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Abstract—The semi-transparent nature of direct volume rendered images is useful to depict layered structures in a volume. However,
obtaining a semi-transparent result with the layers clearly revealed is difficult and may involve tedious adjustment on opacity and other
rendering parameters. Furthermore, the visual quality of layers also depends on various perceptual factors. In this paper, we propose
an auto-correction method for enhancing the perceived quality of the semi-transparent layers in direct volume rendered images. We
introduce a suite of new measures based on psychological principles to evaluate the perceptual quality of transparent structures in
the rendered images. By optimizing rendering parameters within an adaptive and intuitive user interaction process, the quality of
the images is enhanced such that specific user requirements can be met. Experimental results on various datasets demonstrate the
effectiveness and robustness of our method.

Index Terms—Direct volume rendering, image enhancement, layer perception.

1 INTRODUCTION

Volume visualization is a useful means to discover meaningful struc-
tures in volumes. It relies on proper transfer function specification to
deliver the expected results according to user requirements. In typi-
cal scientific volumes, structures to be visualized may be layered or
partially occluded by others in the rendered images. Instead of com-
pletely removing the occluding structures or exterior layers and assign-
ing an opaque property to the target structures, the structures are often
rendered in a semi-transparent manner to preserve their appearances
and spatial information in the image, which is an advantageous char-
acteristic of volume rendering. Despite its attractiveness, producing
satisfying direct volume rendered images (DVRIs) is still a challeng-
ing research issue, as witnessed by the large amount of literature on
transfer function design and volume rendering.

There are several problems in obtaining satisfactory rendered im-
ages of volumes with semi-transparent structures. Firstly, all the con-
stituent structures should obtain a balanced and sufficiently high opac-
ity in order to be visible in the image. As the opacity of structures af-
fects the visibility of other layered structures, such mutual effects are
difficult to resolve when the structural complexity of the image is high.
A well-balanced opacity specification or adaptive adjustment becomes
a non-trivial problem. Actually, visibility is a necessary criteria but not
sufficient for expressive visualization. The structure and transparency
perceptions play a more important role in viewers’ understanding of
the volume. Meanwhile, other visual properties like color and lighting
are some of the crucial factors influencing our visual perception of the
structures. These factors lead to a high dimensional parameter space,
which is complicated and tedious to explore or manipulate. Therefore,
an automatic or interactive adjustment method is necessary to maintain
the quality of the rendered image.

Enhancing the perception of semi-transparent structures has been
studied for decades. Non-photorealistic lighting [10] and visual cues
[1] are often integrated in typical approaches. Psychological studies
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[25] have identified that luminance and contrast are two major factors
in transparency perception, while the contextual information is use-
ful to provide visual hints. Other factors including lighting, shadow,
reflection, and contours are also evaluated in the psychological stud-
ies. It is thus reasonable to exploit these psychological principles to
facilitate the enhancement of the visualization process.

The goal of this paper is to develop a unified framework for au-
tomatic specification of rendering parameters and interactive enhance-
ment for DVRIs to reveal layered structures in a semi-transparent man-
ner. Based on the perception principles, transfer functions for illustrat-
ing layered volumetric structures can be obtained by means of novel
image quality measures on visibility, shape, and transparency in con-
junction with a parameter optimization procedure. The result is an
image quality improvement that preserves the meaningful structures
while revealing the context and spatial relation of these structures.

The contributions of this paper are as follows:
• A suite of image quality measures for assessing the effectiveness

of the rendered image in revealing the layered semi-transparent
structures in the volume

• An adoption of psychological principles to derive rules to esti-
mate the perceived transparency of structures in an image

• A novel optimization framework for enhancing the rendering
parameters and consequently the perceived quality of semi-
transparent structures in the image

• An adaptive and interactive refinement solution to obtain specific
refinements on transparent structures

2 PREVIOUS WORK

In this section, we will first review some recent methods for transfer
function design. The typical techniques for layer and surface visual-
ization will then be briefly surveyed. Related work on transparency
perception in psychology and perception fields will also be discussed.

Transfer Function Design Transfer functions [20] can be cate-
gorized as data-centric or image-centric. The former determines the
visual properties based on the volume data values and their derived
attributes. Multi-dimensional transfer functions [14] can be defined
on the local properties of the volume to reveal the target structures.
Properties like curvature [13] and size [3] have also been used. Al-
ternatively, the image-centric transfer function is designed based on
the rendered images. For example, transfer function can be searched
based on the specific features [29] or visibility [4] of structures in the
rendered image. Image processing operations have also been incor-
porated into the transfer function design [6]. To facilitate the trans-
fer function specification, many intelligent approaches have been pro-
posed, including semi-automatic generation [5] and semantics layers
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[21, 24]. Our approach is both data- and image-centric, and focuses
on the optimization of the perception of transparent structures.

