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Multi-Scale Time Activity Data Exploration via

Temporal Clustering Visualization Spreadsheet
Jonathan Woodring and Han-Wei Shen

Abstract— Time-varying data is usually explored by animation
or arrays of static images. Neither is particularly effective
for classifying data by different temporal activities. Important
temporal trends can be missed due to the lack of ability to
find them with current visualization methods. In this paper,
we propose a method to explore data at different temporal
resolutions to discover and highlight data based upon time-
varying trends. Using the wavelet transform along the time axis,
we transform data points into multi-scale time series curve sets.
The time curves are clustered so that data of similar activity are
grouped together, at different temporal resolutions. The data are
displayed to the user in a global time view spreadsheet where she
is able to select temporal clusters of data points, and filter and
brush data across temporal scales. With our method, a user can
interact with data based on time activities and create expressive
visualizations.

Index Terms— Time-varying, time histogram, filter banks,
wavelet, animation, transfer function, clustering, k-means, visu-
alization spreadsheet.

I. INTRODUCTION

DATA points in a time-varying data set exhibit different

activities over time, which characterize the temporal trends

of underlying features. We define a temporal trend as the char-

acterization of the change in value of a data point over time in a

series. This can be classified in a variety of ways, such as when

a trend begins, when it ends, the rate of change, and the value

over time. This is true for all time-varying data sets, and it seems

natural to classify data points based upon their activity to find

temporal hot spots.

Traditional data exploration deals with classification based

upon temporally static value quantities. When time is not con-

sidered, patterns and correlations based on temporal activity can

be missed. For example in animation of volumes, if the transfer

function doesn’t map a change over time to a visible range or

the mapping does not highlight the dynamic activity, the user

will miss the change or it will go ignored. It has been noted that

change blindness can occur when visually perceptual phenomena

change too slowly to be detected [23]. For rendering a single time

step, most methods do not have a concept of mapping based on

time activities or inter-correlated time activities.

Only until recently has scientific visualization attempted to

tackle classification based upon temporal activity. Fang et al.

developed a system to classify and segment medical data based on

a distance metric from the time activity curve vector [5]. Akiba

and Ma [1], [2] use the time histogram to create time-varying

transfer functions based upon the time profile of a data set. Our

method builds upon these concepts to facilitate time-varying data
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Fig. 1. The corrected annual US temperature data from 1880 to 2006.
The top image is the original data. The second row through fourth rows are
selected wavelets from applying the Haar wavelet transform to the original
data, showing 2 year, 7.875 year, and 31.5 year trends. The left column are
low-frequency wavelet coefficients and the right column are high-frequency
wavelet coefficients.

exploration, such that the data are explored and classified based

upon multi-scale temporal activities.

Our goal is to allow explorative capability to find trends of

different temporal scales in data to create visualizations based

on temporal activity. Similar to multi-scale spatial classification

[20], temporal activity can occur at different temporal scales. To

explore the data, we utilize the wavelet [19] to transform data

points into a set of time series curves grouped into different

wavelet or filter bank levels. By filtering the data into different

frequency bands, a user is able to visualize her data at different

scales of activity, and find data that share similar temporal trends

at particular time scale.

The data can then be explored by the activity in different fre-

quency bands and wavelet coefficients, as can be seen in Figure 1,

by applying the Haar wavelet transform to the recently corrected

US annual temperature data from 1880 to 2006 from NASA.

The top image is the original data, while the bottom images are

selected wavelet coefficients after Haar wavelet transform. Going
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down the rows, larger (slower) temporal trends can be seen in

the data. The lower-left image shows that there was a rise in

temperature in the first 30 years and a similar rise in temperature

in the last 30 years. The high-frequency coefficients in the same

frequency band in the lower-right image show the same trend,

minus the DC component, and it can be clearly seen that the rise

in temperature in the first 30 years and last 30 years is roughly

equal in magnitude.

For regular data with multiple data points, we group data points

into clusters of similar temporal activity using a hybrid clustering

through k-means and SOM. The user then has a baseline to

start exploring their data based upon temporal activity. Using an

intermediate visualization, the wavelet clusters are displayed to

the user in a visualization spreadsheet, so she can explore the

global temporal trends present in the data [3], [12], [13], [17],

[30]. The user is able to select, inspect, and filter [4], [25] time

series clusters through the use of multiresolution time histograms

[6], [10], [16] displaying the contents of each cluster. Selected

and filtered clusters are combined together into a visualization by

using boolean operations, time series operators, and animation

[29]–[31].

II. RELATED WORK

We utilize the wavelet to decompose time series data into a

series of wavelet or filter bank levels. Wavelets have been used

previously as a compression and level-of-detail reduction [19]

scheme for large data sets. Recently, Lum and Ma have used

filter banks as a method to classify spatial data based on different

frequency ranges [20]. In information visualization, the Fourier

transform is used to decompose line graphs into different scales

to do optimal banking to 45 at different temporal resolutions,

where banking to 45 attempts to find an optimal aspect ratio

for 2D graphs to maximize the angles between line segments

to 45 degrees for perceptual visualization enhancement. [8]. We

use the wavelet transform to extract multi-resolution temporal

trends. There has been use of multiresolution histograms for

image recognition and matching [6], [10]. Jain and Merchant

apply the wavelet transform to the color histograms for images

to build multiresolution histogram pyramids for image retrieval.

Hadjidemetriou et al. apply spatial image filtering to acquire

multiresolution histograms for image matching. Our use of multi-

scale time histograms is most like the latter, we filter the data

along the time axis and use clustering [7], [15] to match temporal

trends.

Brushing, linking and multiple data views have been used in

the visualization as a means to be able to draw conclusions

between multi-variate data. Ggobi and the like are the latest

incarnations of multi-variate data brushing and linking [4], [25].

Our use of brushing and linking is applied in the selection of data

points across temporal scales. The use of spreadsheet formats are

likewise used throughout visualization to simultaneously display

multi-views of data [3], [12], [13], [17], [30]. We use visualization

spreadsheets to present the data that are acquired through wavelet

transformation and clustering. The use of graphical widgets and

user interfaces for are prevalent in classification and transfer

function design [14]. The combination of wavelet transformation,

clustering, time histograms, and brushing and linking create a

complete user interface to explore and classify data by temporal

activity.

There have been various research efforts in visualizing time

series data in the area of information visualization. For instance,

van Wijk and van Selow combined cluster analysis and calendar

based visualization to identify standard daily patterns throughout

the year [27]. Weber et al. [28] proposed a method to visualize

time-series data based on spirals. The spiral graphs are effective

for detecting periodic patterns for large scale data sets. Hochheiser

and Shneiderman [9] proposed a Timebox widget to specify query

constrains on time series data. Lin et al. [18] introduced VisTree,

a time series pattern discovery and visualization system to help

analyze data from aerospace applications.

