge crosses a more curved region or a region with sharp
features. We iteratively split edges with large combined error.
The new vertex generated by the edge split is then mapped
back to the surface of the target mesh via the parameterized
chart that covers this edge.

In Figure 10, we can see that the model created by mapping
the ‘Star’ to the ‘Rocker Arm’, after being refined for10
iterations, approximates the geometry of the target mesh much
better: the left column is the initial mapping while the right
column shows the refined connectivity. The number of vertices
only increases by a fraction of11.04%. Our simple error
metric is easy to implement as we do not have to maintain
the inverse map fromS2 to S1 in this case.

VIII. R ESULTS AND APPLICATIONS

A. Texture Transfer and Mapping Visualization

We need an effective way to clearly visualize a mapping
between two surfaces because showing region correspondence

Fig. 11. Visualization of Surface Mapping between a Teapot Model and a
Cup Model.

Fig. 12. Texture Transfer using the Global Optimized Surface Mapping.

as well as the distortion are challenging. We use a texture
with the color band marks embedded in coordinate lines to
aid in this visualization. The texture is first mapped onto
the source model, each vertex on the source surface has its
“UV” coordinates. When vertices are mapped to the target
surface, their “UV” coordinates are carried. In this way,
texture mapping on the source surface is transferred onto the
target surface, the color bands on the target surface visualize
the region correspondence, and the perpendicularity of the
checker board or coordinate lines shows the angular distortion.
Figure 11 visualizes mapping effect from genus-2 a teapot
model to a cup model.

Texture as well as material transfer is straightforward as an
application of our mapping. We show an example in Figure 12,
which transfers the texture from the amphora model to the
vase model. Since our mapping has the minimized distortions
and global smoothness, such a transplant is physically natural,
which potentially provides a powerful tool for reusing or
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transferring information such as material properties, BRDF,
etc. between models towards information integration.

B. Shape Morphing

(a) Source Surface

(b) Initial: 50% Morph (d) Optimized: 50% Morph

(c) Initial: Target (e) Optimized: Target

Fig. 13. Optimized Mapping for more Natural Morph. The source surface
is shown in (a). If the initial map is used, the Morph generated is depicted in
the left column: (b) shows the 50% morph, (c) shows the map on the target
surface. When the surface map is optimized using our algorithm, the result is
shown in the right column ((d) and (e)).

Another intuitive way to visualize mapping and to evaluate
its distortion is via a morphing sequence. The behavior of the
morph can be an intuitive visual judgement on the mapping
quality. Figure 13 shows an example. The initial mapping, as
indicated previously, is created by the the technique of [1].
Based on initial map, we can conduct linear interpolation and
generate the morph as shown in the left column. The generated
sequence is obviously not attractive. We then optimize the
surface map, and regenerate the morph. As shown in the right
column, the new morph sequence demonstrates symmetric
deformation and is visually much more smooth and pleasing.

Rigorously speaking, the morphing sequence generated by
mapping with lower distortions means that the deformation
sequence is closer to the ‘geodesic’ in the space of shapes,
minimizes unnecessary distortion during the interpolation of
shapes, thus provides better visualization results.

In graphics applications, shape morphing is widely studied
as a direct application for surface mapping. Users usually
want to have control on the morphing via feature or con-
straint points. To achieve this goal, as indicated previously in
Section VII-C, we can use the existing techniques for feature

alignments during the initial mapping process; then we should
keep this correspondence during the afterward optimization.

C. Canonical Mapping from Surfaces to Simplified Domains

Fig. 14. Mapping from a Polycube to the Happy Buddha Model. From left
to right, we visualize the texture on the Polycube, the transferred texture on
the Buddha by the initial mapping, and the transferred texture by the final
mapping.

Fig. 15. Optimized Surface Mapping from the Greek Model to the 4-Torus.
The left column shows the front and back of the Greek model with its texture;
the right column shows the front and back of the target surface (4-Torus),
respectively, with texture transferred by our mapping; themiddle column
shows the 50% morph from the Greek to the 4-Torus under our mapping.

Our method conveniently creates canonical mappings from
arbitrary surfaces to simplified domains with globally op-
timized distortions. The canonical domain can be poly-
cubes [40], so that graphics processing such as parameteri-
zation with lower distortion, polycube spline generation,etc.
can be applied based on our mapping. The domain can also
be some canonicalN -hole tori [20], so that topologically
equivalent shapes can be processed or analyzed on this smooth
common domain.