Surface/Layer Visualization Effective surface visualization not
only concerns making a surface visible in an image but also maintain-
ing the properties such as curvature, orientation, and texture of the
shape. Shape-from-shadow [11] is a common approach. To enhance
the shape perception, Gooch et al. [10] proposed a non-photorealistic
lighting model for technical illustration. Light Collages [15] use multi-
ple lights and local illumination to adaptively enhance the shape of dif-
ferent parts of the structures. Lighting methods can emphasize shape
perception through the features such as shadows, highlights, and sil-
houettes in an image. Specular reflection [8] has also been proven to be
an effective channel for shape perception. Another common class of
techniques is shape-from-motion [27]. Through the spatial and tempo-
ral changes in a sequence of images, shape details can be reconstructed
by viewers. Kinetic visualization was proposed by Lum et al. [16] to
add motion cues to static objects using a particle system. For lay-
ered surfaces, texturing has also been extensively explored. Different
textures were tested and a guideline on texture synthesis [1] was devel-
oped for effective layered surface visualization. Interrante et al. [12]
also used textures to enhance the relative depth and features of lay-
ered surfaces. Other visual cues like boundary or silhouette contours,
stereo, and occlusion can also be used to encode the shape informa-
tion of surfaces. Volume illustration approaches [23] have also been
proven to be an effective way to convey the structural details in vol-
umes. In this paper, we do not work on non-photorealistic rendering or
visual cues for shape but focus on enhancement of direct volume ren-
dered images. We believe a well-balanced rendered image is necessary
before any visual effects or techniques can be applied.

Transparency Perception The perceived transparency of struc-
tures depends on subjective human perception. This topic has been
studied in psychology for decades. Various factors [7] like shadow,
lighting, contrast, color have been considered as the critical visual
cues to reveal transparency. Metelli et al. [18] used a simple physi-
cal model to rationalize visual perception on transparency. Luminance
[9] is considered as an important channel in conveying transparency
information. Based on this theory, Singh and Anderson [25] formu-
lated an extension using contrast and proposed the transmittance an-
choring principle (TAP) to evaluate the transparency of layers in im-
ages. This principle was tested in various conditions [26] and has been
widely used in the perception field. Commonly used visual cues for
transparency actually emphasize the luminance profile of the image to
enhance the transparency. For example, lighting and color [28] can be
used to give distinct luminance and contrast to transparent structures.
The effects on the image can be explained and evaluated by these per-
ception rules. Our work is closely inspired by these principles, which
lead to a new transparency measure and guide the optimization of ap-
propriate transparency configurations.

3 ENHANCEMENT FRAMEWORK

The proposed enhancement framework consists of several image qual-
ity measures and an optimization process. Given a volumetric dataset,
we assume that the structures in the volume are defined and assigned
with color and importance values (or opacity). Our objective is to au-
tomatically adjust the rendering parameters to reveal the structures in a
semi-transparent manner. This semi-transparent appearance of struc-
tures can help preserve the context and spatial relation information
among layered or hierarchical structures in the volume.

Structures in Volume To evaluate the perception of semi-
transparent layers in a rendered image, the structures in the volume
have to be implicitly or explicitly defined in the volume or other fea-
ture space. In this paper, we implicitly segment the data based on
intensity and the segmented regions are treated as structures in the
following discussion. We focus on the conceivable quality enhance-
ment and regard the volume segmentation as an input. The discussion
of volume segmentation or volume classification via transfer function
designs is beyond our scope. Likewise, we define the boundaries of

Fig. 1. Flow chart showing the optimization pipeline.

structures as the structural layers that can be computed with previous
methods like opacity peeling [22] and volume catcher [19].

Structural Layers in DVRI Each structure in a volume can be
treated as a structural layer projected on the rendered image with cer-
tain transparency. A layer can reveal the shape and appearance of the
corresponding structure in the volume. However, the layers may not
be perceived effectively due to various factors like poor lighting and
rendering parameter settings. Image quality may also deteriorate with
overlapping or adjacent layers. Our objective is to enhance the visual
perception of layers in conveying the underlying structural informa-
tion. Users can specify the expected visual properties (i.e., color and
opacity) of each class of structures using a transfer function interface.
The opacity is considered as the importance value and the transparency
of the layers is optimized with respect to it in the final image.

An overview of the framework is shown in Fig. 1. Given the volume
and structural information, some invariant volume and image metrics
are first pre-computed. In the optimization process, the quality of the
rendered images is assessed based on three aspects of layered visual
perception, namely, visibility, shape, and transparency. Quantitative
measures are proposed to evaluate these perceptions. The fundamen-
tal idea is to ensure that the layer and shape information of the struc-
tures can be faithfully conveyed in the rendered image. The deviation
between the volume content and perceived image is minimized. We
formulate the perceptual deviation as a set of energy terms for a least
square optimization, yielding an optimal rendering setting. An en-
hanced DVRI is produced using the optimized rendering parameters.

4 PERCEPTUAL QUALITY MEASURES

Visibility is the first necessary condition for a structure to be clearly
shown in an image. To reveal the layered structures in an image, each
layer should acquire a significantly high opacity and meanwhile the
visibility of the structures should be balanced. Provided a good visi-
bility, the shape and transparency should also be faithfully presented in
the image for depicting the details of structures and ensuring the distin-
guishable appearance and correct layer perception. Several perception
rules were derived from these factors in previous psychological stud-
ies [7, 25] and were supported with extensive experimental evidences.
Based on these investigations, we formulate three measures to assess
the quality of rendered images with layered structures.

