
Silhouette Smoothing for Real-Time Rendering
of Mesh Surfaces

Lu Wang, Changhe Tu, Wenping Wang, Xiangxu Meng, Bin Chan, and Dongming Yan

Abstract—Coarse piecewise linear approximation of surfaces causes the undesirable polygonal appearance of silhouettes. We

present an efficient method for smoothing the silhouettes of coarse triangle meshes using efficient 3D curve reconstruction and simple

local remeshing. It does not assume the availability of a fine mesh and generates only a moderate amount of additional data at runtime.

Furthermore, polygonal feature edges are also smoothed in a unified framework. Our method is based on a novel interpolation scheme

over silhouette triangles, and this ensures that smooth silhouettes are faithfully reconstructed and always change continuously with

respect to the continuous movement of the viewpoint or objects. We speed up computation with GPU assistance to achieve real-time

rendering of coarse meshes with the smoothed silhouettes. Experiments show that this method outperforms previous methods for

silhouette smoothing.

Index Terms—Silhouette smoothing, polygonal mesh, interpolation, Hermite curves.

Ç

1 INTRODUCTION

POLYGONAL meshes are widely used for representing
3D shapes in computer graphics. Simplification meth-

ods produce meshes of small triangle count that are needed
in many applications where there is considerable resource
limitation, such as 3D real-time graphics on mobile devices.
The resulting coarse meshes have conspicuous polygonal
silhouettes or polygonal feature edges, causing impression
of low visual quality, since human vision is particularly
acute to silhouettes or feature curves and their nonsmooth-
ness. (A feature curve is a smooth curve defined by
transversal intersection, that is, nontangent intersection, of
two smooth surfaces. See Fig. 2.)

The challenge of rendering a coarse mesh with smoothed
silhouettes is well recognized by the computer graphics
community [5], [11]. A small triangle count, which is
required by efficient storage and transmission, and a
faithful smooth appearance are two conflicting require-
ments. Simply refining a coarse mesh overall to increase
the number of triangles would be inefficient for the purpose
of silhouette smoothing, since much extra resources
would then be wasted in creating, storing, and rendering
an increased number of triangles in the interior (that is,
nonsilhouette region) of a mesh.

1.1 Overview and Contributions

We present an efficient method that fixes polygonal
silhouettes and feature edges into smooth curves for

real-time rendering of coarse meshes (Fig. 1). The method
requires only a coarse triangle mesh as input. It performs
view-dependent 3D curve reconstruction and simple local
remeshing to generate smooth silhouettes at runtime;
feature edges are smoothed in preprocessing. Unlike
previous approaches, our method does not require an
LOD model or a fine mesh and avoids global smooth surface
reconstruction. The local remeshing is based on the notion of
silhouette triangles, which ensures that smooth silhouettes are
faithfully reconstructed and coherent (that is, free of
visual discontinuity) when rendered with respect to a
moving viewpoint or with continuous object movement.
Note that our method only focuses on the smoothing of
silhouette and features edges, and it does not attempt to alter
the appearance (for example, shading and texture) of a coarse
mesh in regions away from its silhouettes or feature curves.

The major contribution of this paper is a new method for
computing smooth silhouettes of coarse triangle mesh
surfaces. The smooth silhouette curves are computed using
an interpolation scheme over silhouette triangles, a concept
that we will introduce later. As a result, the silhouette
curves thus computed are more accurate than those by
previous methods and possess visual coherence for moving
objects or with respect to a moving viewpoint.

Some other advantages of our method are given as follows:
Polygonal feature edges are smoothed in the same way as
polygonal silhouette edges. We will (Section 3.4) see that this
not only makes feature edges look smooth, but also ensures
that these smooth feature curves possess visual coherence
during continuous motion. We also apply an effective vertex
perturbation scheme to saddle regions to prevent the
smoothed silhouette from being blocked by the neighboring
faces of the original mesh, which is a critical issue that has
not been addressed by previous silhouette smoothing
methods. The method runs efficiently with GPU assistance.

After reviewing related works in the rest of this section,
we will present an outline of our method in Section 2. Curve
approximation to silhouettes and feature curves and the

640 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 3, MAY/JUNE 2008

. L. Wang, C. Tu, and X. Meng are with the School of Computer Science and
Technology, Shandong University, Jinan 250100, P.R. China.
E-mail: luwang@mail.sdu.edu.cn, {chtu, mxx}@sdu.edu.cn.

. W. Wang, B. Chan, and D. Yan are with the Department of Computer
Science, University of Hong Kong, Hong Kong.
E-mail: {wenping, bchan, dmyan}@cs.hku.hk.

Manuscript received 11 July 2007; revised 29 Oct. 2007; accepted 26 Nov.
2007; published online 2 Jan. 2008.
Recommended for acceptance by P. Slusallek.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2007-07-0082.
Digital Object Identifier no. 10.1109/TVCG.2008.8.

1077-2626/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 9, 2009 at 22:34 from IEEE Xplore. Restrictions apply.

remeshing scheme are described in detail in Section 3. GPU
speedup is discussed in Section 4. We present experimental
results in Section 5 and conclude the paper in Section 6.

1.2 Related Work

The silhouette rendering problem has extensively been
studied for various geometric models (for example, [4] and
[22]). Here, we focus on polygonal meshes. Many methods
for real-time mesh rendering require a fine mesh to start with.
For better rendering efficiency, a progressively simplified
mesh is usually displayed in a view-dependent manner to
ensure the smooth appearance of silhouettes. These methods
include techniques based on multiple (or even continuous)

levels of detail [21], [13], [8], [9], [6], [15], [1]. The silhouette
clipping technique [17] also needs a fine mesh for assistance.
However, in many applications, only relatively coarse
meshes are available; very fine meshes cannot be used, either
because they are not available or because of limited
bandwidth or memory.

The PN-triangle method [19] and its variant [3] do not
assume a fine mesh as input; rather, they construct a
smooth cubic surface patch for each triangle of a coarse
triangle mesh. These methods use global surface patch
reconstruction to achieve the overall smoothness of a coarse
mesh for rendering, thus improving the silhouette smooth-
ness, as well as the shading quality of the interior region.
Normally, the level of subdivision of cubic patches is
uniform across the model and fixed before rendering, in a
viewpoint-independent manner. Therefore, the polygonal
appearance (that is, the nonsmoothness) of silhouettes still
becomes apparent when one zooms in on a silhouette. (See
the comparison of our method with the PN-triangle method
in Fig. 24, Section 5.)