Creating transfer functions and visualizing time-varying volu-

metric data is one of recent interest [21]. There has also been

other work in automatic and semi-automatic methods of transfer

function creation for time varying data sets [11], [22], [26].

More recently, Akiba and Ma have used time histograms to be

able to classify data based upon their time series profile [1],

[2], [16]. Their method is better at feature tracking over space.

Akiba and Ma’s assumption is that data point populations will

aggregate in value space and move together in value space. In

this paper, we make the assumption that interesting data points

have similar temporal trends. While our method is better at finding

and isolating data points based on similar activity, we utilize their

method for creating dynamic transfer functions for data points

based on extracted temporal features. Our assumption is more

closely linked to Fang et al. [5]. They use a method to segment

medical data based upon calculating distance metrics from a time

series profile curve [5]. We also extract data points based on

time activity, but across several temporal scales with the ability to

query and explore at different resolutions. This work of temporal

activity selection provides the data input to volume combination

methods over space and time to create final visualizations [29]–

[31].

III. METHODOLOGY

In order to allow the user to find temporal trends in her data,

we model each data point or position in time series data as a 1D

time signal. A time series curve, time activity curve [5], or time

curve is a vector representing the value over time at a particular

data point. The time series vector for a data point is a vector of

t elements ordered by time, where t is the number of time steps

in the data set, and the value of each element is the value at a

time step of that data point. Assuming the data value is scalar

over time, if we were to plot the value over time in a 2D graph,

the line curve would comprise its graphically representative time

curve, like the top graph of Figure 1.

In a 2D time curve line graph, the user is more likely to be

able to detect changes in value over time, or detect trends and

anomalies present in the time signal, compared to animation or

volume visualization. This is due to the global time awareness

and value change that is displayed by 2D plotting. The entire time

sequence is available for viewing at a glance. In volume rendering,

comparatively, the user has one slice in time displayed at any

given moment. Value change or trend detection depends heavily

on the capability of the transfer function to display the trends, the

speed that an animation is played at, and the memory of the user.

Furthermore, trend detection in animation can be easily missed

due to opacity, occlusion, visual memory, change blindness [23],

or any number of other perceptual factors.
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Fig. 2. 2 meter atmospheric temperature data from CCMS 3.0. The top image
is the temperature for the entire world for the first time step. The second row
shows the data points from two clusters from a low frequency band wavelet
clustering. The left image shows a clustering of a high temperature, which is
near the equator, and a low temperature clustering, which is near the North
Pole and waters around Antarctica. The third row shows two clusters of high
wavelet coefficients in the same frequency band. The cluster on the left has a
decrease in temperature followed by an even greater decrease, and the second
cluster has an initial rise in temperature followed by a dip.

To further aid the user, we decompose each time series curve

into wavelet levels or a series of filter bank levels, as in the bottom

graphs in Figure 1. By using the wavelet transform, we filter

the time activity curve of each data point into several scales of

temporal activity. This allows the user to explore the activity that

takes place at different temporal scales. In the displayed wavelet

coefficients for Figure 1, we show 2 year, 7.875 year, and 31.5

year trends that are present in the single data point. The user

can then explore and classify the data based on various trends

that occur at different scales in the data. As in Figure 1, the

different 2 year, 7.875 year, and 31.5 year trends that are masked

by high-frequency spikes in value are revealed through filtering,

like multi-scale banking to 45 and multi-scale volume exploration

[8], [20].

One data point is easy to plot, like the aggregate US annual

temperature data, but when dealing with millions of data points,

such as in time-varying volumetric data, it becomes intractable

for a user to visualize the time curve for every data point. To

expedite the user search process, we utilize clustering [7], [15] to

form temporal summary data for each frequency band and wavelet

coefficient type. Clustering is run on groups of wavelet vectors

separated by frequency band and wavelet coefficient type to form

cluster groups. This means each data point will be grouped with

other data points that share similar temporal activity in a particular

frequency band and wavelet category.

An example of the different clustering that can take place in

data is shown in Figure 2, which from a 6000 time step series of

2 meter atmospheric temperature data of the world. The rendered

image for the entire data is shown on top, colored by the values

Fig. 3. Examples of temporal clusters from combustion data. The data points
are colored by the temporal cluster that they belong to, so that all of the data
points with the same color have similar temporal trends. The left image shows
the temporal clusters in the mix fraction variable, and the right image shows
the temporal clusters in the OH variable.

of the first time step out of the series. The data was wavelet

transformed, and then clustering was performed separately in each

frequency band and wavelet coefficient type. The clusters shown

in the example are from a low-frequency band, showing 3000

time step trends, or showing the trends in the first and second

half of the data. The second row shows two different clusters

based from clustering the low wavelet coefficients, one cluster

of a high temperature area and one cluster of a low temperature

area. The third row shows two groups based on clustering the

high wavelet coefficients. The left image shows data points of

decreasing temperature, followed by an even greater decrease in

temperature. The right image is a cluster of data points that has an

increase in temperature, followed by an decrease in temperature.

A second example of classification or separation of data points by

temporal clustering can be seen in Figure 3, using two variables

of a combustion data set. The image shows all of the temporal

clusters found in the data, and the data is colored by the temporal

cluster.

The data point clusters are shown to the user in a spreadsheet

format [17], with the centroid curve and thumbnail volume

rendering of the data in the cluster. This is the primary user

interface which displays all of the time trends present in the data

and allows the user to select the clusters she wishes to explore

for visualization. Data cells are organized by frequency band and

wavelet category, and sorted by derived properties such as cluster

distance or population overlap on cell selection. Spreadsheet cells

can then be filtered by centroid similarity or spatial overlap to

reduce the data complexity and increase the summarization of

the time series data. A small spreadsheet is shown in Figure 4.

This spreadsheet shows all of the low wavelet coefficient clusters

in the frequency band that represents 15.25 time step trends for

a 122 time step data set.

Upon cell selection, the cluster is placed on a detail spreadsheet,

displaying all of the wavelet coefficients at different time scale

of the selected cluster, along with other selected clusters. The

wavelet coefficients in a cluster are rendered in the form of the

time histogram [16]. A time histogram is a compact representation

of a series of histograms over time. A histogram for one time

step is represented by a vertical strip that spans the value range

of the data points, with each bucket rasterized as a rectangular

area with the bucket count displayed with color or intensity. The

horizontal axis represents time. Figure 5 shows an example of one

time histogram cell from a series of time histograms for a cluster.
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Fig. 4. A cluster spreadsheet featuring the mix fraction variable of a 122
time step combustion data set. The spreadsheet is only showing clusters for
15.25 time step trends for the low wavelet coefficients. The thumbnail of the
data points for each cluster is rendered, and the centroid time curve of the
data points is rendered on top in a green curve.

