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Abstract—We present algorithms for evaluating and performing modeling operations on NURBS surfaces using the programmable

fragment processor on the Graphics Processing Unit (GPU). We extend our GPU-based NURBS evaluator that evaluates NURBS

surfaces to compute exact normals for either standard or rational B-spline surfaces for use in rendering and geometric modeling. We

build on these calculations in our new GPU algorithms to perform standard modeling operations such as inverse evaluations, ray

intersections, and surface-surface intersections on the GPU. Our modeling algorithms run in real time, enabling the user to sketch on

the actual surface to create new features. In addition, the designer can edit the surface by interactively trimming it without the need for

retessellation. Our GPU-accelerated algorithm to perform surface-surface intersection operations with NURBS surfaces can output

intersection curves in the model space as well as in the parametric spaces of both the intersecting surfaces at interactive rates. We

also extend our surface-surface intersection algorithm to evaluate self-intersections in NURBS surfaces.

Index Terms—NURBS, GPU, inverse evaluation, sketching, interactive trimming, SSI, intersection curves, self-intersection, prefix sum.

Ç

1 INTRODUCTION

INDUSTRIAL design of products has shifted from using boxy
shapes with straight edges to incorporate curved free-form

surfaces. Non Uniform Rational B-Spline (NURBS) surfaces
provide a convenient and compact representation of such
curved surfaces that has become the representation of choice
in mechanical CAD systems. Hence, real-time interaction
with NURBS surfaces is essential for any CAD package.
However, since evaluation of a NURBS surface is inherently a
computation-intensive process, commercial CAD packages
deal with it by preprocessing NURBS surfaces, usually
tessellating them and using the triangulated model for
display as well as certain modeling operations like selection.
With the advent of programmable graphics hardware, the
need for tessellating the NURBS surface in the CPU for
display was obviated, since the GPU can be used for the
evaluation and direct display of the surfaces [1], [2], [3], [4].
However, CAD packages still perform modeling operations
using the CPU with either the tessellated surfaces or
analytically using NURBS definitions. This reduces the
interactivity for the user when designing these free-form
surfaces, since operations like sketching on the NURBS
surface or fast evaluation of intersection curves are not
possible. Leading commercial CAD packages do not allow
the designer to sketch directly on the NURBS surface; instead,

they restrict the user to sketching on a tangent plane. Because
of this, the designer has to wait until the operation is
completed to get visual feedback.

The process of finding the surface coordinates ðx; y; zÞ for
given parameter values ðu; vÞ is called evaluation. Inverse
evaluation is the process of finding the parameter values
ðu; vÞ given any point on the surface. We have developed a
parallel algorithm for fast inverse evaluations of NURBS
surfaces on the GPU. This algorithm forms the basis of many
modeling operations like selection (ray-surface intersection),
sketching on the surface, and interactive trimming (see Fig. 1).
Moreover, since these algorithms exploit the parallelism of
the GPU, these operations can now be performed at
interactive speeds, making immediate visual feedback to
the designer possible for the first time. We demonstrate the
use of our fast inverse evaluation algorithm to directly sketch
on the surface, which makes certain operations like inter-
active trimming intuitive to the designer.

Designers are usually trained to work with curves on
surfaces, such as silhouette curves and intersection curves.
Thus, they would like to see real-time changes in these
curves as the underlying surfaces are edited, which requires
an efficient algorithm to compute intersection curves of
free-form surfaces. Finding the intersection curve is, in
general, a very complex operation, since two NURBS
surface equations of arbitrary degree have to be solved
simultaneously. Many commercial CAD packages use
marching methods, where the algorithm uses a numerical
root-finding technique to first find a single intersection
point. The algorithm then finds another point along the
intersection curve that is close to the first intersection point.
This process is repeated and ultimately a complete
piecewise linear approximation of the intersection curve is
calculated. However, since this technique is inherently
serial, it cannot be parallelized for efficient evaluation on
the GPU. We have developed a GPU-accelerated parallel
algorithm to evaluate the intersection curves using bounds
on the evaluated surface points. This algorithm is both fast
and guaranteed to find the intersection curves within a
user-defined tolerance.
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In this paper, we present GPU-based algorithms to
perform modeling operations efficiently on NURBS sur-
faces. Our main contributions include:

. A new unified method to calculate exact deriva-
tives and exact normals of arbitrary-degree NURBS
surfaces on the GPU. Our method is designed so
as to not require separate fragment programs for
evaluating surfaces of different degrees.

. An efficient algorithm to perform inverse evalua-
tion of NURBS surfaces on the GPU. This
algorithm finds the parametric ðu; vÞ coordinate
given any ðx; y; zÞ coordinate on the NURBS
surface within an arbitrary user-defined tolerance.

. A novel method to interactively trim and sketch
on a NURBS surface in real time. This is possible
because our fast inverse evaluation algorithm
enables us to sketch in the model space, not just
in the parametric space, with the correspondence
tracked simultaneously.

. A GPU-accelerated algorithm to perform fast and
robust NURBS surface-surface intersections. The
intersection curve, like the sketch curve above, is
simultaneously output in the model space as well as
in the parametric spaces of the two NURBS surfaces.
The GPU is used to accelerate the operation by
finding points on the intersection curves and the
actual intersection curves are calculated from these
points on the CPU.

. An extension of the surface-surface intersection
algorithm to evaluate self-intersections in NURBS
surfaces. This algorithm can be used to detect self-
intersections and output the intersection curves if
the surface is self intersecting.

We summarize our approach to evaluating and rendering
NURBS surfaces on the GPU in Section 2; for more details,
refer to [1]. We then discuss the evaluation of first and second
derivatives of the NURBS surfaces (Section 3) and then use
these to compute bounding boxes for NURBS surfaces
(Section 4). Then, we describe how these bounds are used
to perform inverse evaluations (Section 5) and compute
intersection curves (Section 6). Fig. 2 shows these connections
between the different parts of our algorithms; each of these
operations are described in detail in the sections indicated.