For fast silhouette smoothing and rendering, the method
in [20] takes a local and view-dependent approach that
does not assume the availability of fine meshes and does
not involve global geometry reconstruction. It performs
local 2D curve approximation to the projected boundary of
a mesh surface on the view plane. This boundary curve
corresponds to the silhouette edges of the mesh; an edge of
a mesh surface is called a silhouette edge if one of its
two incident triangles is visible and the other is invisible,
that is, a back-facing triangle.

Many existing methods extract silhouette edges from
polygonal meshes [2], [10], [14], [16]. However, there are
some fundamental difficulties in computing smooth silhou-
ettes from silhouette edges of a mesh model. Consider the
mesh approximating a sphere in Fig. 3. Suppose that all the
mesh vertices are on the sphere. Fig. 3b shows that in
one view, the silhouette curve (that is, the circle in red) does
not pass through the vertices of the silhouette polygon. The
side view in Fig. 3c shows that the silhouette curve in Fig. 3b
passes over a series of mesh triangles, which are marked in
thick lines, rather than corresponds to any edges of the mesh.

This observation suggests that it is inherently inaccurate
and essentially incorrect to use silhouette edges for
reconstructing smooth silhouette curves, because a smooth
silhouette curve does not necessarily correspond to silhou-
ette edges. Furthermore, besides the accuracy consideration,
the smooth silhouette curves thus computed are not
visually coherent with respect to a moving viewpoint or if

WANG ET AL.: SILHOUETTE SMOOTHING FOR REAL-TIME RENDERING OF MESH SURFACES 641

Fig. 1. An example of silhouette smoothing by our proposed method.
(a) A coarse mesh model (500 triangles). (b) The shaded coarse mesh.
(c) The coarse meshed is refined near silhouettes by our method
(904 triangles). (d) Phong shading of the mesh in (c), with smoothed
silhouettes.

Fig. 2. Feature curves (in red) are local traversal intersections of
two surfaces.

Fig. 3. (a) A sphere. (b) A coarse mesh sampled from the sphere and the

silhouette curve (in red). (c) The coarse mesh and silhouette curve

in (b) viewed from another angle.

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 9, 2009 at 22:34 from IEEE Xplore. Restrictions apply.

the mesh model moves continuously, since they depend on
the silhouette edges that appear or disappear abruptly for a
rotating mesh model.

Hertzmann and Zorin in [7] noticed the visual coherence
issue and proposed the following method for extracting
silhouette curves. Suppose that a smooth surface is
represented by a triangular mesh. Let E be the viewpoint.
Let nðpÞ be the estimated unit normal vector at a mesh
vertex p. Then, consider the function gðpÞ ¼ nðpÞ � ðp� EÞ
defined at all mesh vertices p. Now, extend the domain of
gðpÞ to be over each triangle by the linear interpolation of its
values at the three vertices of the triangle. Then, the
silhouette curve is defined to consist of all those points p on
the mesh surface satisfying gðpÞ ¼ 0 (for example, the line
segment MN in Fig. 4). The silhouette thus computed
possesses visual coherence since it is dependent on the
viewpoint E continuously. However, the smoothness issue
is still not addressed, as the silhouette curve thus con-
structed is a polyline lying on the faces of the mesh.

In the present paper, we focus on local silhouette
processing, without using a fine mesh or global surface
reconstruction. Rather than using the silhouette edges of a
mesh as in [2], [4], [10], [16], and [20], we compute silhouette
curves based on silhouette triangles. The idea here of
associating a silhouette segment to a triangle bears similarity
to the treatment by Hertzmann and Zorin in [7]. We aim at
faithful smooth silhouette reconstruction and visual coher-
ence of the silhouettes of a moving mesh model to support the
real-time rendering of a coarse mesh with smooth silhouettes.

2 OUTLINE OF THE PROPOSED METHOD

We consider triangle meshes that approximate a piecewise
smooth surface. There are two types of edges in such mesh
surfaces: feature edges and nonfeature edges. Feature edges are
those that approximate smooth feature curves (or creases)
defined by the traversal intersection of two smooth surfaces,
whereas nonfeature edges are those mesh edges located in
regions approximating smooth parts of the original surface.

To circumvent the problem pointed out in Section 1 with
using silhouette edges for silhouette curve reconstruction,
we propose the use of silhouette triangles for computing
smooth silhouette curves of a mesh. Let M be a mesh
approximating a smooth surface �. A triangle T of the
mesh M is then an approximation to a triangular surface
patch Tp on the surface �. For some viewing direction, the
silhouette curve of � can lie on the patch Tp, and in this case,

we need to compute a smooth curve on the triangle T to
approximate that part of the smooth silhouette of �. This
naturally gives rise to the notion of the silhouette triangle,
which is the triangle T in this case. The silhouette triangles
are viewpoint dependent and are exactly those mesh faces
that contain silhouette curves given by gðpÞ ¼ 0 in [7] (see
Section 1.2 and Fig. 4).

Let NV be a shading normal defined at mesh vertex V .
Let DV denote the viewing direction vector from the
vertex V to the viewpoint (that is, the eye). Then, V is said
to be visible if the inner product ðNV ;DV Þ � 0 and invisible
otherwise. Note that the notion of visibility here is a local
one; it is different from occlusion where a front-facing
triangle may be blocked by another object in front of it.
We label a visible vertex by “þ” and an invisible one
by “�.” A mesh triangle face is called a silhouette triangle if
its three vertices do not have the same visibility status. For
example, among the four triangles with visibility labels in
Fig. 5, the triangles of types 1 and 2 are silhouette triangles,
whereas the other two are not.

Smooth silhouette curves of a mesh can be computed
using the property that the surface normal of any point on a
silhouette is perpendicular to the viewing direction. First,
all silhouette triangles are identified by checking the
visibility of all mesh vertices. Each silhouette triangle has
exactly two edges labeled as “ð�;þÞ,” V1V2 and V1V3, as
shown in Fig. 6. Using the endpoint information of these
two edges, we compute two cubic Hermite interpolation
curves, S1ðuÞ to connect V1 and V2 and S2ðvÞ to connect V1

and V3, which are called silhouette bridges (see Fig. 6).
Then, as an approximation, assuming a linear change of

normal vectors along the silhouette bridges, it is easy to
compute a silhouette point on each silhouette bridge such that

642 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 3, MAY/JUNE 2008

Fig. 4. Silhouette line MN as defined in [7].

Fig. 5. Different types of triangles in a mesh. Only triangles of types 1
and 2 are silhouette triangles.

Fig. 6. Construction of silhouette bridges S1ðuÞ and S2ðvÞ and silhouette
segment SðtÞ.