Fig. 5. A time histogram for a cluster from high wavelet coefficients of 15.25
time step trends in the χ variable of a 122 time step combustion data set. The
high coefficient value over time for all data points in the cluster is shown by
the time histogram. Count intensity is rendered in a log scale to emphasize
outliers, since the centroid is shown. The red curve is the centroid of this
cluster. Since this is a high wavelet coefficient curve, from the centroid, we
can see there is a zero crossing, meaning there is a temporal peak in the data
at that time period in that frequency band.

The time histogram is able to display the value distribution and

variance of the different data points over time in a cluster, for

each wavelet type and frequency band. This allows the user to

have a better understanding of data contained within each cluster,

and to compare the data with other cluster’s time histograms.

The user can further refine the data point selection in a cluster

to direct the exploration process. We allow the user to brush and

link [4], [25] over the time histogram plots to make selections.

She can filter data points by time curves and trends, as seen in

Figure 6. Figure 6 shows several time histogram views of the same

set of data, where the user has brushed a selection in one time

histogram. She can see the results of her brushing in the other

time histograms of the same set of data, but at different temporal

scales of activity and wavelet coefficient types. Additionally, the

Fig. 6. Selected time histograms from a 227 time step earthquake data set,
featuring brushing and linking. In the top time histogram, which is 15.13
time step low coefficient trends, the user has brushed a trend of interest,
and the time curves that pass through the brushed area are highlighted. The
same time curves or data points are linked in the other time histograms. The
middle image is the same data at the same frequency band, but is showing high
wavelet coefficients. The bottom image is the original data time histogram.
The user is able to brush and alter the selection in all of the linked time
histogram cells.

user can make selection through value ranges via dynamic transfer

function painting [1], [2]. The spatial combination of selected data

points is accomplished through boolean operations or operators

over time [29]–[31]. To make trends more visible in animation,

we allow the user to create visualizations that dynamically rescale

the animation speed based upon the data trend.

IV. MULTI-SCALE TEMPORAL EXTRACTION

In order to study the time-varying data at multiple temporal

resolutions, we need to transform the data. Wavelets provide

an elegant implementation for filter banks [24], which are the

foundation for multi-resolution analysis. Wavelets have been

used often in visualization for compression and multi-resolution

rendering [19] in the past. Wavelets are defined by basis functions

that filter a signal into two parts: low-frequency or approximation

coefficients, and high-frequency or detail coefficients. The process

can be repeated on the low-frequency coefficients to create a

hierarchy of resolutions [24]. The hierarchy formed by repeated

applications of the wavelet transform forms a filter bank, or

a set of band limited signals based upon the original signal.

Among the different types of discrete wavelet transforms, the

Haar wavelet and the Daubechies wavelet are commonly used.

The Haar wavelet is very fast to calculate and has a simple

support, and from the user point of view, the calculation of the

wavelet and its meaning is simple to understand. We have a series

of increasingly low-pass signals based upon the original signal,

representing the data at different time scales. Also, we have the

derivatives of each of the low-pass signals, showing the rate of

change of the data over different time scales.

A. Haar Wavelet

Assuming that the time sampling rate for the data is regular

or can be converted to a uniform sampling rate, we use the

Haar wavelet to transform the data into a multi-scale temporal

format. The Haar wavelet has several different notational forms.

The version that we use is the low-frequency coefficients being the
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mean of two adjacent samples, and the high-frequency coefficients

being the difference of two adjacent samples. The reason for this

notation and is for the ease of understanding from the user point of

view, rather than reconstruction support. In this work, the wavelet

transform is used to represent the time series at different temporal

scales for user exploration. By reasoning on the wavelet transform

in this way, to the user, the low-frequency wavelet coefficients

are the average or value signal, and the high-frequency wavelet

coefficients are the rate-of-change or derivative signal. The Haar

transform is given in Equations 1–2, where O is the original

signal, L are the low-frequency coefficients, and H are the high-

frequency coefficients.

Li = (O2i+1 +O2i)/2 (1)

Hi = O2i+1 −O2i (2)

The recursive process of applying the Haar transform on the L

coefficients results in a cascading filter bank of ⌈log2(t)⌉ levels of

low-frequency coefficients and high-frequency coefficients, where

t is the number of samples. For reconstruction, strictly speaking, a

level l filter bank has ⌈t/2l⌉ low-frequency coefficients and ⌈t/2l⌉
high-frequency coefficients.

Though in our visualization, we use ⌈t/2l−1 − 1⌉ high-

frequency coefficients, to display the difference between every

adjacent time step. Strictly speaking, if we were using the wavelet

as a compression or backend level-of-detail method, the additional

coefficients are extraneous for reconstruction. The additional

coefficients are for visualization and user analysis to show the

difference between every time point. For example, given 8 data

points, 12233445, the strict Haar high frequency coefficients

would be 1111. Instead of visualizing those coefficients, we

increase the number and show the user 1010101, which is much

more informative in terms of showing the rate of change of the

signal. This is on the order of a 2(nlogn) transformation, because

of the extra set of coefficients.

For our data transformation, for a data point x in a time varying

data set, it has t samples over time, where t is the number of

steps in the time series. The t samples of x form a time series

vector v, where the elements of v are ordered by time. The Haar

transform is applied to every time vector in the data set, such that

for every v, Haar(v) is a Haar wavelet hierarchy representing data

point x at different frequency bands and wavelet coefficient types.

Alternatively, it can be thought of as filtering a data point x across

time to extract its characteristic signal across frequency bands

and signal types. This wavelet transformation is used to display a

data point’s temporal trend at various temporal scales to the user.

Assuming that the data is scalar, the multi-scale temporal trend

of a data point can be displayed by drawing the 2D curve of each

wavelet vector.

Figure 1 is an example of applying the Haar wavelet transform

to one data point. The top image is the original temperature over

time. The bottom images are the wavelet transformed data plots.

B. Temporal Activity Clustering

It is not possible to be able to draw every 2D wavelet graph

for every data point in a data set of realistic size. There would be

simply be too many line graphs to plot and explore. In order to

reduce the data set size and to create summary information, we

employ clustering on the wavelet data. Clustering is a method

for grouping a set of high-dimensional vectors into semantic

sets. In the most general terms, a similarity or distance metric is

repeatedly applied to the input set of vectors to separate the data

into semantic groups or clusters. Common methods for clustering

include energy minimization solutions like k-means, and machine

learning algorithms like the self-organizing map [7], [15].