In Figure 14, we visualize the polycube map for the genus-
6 Buddha model. Our method successfully deforms arbitrarily
built initial map with severe distortion to a global optimum.
In Figure 15, we show our mapping from the genus-4 Greek
model to a canonical4-torus.

Our method has an important advantage over direct projec-
tion methods of computing polycube map such as [40] in that
our method is intrinsic. Therefore it is more robust, invariant
with models’ spatial positions and sizes. Furthermore, when
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shapes are with complicated topology and geometry, or the
source surface has great difference with the target surface(for
example, Greek and Torus as shown above), direct projection
method is highly error-prone but our method can robustly
handle it.

D. Shape Matching and Comparison

1 2 3 4 5 6 7
2 0 3.59 22.72 20.81 59.70 19.43
3 0 21.99 21.29 59.38 18.72
4 0 10.98 39.66 19.65
5 0 44.45 16.91
6 0 32.89
7 0

Fig. 17. Shape Comparison using Conformal Representation.The first rows
show all shapes to be compared. The second row and the first left column are
their indices. The table has the symmetry property, and the numbers measure
the distance between models in a pairwise manner.

Our optimal surface mapping creates global, low angular-
distortion correspondence between two models. With such a
non-rigid registration, we can easily match two shapes and
clearly visualize their difference distributions for potential
subsequent analysis purpose.

Conformal Representation.A natural way to characterize
the matching between two surfaces is calledconformal repre-
sentation[41]. According to [41], when a surface is mapped
onto a target surface, if the resultant conformal representation
is fixed, the original source surface is rigidly determined.The
conformal representation contains two terms: mean curvature
H , andconformal factorλ. The conformal factorλ of a point
p under a mappingf represents the local area change, i.e.,
the stretching of the map. Discretely, if we denote the area
of one ring neighbor ofp as A(p), and the area of one ring
neighbor off(p) on the target surface asA(f(p)). λ(p) can be
approximated by the ratio ofA(f(p)) overA(p). In our work,
although our surface map is not fully conformal (according to
Riemannian geometry, between most high genus models, these
kinds of conformal maps do not exist), our global optimization
aims to relieve angle distortions. Thus the(H, λ) defined on
our map is a well approximated and meaningful representation.

Shape Matching. In Figure 16, we visualize our surface
matching between a torus and a Rocker Arm model using
the above conformal representation.(a) and (b) color-code
the mean curvature distributions of Rocker Arm and Torus,
respectively. We color-code the mean curvature differencein
(c) and the stretching factor distribution in(d). The color-
coding of two terms of conformal representation shows us
where and how much the two surfaces are intrinsically differ-
ent in a visually meaningful way. Since the globally integrated
matching energy is smaller when the mapping is with lower
stretching/distortions, our optimized surface mapping provides
a great registration for the above mechanism. On the other
hand, the registration by our mapping, with global smoothness
and low distortion properties, can be used as a preprocessing

step for various other matching techniques. It serves as a
general shape registration and visualization tool.

Shape Comparison and Retrieval.Given many shapes
in database, we can match and compare them via canonical
domains. This provides an efficient and geometrically mean-
ingful way to measure their differences. Here we perform
an experiment on a database containing6 different genus-2
geometric shapes: Vase, Amphora, Teapot, Cup, Feline, and
Cube. We use a two-hole torus as the canonical domain for all
these genus two surfaces. We first compute mappings between
these surfaces and the2-torus domain, and then pairwisely
compare these surfaces via the domain using matching energy
defined by the conformal representation:

E(S1, S2) =

∫

p∈T

||λ1(p)−λ2(p)||2+β||H1(p)−H2(p)||2dp,

whereS1 and S2 are two shapes being compared,T is the
canonical torus domain,λ is the conformal factor, andH is
the mean curvature. In Figure 17, we can see the models in
the first row. The matching energies, used as their distance,
are shown in the table. Since the symmetry of the distance is
obviously preserved, we only show the upper-right part of the
table.

E. Algorithm Performance

Our optimization is an iterative algorithm; the total number
of iteration steps is controlled by a user-defined threshold. In
Figure 9, we set the threshold of quasi-conformality to be
1e − 6; in real applications, we can use lower precisions.
We perform our algorithm on a MS Windows XP PC with
dual Intel Xeon 2.6GHz CPUs, 2GB RAM. The one-iteration
running time for most real examples we presented in this paper
are shown in the following runtime table.