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 9, 2009 at 22:34 from IEEE Xplore. Restrictions apply.

the interpolated surface normal vector at that point is
perpendicular to the viewing direction. Thus, we get
two silhouette points, which are S1ðu0Þ and S2ðv0Þ, as shown
in Fig. 6. Finally, the silhouette curve segment, or simply
silhouette segment, connecting the two silhouette points is
given by a cubic Hermite interpolation curve SðtÞ, as shown
in Fig. 6. The silhouette segment SðtÞ is finally sampled
for local remeshing for rendering the mesh with the
smoothed silhouettes.

Another goal of our method is to make polygonal feature
lines smooth in a coarse mesh. (Two meshes with such
polygonal feature lines are shown in Figs. 20a and 21b.)
Feature edges are connected to form polygonal feature lines
that approximate the original smooth feature curves. We
suppose that feature edges are already labeled as such in
the input mesh. Based on the two endpoints and estimated
tangent vectors at the two endpoints of each feature edge,
we use the cubic Hermite curve to generate a smooth
feature curve segment (or simply feature segment) to replace
the straight feature edge. Because of their shared tangents,
consecutive feature segments are joined with G1 continuity
and thus form a smooth piecewise cubic curve approximat-
ing the original feature curve.

Clearly, feature segments need to be rendered whenever
visible. To speed up processing, they are precomputed and
stored for easy retrieval through quick lookup during
runtime processing. The extra space requirement of this
preprocessing scheme is justified by that the number of
feature edges is usually small compared to the number of
nonfeature edges, so storing a fixed set of feature segments
normally does not cause a significant increase in memory
consumption.

Below is the main flow of our method, as illustrated in
Fig. 7. Details about the main steps will be presented in
Section 3:

1. Feature edge smoothing. For each feature edge,
compute its corresponding feature curve segment by
Hermite curve interpolation in preprocessing. This
step is view independent.

2. Finding silhouette triangles. Given a viewing
direction D for a parallel projection or a viewpoint
E for a perspective projection, locate all silhouette
triangles with respect to D or E.

3. Computing silhouette bridges. Compute two
silhouette bridges for each silhouette triangle using
Hermite interpolation.

4. Computing silhouette segments. Compute a silhou-
ette point on each silhouette bridge obtained in step 3.
Use a Hermite interpolation curve again to construct a
smooth silhouette segment connecting the two silhouette
points of each silhouette triangle. (Note that each
silhouette bridge—as well as the silhouette point on
it—is computed only once in each frame, since it is
shared by two adjacent silhouette triangles.)

5. Local remeshing. Sample points on silhouette
segments and visible feature segments adaptively,
according to their curvature and perceived size. Use
these sample points to perform local remeshing for
rendering.

We use the GPU to perform local remeshing and render
the remeshed surface. Details about the implementation are
given in Section 4.

3 SMOOTH CURVE CONSTRUCTION

In this section, we explain the five main steps of our method
as outlined in the preceding flow of algorithm.

3.1 Feature Edge Smoothing

The key to computing a feature segment via Hermite
interpolation is providing properly estimated tangent
vectors at the two endpoints of its corresponding feature
edge. Feature edges can be grouped into maximal polylines,
called feature polylines. A feature polyline either terminates
at a nonfeature vertex or meets other feature polylines at a
feature vertex where more than two smooth surfaces
intersect (see Fig. 2). Note that no smoothing is needed
when a feature polyline contains only a single feature edge.

Suppose that a feature polyline contains at least
three consecutive vertices ðV0; V1; . . . ; VkÞ, k � 2. For an
internal vertex Vi, i ¼ 1; 2; . . . ; k� 1, the tangent direction T̂i
at Vi is set to be the tangent to the circle uniquely
determined by the three consecutive points Vi�1, Vi, and
Viþ1. Let W0 ¼ Vi � Vi�1 and W1 ¼ Viþ1 � Vi. Then, it is an
elementary exercise to show that

T̂i ¼ jW1j �W0 þ jW0j �W1: ð1Þ

The estimated tangent vector Ti at Vi to be used for Hermite
interpolation has the same direction of T̂i but has a length
determined in such a way that the resulting Hermite curve

WANG ET AL.: SILHOUETTE SMOOTHING FOR REAL-TIME RENDERING OF MESH SURFACES 643

Fig. 7. Flowchart of our silhouette smoothing method.

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 9, 2009 at 22:34 from IEEE Xplore. Restrictions apply.

is a good approximation to a circular arc if the Hermite data
(that is, the endpoints and their tangents) are sampled from
a circle (see details in Section 3.3).

For the end vertex V0 of the feature polyline, its tangent
vector is set to be the tangent to the circle passing through V0,
V1, and V2. The tangent vector at the other end vertex Vk is
similarly computed. Given Vi, Viþ1, and their tangent vectors,
their cubic Hermite interpolation curve is then uniquely
determined. (The expression is given in Section 3.3.)

3.2 Finding Silhouette Triangles

Silhouette triangles are determined by the visibility status of
its vertices, which in turn depends on the angles between
the shading normal vectors at the vertices and the viewing
direction vector. For a nonfeature mesh vertex V , its
shading normal vector is computed as the angle-weighted
average of the normal vectors of triangles incident to V , as
in [18] (see Fig. 8a).

A feature vertex V has multiple shading normal vectors,
each associated with a surface incident to V , since V is at the
intersection of multiple smooth surfaces. Specifically, the
triangles adjacent to V are divided into several groups,
with each group belonging to a smooth surface passing
through V (see Fig. 8b for the case of two groups). The angle-
weighted average normal vector over the triangles in the
same group is assigned as a shading vector to V . Therefore,
the vertex V has multiple shading vectors, each contributed
by a group of triangles incident to V . When testing whether
a triangle incident to a feature vertex V is a silhouette
triangle, we use the normal vector associated with the
group containing that triangle.

To parse silhouette triangles, we compute the visibility
status of all mesh vertices by hierarchical clustering based
on the normals of the vertices in the case of parallel
projection or the normals and positions of the vertices in the
case of perspective projection. For parallel projection, we
follow the method in [2]. Specifically, let D be the constant
viewing direction vector and let N be the normal of the
vertex V . The vertex V is visible if N �D � 0 and invisible
otherwise. The normalized normal vectors N of all mesh
vertices are mapped to points on the Gaussian sphere,
which is subdivided into hierarchical cells along longitudes
and latitudes. Each cell is a spherical convex region and has

four corner points, and each parent cell has four child cells,
as shown in Fig. 9. The cells induce a hierarchical clustering
of mesh vertices via their normal vectors.

For a cluster C of mesh vertices, if all the four corners of
its containing cell are visible (or invisible), then all the
vertices in C are visible (or invisible). If the four corners of
the cell have different visibility status, each child of the cell
will be checked; this is done recursively until the visibility
of each mesh vertex is resolved.