2 PREVIOUS WORK

One of the main prerequisites for performing fast modeling

operations on NURBS is to have a fast NURBS evaluator. We

present a short outline of our algorithm to evaluate NURBS
surfaces on the GPU that was explained in detail in [1]. The
main idea of our algorithm was to use a fragment program to
evaluate a NURBS surface in several passes. One advantage
of our approach is that we have two corresponding
representations of the NURBS surface as four-component
vectors—ðx; y; z; wÞ coordinates—in space as well as their
corresponding parametric values—ðu; vÞ coordinates. We
exploit this correspondence during modeling operations like
inverse evaluation and evaluation of intersection curves.

In our algorithm, we first evaluate the basis function
values on the GPU in parallel for all the parameter positions
where we want to evaluate the surface coordinates. The
parameter positions can be chosen arbitrarily by the user; we
chose an equally spaced grid of points to make the
implementation simpler. For example in this paper, we chose
a starting grid size of 1; 024� 1; 024 and refined it based on the
user-specified tolerances. We parallelize the de Boor evalua-
tion algorithm [5] so that it runs efficiently on the GPU. We
use the de Boor evaluation method because B-spline basis
functions of any degree can be evaluated using the same
fragment program. Other NURBS evaluations on the GPU
either require different fragment programs for different
degrees [2] or are restricted to cubic polynomials [3]. We
perform the basis function evaluation separately for theu and
v parametric directions on the GPU and store these values as
textures. We multiply these basis function values with the
corresponding control points to obtain the surface point
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Fig. 1. Modeling operations like (a) sketching, (b) ray intersection, (c) trimming, and (d) surface-surface intersection performed directly on trimmed

NURBS models.

Fig. 2. Graphic showing the links between different parts of our modeling

algorithms. The results of the GPU evaluations are stored in separate

textures.
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coordinates. We can restrict the multiplication to the submesh
of the control points that affect a particular surface point
because of the local support property of NURBS (Fig. 3). We
perform the multiplication operation in parallel for all the
surface coordinates using another fragment program. The
surface point coordinates thus calculated are stored directly
in a texture on the GPU using the RGBA channels. While
rendering, we interpret these values stored in the texture as
vertex coordinates using a Vertex Buffer Object (VBO). We
thus avoid the slow operation of reading back the computed
data from the GPU to the CPU, directly rendering the NURBS
surface on the screen.

Previous work that used GPUs to render NURBS curves
or surfaces focused only on efficient evaluation of the
surface coordinates and/or normals by the authors of [2],
[3], [6], [7]. They did not use GPUs to perform modeling
operations like inverse evaluations and intersection curve
evaluations. Previous work on inverse evaluation of NURBS
surfaces mainly focused on ray tracing NURBS surfaces.
Ray tracing was performed on parametric and rational
surfaces by solving for the ray-surface intersection point
using numerical methods [8], [9], [10]. There has also been
previous work on ray tracing using the GPU, which
includes [4], [11], [12], [13]. Another application of inverse
evaluation of NURBS is solving for geometric constraints. A
method to solve geometric constraints by using multivariate
splines was given in [14], which can be used to solve several
related problems like ray traps and sweep envelopes.
Inverse evaluation has also been used for haptic rendering
to find the parametric ðu; vÞ coordinates of a given point on
a NURBS surface [15]. Inverse evaluation was used in this
case to solve for the contact point of a haptic probe with
trimmed NURBS surfaces in a virtual environment.

Carr et al. [13] also presented a GPU algorithm to find the
indexes of the rendered texels in a texture, a subproblem
for our GPU algorithm for intersection calculations. This
subproblem falls under the class of stream reduction, the
process of removing unwanted elements from a stream of
values and reducing it to a smaller list containing the
required output. General Purpose computing on the GPU
(GPGPU) uses stream reduction to remove defunct elements
from the output of a previous pass before sending it as input
for the next pass. Since the positions of the output elements
do not have any fixed correspondence with the positions of
the input, the stream reduction process is considered

nonuniform. A parallel Oðkþ lognÞ algorithm, where k is
the output size, for nonuniform stream reduction based on
prefix sums was given in [16]. However, standard graphics
cards do not have the capability to perform a scatter
operation (random writes to different memory locations),
which was an essential step in the algorithm given in [16].
Another algorithm has been presented in [17] for nonuniform
stream reduction on the GPU that runs in Oðn lognÞ, not as
efficient due to workarounds required because of lack of
scatter. A stream reduction algorithm specifically for 2D
textures on the GPU was proposed in [18], which used the
fragment processor to perform other operations while
performing the scatter operation, thereby hiding the latency.
Recently, an OðnÞ GPU stream reduction algorithm was
proposed in [19], also using prefix sums, that relies on the
latest NVIDIA CUDA architecture for its scatter function-
ality. We propose a similar OðnÞ stream reduction algorithm
based on computing a parallel prefix sum, but implement it
using the standard GPGPU framework so that it is both
compatible with older hardware and not limited to a single
brand of GPU.

Several approaches to collision detection on the GPU
have been proposed. Occlusion queries on graphics hard-
ware were used in [20] to detect collisions of polygonal
meshes in large environments. Collisions between particles
were calculated in [21], [22] to simulate large scale particle
systems on the GPU. Recently, a method to detect collisions
between deformable parameterized surfaces using GPUs
was presented by Greß et al. [18]. They solve the collision
detection problem by generating a bounding box hierarchy
for the surface and then detecting collisions by checking
overlap between the bounding boxes.

Evaluation of intersection curves is a fundamental
operation in computer-aided geometric design and solid
modeling [23], [24]. There have been several attempts to
solve the problem, since it is hard to achieve all the desired
characteristics of robustness, accuracy, and efficiency. A
comprehensive survey of surface-surface intersection algo-
rithms was summarized in [25]. A more recent algebraic
algorithm for efficient surface intersection using lower
dimensional formulations was given by Krishnan and
Manocha [26]. They also classified the conventional
methods for evaluating the intersection curves as analytical
methods, lattice evaluations, subdivision methods, and
marching methods. Many commercial CAD software
packages use the numerical marching method outlined in
[27], [28] to evaluate intersection curves.