4.1 Visibility

While a structure may be assigned a significantly high opacity, its vis-
ibility in the rendered image may still be low. In the ray casting pro-
cess, each ray may pass through various structures and has different
ray compositions. Consider that a layer at the back may be severely
occluded if the accumulated opacity is high. The ideal situation is to
have all the constituent structures contribute to the ray composite value
in proportion to their structural composition. Our solution is to equal-
ize the opacity of structures with respect to the portion of constituent
structures (layers) in the image and the originally assigned opacity
(importance). The optimal opacity setting should ensure the visibility
of structures to be proportional to their constituent portion in every ray.
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Fig. 2. The opacity (importance) and visibility of structures are sampled
in the ray casting process and the values from all the rays are grouped
into different classes of structures and represented as histograms. The
overall visibility deviation of the image is defined as the difference be-
tween the two measures and is minimized in the equalization process.

The visibility measure is proposed to evaluate the overall deviation of
the structural constituent and visibility profiles of the image.

4.1.1 Structural Opacity and Visibility Histograms

Given a volume with defined structures and associated importance
(opacity), volume analysis is performed to evaluate the composition
of structures in the rendered image by considering the content of the
cast rays during rendering. The opacity in the image is derived by the
compositing equation given by

αaccum = αo(1−αaccum)+αaccum (1)

where αo is the opacity value. Each sample point contributes to the
final image in different degrees and its contribution or visibility αv is
defined by α(1−αaccum). For each ray, we compute the voxel opacity
αo (importance) of every sample point on the ray and its visible opacity
αv. The voxel opacity profile along the ray indicates the voxels to be
visible in the ideal case without occlusion. By comparing these two
ray opacity profiles, we can compute the possible deviation between
actual and perceived ray constituents.

The visibility of each class structure should be kept proportional to
its contribution to the ray opacity. For each ray r, the opacity αo and
visibility αv of a structure s ∈ S are defined as the normalized sum of
assigned opacity and visible opacity of all sampled voxels belonging
to that structure along the ray. The distribution of opacity and visibility
of constituent structures can be represented as histograms [4] (Fig. 2).

4.1.2 Deviation Measure and Equalization

The difference between the structural opacity and perceived visibility
is derived to indicate the visibility deviation. As occlusion is inevitable
in ray composition, the visibility of voxels is always lower than its ini-
tially assigned opacity. However, we can still strike for a low variance
and average of deviation in the optimization process. Similar to the
histogram equalization in image processing, we equalize the visibil-
ity of structures by minimizing the visibility deviation of rays. The
visibility deviation δv of a ray is defined as |αo −αv| and the overall
deviation of the image is given by

Ev =
1
|R| ∑

r∈R
∑
s∈S

δv(s,r) =
1
|R| ∑

r∈R
∑
s∈S

|αo(s,r)−αv(s,r)| (2)

Minimizing this deviation achieves a balanced visibility distribution
and yields the first criteria for transparency enhancement. We describe
the other two measures below.

4.2 Shape
Shape is another important perception factor that influences the per-
ception of layered transparency. The shape can be interpreted as the
variation of surface orientation. Geometric or topological details of

Volume VariationDVR Image Image Variation Composite Measure

Fig. 3. Shape deviation measure: volume and image variations are com-
puted based on the volume curvature and image gradient. The compos-
ite measure estimates the deviation in the strength of variations.

structures provide useful information and must be faithfully depicted
in the image. In fact, shape visualization is a typical perceptual prob-
lem and is generally attributed to various psychological factors [1].

The structural shape should have a strong correlation with visual
variations on an image. For example, crests and valleys on a structure
should result in a gradual change in the image intensity. Any visual
deviation on this correlation can affect the discrimination of the shape.
To evaluate the expressiveness of the image in revealing the shapes, a
measure on the overall visual shape deviation of an image is needed.

We define the structural shape vs and image variation vi as the cur-
vature of structures and the gradient of the image respectively. We
follow the methodology of curvature measurement [13] for volume
data. In particular, we use the mean curvature H = 1

2 (κ1 + κ2) for
the structural shape and use the Sobel operator to estimate the image
gradient G. The scalar magnitudes of the two measures (i.e., |H| and
|G|) are normalized to [0..1]. The value of vs of a pixel in an image
is given by the weighted sum of vs of all voxels on the boundary of
structures along the ray. The deviation δs between these measures at
each pixel is derived by a composite function (Eq. 3) and the overall
shape deviation Es of an image I is defined as their average, as shown
in Eq. 4.

δv = 1− exp(−
(vs − vi)

2

s
) (3)

Es =
1
|I| ∑i∈I

δv(i) (4)

where s controls the steepness of the exponential function. The re-
sponse is high if the shape value vs is high, while the image variation vi
is low or vice versa. It indicates the unclear shape of structures or fault
shape cues in the image. For example, a focused spot light with high
spot exponent and low cut-off angle gives an illusion of strong shape
variation on a plane. In fact, lighting [15] and shading are the deter-
minant shape perception factors in such images and are adjusted in the
optimization process. Moreover, we agree that shading in combination
with visual cues provides powerful emphasis on shapes. Based on our
evaluation results, textures [1] or shape cues can be adaptively applied
on the poorly perceived structures in the image.

By minimizing the Es, image variations are reinforced at the regions
of structures in the image to reveal the underlying shape information or
fine structural details. This yields a boosting of the shape perception
to ensure the correct discrimination of shape variations through the
rendered image and maximize the expressiveness power of the image
in conveying the shape information.