For perspective projection, the basic idea is the same, but
a 3D Gaussian sphere in 4D space will be used instead,
since the viewing direction is no longer a constant vector.
Let V ¼ ðVx; Vy; VzÞ be a mesh vertex. Let N ¼ ðNx;Ny;NzÞ
be the unit normal vector of the vertex V and let
E ¼ ðEx;Ey; EzÞ be the viewpoint. The plane passing
through V and having N as its normal vector has the
equation F ðX;V Þ � N � ðX � V Þ ¼ 0.

Clearly, the vertex V is visible if and only if the
viewpoint E is above the plane F ðX;V Þ ¼ 0, that is,
F ðE;V Þ � 0, which is the condition we use for determining
the visibility of all mesh vertices V . Note that

F ðE;V Þ ¼Ex �Nx þ Ey �Ny þ Ez �Nz

� ðNx � Vx þNy � Vy þNz � VzÞ
�E0 � V 0;

where E0 ¼ ðEx;Ey; Ez; 1Þ, and V 0 ¼ ðNx;Ny;Nz;�ðNx � Vx þ
Ny � Vy þNz � VzÞÞ are 4D vectors. Therefore, we normalize
V 0, map them onto the 3D Gaussian sphere S3 in 4D space,
and subdivide S3 for hierarchical clustering. In this case,
each cluster has eight corner points and eight child cells.
Then, this hierarchical structure is used for fast visibility
determination for all mesh vertices. The visibility checking
for a point V 0 on S3 is simply done by the sign of the inner
product E0 � V 0.

3.3 Computing Silhouette Bridges

By definition, there are two sides labeled ðþ;�Þ in a
silhouette triangle, such as V1V2 and V1V3 in the silhouette
triangle 4V1V2V3 in Fig. 6. Below, we use the side V1V2 to
explain the procedure for computing a silhouette bridge by
Hermite interpolation.

First, suppose thatV1V2 is not a feature edge. LetN1 andN2

be estimated normal vectors at V1 and V2. To compute

644 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 3, MAY/JUNE 2008

Fig. 8. (a) One shading normal is associated with a nonfeature vertex.
(b) Here, two normals are assigned to a feature vertex lying at the
intersection of two smooth surface patches, represented by two groups
of triangles.

Fig. 9. Hierarchical clustering structure on the Gaussian sphere.

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 9, 2009 at 22:34 from IEEE Xplore. Restrictions apply.

tangent vectors at V1 and V2, which are needed by Hermite

interpolation, we take the tangent direction T̂1 at the vertex V1

to be the projection of V1V2
��!

on the “tangent” plane at V1,

which is the plane passing through V1 and having N1 as the

normal vector. Then, the vector T̂1 is given by

T̂1 ¼ ðV2 � V1Þ � ðV2 � V1Þ �N1½ � �N1: ð2Þ

Similarly, the tangent direction T̂2 at V2 is

T̂2 ¼ ðV2 � V1Þ � ðV2 � V1Þ �N2½ � �N2: ð3Þ

The tangent vectors T1 and T2 we use in Hermite
interpolation have the same directions of T̂1 and T̂2.
Obviously, different lengths of the end tangent vectors
affect the shape of the resulting cubic Hermite interpolation
curve. We choose the length of T1 and T2 in such a way that
if the end data points (that is, Vi and Ti, i ¼ 1; 2) are
extracted from a circular arc, then the resulting Hermite
cubic curve gives a good approximation of the circular arc.
It can be shown that this requirement is met if the lengths of
T1 and T2 are set to be

L1 ¼
2jV2 � V1j
1þ cos �1

; L2 ¼
2jV2 � V1j
1þ cos �2

; ð4Þ

where �i is the angle between V1V2
��!

and T̂i, i ¼ 1; 2. Here, a
circular arc is used as a target shape for approximation
because it has constant curvature; hence, it is expected that
the interpolating cubic curve will have small curvature
variation when the endpoint data does not deviate much
from a circular arc.

With all the end data points determined, the silhouette
bridge S1ðuÞ over the side V1V2 is given by the cubic
Hermite curve:

S1ðuÞ ¼ ð2V1 � 2V2 þ T1 þ T2Þu3 � ð3V1 � 3V2 þ 2T1 þ T2Þu2

þ T1uþ V1; u 2 ½0; 1�:
ð5Þ

3.4 Computing Silhouette Segments

A silhouette point is a point on a silhouette bridge whose
surface normal vector is perpendicular to the viewing
direction. Here, we assume that the normal vector along the
silhouette bridge S1ðuÞ over V1V2 is linearly interpolated
from the normal vectors at V1 and V2. Thus, we assign

~N1ðuÞ ¼ ð1� uÞ �N1 þ u �N2; u 2 ½0; 1�; ð6Þ

to be the normal vector at the point S1ðuÞ. First, consider the
case of parallel projection, with the constant viewing
direction vector denoted by D. The silhouette point on the
silhouette bridge S1ðuÞ is S1ðu0Þ, where the parameter value
u0 is easily obtained as the solution to the linear equation
D � ~N1ðuÞ ¼ 0. The other silhouette point S2ðv0Þ on the
silhouette bridge S2ðvÞ can similarly be computed.

For perspective projection, the viewing direction at the
point S1ðuÞ is DðuÞ ¼ S1ðuÞ � E, which is no longer a
constant vector. That means that we would have to solve
the quartic equation DðuÞ � ~N1ðuÞ ¼ 0 to locate the silhouette
point S1ðu0Þ, since S1ðuÞ is cubic. To obtain a simple
approximate solution, we use

D̂ðuÞ ¼ ð1� uÞ �D1 þ u �D2; u 2 ½0; 1�; ð7Þ

where D1 and D2 are viewing directions at V1 and V2, to
approximate the true viewing direction DðuÞ. This approx-
imation D̂ðuÞ makes sense because it agrees with the true
viewing direction DðuÞ at the endpoints V1 and V2 and thus
gives the correct visibility status at V1 and V2. With this
approximation, we just need to solve the quadratic equation
hðuÞ � D̂ðuÞ � ~N1ðuÞ ¼ 0 to get u0 so as to determine the
silhouette point S1ðu0Þ. Note that the quadratic equation
hðuÞ ¼ 0 has a unique solution in [0, 1], since hðuÞ has
opposite signs at u ¼ 0 and u ¼ 1.