Models(S1/S2) Genus Ver # Time
2-Torus/Vase 2 3.5k/5k 0.31s

Amphora/Vase 2 10k/5k 1.4s
RockerArm/Torus 1 15k/14.4k 6.88s

Teapot/Cup 2 7.5k/10k 0.95s
Polycube/Sculpture 3 3.5k/7K 0.49s

Greek/4-Torus 4 14.8k/10K 5.07s
Polycube/Buddha 6 18k/13.3k 10.23s

F. Comparison with Existing Work

Compared with other state-of-the-art techniques, our ap-
proach has several key improvements.

First, our surface mapping framework is based on rigorous
mathematical foundation and analysis, unlike most current
methods that only guarantee to reach local optima, our method
globally minimizes the stretchingand converges to aunique
result.

Second, current techniques rely upon large amount of user
intervention for mapping surfaces with non-trivial topology.
For example, mapping procedures need base mesh design (
[12], [13]) or a large number of user-specified landmarks (
[17], [18]). In contrast, our framework does not depend on
user’s involvement, and is fullyautomatic.
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(a) (b) (c) (d)

Fig. 16. Surface Registration for Matching (Torus vs RockerArm model). (a) Mean curvature distributions of Rocker Arm (red represents the maximum
while blue represents the minimum); (2) Mean curvature distributions of Torus; (c) Mean curvature difference distributions, visualized on Torus; (d) Conformal
stretching factor, visualized on Torus.

Third, since the existing methods follow the general prin-
ciple to slice the surface open into subregions, the initialseg-
mentation directly determines the mapping result. In contrast,
our method, because of its global uniqueness, is not controlled
by the quality of initial mappings; therefore, it is much more
general than other existing techniques.

Fourth, existing work primarily focuses on low genus sur-
faces and few takes the homotopy types into account. Carner
et al. [1] also targeted on high genus surfaces, and they stud-
ied the mapping with different homotopy classes. However,
topology information is the primary information they used for
mapping computation and therefore their stretching energyis
not optimized. In our current work, the comparison between
initial and final mapping shows the great improvement from
the initial mapping generated by their method to our globally
optimized result. This can be easily visualized through our
optimization procedure in the accompanying video.

IX. CONCLUSION

This paper has documented our new method for computing a
globally optimal map between surfaces of non-trivial topology
and demonstrated many valuable applications. Based on the
mathematical advances in computing the uniformization metric
using intrinsic geometric structure, we can globally perform
heat diffusion to alleviate the stretching and the average angle
distortion of the map as much as possible. As we discussed in
Section VIII-F, our algorithm have many key advantages over
existing work.

Our mapping algorithm can also serve as a ubiquitous tool
for a wider range of applications such as shape registration,
morphing, matching, comparison, and spline surface construc-
tion over generalized domains. We would like to apply our
mapping framework in more challenging research topics such
as deformable model tracking, animation transfer, etc.

APPENDIX

CONVERGENCE, ONE-TO-ONE, AND UNIQUENESS

In this appendix, we will show our algorithm converges to
a globally unique one-to-one map with the minimal harmonic
energy under the uniformization metric. The pipeline is: (1)

we demonstrate theexistenceof the harmonic map between
given surfacesS1 and S2 with same topology; (2) we show
if the final map we get is harmonic, then it is one-to-one,
and globally unique; (3) we will show our algorithm does
converge to such a unique mapping with minimal harmonic
energy under uniformization metric.

Existence.Given two high genus surfacesS1 andS2 with
same non-trivial topology. The existence of the harmonic map
is guaranteed by the following theorem

Theorem 1:Suppose thatS1 andS2 are compact surfaces
without boundary and thath : S1 → S2 is a diffeomorphism.
Then there exists a harmonic diffeomorphismf : S1 → S2

isotopic to h. Furthermore,f is of least energy among all
diffeomorphisms isotopic toh.
Detailed proof can be found in [35], page 176. Since our initial
map is constructed as a diffeomorphism betweenS1 andS2,
the existence of harmonic map is guaranteed.

One-to-one and uniqueness.We show if the final map is
harmonic, then it is adiffeomorphism (one-to-one and differ-
entiable) and has the global uniqueness. We prove in the third
step that we do reach a harmonic map. The following theorem
guarantees the harmonic map calculated in our algorithm is a
diffeomorphism.

Theorem 2:Let f : S1 → S2 be a harmonic map between
closed oriented surfaces of the same genus with degree equals
±1. And KS2

≤ 0, thenf is a diffeomorphism.
Detailed proof can be found in [35], page 187, or [2], page 15.
In our algorithm, the initial map is constructed by matching
the fundamental polygons ofS1 andS2. Therefore, each point
on S2 has a unique pre-image onS1, hence, the degree of
the initial map is1. The Gaussian curvature of the target
surface is0 (for genus-1 surfaces) or−1 (for high genus
surfaces), therefore iff is harmonic, thenf is one-to-one and
differentiable.