An illustration using a sinc function plane is shown in Fig. 3. Ran-
dom noise is added to the center peak to generate high frequency shape
variations, which are indicated in the bright regions in the volume vari-
ation image. The composite image is generated by convolving the vol-
ume variation with the image gradient. The bright region indicates the
unclear shape of the structures.

4.3 Transparency
4.3.1 Perception Theory

Equalized visibility is not always sufficient to obtain a good percep-
tion of transparent layers. Given the same opacity, the perceived trans-
parency of a layer can still vary dramatically. For example, Wang et
al. [28] showed that the color design of the layers is crucial and trans-
parency can change with the color saturation of layers. Furthermore,
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Fig. 4. Example of Metelli’s theory: transparent layer on (a) bipartite and
(b) inhomogeneous regions; (c) illustration using overlapping spheres.

lighting on the layer and context can provide hints to the recognition
of the layers. Other image cues [7] like highlight, contrast, and blur
also play an important role in human visual perception.

Metelli’s episcotister model [18] is a widely adopted transparency
perception theory. Given a transparent layer on a bipartite background
of region A and B (Fig. 4(a)), the transmittance αmet of the layer, which
indicates the fraction of light passing through the layer, is derived from
the physical equations (Talbot’s Law) as follows:

p = αta+(1−αt)t

q = αtb+(1−αt)t

αmet = (p−q)/(a−b) (5)

where p,q,a, and b are the reflectances of regions P,Q,A, and B re-
spectively. The reflectance can be replaced by luminance, which has
been proven to be an intuitive channel to human visual system and is
more effective in rationalizing the contrast perception [9]. Fig. 4(c)
shows an example of two spheres overlapping in an image. Both
spheres have identical opacity but different colors. The perceived
transmittance of yellow and purple layers in the overlapping region
P is derived using the Metelli’s equation and the values are 0.49 and
0.36 respectively. It indicates that less light is allowed to pass through
the purple layer, thus resulting in a higher opacity. This complies with
our visual perception that P is more purple than yellow.

This model can explain the transparency perception of layers with
uniform luminance. For textured or complex layers, Singh et al. [25]
extended the original theory as a generative model to tackle the inho-
mogeneity in transmittance and reflectance. Inferring the transparency
from luminance distribution involves scaling and anchoring problems.
They determine how the luminance ratio is mapped to the ratio of per-
ceived transparency and how to anchor this relative scale to the ab-
solute one. Based on the psychological observation, scaling can be
implied in contour contrast, which changes linearly with the trans-
parency. Moreover, according to the transmittance anchoring princi-
ple (TAP), the highest contrast segment along a contour can serve as
an anchor for determining the absolute scale of lower contrast regions.
This model was validated in the experiments on various inhomoge-
neous surfaces and media. The transmittance is defined in terms of
the contrast (range of luminance I) of background A and transparent
regions P (Fig. 4(b)) and is given by

αtap =
Imax(P)− Imin(P)

Imax(A)− Imin(A)
=

Irange(P)

Irange(A)
(6)

This implies that the contrast of the underlying contour is reduced by
the overlay transparent layer. Singh et al. [26] further improved the
model by replacing the luminance range with the Michelson contrast
defined as follows:

C = Irange =
Imax − Imin

Imax + Imin
(7)

To avoid the luminance ranges being affected by noise, the Imin and
Imax are defined as max(0, Iμ−2σ ) and min(IMAX , Iμ+2σ ), given I is in
[0..IMAX ] and μ , σ are the mean and variance of luminance.

4.3.2 Transparency Measure

In our paper, we adopt a hybrid approach of TAP and Metelli’s model.
In homogenous regions with low contrast, Metelli’s model can per-
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Fig. 5. Structural layers and sub-regions in image: (a) shows different
kinds of relations between the structural layers. The image is divided
into sub-regions based on the layer composition. Another example of
overlapping and enclosed layers is shown in (b).

fectly estimate the transparency, while the TAP (Eq. 6) becomes un-
stable with small ranges of luminance. Therefore, a modulation is
performed on the transparency, given by

αt = αmeth+αtap(1−h) (8)

where h = (IMAX − Irange)/IMAX . αt tends to αmet if the regions be-
come homogeneous. The perceived opacity is interpreted as 1−αt .

With this transparency perception model, we can compute the trans-
parency of layers as well as the perception deviation in different re-
gions of the image. In the preprocessing procedures, the structural
layer composition at different parts in the image is computed and the
image is decomposed into sub-regions based on their composition.
The regions are then classified into different types (empty, plain view,
or overlay) and the perceived transparency of each constituent layer is
computed, as shown in Fig. 5(a). An empty region does not consist
of any layer, while a plain view region only contains one layer. An
overlay region consists of more than one layer and is either an over-
lapping or enclosed regions of structural layers. A structural layer may
be decomposed into several sub-regions and the relations between the
structural layers are defined as separate, touch, overlap, or enclose us-
ing the region connection calculus [2]. Based on this information, we
can determine the relation property of the constituent layers in each
region. This information can be used to determine the perceived trans-
parency as well as the transparency perception deviation δt of the re-
gion. An illustration of perceived transparency computation is shown
in Fig. 5(a) and the rules are summarized as follows:

Case 1: For an empty region (Ro) or a plain view region (R3) with
a separate or touch layer, the deviation is zero because no layered
structure is present.