Once the two silhouette points S1ðu0Þ and S2ðv0Þ are
available, together with their normal vectors ~N1ðu0Þ and
~N2ðv0Þ, we compute the silhouette segment using the

Hermite interpolation in the same way as in computing
silhouette bridges. Thus, we get the silhouette segment SðtÞ
associated with the silhouette triangle 4V1V2V3 (see Fig. 6).

Special consideration is needed when a feature edge is
one of the sides of a silhouette triangle. There are two cases:
1) a feature edge is a side whose endpoints have different
visibility status (for example, the side V1V2 or V1V3 in Fig. 6),
and 2) a feature edge is the side whose endpoints have the
same visibility status (for example, the side V2V3 in Fig. 6).
In case 1, the silhouette bridge over the feature edge is
simply its corresponding precomputed feature segment.
(Fig. 10 illustrates an example of case 1 where a feature edge
is a side of a silhouette triangle.)

In case 2, no special treatment is actually needed. In this
case, assuming that the feature edge is the side V2V3 in
Fig. 6, if a changing viewing direction makes the normal
vectors at the two endpoints of V2V3 get closer and closer to
being perpendicular to the viewing direction, then the
silhouette points S1ðu0Þ and S2ðv0Þ on the two silhouette
bridges will approach V2 and V3, respectively, which
ensures that the reconstructed smooth silhouette segment
SðtÞ approaches the feature segment associated with the
feature edge V2V3. This is important for the visual coherence
of silhouette curves with respect to a moving viewpoint
when feature segments are involved, and it is achieved by
smoothing feature edges using the same curve interpolation
scheme as for silhouettes.

3.5 Local Remeshing

In this section, we shall discuss how to remesh silhouette
regions and how to adaptively sample silhouette segments

WANG ET AL.: SILHOUETTE SMOOTHING FOR REAL-TIME RENDERING OF MESH SURFACES 645

Fig. 10. An example of a silhouette triangle containing a feature edge

(the close-up is a side view). The red curves are smooth feature

segments, and the blue one is a silhouette segment.

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 9, 2009 at 22:34 from IEEE Xplore. Restrictions apply.

and then address the issue of silhouette blocking when
concave silhouette segments are involved.

Remeshing. To render a mesh surface with smooth
feature segments and silhouette segments that we have
constructed via Hermite interpolation, these curve seg-
ments need to be sampled for local remeshing. Fig. 11
shows different cases in which the curve should be
remeshed, and Fig. 12 shows how the remeshing should
be done when feature curves are involved. Note that when
the silhouette curve is concave, it may be blocked by a
neighboring triangle of the original mesh. We will address
this issue later in this section.

Adaptive sampling. The reconstructed smooth silhou-
ette curve will be rendered as a polygon connecting sample
points on the silhouette. To ensure that the silhouette curve
appears smooth after sampling while keeping low the
number of sample points, we determine the number of
sample points on the silhouette segment adaptively based
on the curvature and the projected length of the silhouette
segment. Since the silhouette segment is intended as an
approximation to a circular arc (cf. Section 3.3), using the
simple geometry of a circular arc, we derive an estimate on
the number of sample points as follows:

Let A and B denote the endpoints of the silhouette
segment SðtÞ, t 2 ½0; 1�. (Refer to Fig. 13). Let h be the height
of the silhouette segment in the projection plane, approxi-
mated by the distance from the middle point Sð1=2Þ of the

silhouette segment to the middle point of the line segment

AB. Let r ¼ sinð�=2Þ ¼
ffi
ð1� cosð�ÞÞ=2

p
, where � is the

central angle of the arc subtended by the chord AB and so

cosð�Þ can be approximated by the inner product of the two

unit normal vectors at the endpoints A and B. Let e be the

allowed tolerance, in pixels. Then, the bound ns on the

number of sample points is given by

ns ¼
1

2
�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
h � r=e

p� �
: ð8Þ

The interpretation of this bound ns is that if the number of

sample points is at least ns, then the polygon connecting the

sample points approximate the smooth silhouette curve

646 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 3, MAY/JUNE 2008

Fig. 11. Local remeshing. (a) (left) The silhouette triangle is 4V1V2V3, and the silhouette segment SðtÞ is further back than the edge V2V3. To attain
local convexity, the sample points on the segment SðtÞ and the edge V2V3 are connected to form local triangulation. (a) (right) The silhouette triangle
is4V2V3V4, and SðtÞ is in front of the edge V2V3. In this case, again, to attain local convexity, the sample points on the segment SðtÞ are connected to
the vertex V4. (b) The two cases shown here involve concave silhouette curve segments and are processed similarly; local vertex perturbation is
needed in these cases to rectify the blocking problem.

Fig. 12. Remeshing when feature segments are involved. (a) One feature segment: the sample points on the feature segment are connected to the
opposite vertex. (b) Two feature segments: the sample points on the two feature segments are connected to the center C of the triangle 4V1V2V3.

Fig. 13. Adaptive sampling of a silhouette curve segment.

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 9, 2009 at 22:34 from IEEE Xplore. Restrictions apply.

within the error e. Here, the value of e should be in the
range of 0.5 to 2 to ensure the smooth appearance of the
rendered silhouette.

Local perturbation. In a saddle-shaped region the
reconstructed curved silhouette curve may be blocked by
its neighboring triangles, and thus, the original polygonal
silhouette still persists, as already seen in Fig. 11b. Fig. 14a
provides a convincing example with detailed explanation
where the inner circle of the torus does not appear to have
been smoothed due to this blocking problem. This occurs
because the reconstructed silhouette curve moves into the
mesh surface and so may be blocked by adjacent mesh
triangles, which is an issue that has not been addressed by
previous view-dependent local refinement methods (for
example, [20] and [4]). We propose below a simple and
effective perturbation technique to rectify this problem.

First, we need to detect concave silhouette segments. Let
~N1 and ~N2 be the surface normal vectors at two consecutive

silhouette pointsS1 andS2, respectively. DenoteF ¼ S2 � S1.
Then, the silhouette segment connecting S1 and S2 is concave
if ~N1 � F > 0 and ~N2 � F < 0, that is, the angle between ~N1

and F is less than �=2, and the angle between ~N2 and F is
greater than �=2. After all concave silhouette segments are
found, the following perturbation technique will be applied.

The basic idea is to perturb positions of the neighboring
mesh vertices of a concave silhouette segment to keep them
from blocking the silhouette segment. Let T denote the
silhouette triangle containing the concave silhouette seg-
ment under consideration. Then, by neighboring mesh

vertices, we mean those vertices of the triangle T or vertices
that are connected to T through a mesh edge. For example,
in Fig. 15, as far as the silhouette triangle �V1V2V3 is
concerned, all Vi, i ¼ 1; 2; 3; 4; 5, are neighboring vertices, so
they will be subject to perturbation.