Our use of clustering is employed on the time vectors that

are generated through the wavelet transform to form sets of data

points that exhibit similar time activities. For each data point x

in a time series data set, it will have 2 ∗ ⌈log2(t)⌉+ 1 vectors

representing the original data, and the low-frequency and high-

frequency wavelets from the Haar transform. For each of the

vector types, we cluster the data points in the time-varying data

set. Since we have 2∗⌈log2(t)⌉+1 groups of frequency band and

signal type, a data point x will belong to one cluster in each of

the groups as a result of this clustering process.

By performing clustering on each signal type separately, a data

point is grouped with other data points that have similar temporal

activity in a particular frequency band and wavelet type. By

clustering by low coefficients, temporal activity grouping is dom-

inated by value over time. When grouping by high coefficients,

data points are clustered by the rate-of-change over time. This

allows the user to explore the range of possibilities of temporal

trends over each frequency band and signal type. We assume that

there will be population separation in the clustering, such that

clusters across frequency bands and wavelet coefficient types will

have different data point populations. This is where interesting

temporal trends should appear in exploration.

Figure 2 displays several clusters in a low-frequency band.

The second row shows data points which were grouped together

because they had similar low wavelet coefficient activity over time

in that frequency band. If we cluster by high wavelet coefficients,

we obtain clusters, seen in the bottom row, that contain some

of the same data points in the first two clusters. Therefore, the

user can make a more refined selection by taking the intersection,

through boolean operations, between two clusters. For example,

if the user intersects the upper left cluster with the lower right

cluster, she is able to visualize a region that has high temperature

value, but also raised and then dipped in temperature.

The clustering method that we use is a hybrid SOM and

k-means with kd-tree acceleration. While k-means and kd-tree

are well known, the SOM, or self organizing map, is an AI

learning network that projects high dimensional vectors to a lower

dimensional space, while trying to preserve the topology of the

higher dimension space. We use the SOM to quickly arrive at

an initial, hopefully globally optimal, centroid set for clustering,

and then use k-means to refine the set to a convergent answer.

The drawback is that k-means and SOM require the number of

clusters as input, therefore it may under- or over-cluster because

the number of clusters picked may not be the number of natural

clusters in the data. The initial use of SOM attempts to shake

k-means into a global minimum, rather than local minimum.

There may be utility in using an alternative clustering method

for creating temporal summaries, compared to the clustering we

have used.

One drawback or limitation that we have in our method is

that we are able to classify data points into temporal hotspots,

such as regions in space that share the same activity, but we

are not able to do spatial tracking of values or temporal phase

shift. For example, in in the case studies found later in the paper,
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our method is able to classify the weather data into geographical

regions by their temperature patterns over time. Though, for data

such as the combustion data set, we classify volumetric regions

that have spatially moving data values are moving through a

region, rather than tracking the value over space. This is because

a value moving through space appears as an impulse time curve

as it passes through different regions of space.

V. USER INTERFACE

The goal of the user interface is to display the time activity of

a data set and to allow the user to select data points based on

the visualized temporal activity. A cluster spreadsheet is formed

from data acquired through wavelet transform and clustering on

the input. From the clusters, the user is able to explore and find

data that have interesting temporal activity. To get further detail,

the user can select the clusters of interest and place them on a time

histogram spreadsheet. From the cluster selection and refinement,

the visualization is formed, highlighting data of user selected

temporal activity, which in turn can lead to further refinement

and exploration.

A. Cluster Spreadsheet

The cluster spreadsheet is the primary interface that forms the

temporal trend exploration. Each cell of the spreadsheet represents

a cluster formed from the clustering of wavelet data, explained

in the previous sections. Cells are sorted by spreadsheet columns,

such that each column contains clusters of one wavelet level

(frequency band), and sorted left to right by lowest detail to

highest detail.

Low wavelet coefficients are on the left half of the spreadsheet,

while high wavelet coefficients are on the right half of the

spreadsheet, so that comparisons can be made between wavelets

of the same type. Given there are ⌈log2(t)⌉ wavelet levels

(frequency bands) from the Haar wavelet transformation, two

wavelet coefficient types from low and high coefficients, and a

fixed number of clusters k per wavelet category type, then there

will be 2 ∗ ⌈log2(t)⌉ ∗ k cells in the spreadsheet, where there

are k rows and 2 ∗ ⌈log2(t)⌉ columns. An example full cluster

spreadsheet can be seen in Figure 7.

To show the summary information, each cell graphs the cen-

troid time curve of the cluster, the average variance of the cluster

members from the centroid, and a thumbnail rendering of the data

points in the cluster, giving a temporal and spatial summary of the

data that is contained in each cluster, as seen in Figure 8. On the

right edge of the cell is a bar indicating the ratio of population

of data points in the cluster to the total data point population,

so the user can see the size of the cluster. Next to that, there is

an additional bar indicating either intersecting population count

or centroid distance from a reference cluster that is selected by

the user. The quantity that this bar shows is used in relevance

reorganization, as is explained below.

One point of mention is that this spreadsheet interface can have

a problem with data explosion or overwhelming the user with too

much information. Since we extract several different time scales

and multiple clusters of data, it can be a daunting task for the

user to be able to search and explore the data. The clustering

was a first pass at data reduction, and we have several different

user interface controls sorting and simplify the amount of data

shown to the user. Our user interface makes a good attempt for

Fig. 8. A close up of a cluster cell from Figure 7. The background of a
cell (1) contains a thumbnail rendering of the data points in the cluster. In
the foreground, the green curve (2) represents the centroid temporal trend of
the data contained in the cluster. The white curves (3) indicate the average
temporal variance around the centroid time curve. The green bar in the lower
right (4) indicates the population size of the cluster. The yellow bar in the
lower right (5) is for showing data point overlap with another cluster, or the
centroid distance from another cluster.

visualizing multi-scale temporal data, but there is room for future

improvement, beyond what we have done here.

B. Relevance Reorganization

When the user selects a particular cluster cell, the entire spread-

sheet is reorganized to display the relative relevance of other

clusters to the selected cluster. The basic rules for reorganization

is that a cell will stay in its own column, as column is an

indication of frequency band and wavelet coefficient type. A cell

can move up or down within its column. The goal of sorting in

the column is to move cells vertically closer to the picked cell so

that closer cells will have higher relevance. So, when the user is

browsing the spreadsheet, after choosing a cell, she is presented

with a spatial reorganization of the spreadsheet to display clusters

with similar temporal or cluster population characteristics. We

note that all the following reorganization methods can be inverted

to reorganize the cluster spreadsheet to highlight dissimilar cells

when necessary.