The following theorem postulates the uniqueness of the
map.

Corollary 1: Let u1, u2 be harmonic mapsM → N of
degree one between compact surfaces without boundaries, with
genus greater than one, whereKN ≡ −1. If u1 and u2 are
homotopic to each other, thenu1 = u2.
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The detailed proof can be found in [42], page 144 and [2],
page 16. In our algorithm, the homotopy class of the map is
determined by the way to match the fundamental polygons.
The map is harmonic, the curvature on the target surface is
−1, therefore, the harmonic map is unique.

For genus-one surfaces, their uniformization metric is flat,
which can be lifted to its universal covering space. The
universal cover can be embedded on the plane isometrically.
The fundamental polygons are parallelograms. A harmonic
map between two genus-one surfaces with their flat uni-
formization metrics induces a map between their universal
covering spaces, which is an affine transformation from the
plane to itself. The affine transformation maps the fundamental
polygon of the source surface to that of the target surface.
Therefore, harmonic maps in a homotopy class only differ by
a translation. Each one is the equally optimal result.

Convergence.We prove our algorithm converge to a har-
monic map. Harmonic energy of a surface map is non-negative,
namely, it has lower bound. Our relaxation process reduces
harmonic energy monotonically; therefore, it converges toa
critical point of the harmonic energy, which by definition
is a harmonic map. As the aforementioned theorems show,
there is no local minimum, and this critical point is globally
unique. Therefore, our method converges to the global unique
harmonic map, and it is one-to-one and differentiable.

For genus-one surfaces, this convergence proof also applies,
and all the minima are globally equal and globally optimal.
Our minimization process will converge to one of them.

REFERENCES

[1] C. Carner, M. Jin, X. Gu, and H. Qin. Topology-driven surface mappings
with robust feature alignment. InIEEE Visualization, pages 543–550,
2005.

[2] R. Schoen and S. T. Yau.Lectures on harmonic maps. International
Press, Cambridge, MA, USA, 1997.

[3] J. Kent, W. Carlson, and R. Parent. Shape transformationfor polyhedral
objects. InSIGGRAPH ’92, pages 47–54, New York, NY, USA, 1992.
ACM Press.

[4] T. Kanai, H. Suzuki, and F. Kimura. Three-dimensional geometric meta-
morphosis based on harmonic maps.The Visual Comput., 14(4):166–
176, 1998.

[5] M. Alexa. Merging polyhedral shapes with scattered features. InSMI
’99: Proceedings of the International Conference on Shape Modeling
and Applications, pages 202–210, 1999.

[6] A. Asirvatham, E. Praun, and H. Hoppe. Consistent spherical param-
eterization. InComputer Graphics and Geometric Modeling (CGGM)
2005 Workshop.

[7] S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, and
M. Halle. Conformal surface parameterization for texture mapping.
IEEE Trans. Vis. Comput. Graph., 6(2):181–189, 2000.

[8] C. Gotsman, X. Gu, and A. Sheffer. Fundamentals of spherical
parameterization for 3d meshes.ACM Trans. Graph., 22(3):358–363,
2003.

[9] E. Praun and H. Hoppe. Spherical parametrization and remeshing. In
SIGGRAPH ’03, pages 340–349, 2003.

[10] M. S. Floater and K. Hormann. Surface parameterization: a tutorial
and survey. InAdvances in Multiresolution for Geometric Modelling,
Mathematics and Visualization, pages 157–186. 2005.

[11] R. Parent. Shape transformation by boundary representation interpola-
tion: A recursive approach to establishing face correspondences. The
Journal of Visualization and Computer Animation, 3:219–239, 1992.

[12] D. DeCarlo and J. Gallier. Topological evolution of surfaces. InGI
’96: Proceedings of the conference on Graphics interface ’96, pages
194–203, Toronto, Ont., Canada, Canada, 1996. Canadian Information
Processing Society.

[13] A. Gregory, A. State, M. Lin, D. Manocha, and M. Livingston. Feature-
based surface decomposition for correspondence and morphing between
polyhedra. InCA ’98: Proceedings of the Computer Animation, page 64,
Washington, DC, USA, 1998. IEEE Computer Society.

[14] A.W.F. Lee, D. Dobkin, W. Sweldens, and P. Schröder. Multiresolution
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