3 DERIVATIVES OF NURBS SURFACES

To perform geometric operations on NURBS surfaces, we
not only require the surface point coordinates themselves
but also the first and second partial derivatives with respect
to the two parameter directions u and v at the surface
points. As a very fast first-degree approximation, we can
use the evaluated point coordinates to estimate the first
derivatives using central differencing. However, this
approach gives rise to artificial discontinuities at patch
boundaries and at rational parts of the surface. Moreover,
second derivatives estimated from these first derivatives in
the same manner have larger errors associated with them.
One way to overcome this issue is to evaluate the normals
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Fig. 3. Graphic showing our NURBS evaluation algorithm on the GPU.
The control mesh of size m� n and the evaluation mesh are made of
four-component vectors stored as RGBA textures. The surface patch is
of order ku in the u direction and kv in the v direction. The multiplication is
restricted to the submesh of size ku � kv.
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of the surface exactly at each surface point, similar to the
evaluation of the surface coordinates. Since we already
evaluate the higher order basis functions from lower order
basis-functions, we can directly calculate the derivatives of
the basis functions within the same framework as our basis
function evaluation algorithm, and then use the basis
function derivatives to evaluate the derivatives of the
NURBS surface precisely, to within machine precision.

3.1 Differential Geometry for B-Spline Surfaces

In this section, we present a concise version of the equations

that are required for computing derivatives of NURBS

surfaces, adapted from [29]. We present the exact equations
for a Non-Uniform B-Spline (NUBS) surface first and then

extend the derivation to include rational surfaces. For a

NUBS surface, Sðu; vÞ, given by (1), the derivatives can be

computed by multiplying the control points (Pijs) with the

derivatives of the basis functions. The variables Np
i s and

Nq
j s are the B-spline basis functions of degrees p and q,

respectively, as a function of the knots uis and vis,

respectively ((2) and (3)); the Pijs are the NUBS control

points defined as a quadrilateral mesh.

Sðu; vÞ ¼
Xn
i¼0

Xm
j¼0

Np
i ðuÞN

q
j ðvÞPij; ð1Þ

Np
i ðuÞ ¼

u� ui
uiþp � ui

Np�1
i ðuÞ þ uiþpþ1 � u

uiþpþ1 � uiþ1
Np�1
iþ1 ðuÞ; ð2Þ

N0
i ðuÞ ¼

1; if ui � u < uiþ1;
0; otherwise:

�
ð3Þ

The derivative of the basis function of degree p with
respect to u is given by (4). To evaluate the derivative of a
basis function of degree p, the basis function of degree p� 1
needs to be computed. We use the indicial notation N;u to
denote the derivative with respect to u. Note that p� 1 in
the numerator of (4) arises due to the fact that the B-spline
basis function of degree p that we are differentiating is a
piecewise polynomial of degree p in u.

Np
i;uðuÞ ¼

p� 1

uiþp � ui
Np�1
i ðuÞ � p� 1

uiþpþ1 � uiþ1
Np�1
iþ1 ðuÞ: ð4Þ

The derivatives of the B-spline basis functions, N;u and
N;v, are then multiplied by the control points Pij to get the
derivative along the u or vparametric direction on the surface
as given in (5) and (6), respectively. We can then calculate the
surface normalNðu; vÞ of the NUBS surface (Fig. 4) by taking
the cross product of the u and v partial derivatives (7). It
should be noted that Nðu; vÞ is not a unit vector field but it is
well defined as long as S is a regular surface.

S;uðu; vÞ ¼
Xn
i¼0

Xm
j¼0

Np
i;uðuÞN

q
j ðvÞPij; ð5Þ

S;vðu; vÞ ¼
Xn
i¼0

Xm
j¼0

Np
i ðuÞN

q
j;vðvÞPij; ð6Þ

Nðu; vÞ ¼ S;uðu; vÞ � S;vðu; vÞ: ð7Þ

3.2 Rational Derivatives

The derivatives of NURBS surfaces are not as straightfor-
ward to evaluate as in the NUBS case [30]. This is because
the derivatives have to be evaluated using the chain rule
due of the existence of the rational component. The NURBS
surface coordinates are evaluated as the four-component
vector shown in (8) and (9). Since we evaluate the four-
component vectors without performing the rational divi-
sion on the GPU, we can effectively use this data to evaluate
the surface derivatives.

Sðu; vÞ ¼
�X

w
; �X ¼

x
y
z

0
@

1
A; ð8Þ

x
y
z
w

0
BB@

1
CCA ¼

Pn
i¼0

Pm
j¼0 N

p
i ðuÞN

q
j ðvÞxijPn

i¼0

Pm
j¼0 N

p
i ðuÞN

q
j ðvÞyijPn

i¼0

Pm
j¼0 N

p
i ðuÞN

q
j ðvÞzijPn

i¼0

Pm
j¼0 N

p
i ðuÞN

q
j ðvÞwij

0
BBB@

1
CCCA; ð9Þ

S;uðu; vÞ ¼
�X;uw� �Xw;u

w2
; ð10Þ

x;u
y;u
z;u
w;u

0
BB@

1
CCA ¼

Pn
i¼0

Pm
j¼0 N

p
i;uðuÞN

q
j ðvÞxijPn

i¼0

Pm
j¼0 N

p
i;uðuÞN

q
j ðvÞyijPn

i¼0

Pm
j¼0 N

p
i;uðuÞN

q
j ðvÞzijPn

i¼0

Pm
j¼0 N

p
i;uðuÞN

q
j ðvÞwij

0
BBB@

1
CCCA: ð11Þ

The partial derivative with respect to u (10) is derived
using the quotient rule (in turn derived using the chain
rule). It can be calculated by first evaluating the product of
the derivatives of the basis functions and the corresponding
control points as a four-component vector (11), and then
performing the required rational division operations. The
partial derivative of the surface with respect to v can also be
evaluated in a similar manner. In this work, we assume all
the weights (w) are positive, and hence, no poles can occur
in S or its partial derivatives.