Case 2: For a plain view region (R1,R4,R6) with an enclosing or
overlap layer, the transparency of the layer can be derived by Eq. 6 for
the enclosing layer (L1) or Eq. 8 for the overlapping layer (L3,L4).

Case 3: For an overlay region (R2,R5), the transparency of each
layer is determined by its relation property. If a layer belongs to an
enclosing layer (L1 in R2), the transparency is the same as that in the
enclosing region (L1 in R1). If the layer belongs to an overlapping
layer (L3 and L4 in R5), the transparency can be derived by Eq. 8.

Fig. 5(b) shows a more complicated example of regions with three
or more layers. Region Ro,R1,R2,R3,R8 can be evaluated by the above
rules. Region R4,R7,R6 consist of three layers. The enclosing layer
L3 is the same as that in R1, which is derived by case 2 where R1 is the
background and all regions enclosed by L3 are treated as a transparent
layer. For the overlapping layers in R4,R7,R6, they can be degenerated
to the simple case by ignoring the enclosing layer L3. Region R5 con-
tains three overlapping layers L = {L0,L1,L2}. The transparency of a
layer Li can be resolved by treating other overlapping layers L−Li as
a single layer. The Metelli’s equation can be generalized to

αLi =
I{L} − I{Li}

I{L−Li} − I{ /0}
(9)

where I{ /0} is the empty view excluding any enclosing layer. For exam-
ple, the transparency of L2 in R5 is computed as (IR5 −IR3)/(IR6 −IR1).
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Given the perceived transparency αt of the non-empty regions, the
transparency deviation δt of a region is derived by the sum of square
differences between the perceived opacity 1 − αt and the structural
opacity αo of all the constituent layers. The overall transparency devi-
ation Et measure is given by

δt = ∑
i∈L

(1−αt(i)−αo(i))
2 (10)

Et =
1
|R| ∑

r∈R
ωrδt(r) (11)

where R is the set of all non-empty regions in the image and ωr is the
weight of region r, which is given by its portion of area in the image.
By minimizing the transparency deviation, the perceived transparency
of the structures will be closer to the expected transparency or compo-
sition of the structures in the image.

5 OPTIMIZATION

Recall that the perception of a semi-transparent structure in a DVRI is
driven by the visibility, shape, and transparency, which are governed
by the rendering parameters including opacity, lighting, and color. To
faithfully depict the structures in the image, we have to solve for an
optimal parameter setting for rendering. The three measures are used
to drive the optimization of the rendering parameters for an optimal
rendered result. More specifically, the rendering parameters (transfer
functions) of the structures are formulated as an objective function f
and is optimized as a least square problem [17]. Our objective is to
minimize the perception deviation (or measures) of the overall image
by fitting an optimal parameter configuration for the volume at a spe-
cific viewpoint. For each ray r, we derive the energy as

E = ωvEv +ωsEs +ωtEt (12)

where ωv,ωs,ωt are the weights of the measures. We setup an over-
determined system of all the ray quality equations and compute the
sum of residue

S = ∑
r∈R

E( f ,r)2 (13)

The optimal solution with the minimum residue is derived by finding
an f for the given DVRI, such that

argmin f {E( f )} (14)

To solve the non-linear least square problem, the parameters are
refined by an iterative solver [17]. We adopt the conjugate gradient
method, which is a widely used direct search method with good con-
vergence performance. Because it is difficult to explicitly compute the
analytical expressions for the partial derivatives of the measure equa-
tions, we perform an empirical approximation by sampling the image
with different f . Based on the steepest descent direction −∇ f E( f ) and
the derived conjugate direction Λ f , the transfer function is updated as

fn+1 = fn +αnΛ fn (15)

where αn is given by argminE( fn +αnΛ fn).
Optimizing all the rendering parameters simultaneously is ineffi-

cient; thus, a hierarchical approach is adopted. The visibility of struc-
tures is first optimized by adjusting the opacity. Given that every struc-
ture becomes basically visible in the image, the shape of the structures
is then preserved by proper lighting. The transparency perception of
the structures is finally enhanced with proper color. Optimization can
be done sequentially and each step only involves a subset of the pa-
rameters. The importance and color of structures provided by users as
well as the default light parameters are the initial guess for the opti-
mization. To avoid local optima, the simulated annealing technique is
applied on the parameter optimization. For example, a high transition
probability is assigned to opacity if the current visibility deviation is
high or does not show a significant improvement from its initial value.
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Fig. 6. (a) Our user interface for selective enhancement of DVRIs; (b)
Luminance chart showing the relation between luminance and trans-
parency; (c) Calibrated chart based on user perception.

6 ADAPTIVE REFINEMENT

A globally optimized solution may not be applicable to all parts of the
image. The optimized configuration may be biased towards the domi-
nating structures in the image and leaves the less significant structures
unenhanced. Our system allows users to selectively enhance a specific
part of the image or structures. To guide the interactive enhancement
process, an image quality map interface is provided to show the devi-
ation measure values at different parts of the image. Users can use a
lens-like tool to specify the regions with poor quality with reference
to the quality map. The regions are then enhanced individually. Users
can also specify an expected visibility or transparency to the structures
of interest within the region to ensure that they are clearly shown and
enhanced in the refined image. An example is shown in Fig. 6(a).