1) Same Column Reorganization: Within the column that a

picked cell resides, other cells in that column are reorganized

based on the cluster centroid distance from the picked cell. The

effect is that when a user picks a cell, clusters in the same

column are moved closer if they have a smaller distance, using

the clustering distance metric, between their temporal centroids,

and moved farther away if there is a larger distance. The first

columns of the images in Figure 9 show an example of resorting

cells in the column of the picked cell. Cells that are temporally

similar have moved closer, in this case similar cold temperatures,

to the picked cell (please see the figure caption for detail). By

moving cells that have similar centroids closer to a target cluster,

we emphasize the clusters that have the same temporal trend as

the picked cluster. In addition to resorting the cells, we always

show the relative normalized temporal centroid distance in a cell

with a red vertical bar on the right of the cell.

2) Other Column Reorganization: The other columns, which

are not the column of a picked cell, are sets of clusters in different

frequency bands and wavelet coefficient types. In order to show

their relevance to a picked cell, we can resort cells vertically
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Fig. 7. A cluster spreadsheet of the OH variable of 122 time step combustion data set. After the data has been wavelet transformed and clustered, it is
organized into a spreadsheet. The left half of the spreadsheet shows low wavelet coefficients, while the right half shows high wavelet coefficients. The columns
are organized from lowest frequency band (long term trends) to highest frequency band (short term trends), reading left to right. Each cell is one cluster of a
particular frequency band and wavelet coefficient type. The spreadsheet gives a global view of the different trends that are present in the time varying data.

such that their relative vertical distance from a picked cell is

equal to the percentage of shared population from the picked cell.

This is equal to COC(A,B) = |A
⋂

B|/|A| where A is the picked

cell and B is the cell to be sorted, which we call cross-over-

count. The second and third columns of the top image in Figure

9 shows an example of how other column reorganization works.

The user has picked cell (1) with cold temperatures, and cells with

the highest overlapping data point population in other columns

are moved vertically closer. Cluster cells with smaller cross-over

count will be moved relatively farther away from the center row.

By moving cells with the highest shared percentage population

vertically closest to a picked cell, we emphasize how data point

populations recluster across frequency bands and where temporal

trends diverge across frequency bands. In this example, we can

see that there is a split in the cluster population as we increase

in detail of temporal scales. For this particular data set, we can

reason that this is due to the northern and southern hemisphere

monthly temperature cycle. In short term temporal trends, data

points are temporally similar to regions in the same hemisphere.

In a longer term trends, data points are similar to regions in

the same latitude, ignoring monthly trends. We always show the

cross-over count between a picked cell and every other cell by a

yellow vertical bar on the right of a cell.

3) Row Sensitive Reorganization: To emphasize similarity

across all rows, we can sort the cells in each column based on

a greedy cross-over-count selection compared with the cells in

the column that the picked cell resides. To do this, The picked

cell first moves the cell with the highest cross-over-count in each

column vertically into its row. Then, the cell with the smallest

centroid distance to the picked cell in the same column does

the same, i.e., moves the cell with the highest cross-over-count

with itself in each column vertically into its row. This is repeated

for the next smallest centroid distance cluster, until there are no

more cells to reorganize. The bottom image in Figure 9 shows an

example of using this reorganization method on the spreadsheet.

Rows (A) and (B) are populationally similar to the clusters (2)

and (3), respectively, in the column where the picked cell resides.

This tries to ensure that there is relevance across columns as

well, such that the user reads across rows, all of the clusters are

from similar data point population, although this is not always

guaranteed due to the greedy selection method we use. We can

see a shift in the other cluster populations over temporal scales

as well as the picked cell. The user can still see the cross-over-

count with the picked cell by the yellow bar on each other cell.

As an alternative for using cross-over-count as a reorganization

metric, the centroid distance between clusters can be used as well

in the previous two methods for sorting columns, to emphasize

temporal trend similarity between clusters rather than population

similarity.

C. Spreadsheet Simplification

The user interface visualization can be complex due to the fact

that many cells are displayed at once, like in Figure 7. Further

simplification can be done by only showing a few columns of
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Fig. 9. Two sorted views of a portion of a cluster spreadsheet for 2 meter
monthly temperature data of 6000 time steps, showing clusters of data points
that have similar (left to right), 32 month, 16 month, and 8 month trends. In
the top image, the user has picked the cell (1). Cells in the same column are
sorted by the centroid time curve distance to the selected cell, so that clusters
(2) (3) of similar temperatures over time have moved closer to the picked cell.
This is also indicated by the length of the red bar in the cells. Cells in the
other columns are sorted, such that the greater population overlap it has with
cell (1), are moved vertically closer, but stays in the same column. This can
also be quantitatively seen by the length of the yellow bar in the cells. In the
second sorted image, the difference is that cells in row (A) have the highest
overlap with cell (2) and cells in row (B) have the highest overlap with cell
(3).

interest, like we have done in Figure 9. Alternatively, we can use

similarity metrics to automatically cull cells or reduce the number

of cells. Clustering across different frequency bands results in

clusters with different populations, but there will still be overlap

in the population of data points. Like in Figure 9, there is a

shift in cluster population indicating a shift or change in temporal

trends, but many of the clusters have similar populations across

temporal scales. By culling clusters that have similar populations,

but retaining ones with different populations, we reduce the

complexity of the spreadsheet but preserve the information.

1) Cell Culling: After the user selects an initial set of clusters,

instead of showing clusters that might be considered redundant

because they have similar data point populations, cells can be

culled if the cluster population does not exceed a percentage

population difference threshold from the closest cluster population

in the selection set. This percentage population cross-over count

is maximum of the size of the intersection set between two

clusters A and B divided by A for all A in the user selection

set U , MCOC(B) = max(∀A ∈U : |A
⋂

B|/|A|). This is performed

incrementally in a greedy manner, adding new cells to the user

selection set U as they exceed the population threshold. An

example can be seen in Figure 10. Cell culling tends to be able to

discard low wavelet coefficient clusters, because clusters tend to

be similar over temporal scales. On the other hand, high wavelet

coefficients, by their very nature, retain the detail information of

every temporal scale, and thus are unlikely to carry the same

cluster population over temporal scales.