3.3 GPU Implementation

The GPU implementation of the evaluation of surface
derivatives is a direct extension of the evaluation of the
surface coordinates as explained in Section 2. The GPU
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Fig. 4. Calculation of surface normal from the u and v partial derivatives.
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evaluation consists of four steps as given below. The first
three steps are similar to the method for evaluation of the
surface coordinates. We give the steps for evaluating the
surface derivatives with respect to u; the steps for finding
the derivative with respect to v are similar, exchanging u
and v in step 2:

1. Locate the submesh of control points that influence
the evaluation point coordinates.

2. Compute the basis functions and the derivatives of
the basis functions along the two-parameter direc-
tions, respectively.

a. Compute the nonzero basis function derivatives
with respect to u.

b. Compute the nonzero basis functions with
respect to v.

3. Multiply the nonzero basis functions and the basis
function derivatives with their corresponding con-
trol points from the submesh and sum the results.

4. Evaluate the rational derivatives as given in (10)
using the evaluated surface coordinates and surface
derivatives from the previous step.

One notable feature of this algorithm is that step 1 and step
2b are already performed while evaluating the surface
coordinates using our NURBS evaluation algorithm. More-
over, computing the u derivative in step 2a is different from
evaluating the B-spline basis function only in the final step of
the evaluation. Since we are using the de Boor evaluation
algorithm, evaluating the B-spline basis function of order k as
well as its derivative requires the evaluation of the B-spline
basis function of order k� 1. In practice, since we are already
computing the B-spline basis function of order k� 1, we store
this intermediate result as a texture on the GPU. We then use
this as input for evaluating both the B-spline basis function of
order k as well as its derivative.

We evaluate the derivatives of the basis functions with
respect to each parameter direction separately and store
them in separate textures on the GPU. Once the derivatives
with respect to the u and v directions are calculated as four-
component vectors, the surface normals are calculated. This
is performed using a separate fragment program that takes
the rational surface derivatives as input and then evaluates
their cross product to calculate the surface normal (7).
Thus, the process of evaluating the NURBS surfaces as well
as their normals can be performed efficiently within a single
framework using our method.

4 BOUNDING BOXES FOR NURBS SURFACES

We make use of axis-aligned bounding boxes (AABB) for
the NURBS surfaces to perform modeling operations using
the GPU. With the help of such bounding boxes, several
queries such as ray-surface intersections and surface-
surface intersections can be efficiently answered, which
then form the building blocks for more complex operations
like sketching on the surface and intersection curve
calculations. There are different methods to construct
bounding boxes for free-form surfaces. One method is to
fit bounding boxes that enclose the control points that
define the surface. This method, however, does not produce

very tight bounding boxes and makes the bounding boxes
independent of the user-defined tolerance values. Another
approximate method is to construct bounding boxes
enclosing sets of four adjacent points evaluated on the
surface. In [18], the bounding boxes for use in collision
detection were constructed from sets of four adjacent points
on a parameterized surface, after ensuring that their
approximation of the surface is within the given tolerance
by very finely subdividing the surface. However, this
method does not guarantee that the surface will be
completely enclosed by the bounding box and it can
potentially miss some intersections. We overcome these
issues by evaluating the NURBS surface in a regular grid
and then expand the bounding boxes based on the
curvature of the surface so that they are guaranteed to
enclose the surface. Another advantage of this method is
that the bounding boxes automatically become tighter when
we evaluate the surface at a finer resolution.

The analytical expression for the factor that can be used to
expand the bounding boxes based on the surface curvature is
given by Filip et al. [31]. They show that if a parametric C2

surface is evaluated at ðnþ 1Þ � ðmþ 1Þ grid of points, the
deviation of the surface from the piecewise linear approx-
imation cannot exceed a constant K defined by (12)-(15):

K ¼ 1

8

1

n2
M1 þ

2

nm
M2 þ

1

m2
M3

� �
; ð12Þ

M1 ¼ max
8ðu;vÞ

max
@2x

@u2

����
����; @

2y

@u2

����
����; @

2z

@u2

����
����

� �� �
; ð13Þ

M2 ¼ max
8ðu;vÞ

max
@2x

@u@v

����
����; @2y

@u@v

����
����; @2z

@u@v

����
����

� �� �
; ð14Þ

M3 ¼ max
8ðu;vÞ

max
@2x

@v2

����
����; @

2y

@v2

����
����; @

2z

@v2

����
����

� �� �
: ð15Þ

To compute the bounding boxes for a NURBS surface,
we first evaluate the surface Sðu; vÞ in a grid of points using
our NURBS evaluator on the GPU. We also evaluate the
precise first derivatives of the surface, @S=@u and @S=@v, at
these points as explained in Section 3. We approximate the
second partial derivatives of the surface by central differen-
cing (explained below in Section 4.1). We then find the
value of K for the surface using (12). The bounding boxes
themselves are constructed by constructing boxes that
enclose sets of four adjacent surface points and then
expanding this box by K, which ensures that no part of
the surface penetrates out of the bounding box.

4.1 Curvature Evaluation

Evaluating the exact curvature of the surfaces along the two
parameter directions can be performed in a similar manner to
evaluating the first derivatives. However, the number of
additional calculation steps (16 passes for a bicubic surface)
required for this operation is prohibitively many and there-
fore cannot be completed in a real-time setting. Nevertheless,
since we have exact derivatives along the two parameter
directions, we can approximate the second derivatives to a
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reasonable accuracy (error< Oð1=n2Þ forn evaluation points)
by evaluating them using central differencing.