For the simplicity of discussion, we will use the vertex V1

to explain the perturbation procedure in the case of parallel
projection; the idea is similar for the case of a perspective
projection. Refer to Fig. 15. Suppose that SiðtÞ, i ¼ 1; 2; 3,
t 2 ½0; 1�, are all the concave silhouette segments that
involve V1 as a neighboring point. Take the middle points
Mi ¼ Sið1=2Þ of the silhouette segments SiðtÞ. Let Ni denote
the interpolated normal vector at Mi. Then, each silhouette
segment SiðtÞ is associated with a plane Pi that passes
through Mi and has Ni as its normal vectors. It can be
shown that the plane Pi contains the viewing direction.
The upper side of the plane Pi is defined by the inequality
Ni � ðX �MiÞ > 0. Clearly, the silhouette segment SiðtÞ,
t 2 ½0; 1�, lies entirely above the plane Pi.

Now, we shall determine a displacement vector for V1

such that after perturbation, V1 will be below each plane Pi,
i ¼ 1; 2; 3. The direction R of this displacement vector
is the average of all the normal vectors Ni, that is,
R ¼ N1 þN2 þN3, whose normalized vector is denoted
by R̂ ¼ R=kRk. It follows that the length of this displace-
ment vector is given by

‘ ¼ max
i¼1;2;3

�ðV1 �MiÞ �Ni

R̂ �Ni

� �
:

WANG ET AL.: SILHOUETTE SMOOTHING FOR REAL-TIME RENDERING OF MESH SURFACES 647

Fig. 14. An example of silhouette smoothing in a saddle-shaped region. (a) The result without fixing by vertex perturbation. (b) The correspondence
mesh model of (a) and a close-up view. The red curve is the smoothed silhouette blocked by the original mesh. (c) The result after fixing by vertex
perturbation.

Fig. 15. Vertex perturbation to remove silhouette blocking. The dashed blue curve is the smoothed silhouette, which is blocked by three adjacent
triangles. By lowering the vertex V1 to V 01 , the smoothed silhouette curve is displayed properly.

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 9, 2009 at 22:34 from IEEE Xplore. Restrictions apply.

Hence, V1 is displaced to V 01 by

V 01 ¼ V1 þ ‘R̂:

Similarly, we perturb all other neighboring vertices of
concave silhouette segments. Since for each silhouette
segment SiðtÞ, all vertices of its neighboring triangles are
below the plane Pi, these triangles will not block SiðtÞ with
respect to the viewpoint, which is on the plane Pi.

The above simple scheme for blocking removal has
proven very effective. Fig. 14 shows a coarse mesh with a
close-up view to reveal the blocking phenomenon. Fig. 14c
shows the unblocked smooth silhouette after applying the

above vertex perturbation. The example shown in Fig. 22 also
demonstrates the effectiveness of this perturbation scheme.

Above, only those mesh triangles within a small neigh-
borhood of concave silhouette segments are considered for
perturbation to avoid silhouette blocking. Although it can
be imagined that triangles little beyond this neighborhood

may also block the concave silhouette segments, we do not
consider this extension in order to minimize implementation

complexity. Moreover, such potential blocking by relatively
far neighboring triangles must occur very rarely, since
they have not been visually discernable in our extensive
experiments.

4 SPEEDUP WITH GPU

To speed up the smooth processing and the rendering of the
refined mesh, we use the GPU, as well as the CPU, for the
computation described in Section 3. We balance the loads of
the GPU and CPU as shown in Fig. 16 to parallelize the
computation as much as possible.

After the CPU computes the silhouette segments and
completes remeshing, the GPU is fed with mesh vertices
accompanied by remeshing information. Vertex perturba-
tion and the locations of sample points on silhouette
segments are computed by the GPU. After filtering the
vertices by vertex processors, the positions of all the vertices
are transformed to the homogenous clip space by the vertex
program of the GPU, and then, all the triangles are rendered
in Phong shading by the fragment processors of the GPU.

5 EXPERIMENTAL RESULTS

In this section, we shall present experimental results of
testing our method and compare our method with the
methods in [20] and [19] in terms of rendering quality and
efficiency.

Figs. 1, 17, 18, 19, 22, and 23 show examples generated by
our method. The fine meshes shown there are used only as
a reference for comparison to the remeshed coarse meshes
with reconstructed smooth silhouettes. For the textured
mesh in Fig. 19, the linear interpolation of texture
coordinates is used to assign texture coordinates to the
sample points on silhouette curves. Fig. 22 shows how the
silhouette blocking problem in a saddle-shaped region
(cf. Section 3.3) is fixed by our vertex perturbation
technique. Fig. 23 provides an example that our method
also works well for meshes with nonuniformly sampled
data points. The real-time rendering of these models is
demonstrated in the submitted video.

Figs. 20 and 21 show two mesh surfaces with prominent
feature edges. Our method constructs satisfactory smooth
feature curves from the polygonal feature edges. Although
a similar treatment to feature curve smoothing has been
studied before [4], we have shown here how it can be
integrated with our silhouette smoothing technique in a

648 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 3, MAY/JUNE 2008

Fig. 16. The graphics pipeline.

Fig. 17. Bunny. (a) Shaded fine mesh (30,000 triangles). (b) Coarse mesh (500 triangles). (c) Shaded coarse mesh. (d) Remeshing by our method
(873 triangles). (e) Phong shading of the mesh in (d).

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 9, 2009 at 22:34 from IEEE Xplore. Restrictions apply.

unified framework (for example, see the mesh model of a
pawn in Fig. 10).

Fig. 22 compares our method with the method in [20].
The result by the method in [20] is not as good, because the
interpolated silhouette curve used there corresponds to
some mesh edges and always passes through mesh vertices,
leading to visual artifacts. In contrast, the method of the
present paper generates a more faithful smooth silhouette
that is visually coherent with a moving viewpoint or a
moving object, as can be seen in the accompanying video.

Compared with the PN-triangle method in [19], besides
memory saving due to local remeshing, our method
supports smooth rendering of silhouette with arbitrary
“zoom-in,” an operation used frequently in applications.
Fig. 24b shows a refined mesh after three levels of

subdivision by the PN-triangle method. The silhouette by
the PN-triangle method looks smooth in the current view,
but its polygonal appearance is revealed when zooming in
for a close-up view. To make silhouettes smooth, the whole
model would need to be subdivided again, and the number
of triangle faces would increase significantly, since the
PN-triangle method operates in a viewpoint-independent
manner, insensitive to the changing viewing distance and
the changing location of silhouettes.