2) Cell Merging: Additionally, we can use the distance metric

used in the clustering algorithm to merge cells in the same

column based on the centroid difference. Cell merging is a type

of user based clustering to reduce the screen area occupied by the

spreadsheet. If two clusters have similar centroids, such that the

distance between two cluster centroids is under a threshold, we

merge the cells to an overlay cell. The user can manually merge

cells together to form a cell union if she decides that the data is

similar, or belongs together. All of the centroids merged together

are rendered in the overlay cell, and the rendered thumbnail of

the clusters is a spatial union of the combined cluster data. The

user is allowed to re-split the clusters into individual cells of their

own, if she only wishes to pick one cluster or to see the data of

each cluster individually.

D. Time Histogram Spreadsheet

When the user selects a cluster, it is added to a secondary

spreadsheet, a time histogram spreadsheet, as in Figure 11. The

column layout is the same, such that there are two halves

corresponding to low and high wavelet coefficients, and each

column corresponds to one frequency band. Initially, the time

histogram spreadsheet is empty. When a cluster is selected, it

is added as a new row to the time histogram spreadsheet, and

the time histogram of the cluster across frequency bands is

displayed in each column for a row. The time histogram in each

frequency band provides a summary of the time curves that are

contained within a cluster, so that the user can see the details

of distribution of values over time. If there is more than one

row, the spreadsheet is resorted to show the relevance between

clusters, as was mentioned in the previous section. Essentially, the

time histogram spreadsheet is to display details for the selected

clusters. It also provides a good interface for the user to be able to

make fine tuning adjustments of the data points within a cluster,

as described below.

1) Time Curve Brushing and Linking: Our manipulation of the

data contained within a cluster is a brush widget. There are two

modes of operation with the brush widget. In the first mode, the

user paints an area in time histogram she wants to explore, and

time curves that pass through the selected bucket on the time

histogram are selected. Any time curves that fall within the user

painted area are selected, drawn as poly lines, and linked [4], [25]

across the time histogram columns, seen in Figure 6. By drawing

the curves as continuous poly line rather than plotting the data

points, the change in value over time becomes more apparent. The

user can make refined selections by using intersection, union, and
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Fig. 10. An example of culled spreadsheet of χ variable from 122 time step combustion data set. The culling order was performed from highest detail to
lowest detail at a 75% population threshold. 35 cells have been culled out of 126, resulting in a 27% space savings. By culling cluster cells that do not change
populations over temporal scales, the essence of the temporal trends in are retained, and even highlighted since they are the only cells that remain.

Fig. 11. An example of time histogram spreadsheet from 2 meter atmospheric
temperature data of 6000 time steps. Four clusters have been selected, ranging
from top to bottom. Two time histograms showing the low wavelet coefficients
are on the left, and two time histograms showing the high wavelet coefficients
are on the right. The multiscale aspect is very useful in hard to detect trends,
such as long term trends, as can be seen in this example. The low wavelet
short term coefficients look to be flat over time, but high wavelet long term
coefficients reveal that there are changes in the time curve.

difference brushes, such that the different brushes remove or add

data points from the selection set based on the operation of a

brush. By linking time curves across frequency bands, the user

can see the temporal profile of the data, and potentially make

fine tuning adjustments in another frequency space. Brushing and

linking is restricted to the data within a cluster or a merged

cluster. To make clear the relationships between clusters, the user

can use spatial boolean operators to combine clusters into one

visualization.

2) Dynamic Transfer Function Brushing and Linking: The sec-

ond mode of operation uses value space selection [1], [2], rather

than time curve selection. By painting on the time histogram

with color and opacity brushes, the user can create a temporally

dynamic transfer function. She paints the value of the transfer

function over time, by using the time histogram as a guide for

value ranges. The paint is linked across all time histograms within

a row, such that if the user paints in another frequency band, the

transfer function is updated. The paint can also be linked across

rows, such that the transfer function can be shared across several

clusters.

While the former time curve selection method is more useful

for temporal trend selection, the latter method is more useful for

value range tracking. Both modes can be combined together to

make temporal trend selections and value range tracking. The

system can also generate dynamic transfer functions through

a semi-automatic method. The user specifies a static transfer

function with a center value, and the system applies the transfer

function centered around the cluster centroid over time. This

allows the user to track the centroid value and the variance from

the centroid over time, within a cluster, like in Figure 12.

VI. ADDITIONAL EXPLORATION SCHEMES

By selecting clusters and refining the clusters through the time

histogram spreadsheet, the user narrows the set of data points to
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Fig. 12. A cluster of low wavelet coefficients from the OH variable of a
122 time step combustion data set. An automatic dynamic transfer function
is generated that is centered around the cluster centroid. A transfer function
of this will track the centroid value over time, and measure the variance of
the data around the centroid.

a small set that exhibits some temporal behavior. Time curves

map to data point positions, and there is spatial overlap between

selected clusters across temporal scales. This is because each data

point is clustered independently on each of its wavelet vectors,

and a data point may be selected multiple times across cluster

selections. This behavior is desirable, because by having cluster

sets that have intersecting members, the user can create visual

relationships between cluster sets based on their temporal activity.

Each user refined cluster is a set of data points that share

temporal behavior, the user can create a visualization composing

relationships between temporal activity clusters. Assuming we

have a pre-defined static transfer function or the user can define

a dynamic transfer function per cluster in the previous section,

we can operate on selected clusters to create a visual query [30].

By using the spreadsheet interface to select clusters and the

time histogram to refine those clusters, the user forms an operator

tree to compose clusters into a temporal query. Intersection

operations are used to find data points that share trends in two

clusters. Union operations are used to join data points together

that potentially have different trends. Difference operations are

used to find key differences between clusters, such as finding

outliers to two trends. An example of this is found in Figure 13

using the 2 meter atmospheric temperature data.

Additionally, within a time segment, the user can create value

and trend highlighting through temporal operators [29], [31]. In

the time histogram spreadsheet view, the user can select individual

time steps or a run of time steps to be operated on over time. By

providing temporal operators, the user can compose several time

steps into one time step that has derived data to highlight the data

value trends that are present in that time segment, and to extract

value differences or similarities.

A. Multivariate Interaction

Additional variables can be easily added to the system by

adding spreadsheet panes, such that one variable takes up one

pane in the spreadsheet. To avoid cluttering the screen in the

cluster spreadsheet, clusters from different variables are not able

to cross panes into other variable’s spreadsheet space. In addition,

Fig. 13. An example of performing a visual query with selected clusters from
2 meter atmospheric temperature data of 6000 time steps. The composition
spreadsheet with volume tree operators allows us to combine clusters to drill
down into the data. The two bottom left clusters are from different frequency
bands, and an XOR operation is used to find the outliers that are not in
common with either. The bottom right clusters are from the same frequency
band, so they do not intersect in space, but we can join them together with an
ATOP operation [30]. Then, the temporal outliers between the two operations
can again be found by taking the XOR of both results.

cluster selection and spreadsheet reorganization is limited to the

space that one variable takes in the spreadsheet since cluster-

ing and spreadsheet reorganization is for temporal relationships

within the variable. However, after clusters are added to the time

histogram spreadsheet, the user is allowed to move rows around

to compare trends between clusters from different variables. Even

though brushing and linking is limited within one variable, the

way interactions are created are through boolean operators to

intersect, union and difference the data between variables. By

saving the operations until the end, the user can make adjustments

in the temporal trends per cluster, per variable and see the final

results after operation, rather than co-mingling the operations and

selection together, resulting in a convoluted process.