The central differencing formula for evaluating the
second derivatives is given in (16). The value of h is 1=n

for the u direction and 1=m in the v direction since the
surface is evaluated on a ðnþ 1Þ � ðmþ 1Þ grid of evalua-
tion points. Three second-derivative values have to be
calculated for each surface point: the second derivatives
with respect to each parameter direction (@2S=@u2 and
@2S=@v2) and one mixed second derivative (@2S=@u@v).
However, we can use our same fragment program written
to perform the central differencing operation to evaluate the
second derivatives with different first derivative textures as
input. For example, (17) shows how to calculate the second
derivative with respect to u using the first derivative as
input using central differencing:

@F ðxÞ
@x

¼ F ðxþ hÞ � F ðx� hÞ
2h

; ð16Þ

@2S

@u2
¼
@ @Sðu;vÞ

@u

� 	
@u

¼
@Sðuþh;vÞ

@u � @Sðu�h;vÞ
@u

2h
; h ¼ 1

n
: ð17Þ

To perform this operation on the GPU, we first evaluate
the constants M1, M2, and M3 on the GPU (Fig. 5). We
calculate these constants by first evaluating the three
second-derivatives as explained above for each point on
the grid in parallel using a fragment program written to
evaluate the second derivatives. We then find the maximum
value of each derivative; unfortunately, such a “reduction”
operation cannot be performed in a single pass on current
GPUs but requires logn passes for an n� n texture. We use
the constants, M1, M2, and M3, to find the expansion
factor K for the surface, which is constant for a given
surface patch. Finally, we construct the bounding boxes by
first using sets of four adjacent surface points to get an
AABB and then expand this box in all three directions by K.
The bounding boxes themselves are stored as two textures,
one each for the two extreme corners of the AABB, on the
GPU. We evaluate all the bounding boxes for a surface in a
single pass using a fragment program written to evaluate
the bounding boxes, which then outputs the values to the
two different textures using multiple render targets.

5 INVERSE EVALUATION OF NURBS SURFACES

Given a point that lies on the NURBS surface, inverse
evaluation is the process of finding the parameter values
corresponding to that point. Since the B-spline basis
functions are nonlinear, theoretical expressions for the
inverse evaluation are very complex and differ based on
the degree of the surfaces. Therefore, inverse evaluations
are usually performed numerically to find a solution within
a desired tolerance.

The standard numerical approaches based on solving the
NURBS equations for inverse evaluation are not easily
parallelizable to be performed efficiently on the GPU.
Therefore, we chose a method based on axis-aligned
bounding boxes. The AABBs for the NURBS surface are
constructed using the method outlined in Section 4. In the
case of selection and directly drawing on the surface, the
AABBs are aligned parallel to the ray cast in the viewing
direction, through the current location of the mouse. We
then check for intersection between the ray and all the
AABBs simultaneously using a fragment program written
to perform this intersection test. The output of this program
is a two-dimensional array of binary values with the value
1, indicating the intersection of the ray with the correspond-
ing AABB (Fig. 6). In addition, the intersecting AABB also
contains information about the minimum and maximum
parameter values of the surface subpatch enclosed by the
AABB. Using this correspondence, we can efficiently find
the parametric ðu; vÞ value corresponding to the ray
intersection point on the surface.

Since the NURBS surfaces are usually curved, there can
be many surface subpatches intersecting the given ray. We
find the addresses of all the intersecting bounding
boxes (locations with the value 1 in the binary texture) by
using the GPU stream reduction operation explained in
Section 5.1. We use this address to access information about
the intersecting bounding box as well as the parametric
ranges of the surface subpatch enclosed by the bounding
box. Using the bounding box information, we get bounds
on the location of the intersection point of the ray with the
surface in both the model space as well as in the parametric
space simultaneously. If the bounding boxes are smaller
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Fig. 5. Flow of algorithm to evaluate bounding boxes of a NURBS

surface on the GPU.
Fig. 6. Bounding-boxes stored as min and max textures are tested with

the ray using a fragment program; its output is a binary texture indicating

the intersection.
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than the required tolerance, we can take the midpoint of the
bounding box as the intersection point of the ray with
the surface. Once all the ray intersection points on the
surface are found, we output only the point that is closest
to the view plane by evaluating the distance of all the ray
intersection points from the view plane on the CPU and
choosing the point with the smallest distance value.

5.1 GPU Stream Reduction

An essential operation in our inverse evaluation algorithm
is to find the addresses of all the bounding boxes that
intersect with a particular ray so that we can use this
address to access information about the intersecting
bounding box. In this operation, we find the indexes
(location) of the texels in the texture that have the given
value (in this case, 1). This corresponds to a class of
problems known as non-uniform stream reduction. Stream
reduction is usually considered a serial operation since the
number of elements in the output is not known, and hence,
the whole input has to be operated upon to output the
correct result. We build on previous work that developed
parallel algorithms based on parallel prefix sum for this
operation, which we summarized in Section 2. Implement-
ing this parallel prefix sum on standard graphics hardware
is not straightforward, however, due to the lack of scatter
functionality on standard programmable GPUs.

We first explain briefly the parallel stream reduction

operation described in [16]. It consists of three main steps: up-

sweep, down-sweep, and scatter. The up-sweep operation

computes a hierarchy of logn levels, where each element at a

higher level is obtained as a sum of two elements in the lower-

level (Algorithm 1). An example of the up-sweep operation is
shown using an eight-element 1D array (Fig. 7). The last

element at the end of the operation gives the total number of

elements with the value 1 in the input array. After performing

this operation, we obtain a binary tree with the last element as

the root node and the original array as the leaf nodes; each
node of this tree represents the sum of all the values in the

subtree of that node.

The down-sweep operation given by Algorithm 2, per-
formed on the array resulting from Algorithm 1, computes
the exclusive prefix sum of the original input array. The
exclusive prefix sum of an array is defined as the sum of all the
values preceding a particular position in the array not
including the value in the position itself. Fig. 8 gives an
example of the down-sweep operation performed on the
output shown in Fig. 7 in order to calculate the exclusive
prefix sum for the original input given in Fig. 7. The first step
of the down-sweep operation is to replace the last element
(root element) in the array obtained after the up-sweep
operation with the value 0. Then in the consecutive steps, the
parent element at each subarray is copied to the left element of
the child array and the right element of the child array is
calculated as the sum of the old left element and the parent
element. In effect, every element now contains the sum of all
the elements to the left of itself in the tree structure.

The value of the exclusive prefix sum at the positions
where the value of the input array is 1, gives the address to
which that particular input value has to be scattered to
perform the stream reduction. The final step, after the up-
sweep and down-sweep are completed, is the scatter
operation in which this address is used to reduce the input
stream such that the elements with value 1 are collected at
the front of the array.