In contrast, the number of sample points is determined
adaptively in our method according to the curvature and
the projected height of silhouette segments. Therefore, our
method ensures that the silhouette curve always looks
smooth via simple runtime adaptive local remeshing, when
the model is scaled larger during zoom-in (see Fig. 24c).

WANG ET AL.: SILHOUETTE SMOOTHING FOR REAL-TIME RENDERING OF MESH SURFACES 649

Fig. 18. Fish. (a) Shaded fine mesh (5,000 triangles). (b) Coarse mesh (500 triangles). (c) Shaded coarse mesh. (d) Remeshing by our method
(1,018 triangles). (e) Phong shading of the mesh in (d).

Fig. 19. Texture head. (a) Shaded fine mesh (43,151 triangles). (b) Coarse mesh (4,778 triangles). (c) Shaded coarse mesh. (d) Remeshing by our
method (6,858 triangles). (e) Phong shading of the mesh in (d).

Fig. 20. Cone mesh. (a) Coarse mesh (70 triangles). (b) Shaded coarse model. (c) Remeshing by our method (576 triangles). (d) Phong shading of
the mesh in (c). (e) Another view.

Fig. 21. Fandisk. (a) Fine mesh (1,000 triangles). (b) Coarse mesh (128 triangles). (c) Shaded coarse mesh. (d) Remeshing by our method
(1,899 triangles). (e) Phong shading of the mesh in (d).

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 9, 2009 at 22:34 from IEEE Xplore. Restrictions apply.

As shown in Fig. 24, although the PN-triangle method

uses global patch reconstruction, the quality of the interior

shading is the same with the shaded mesh refined by our

method or the shaded coarse mesh. That is because the

Phong shading model, which is used in our experiments, is

based on normal interpolation, and the normal computed

by the Phong shading model at interior points of a triangle

of the coarse mesh is almost the same as the normal

produced by the PN-triangle method at the points. Hence,

the interior shading quality has been improved little by the

PN-triangle method despite of the increased number of

triangles it uses for rendering.
We tested our silhouette smoothing method on a PC

workstation with one 3.0-GHz CPU, 512 Mbytes of memory,

and an Nvidia’s GeForce 7800 GT graphics card. The

window size was set to 1,280 � 800. The testing objects

covered areas around 40-60 percent of the window.

Table 1 compares the frame rates when applying the

method in [20], the PN-triangle method [19], and our method.

The column “Direct Drawing” is the control, which shows

the frame rates when drawing objects without silhouette

smoothing. All the methods have used vertex arrays to obtain

the best frame rates possible. For the PN-triangle method,

the frame rates depend on the subdivision level. In this

test, the subdivision level varies from 2 to 3 to make the

model’s silhouettes look smooth to give comparable visual

quality. Since unlike the PN-triangle method, the number of

triangles rendered by our method in each frame varies

with the viewing parameters, only the typical counts of

triangles for our method are listed in Table 1 for reference.
Since the three methods are designed for enhancing

visual quality of rendered coarse meshes, in the compar-

isons, we use only coarse meshes with no more than

600 triangles except the last one, the “hippo” model.

Note that the rendering of such simple models using a

650 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 3, MAY/JUNE 2008

Fig. 22. Knot. (a) Shaded fine mesh (15,000 triangles). (b) Shaded coarse mesh (480 triangles). (c) Result by the method in [20]. (d) Shaded refined
mesh by our method without local perturbation (843 triangles). (e) Shaded refined mesh by our method with local perturbation.

Fig. 23. Hippo. An example of smoothing the silhouettes of a nonuniformly sampled model. (a) Shaded refined model. (b) The refined mesh model by
our method and a close-up view.

Fig. 24. Bear. (a) A coarse mesh (500 triangles). (b) The result by the PN-triangle method and a zoom-in view, showing nonsmoothness.
(c) The result by our method and the zoom-in view of the same part.

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 9, 2009 at 22:34 from IEEE Xplore. Restrictions apply.

modern GPU is very fast. The frame rate for rendering a
single model of that size is usually in the range of
thousands of frames per second (fps) that is easily subject to
noises caused by timing inaccuracy, difference in GPU
design, and display driver tweaks. Therefore, 60 copies of
the same models were drawn to make the rendering frame
rates stay at the normal range of less than 300 fps, except for
the “hippo” model, which was drawn only once.

As shown in Table 1, our method is typically two to three
times faster than the method in [20] for different models.
Comparing with the PN-triangle method in [19], our method
also shows a 30 percent to more than 200 percent speedup for
all tested models. From our experiments, it has been observed
that the part of extracting silhouette triangles and the part of
local perturbation take only a small part of the overall
computation and rendering time (less than 4 percent for
each part), whereas the parts on computing the smoothed
silhouettes and sampling points on them take the major
portion of the total time. Furthermore, with our scheme,
we have found that the tasks for the CPU and those for the
GPU take about an equal amount of time. It is, however,
possible that there is a better scheme that is more suitable for
the GPU computation so as to further speed up the method.

6 CONCLUSIONS

We have presented a method for silhouette smoothing of
coarse meshes through 3D curve interpolation and local
remeshing based on the notion of silhouette triangles. Both
smooth silhouette curves and feature curves are computed
in a unified framework. We have demonstrated the
effectiveness of the method using a number of examples.
This method is a promising alternative to LOD-based view-
dependent methods, especially when a fine mesh or an
LOD model is not available.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (60473103 and 60473127) and the
National Basic Research Program of China (2006CB303102).

REFERENCES

[1] D.I. Azuma, D.N. Wood, B. Curless, T. Duchamp, D.H. Salesin,
and W. Stuetzle, “View-Dependent Refinement of Multiresolution
Meshes with Subdivision Connectivity,” Proc. Second Int’l Conf.
Computer Graphics, Virtual Reality, Visualisation and Interaction in
Africa (AFRIGRAPH ’03), pp. 69-78, 2003.

[2] F. Benichou and G. Elber, “Output Sensitive Extraction of
Silhouettes from Polygonal Geometry,” Proc. Seventh Pacific Conf.
Computer Graphics and Applications (PG ’99), pp. 60-69, 1999.

[3] T. Boubekeur, P. Reuter, and C. Schlick, “Scalar Tagged
PN Triangles,” Proc. Eurographics ’05, pp. 17-20, 2005.

[4] C. Dyken and M. Reimers, “Real-Time Linear Silhouette Enhance-
ment,” Proc. Math. Methods for Curves and Surfaces, pp. 135-143,
July 2004.

[5] J.D. Foley, A. van Dam, S. Feiner, and J. Hughes, Computer
Graphics: Principles and Practice. Addison-Wesley, 1990.