Besides, as the perceived transparency may slightly vary between
viewers and may not always change linearly with the luminance mean
and contrast, a calibration tool is provided to estimate the transparency
and contrast relation (Fig. 6(b)). According to the perception theory,
the expected luminance values of different transparencies are repre-
sented by the straight line between the background luminance (L0,R0)
and the origin. From the psychological experiment [25], we can ob-
serve that the user perception falls within the region shown in the chart.
The exact perception can slightly deviate from the straight red line in
Fig. 6(c). To calibrate the curve, a test on sample images is performed
to record the user perception on layers with different transparencies.
After the test, a calibrated curve representing the user perception is
computed. The perceived transparency can be located on the calibrated
curve. The transmittance value derived from the contrast ratio (Eq. 6)
will be adjusted according to this curve in the optimization process.

7 EXPERIMENTS

We conducted experiments on several datasets to demonstrate the qual-
ity measures and the optimization of rendered images. Our system was
run on a Dell machine (Pentium Core2Duo 6400, 2G RAM) equipped
with an NVIDIA GeForce 7600GTS graphics card. The volumes were
pre-segmented. Results on different measures will be first discussed
and two comprehensive results will be provided afterwards.

We first used a carp datatset (256×256×512) as shown in Fig. 7 to
show the result of visibility equalization (opacity optimization). The
skin and bones of the carp were assigned with importance values of 0.2
and 0.8 and our objective was to balance the overall visibility of each
structure based on this weighting. The equalization on the opacity was
performed by minimizing the visibility deviation from the importance
weighting (i.e., visibility measure). The measure image indicating the
deviation of the original DVRI showed that the bones were occluded.
The opacity of the structures was optimized and the result showed that
the overall deviation of the image was lowered and the bone structures
were revealed according to the importance ratio. Some optimized re-
sults with different ratios were also shown in the figures. By observing
the resulting quality image and the refined DVRI, we can see that the
carp was rendered in a semi-transparent manner with balanced visibil-
ity after the optimization based on our measure.

To demonstrate the shape enhancement result, we conducted an ex-
periment on a CT head dataset (128×128×231) as shown in Fig. 8.

1287CHAN ET AL: PERCEPTION-BASED TRANSPARENCY OPTIMIZATION FOR DIRECT VOLUME RENDERING

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 06,2010 at 02:30:16 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 7. Experiment on the visibility equalization using a carp dataset.
The skin and bone structures are given the importance values of 0.2
and 0.8. Results of other importance ratios are shown at the bottom.

The shape measure image indicates the shape variations and percep-
tion deviation in the DVRI. To obtain a better shape perception of the
face and skull, the lighting parameters for the structures have to be op-
timized for emphasizing the shape variations on both layers. In the op-
timization process, the parameters obtained by the structures could be
different. For example, a large specular highlight (small specular re-
flection exponent) is exerted on a large and smooth surface (e.g., skin).
By optimizing the lighting parameters of the structures, the shapes as
well as features on different layers of the head were enhanced. This
can be reflected in the reduced overall value of the resulting shape
measure image. From the experiment, we can see that illumination is
important to shape enhancement and our measure effectively drives the
optimization on illumination to achieve better shape-revealing results.

To demonstrate the transparency measure, an experiment was con-
ducted on a protein (Neghip) molecule dataset (64×64×64) obtained
by simulation. To show the effect of color on transparency perception,
DVRIs of the molecule were generated with different color saturation
values (Fig. 9). In the DVRIs, the layers of structures overlapped and
the color saturation change resulted in different transparencies of the
outer layer. The perceived transparency of the outer layer decreased
with the saturation; thus, the overlapped inner structures became less
visible. Based on the TAP, we can derive the perceived transparency of
the structures in the DVRIs. These results show that the transparency
perception does not only depend on visibility but also the color or ap-
pearance of the layer. To faithfully present the structures in the image,
we should optimize the transparency of structures in the image in addi-
tion to the opacity of each constituent structure. From the experiment,
we can see that the TAP can effectively estimate the perceived trans-
parency of layers in the volume and the result follows the previous
psychological findings. Various transparency effects can be achieved
by optimizing on the color using our measure.

Comprehensive experiments were conducted to illustrate the com-
plete pipeline of the optimization process. We first demonstrated how
to generate the semi-transparent style DVRI of a CT engine dataset
(256× 256× 128) with layered structures, as shown in Fig. 10. The
opacity equalization was first performed to balance the visibility of the
interior and exterior structures. Semi-transparent layers of structures
were generated as a result. Afterwards, the lighting parameters were
optimized to enhance the overall shape perception of the transparent
layers of structures. The results show that the features of the structures
were better preserved in the image. To ensure that the perceived trans-
parency complies with the composition (structural opacity) of the lay-
ers, the color of the structures were optimized with respect to the TAP-
based transparency measure and the expected transparency. Another
experiments was conducted on a CT chest dataset (384× 384× 240)
as shown in Fig. 11. The result shows that the structures became
more distinguishable and the details were better preserved after the
optimization on visibility, shape, and transparency. From these exper-
iments, we can see that our optimization method allows high quality
semi-transparent style DVRIs to be generated with optimal visibility,

shape, and transparency perception.
The performance of the system benefits from the hierarchical opti-

mization, which only involves a subset of the parameters in each step.
The results usually converge within 10 iterations in each step. In our
experiment, we found that the expected opacity (importance values),
color of structures, and default lighting parameters could already pro-
vide a good initial guess for the optimization and enhancement could
be done very efficiently based on these settings. As the partial deriva-
tives are empirically estimated on the rendered image, the process can
be speeded up by sampling on the image. The performance depends
on the computation in ray and structural analysis, which increases with
the size and complexity of the volume as well as the image resolution.
For the CT chest, each iteration takes about 0.2s and the whole process
completes in 10s with an image resolution of 512×512.