However, we cannot directly use this stream reduction
algorithm on the GPU due to three issues. The first issue is
that the original algorithm was developed for one-dimen-
sional arrays, and hence, has to be adapted to operate on a
two-dimensional texture. The second issue is that the
traditional GPGPU model based on OpenGL or DirectX
does not allow the scatter operation, which is the last step of
the stream reduction algorithm. Finally, the original
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Fig. 7. Example of the up-sweep operation performed on a 1D array

given in the first row. The inputs indicated are summed at each step.

Fig. 8. Example of the down-sweep operation performed on the original

1D array given in Fig. 7. The elements corresponding to the values of 1

in the original input are highlighted in the result; these are the addresses

where those values are to be scattered.
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formulation in [16] computed the prefix sum in situ by
modifying the input array. This is not possible using the
standard GPGPU framework since we cannot read and
write to the same location simultaneously.

We solve the first problem by first assuming that each row
of the texture is a separate array and compute the first part of
the up-sweep operation until each row array is reduced to a
single element. Now we again perform the up-sweep
operation on the array formed by concatenating all the
single elements in a column along the column direction. In
the example shown in Fig. 9b, we perform the up-sweep
operation on each row until we end up with the values in
column 7. Then we perform the up-sweep operation on
column 7 and output the results to column 8. As shown in the
example, to overcome the restriction of reading and writing
to the same memory location, we maintain a hierarchy of the
input texture. This method uses only twice the storage as the
original texture used, and a single fragment program written
to perform the summation can be repeatedly used. We
compute the up-sweep operation in OðlognÞ passes.

We then perform the down-sweep operation in a similar
manner but in reverse order, by first performing the
operation along the columns and then extending it to the
rows to obtain the exclusive prefix sum of the input. In
the example shown in Fig. 9c, each bold box contains the
exclusive prefix sum of the corresponding bold box in Fig. 9b.

Once we have the output from the down-sweep operation,
we extract the address of only those texels thathave the value1
in the input texture (Fig. 9d). We reinterpret this texture as a

VBO and use a vertex program, written to output the
addressesof the inputvalueswithvalue1as (x; y) coordinates,
to write to two separate channels of the output texture. The
size of the output texture varies based on the number of
elements with value 1 in the input texture; it is equal to the first
square number larger than the number of elements with value
1 in the input. This output texture is then directly used by the
inverse evaluation and the surface-surface intersection
applications for further processing.

5.2 GPU Implementation of Inverse Evaluation

The algorithm used for performing the full inverse
evaluation is given pictorially in Fig. 11. The three steps
in the top row of Fig. 11—evaluating the surface, construct-
ing bounding boxes, and finding intersecting boxes—are
performed on the GPU. The data corresponding to the
selected bounding box are read back from the GPU. We
then check on the CPU whether the ranges in the parametric
domain of the surface as well as the size of the bounding
box are within the required tolerance; for example, we can
use an absolute tolerance of 10�6 in the parametric space
and a relative tolerance of 10�3 in the model space. If the
tolerance conditions are met, we output the midpoint of the
parametric range as the output of the inverse evaluation. If
not, we reevaluate the NURBS surface at a finer resolution
within the previously output parametric range(s). These
tolerances are usually met within two or three iterations
since we evaluate the surface at a high resolution
(1; 024� 1; 024) during each iteration.

5.3 Applications of Inverse Evaluation

We can build different modeling operations using the
inverse evaluation algorithm as the basic module. These
operations include ray intersections, direct sketching on
NURBS surfaces, and interactive trimming. Fig. 10a shows
an example where we compute all the intersection points
(two in this case, marked with red crosses) of a particular
ray with the surfaces of a toy model. By aligning the ray
direction perpendicular to the view plane, we can use the
same algorithm for selecting a particular surface from a
given set of NURBS surfaces.

One of the most important advantages of a real-time
algorithm to perform inverse evaluation is the ability to
sketch directly on the NURBS surface. The advantage comes
from the fact that the curve is simultaneously sketched both
in the three-dimensional model space as well as in the two-
dimensional parameter space. This helps in performing
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Fig. 9. Different steps of the GPU stream reduction algorithm. (a) Input,

(b) Up sweep, (c) Down sweep, and (d) Scatter using VBO.

Fig. 10. Different NURBS modeling applications using inverse evaluation. (a) Ray intersection, (b) sketching directly on the surface, and

(c) interactive trimming: the eyes of the model were trimmed interactively.
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modeling operations like extrusions and trimming, where
the parameter space sketches are typically used for defining
these operations. Fig. 10b shows a curve sketched on a
NURBS model and the curve in the parametric domain is
shown in the inset.

By combining our sketching interface with the algorithm
that renders trimmed NURBS surfaces in real time, we can
perform interactive trimming operations (Fig. 10c). Using
our interactive trimming application, the designer gets
immediate feedback on the result of the trimming opera-
tion, unlike current commercial CAD systems.

6 NURBS INTERSECTION CURVE EVALUATION

Calculating the intersection curve of a surface-surface
intersection is a frequently encountered operation in CAD
systems. It forms an essential part of important CAD
operations like trimming, filleting, and b-rep generation
from Boolean operations. However, since it is a slow
operation, it is usually performed in the background, and
thus, the user does not get real-time feedback except in the
simplest of cases. We present a GPU-accelerated surface-
surface intersection algorithm to calculate intersection
curves both in the model space as well as in the parametric
spaces of both the surfaces.

We now give a broad overview of our surface-surface
intersection algorithm. Our algorithm makes use of bounding
box hierarchies to accelerate the intersection operation. We
evaluate both intersecting surfaces using the GPU and then
use the method described in Section 4 to construct the AABBs
for the surfaces, using the same coordinate frame. We
construct a hierarchy of bounding boxes by combining four
bounding boxes at one level to construct a single bounding
box in the next level. To find the intersection curve, we then
traverse along the hierarchy simultaneously for both the
surfaces and find the intersecting bounding boxes in
the lowest level using the GPU. At the same time, we also
get the ranges in the parametric domain corresponding to the
intersecting surface patches. We then check if the sizes of the
bounding boxes as well as the parametric ranges are within a
user-defined tolerance. Once the tolerance conditions are
met, we get a better estimate of the point on the intersection
curve by intersecting the linearized surface patch within the
intersecting bounding boxes.