B. Animation Rescaling

In addition to being able to operate on clusters to create

temporal relationships, we can also make the temporal trends

more apparent in animation. Our goal is that if there is a slow

trend, we want to speed up the animation so that the trend is

more apparent. Conversely, if there is a temporal trend that occurs

relatively too fast, we want to be able to slow down the animation.

In either case, we are trying to normalize visual activity, such that

it is more apparent to the user [23].

In our time histogram spreadsheet interface, the time runs

horizontally left to right in each cell. There is a time base mapping

such that the animation runs at r time steps per second and f

frames per second, where the animation runs at r/ f time steps

per frame. Additionally, the spatial layout of the spreadsheet maps

x horizontal pixels per time step. Given these conditions, the user

can dynamically rescale the animation speed so that it changes

how fast or how slow changes appear to the user during animation,

by the multiplication of a speedup factor.

From observing the slope of selected time curves or the centroid

curve, the user can infer the rate of change that will take place

in the animation. If it is too steep, she may wish to slow down
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the animation, likewise if a slope is too shallow, she may wish

to speed up the animation. By marking two points on the time

axis, the user can stretch the time axis, by pulling the points away

from each other. Time curves will be stretched so that slopes are

flattened. This will dilate the animation time between the two

points, or slow down the animation between these two points.

Additional frames will be inserted in the animation. Conversely,

by dragging one point towards the other on the time line, the

animation time base will be compressed. Frames will be dropped

in between two points during animation, and the time curve slopes

will be steeper in the interface.

The speed up factor is determined by measuring the distance

between the old distance on the time line and the new distance. If

the old distance between time a and b on the time line is o pixels

and the new distance is n pixels, the speedup factor is o/n between

the two points on the time line. To remove abrupt instantaneous

changes in animation speed, we give the user the ability to add

automatic ease-in and ease out. A simple sine wave interpolation,

between the base rate r/ f and (r/ f )∗ (o/n), is used in the ease-

in and ease-out ranges to speed up or slow down the animation

in a smooth manner. In order to indicate the time base mapping

during animation, a time line and time stamp are embedded in

the animation. In this way, the user has context of when events

are taking place, and how much the animation is being sped up

or slowed down.

Given our previous assumption, we can apply an automatic

time rescaling scheme, to reschedule the animation frames to

have dynamic speed-up and slow-down to highlight all of the

temporal changes equally. The user provides an absolute value

rate of change optimization parameter p, and a centroid vector

or the average of multiple centroids to optimize. We dynamically

speed up and slow down the animation so that apparent rate of

change, of the given cluster centroid, matches the user given

value rate of change over real time. This is assuming that the

rate of change is data value based, but the rate of change can

also normalize in color or opacity space. The animation speedup

factor between time step t and t +1 is p/H(t), where H(t) is the

high-frequency wavelet coefficient at time step t of the centroid

H, and p is the optimal rate of change. The user can specify a

maximum acceleration or deceleration parameter to clamp the rate

of change, so that animation speed will not increase or decrease

too abruptly. Included with the supplemental material are two

earthquake movies that showcase automatic frame rate change

based on the centroid curve. The visible rate of change increases

over time, so the animation slows down to compensate for the

visual change, and highlight rapid change, while it speeds up

when there isn’t much change happening.

VII. CASE STUDY: COMBUSTION

In this section we present a sample usage of our system to

a turbulent combustion data set at a 480 x 720 x 120 grid

simulation, 122 time steps, with multiple variables, provided by

Dr. Jacqueline Chen of Sandia National Laboratory through the

SciDAC Ultravis Institute. When exploring the OH variable in the

cluster spreadsheet, there is a cell in Figure 8, that is different

from the other clusters in value over time. Most data points at

a glance have an upward sloping trend over time, while this

particular cluster starts high value, decreases, and then increases

at the end of the time series. This trend can be seen as well in

Fig. 14. The left image is a portion of spreadsheet of the OH variable. The
right is a portion of spreadsheet of the mix fraction variable over time. The
bottom image is an overlay cell from the χ variable, showing a value moving
through space over time.

the left image of Figure 14. All of the clusters can be seen in

Figure 3, and how they spatially relate to one another.

The center cell is the cell of interest the left image of Figure

14, and we resort the spreadsheet to show relevance to the cell we

are interested in. When looking in the same column, we see that

there are no other cells that have the similar temporal trend in

that frequency band. Additionally, the thumbnail rendering shows

that the data points of the cluster form a well defined structure.

We can also see this through the cross-over-count information, by

the yellow bar, is steady across temporal scales.

If we inspect another variable, we can possibly correlate the

spatial area to another temporal trend. A portion of the mix frac-

tion spreadsheet can be seen in the right image of Figure 14, we

look for areas that have the same spatial area or correlated curves.

There appear to be several clusters that appear to have similar

spatial volumetric occupancy, from the visualization thumbnails,

where OH and mixfrac have temporal clusters in the same area

of the data. We can also see this from Figure 3.

We also look at the χ variable to see if there are any trends

that might be related to OH and mix fraction, but there aren’t

any clusters that appear to be related. Though, one thing that

is of interest is the pulse train that is in many of the frequency

bands in the short term trends, seen in Figure 10. Even though we

are not able to perform spatial value tracking, we are still able

to detect visually from the spreadsheet some value movement

through space as a temporal trend of a pulse. Our method excels

at the detection of event start and ends, so we can precisely define

the area and time that the value movement started by the one

cluster at the head of the pulse train. By combining all of the

cells together that have the pulse into an overlay cell, as in the

bottom image of Figure 14, we are able to see that the pulse

forms a moving value in space over time. Each cluster is an area

that the value moves through. Potentially, the area of the overlay

cell coincides with the data in OH and mix fraction.
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Fig. 15. The left image shows a temporal cluster from the OH variable of
the combustion data. The right image shows a temporal cluster from the mix
fraction variable. The bottom image is a projection or combination of the two
variables in the same space to show coincidence and overlap. The bottom
volumetric region the two clusters from the two variables overlap with each
other and share similar structural features.