[6] P. Heckbert and M. Garland, “Survey of Polygonal Surface
Simplification Algorithms,” ACM SIGGRAPH ’97 Course Notes 25,
1997.

[7] A. Hertzmann and D. Zorin, “Illustrating Smooth Surfaces,” Proc.
ACM SIGGRAPH ’00, pp. 517-526, 2000.

[8] H. Hoppe, “View-Dependent Refinement of Progressive Meshes,”
Proc. ACM SIGGRAPH ’97, pp. 189-198, 1997.

[9] H. Hoppe, “Smooth View-Dependent Level-of-Detail Control
and Its Application to Terrain Rendering,” Proc. IEEE Conf.
Visualization (VIS ’98), pp. 35-42, 1998.

[10] D. Kirsanov, P.V. Sander, and S.J. Gortler, “Simple Silhouettes
for Complex Surfaces,” Proc. Eurographics Symp. Geometry Proces-
sing (SGP ’03), pp. 102-106, 2003.

[11] J.J. Koenderink, “What Does the Occluding Contour Tell Us about
Solid Shape,” Perception, vol. 13, pp. 321-330, 1984.

[12] S. Kumar, D. Manocha, B. Garrett, and M. Lin, “Hierarchical
Back-Face Culling,” Proc. Seventh Eurographics Workshop Rendering,
pp. 231-240, 1996.

[13] D.P. Luebke and C. Erikson, “View-Dependent Simplification
of Arbitrary Polygonal Environments,” Proc. ACM SIGGRAPH ’97,
pp. 199-208, 1997.

[14] M. Olson and H. Zhang, “Silhouette Extraction in Hough Space,”
Proc. Eurographics ’06, pp. 273-282, 2006.

[15] R. Pajarola, “FastMesh: Efficient View-Dependent Meshing,”
Proc. Ninth Pacific Conf. Computer Graphics and Applications
(PG ’01), pp. 22-30, 2001.

[16] M. Pop, C. Duncan, G. Barequet, M. Goodrich, W. Huang, and
S. Kumar, “Efficient Perspective-Accurate Silhouette Computa-
tion and Applications,” Proc. 17th Ann. Symp. Computational
Geometry (SCG ’01), pp. 60-68, 2001.

[17] P.V. Sander, X. Gu, S.J. Gortler, H. Hoppe, and J. Snyder,
“Silhouette Clipping,” Proc. ACM SIGGRAPH ’00, pp. 327-334,
2000.

[18] G. Thürmer and C.A. Wüthrich, “Computing Vertex Normals
from Polygonal Facets,” J. Graphics Tools, vol. 3, no. 1, pp. 43-46,
1998.

WANG ET AL.: SILHOUETTE SMOOTHING FOR REAL-TIME RENDERING OF MESH SURFACES 651

TABLE 1
Performance Comparisons of Our Method and the Other Methods

�Wang’s method refers to the one in [20]. ��The PN-triangle method refers to the one in [19].

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 9, 2009 at 22:34 from IEEE Xplore. Restrictions apply.

[19] A. Vlachos, J. Peters, C. Boyd, and J. Mitchell, “Curved
PN Triangles,” Proc. Symp. Interactive 3D Graphics (I3D ’01),
pp. 159-166, 2001.

[20] B. Wang, W. Wang, J. Wu, and J. Sun, “Silhouette Smoothing
by Boundary Curve Interpolation,” Proc. Eighth Int’l Conf.
Computer-Aided-Design and Computer Graphics (CAD/Graphics ’03),
pp. 197-202, Oct. 2003.

[21] J. Xia and A. Varshney, “Dynamic View-Dependent Simplification
for Polygonal Models,” Proc. IEEE Conf. Visualization (VIS ’96),
pp. 327-334, 1996.

[22] H. Xu, M.X. Nguyen, X. Yuan, and B. Chen, “Interactive Silhouette
Rendering for Point-Based Models,” Proc. Eurographics Symp.
Point-Based Graphics, pp. 13-18, 2004.

Lu Wang received the BSc degree from the
Department of Computer Science, Shandong
Normal University, in 2003. She is currently
pursuing the PhD degree in the School of
Computer Science and Technology, Shandong
University, Jinan, P.R. China. Her research
interests include computer graphics, real-time
rendering, nonphotorealistic rendering, and geo-
metric modeling.

Changhe Tu received the BSc, MEng, and PhD
degrees from Shandong University, Jinan,
P.R. China, in 1990, 1993, and 2003, respec-
tively. He is now a professor in the School of
Computer Science and Technology, Shandong
University. His research interests include com-
puter graphics, geometric modeling and proces-
sing, nonphotorealistic rendering, and virtual
reality.

Wenping Wang received the BSc and MEng
degrees in computer science from Shandong
University in 1983 and 1986, respectively, and
the PhD degree in computer science from the
University of Alberta in 1992. He is an associate
professor of computer science at the University
of Hong Kong (HKU). His research covers
computer graphics, geometric computing, and
visualization. He has published more than
100 papers in these fields. He is an associate

editor of the Springer journal Computer Aided Geometric Design and
has been the program chair of several international conferences,
including Geometric Modeling and Processing (GMP ’00), the Pacific
Conference Computer Graphics and Applications (PG ’00 and PG ’03),
the ACM Symposium Virtual Reality Software and Technology (VRST
’01), and the ACM Symposium on Physical and Solid Modeling (SPM
’06). He received the Teaching Excellence Award of the Department of
Computer Science at HKU in 2006 and the HKU Research Output Prize
in 2007.

Xiangxu Meng received the BSc and MEng
degrees from the Department of Computer
Science, Shandong University, Jinan, P.R. Chi-
na in 1982 and 1985, respectively, and the PhD
degree from the Institute of Computing Technol-
ogy, Chinese Academy of Sciences, in 1998. He
is a professor in the School of Computer Science
and Technology, Shandong University. His
current research interests include human-com-
puter interaction, virtual reality, computer gra-

phics, CAD/CAM/CIMS, grid computing, visualization, and scientific
computing.

Bin Chan received the BEng, MPhil, and
PhD degrees from the University of Hong Kong
in 1995, 1998, and 2005, respectively. He is
now a research associate in the Department of
Computer Science, University of Hong Kong.
His research interests include real-time render-
ing, virtual reality, visualization, and global
illumination.

Dongming Yan received the BSc and master’s
degrees in computer science from Tsinghua
University, P.R. China, in 2002 and 2005,
respectively. He is a PhD student in the
Department of Computer Science, University of
Hong Kong. His current research interests
include geometric modeling, computer-aided
design, and real-time rendering.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

652 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 3, MAY/JUNE 2008

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 9, 2009 at 22:34 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