We will explain the details of our surface-surface
intersection algorithm with an example (Fig. 12). Given
two surfaces, S1 and S2, we evaluate them and construct

their bounding boxes as explained in previous sections. We
also construct the bounding box hierarchies for both
the surfaces and store them on the GPU as textures. Once
we have the hierarchies, we use the CPU to test whether the
bounding boxes of the surfaces intersect at the topmost
level, level 1. If so, we then test the bounding boxes from the
next level onward on the GPU, using one pass per level. We
perform the intersection tests for all the bounding boxes in a
level in parallel using a fragment program written to
perform the bounding box intersection test. The input to the
fragment program is a texture called the address texture
that contains the address of the bounding boxes in the
hierarchy (also stored as textures). For example, to test for
intersection in the second level, we make use of a 4� 4
address texture on the GPU, where we test for intersection
of a bounding box of S1 with all the four bounding boxes of
S2. In Fig. 12, the rows of the address texture (Level 2)
correspond to bounding boxes from S1 and the columns
correspond to bounding boxes from S2. The address texture
is a four-component texture consisting of the address
corresponding to bounding boxes of S1 and S2 in the
bounding box hierarchy textures (ðu1; v1; u2; v2Þ stored using
RGBA channels). The intersection test is performed on the
GPU using a fragment program, which uses the address
information to retrieve the data for the bounding boxes
from the bounding box hierarchy and subsequently tests
them for intersection. The output of the fragment program
is a binary texture with a value of 1 indicating an
intersection. We use the stream reduction algorithm
explained in Section 5.1 to find the address of the
intersecting bounding boxes. In the example shown, we
find that bounding box 3 of S1 intersects with bounding
boxes 1 and 3 of S2 at level 2.

In the next level (pass), we test for the intersection of the
children of the intersecting bounding box pairs of the
previous level simultaneously on the GPU. Thus, the size of
the address texture varies dynamically based on the
number of intersections in the previous levels. The size of
the address texture is always a multiple of 4 since we test
for intersection between S1 and S2 in blocks of 4� 4
intersection tests. However, we make sure that this is a
square texture and its size is a power-of-2 to optimize the
stream reduction algorithm. The parallelism of the GPU is
exploited in checking for intersection of all the intersecting
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Fig. 11. Algorithm for inverse evaluation of NURBS surfaces.

Fig. 12. Example of hierarchical bounding box comparison in the

surface-surface intersection algorithm.
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bounding box pairs at any given level and this helps in
accelerating the intersection algorithm as the address
texture grows in size. Once we reach the base level of the
bounding box hierarchy, we get a list of the bounding boxes
that intersect at this level (Fig. 13). This list can then be used
for further processing on the CPU to get the actual
intersection curve.

In addition, we use this list to render the points on the
intersection curve of each surface to a dynamic texture in
the parametric domain. We map this texture back onto each
surface, providing real-time feedback to the designer about
the shape of the intersection curve (Fig. 14).

6.1 Fitting an Intersection Curve

To get a better estimate of the intersection point lying on the
intersection curve of two surfaces, we intersect the surface
subpatches enclosed by the intersecting bounding boxes on
the CPU. We approximate each surface subpatch inside the
bounding box with two triangles that share an edge. We
intersect these two triangles contained inside the bounding
box of the first surface with the two other triangles
contained in the bounding box of the second surface. This
gives rise to four pairs of intersection tests between the
triangles of the two surfaces; each intersection test can be
true or false, generating 16 different cases. We show one
particular case in Fig. 15, where one triangle of surface S1
intersects with another triangle of surface S2. The four
triangles are denoted as A0A1A2 and A1A2A3 for surface S1,
and B0B1B2 and B1B2B3 for surface S2 in the figure. We
find the midpoint of the intersection line-segment and use
this midpoint as a point on the intersection curve if it lies
within the intersecting region of the bounding boxes. The
intersecting region of the bounding boxes is denoted by
ðxmin; ymin; zminÞ and ðxmax; ymax; zmaxÞ in the figure. In the
case of multiple intersections, we take the centroid of the

midpoints of the intersection line-segments computed for
each intersecting triangle pair as a point on the intersection
curve. Only if this centroid lies inside the intersecting
region of the bounding boxes do we use this point for
fitting a curve.

We then extract the seven-tuple ðx; y; z; u1; v1; u2; v2Þ for
each point found on the intersection curve using the above
method, where ðx; y; zÞ is the point on the intersection curve
in 3D space, ðu1; v1Þ and ðu2; v2Þ are the corresponding points
in the parametric space of surfaces S1 and S2, respectively.
The parametric points are found by computing the bary-
centric coordinate of the ðx; y; zÞ intersection point in each of
the corresponding intersecting triangles and then interpolat-
ing the parametric coordinates at the three vertices of the
triangle linearly using the barycentric coordinates.

Finally, to compute the actual intersection curves
themselves from the list of points, we compared two
different algorithms. The first one is a greedy algorithm
(Algorithm 3) that computes the intersection curves by
successively merging polylines that are close to each other.
We work in the seven-dimensional space <7, integrating the
data from both the model space as well as the two
parametric spaces. Performing the curve fitting in <7 is
more robust since different components of intersection
curves that might be close in a particular geometric or
parametric space are less likely to be simultaneously close
in all three spaces.
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Fig. 13. Intersecting bounding boxes of two NURBS surfaces.

Fig. 14. Intersection curves of two NURBS surfaces plotted both in the

model space as well as in their corresponding parametric spaces.

Fig. 15. Intersecting triangles inside overlapping bounding box pairs to

get a better estimate of the point on the intersection curve.
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The second algorithm (Algorithm 4) uses the fact that the
intersection points we find are enclosed by AABBs that are
part of a regular grid. We can thus fit a polyline by connecting
a point to the closest point whose enclosing bounding box is a
neighbor to the enclosing bounding box of the current point,
limiting our search to the one-ring neighborhood of bounding
boxes. We still find the closest point in <7. After adding the
closest point in the one-ring neighborhood to the polyline, we
repeat our search to find another point that is the closest to the
point just added. Since the starting point can be in the middle
of an intersection curve, we have to grow the polyline in both
directions. This algorithm can be compared to a depth-first
search on a list to find all the connected components and
hence takes OðnÞ time. However, if there is more than one
remaining adjacent bounding box with unmerged intersec-
tion points, some points may not be merged into the polyline
and will be output as polylines of length 1 (Fig. 16). These
polylines can then either be discarded or merged at the correct
position of the longer polylines by making an additional pass.