8 EVALUATION AND DISCUSSIONS

To validate our method, we invited 20 graduate students to participate
in our user study. Before the test, they were given sample images illus-
trating different degrees of transparency as reference for quantitative
judgment of perceived transparency. While the effect of opacity and
lighting on visibility and shape perception has been studied [4, 15], we
specifically studied the correlations between transparency and color
by conducting controlled experiments. The subjects were first asked
to rank a set of DVRIs, which were generated by adjusting the color
of different structures, based on the perceived transparency. The re-
sults were compared with the measured transparency (Section 4.3).
The results showed that 85% of the subjects got the expected rankings
coincident with those of the measured values.

To more quantitatively study the transparency perception, the sub-
jects were then asked to evaluate the degrees of perceived transparency
of the structures in 10 DVRIs of the 5 datasets used in our experi-
ments (Section 7). The reported values were compared with the mea-
sured transparency of the structures. The results showed that most
subjects could perceive the correct degree of transparency of the struc-
tures. While visual perception varied among viewers, the means of the
perceived transparency of images were close to the measured trans-
parency and the relative differences were between 3.7% and 8.2%. The
relative standard deviations of the results were between 9% and 16%.
A single-sample t-test was also conducted for the results of each image
with the measured transparency value as the hypothetical mean. The p-
values were between 0.02 and 0.21, while 2 results generated from the
CT head dataset fell below the significance level of 0.05. The minor
errors could be attributed to the users’ varied experience with trans-
parent structures and deviation due to the existing image cues [7]. In
general, there was no significant difference between the perceived and
measured values. The user study demonstrated that the transparency
measure can correctly estimate the perceived transparency.

Finally, the subjects were asked to rate the improvement and quality
of the images throughout the optimization process. The feedback from
the subjects indicated that the layered transparent structures (e.g., ribs
in the chest image) might not be distinguishable even after the visi-
bility equalization but an improvement was observed after the shape
and transparency adjustment. It indicated that a good perception of
transparent structures relies not only on visibility (opacity) but also
the color and lighting. All the subjects agreed that color and opac-
ity are important visual factors and 70% also thought that lighting can
improve the visual quality of transparent layers. 90% subjects rated
the improvement in visual quality as good or significant. This study
demonstrated that all the three measures introduced in the paper have
their values and can improve the perception of transparent layers.

Our method is an improvement over the conventional methods.
Compared with the manual specification of transfer function, our ap-
proach does not require any user involvement. Manual manipulation
highly depends on user expertise. For many end-users such as doc-
tors and scientists, they do not have the expertise to directly manip-
ulate transfer functions and lighting parameters. Thus, it is unlikely
that they can obtain results with similar quality by manual manipula-
tion. By using the proposed measures, optimal and objective results
based on human perception can be automatically obtained. More-
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Shape Deviation Shape EnhancementOriginal Result

(a) (b) (c) (d) (e)

Fig. 8. Experiment on the shape enhancement using a CT head dataset. (a) The original DVRI; (b) An image that indicates the unclear or
missing details (deviation) on the DVRI and measures the shape; (c)-(d) Optimizing the lighting parameters for each structure in the data; (e) Final
shape-enhanced result.

S = 100%
at= 0.5

S = 75%
at= 0.4

S = 50%
at= 0.3

S = 25%
at= 0.2

Fig. 9. Experiment on the effect of color on transparency perception using Neghip dataset. The outer layer structures in pink are assigned with
different saturation values. From left to right: 100%, 75%, 50%, and 25%. The results show different transparency effects.

Visibility Equalization Shape EnhancementData Transparency Adjustment

Opacity
Lighting Color

(a) (b) (c) (d)

Fig. 10. Experiment on a CT engine dataset. (a) The original DVRI; (b) Equalizing visibility through an opacity optimization; (c) Optimizing the
lighting parameters for shape enhancement; (d) Adjusting the color for correct transparency perception.