When we intersect the OH cluster with the one of the mix

fraction clusters, seen in the left and right images of Figure 15,

using projection operators, there is a spatial overlap and structural

coincidence, in the bottom image. They mostly overlap with each

other, and this is a strong indication that those data points have

a correlation in the two variables for those data points. The χ

clusters that are extracted do not seem to have value correlation

or spatial correlation with the OH and mixfrac. We can not say

that χ is temporally correlated from the information that we have,

and may be indepedent of those two variables.

VIII. CASE STUDY: CLIMATE MODELING

The Community Climate System Model 3.0 from the National

Center for Atmospheric Research is a climate model for predicting

past, present and future climates. The particular data set we

use is a 6000 time step series of world wide 2 meter monthly

atmospheric temperature on a 256 x 128 2D grid. This multi-

scale temporal methodology works quite well with climate model

data and in particular for the large number of time steps in the

CCSM. By using the multi-resolution wavelets to filter time, we

can see long term trends that might otherwise be obscured. The

high wavelet coefficients are well suited to show the activity that

are present in long term trends.

For example, with CCSM, the time series is 6000 time steps and

local temporal feature has little effect on the long term picture.

While looking at the time series at the original resolution, it is

just not possible to see large temporal features. The top image of

Figure 16 shows clusters of large scale temporal features in the

low wavelet coefficients. There does not seem to be any activity

in the data. If we look at the high wavelet coefficients, found in

the bottom image, a different picture emerges. In this example,

we can see that all areas in the climate model have a change in

Fig. 16. Two spreadsheet portions from the climate model data set. The left
image displays several clusters from the low wavelet coefficients. The time
series is 6000 time steps long, and even after wavelet analysis, the trends are
not visible because of the value scale and length of data. The right image
shows clusters from the high coefficient clustering of the same data set. Here
we can see that there are long term trends in the data, as the cluster data tells
us there is a rate of change over the long term in time.

temperature over the first 3000 months and over the next 3000

months. Due to the scale of the data, the high wavelet coefficients

make it easy to detect changes in value.

For large time data such as this, it would not be feasible to use

traditional animatation to see long term trends, unless we were to

use time rescaling. Even then, if the data was not smoothed, the

high frequency noise of speeding up the animation may make it

difficult to see the long term trend. Our filtering and clustering

method is able to remove the short term trends, and display the

long term summaries that are present in the data.

We also have previous examples, Figure 2, which show the

ability to classify geographical regions based on seasonal temper-

ature activity. Additionally through multi-scale temporal filterting,
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we can classify geographical regions into hemispheres or ignore

hemispheres differences, depending on the seasonal phase shift.

A example of this can be seen in Figure 9 with the row that

contains cell A. Cell A is a cluster from 8 month trends, so there

will be differences in the temperature between the northern and

southern hemispheres due to seasonal phase shift between the

hemispheres. Cell A contains cluster of data points that share

similar temperatures in the northern hemisphere. The cells to

the left of A are at 16 and 32 month trends, the hemispherical

differences are not seen at this time scale, and they have data

points in both hemisphere that share the same temperature at that

time scale.

IX. CASE STUDY: EARTHQUAKE

The earthquake data was created by the TeraShake 2.1 simula-

tion Southern California Earthquake Center, provided by the San

Diego Supercomputer Center. It is a 226 time step series on a 100

x 375 x 750 grid, where we used a computed velocity magnitude

scalar as the data. Clustering is able to extract the regions that

have different wave characteristics due to different geology. This

is because the basins that amplify earthquake waves have different

temporal behavior compared to other data points. By clustering in

time, we are able to find the basin because it behaves differently

compared to the surrounding geographical region, and therefore

we are able to isolate it.

The top image in Figure 17 shows the entire data in the time

sequence. The second image is the cluster that was extracted from

the data through temporal activity clustering. As we can see from

comparing the two images, we are able to isolate just the area

that corresponds to the basin, because those data points share the

same temporal activity, while the other surrounding data points

have different activity, and therefore, they are not clustered with

the basin. Given traditional methods, a user would have to watch

an animation to deduce this different activity, and even then, she

may not be able to isolate the data points quite as precisely as

this. The accuracy depends on the transfer function and animation

and the ability of the user to notice the visual activity difference,

while our method was able to automatically find the different time

activity that comprises the basin.

In visualizing the earthquake, the phenomenon is a burst of

wave activity in the basin, and therefore we can use our animation

time scaling to slow down and emphasize the activity in that

time period. Animations in the supplemental material show an

earthquake shockwave coming into the basin. Initially, there isn’t

much activity happening in the basin, so the animation runs faster.

As soon as the earthquake starts to happen, the animation begins

to slow down, so the user can see the temporal details. Once the

shockwave and activity burst has passed, the animation speeds up

once more.

X. CONCLUSION

We have presented a methodology for exploring time series data

by focusing on temporal trends. Our goal was to locate data points

of similar temporal trends across multiple time scales. To achieve

this, we apply the wavelet transform to data along time, to create

a multi-resolution temporal representation. Then, we cluster the

data in the different temporal scales and wavelet coefficient types

to derive groups of similar trends. These trends are then shown to

the user, who can browse the trends present in their data, select

Fig. 17. Two images from exploring the earthquake data. The top image
is the entire data, before wavelet transformation and clustering. The second
image shows the basin extracted from the surrounding data. The basin has a
different temporal behavior from the rest of the data, and thus is able to be
separated from the temporal activity background.

and interact with the data, and eventually visualize the explored

phenomena.

The temporal clusters are shown in a visualization spreadsheet

which summarizes the temporal and cluster content of the data.

From there, the user can choose clusters to explore, which will

be placed on a secondary time histogram spreadsheet. The time

histogram allows the user to see the value distribution over time,

and also make adjustments to the data in the cluster through

brushing and linking. Selected clusters are then used in the final

visualization, where the user can perform boolean operations on

the data and animate the temporal trends.

We believe that the proposed method and system is useful for

exploring data in a time centric manner, rather than focusing
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on space and value. There is room for improvement, though. In

particular, the clustering method is more appropriate for spatially

static data, such as weather climate data or temporal hotspots

such as the earthquake basin. In the future, we would like to

extend the method to be able to deal with spatially moving time

activity or temporal phase shift, such as is seen in the combustion

or earthquake data. Secondly, the user interface needs to be

able to adapt to the data explosion from extracting the multiple

temporal scales and clusters. As can be seen with the cluster

spreadsheet, even with cell culling, there can be many cells that

can overwhelm the user. Additional metrics, controls, or cues to

highlight potential interesting time activity would be useful to

reduce the amount of data that is shown to the user.
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