Visibility Equalization Shape EnhancementData Transparency Adjustment

(a) (b) (c) (d)

Fig. 11. Experiment on a CT chest dataset. (a) The original DVRI; (b) The bones are visible after an opacity optimization; (c) The visible structures
are further enhanced after a shape enhancement; (d) The transparent structures are more distinguishable after a transparency adjustment.
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over, the specific and adaptive refinements on each layer cannot be
achieved manually using typical intensity or class-based transfer func-
tion interfaces. Compared with the semi-automatic approach [5] which
generates the opacity transfer function based on the histogram vol-
ume structure (i.e., boundaries), our solution is a data- and image-
centric approach and can provide comprehensive optimization on more
rendering parameters including color and lighting. While the semi-
automatic approach provides a high-level interface for opacity specifi-
cation, our method can automatically generate semi-transparent layers
with proper opacity, color, and lighting as well. Recall that visibil-
ity (opacity) is only one of the factors to our transparency perception
while color also play an important role [28]. Our method can com-
prehensively optimize different rendering parameters, such that the
perception of each layered structure in the image is better reinforced.
Different from typical transfer function design approaches [3, 13] in
which specific data features are incorporated into the multidimensional
transfer function [14], we focus on the effectiveness of the resulting
images in conveying the layered features in a semi-transparent manner
and ensure that the specific features are not only enhanced and ren-
dered properly but also faithfully perceived in the images. Our solu-
tion provides an additional perception-based quality enhancement on
the image, which has not been addressed in the previous approaches.

There are several limitations in applying the measures on rendered
images. Recall that layers of structures have to be implicitly or explic-
itly defined for the perception measurement. An intuitive segmentation
or feature specification tool is necessary for the purpose. Furthermore,
it is basically an ill-posed problem to determine the transparency of a
single layer in plain background. In fact, our perception measures use
the available visual hints in the image to estimate the quality of the im-
age based on the user perception. Such hints should be available and
they are actually required by humans to make correct visual judgment.
Moreover, the improvement may be limited if there are many layered
structures coupling in the image. Usually, human vision can only han-
dle a limited number of layered structures and the perceived quality of
each layer deteriorates in complex data. Thus, visual cues should be
added on the poorly perceived regions indicated by our measures in
addition to optimizing the rendering parameters.

9 CONCLUSION

In this paper, we proposed a DVRI enhancement solution based on the
perception principles. Three measures were designed to evaluate the
perception of the semi-transparent layer from the visibility, shape, and
transparency aspects. Rendering parameters were optimized based on
these measures to deliver results complying with viewers’ perception.
High quality semi-transparent style DVRIs with structures faithfully
revealed can be automatically generated using our method. Although
our work focuses on the optimization for direct volume rendering, the
measures can provide good indications of structural perception so that
additional visual cues like textures and shape cues can be adaptively
applied to enhance the expressiveness of the image.

While opacity is usually considered as the determinant factor for
the transparency of structures, in the experiment we showed that color
and contrast also affect our visual perception of transparency. Our op-
timization method puts these factors into account to deliver results that
can faithfully reveal the layered structures in a semi-transparent man-
ner and ensure a correct perception. Our method also eases the fine-
tuning of the parameters for transparent results. In the future, we will
extend the current static viewpoint solution to an efficient image re-
finement of dynamic views for the purpose of interactive exploration.

ACKNOWLEDGMENTS

The research is partially supported by grant HK RGC CERG 618706
and 973 program of China (2010CB732504) and NSF China (No.
60873123). We thank the reviewers for their valuable comments.

REFERENCES

[1] A. Bair, D. H. House, and C. Ware. Texturing of layered surfaces for opti-
mal viewing. IEEE Transactions on Visualization and Computer Graph-
ics, 12(5):1125–1132, 2006.

[2] M.-Y. Chan, H. Qu, K.-K. Chung, W.-H. Mak, and Y. Wu. Relation-
aware volume exploration pipeline. IEEE Transactions on Visualization
and Computer Graphics, 14(6):1683–1690, 2008.

[3] C. Correa and K.-L. Ma. Size-based transfer functions: A new volume
exploration technique. IEEE Transactions on Visualization and Computer
Graphics, 14(6):1380–1387, 2008.

[4] C. Correa and K.-L. Ma. Visibility-driven transfer functions. In IEEE
Pacific Visualization Symposium, pages 177–184, 2009.

[5] J. W. Durkin and G. Kindlmann. Semi-automatic generation of transfer
functions for direct volume rendering. In IEEE Symposium on Volume
Visualization and Graphics, pages 79–86, 1998.

[6] S. Fang, T. Biddlecome, and M. Tuceryan. Image-based transfer function
design for data exploration in volume visualization. In IEEE Visualiza-
tion, pages 319–326, 1998.

[7] R. W. Fleming and H. H. Bülthoff. Low-level image cues in the percep-
tion of translucent materials. ACM Transactions on Applied Perception,
2(3):346–382, 2005.

[8] R. W. Fleming, A. Torralba, and E. H. Adelson. Specular reflections and
the perception of shape. Journal of Vision, 4(9):798–820, 2004.

[9] W. Gerbino, C. Stultiens, J. Troost, and C. de Weert. Transparent layer
constancy. Journal of Experimental Psychology: Human Perception and
Performance, 16:3–20, 1990.

[10] A. Gooch, B. Gooch, P. S. Shirley, and E. Cohen. A non-photorealistic
lighting model for automatic technical illustration. In SIGGRAPH, pages
447–452, 1998.

[11] M. Hatzitheodorou. The derivation of 3-d surface shape from shadows.
In Proc. Image Understanding Workshop, pages 1012–1020, 1989.

[12] V. Interrante, H. Fuchs, and S. M. Pizer. Conveying the 3d shape of
smoothly curving transparent surfaces via texture. IEEE Transactions on
Visualization and Computer Graphics, 3(2):98–117, 1997.

[13] G. L. Kindlmann, R. T. Whitaker, T. Tasdizen, and T. Möller. Curvature-
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