The time taken to fit a polyline using Algorithm 3 depends
on an efficient closest neighbor query. Currently, we perform
this operation through an exhaustive search that takes

Oðn2Þ time, which could be optimized by using more efficient
search techniques, but we would still expect it to be slower
than the OðnÞ time Algorithm 4. For the example shown in
Fig. 14, the polyline fitting for over 7,000 points takes
0.20 seconds on a 2-GHz PC for a tolerance value of
2� 10�3. On the other hand, the time taken by a single pass
of Algorithm 4 was 0.02 seconds for the same input and
tolerance value. However, 320 single-point polylines were
also produced by Algorithm 4, which were discarded. From a
tolerant geometry point of view, discarding these points does
not reduce the overall tolerance achieved compared to
Algorithm 3.

Since our input list of points on the intersection curve is
sufficiently dense, a polyline that passes through these
points can be directly used for further modeling operations.
If a more compact representation is required, we can fit a
NURBS curve of any required order that approximates the
points on the intersection curve using standard curve-fitting
techniques. Since the intersection points obtained from our
algorithm are enclosed within their corresponding bound-
ing boxes both in the model space and in the parametric
space, we can guarantee a required bound on the results. In
addition, if the arbitrary user-defined bounds are small
enough, we are guaranteed not to miss any portion of the
intersection curve. Since we also give instantaneous visual
feedback to the user, the user will immediately know if
there are any features missing and can reduce the tolerance
to obtain the desired result.

One of the main limitations of both our algorithms for
fitting a polyline is that they will fail to recreate the correct
topology when two unrelated intersection curves are very
close on both surfaces. This can happen when an intersec-
tion curve splits into two branches or when the two surfaces
are locally flat and are touching each other. A method that
ensures the topology of the intersection set is to be sought,
possibly at the CPU level, using the GPU only to find the
simple intersection curves. Such a method will also help in
balancing the load between the CPU and the GPU.

6.2 Self-Intersection Evaluation

We extended our surface-surface intersection algorithm to
detect and evaluate self-intersections in NURBS surfaces. To
perform the self-intersection test, we create two instances of
the bounding box hierarchy for the surface on the GPU. We
then test for intersection between these two surface
instances using the same GPU algorithm we use to perform
surface-surface intersections. The output of this algorithm is
a list of bounding box pairs at the lowest level of the
hierarchy that overlap each other. We then remove from
this list all the pairs which correspond to the same surface
subpatch. Finally, if there are any bounding box pairs which
belong to different surface subpatches left in the list, then
the surface is self-intersecting.

Once we find a surface to be self-intersecting, we perform
triangle-triangle intersection of the triangles contained
within the intersecting bounding box pairs. Similar to the
surface-surface intersection algorithm, we find points on the
self-intersection curve and then fit a polyline through this
self intersection curve. However, the main limitation of the
algorithm is that a self intersection smaller than the tolerance
will be rejected. This can occur in a local self-intersection due
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Fig. 16. Example showing the possible generation of single-point

polyline by Algorithm 4. (a) The one-ring of bounding boxes (shaded).

(b) The point marked in red is not merged and is output as a single-point

polyline if it is not the closest point in <7.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 4, 2010 at 00:57 from IEEE Xplore.  Restrictions apply. 



to curvature in an offset surface, and a complete intersection
loop will be difficult to evaluate since the tolerance needs to
be infinitesimally small in this case. Fig. 17 shows two
examples where we detect and evaluate self-intersection
curves in NURBS surfaces. The example shown in Fig. 17b
took 0.42 seconds to compute the self-intersection curves to a
tolerance value of 2� 10�3, while the more complicated
example shown in Fig. 17a took 0.97 seconds.

6.3 Intersection Timing

We timed our GPU-accelerated algorithm for evaluating the
intersection curves on a 3-GHz CPU with 2 GB of RAM
equipped with a NVIDIA Quadro FX4500 GPU with 512 MB
graphics memory running Windows XP. We performed a
surface-surface intersection of the two NURBS surfaces
shown in Fig. 18. The surfaces were bicubic NURBS with
403� 199 and 298� 313 control points, respectively. We
used Algorithm 4 to fit the polylines during the timing. We
compare our timings to evaluate the intersection curves to
the required user-defined tolerance with those of the
commercial solid modeling kernel ACIS (v18).

Fig. 19 compares the time for evaluating the intersection
curves by varying the tolerance values. Our GPU-accelerated
evaluation is more than 40 times faster than ACIS in
computing the intersection curves to the standard tolerance
of 10�3 used in ACIS. The output from ACIS is an interpolated
polyline where the points on the polyline are within the user-
defined tolerance value from the exact intersection curve.
ACIS does not guarantee any tolerance on the piecewise
linear line segments that make up the polyline [32]. On the
other hand, we evaluate dense intersection points with their
spacing adjusted based on the tolerance to achieve a

guaranteed tolerance on the piecewise linear segments of
the polyline as well. We compute almost 40 times as many
points on the intersection curve as ACIS does for the standard
ACIS tolerance value of 10�3 (Fig. 20).

Table 1 gives the breakdown of the timing of our
intersection algorithm for evaluating the intersection
curves, shown in Fig. 14, for a tolerance value of 10�3.
The evaluation of the NURBS surfaces is a large fraction of
the total time. Note that we do not require such high-
tolerance values for giving visual feedback; hence, it can be
performed at interactive rates.

7 CONCLUSIONS

We present fast algorithms to perform interactive modeling
operations on NURBS surfaces. Our algorithms do not
require the latest graphics cards and are backward compa-
tible with any graphics card that has basic programming
capabilities. This is essential for the actual adoption of our
algorithms in commercial CAD systems. We expect the
performance of our algorithms to only improve with the
advent of new and faster graphics cards.

Both our GPU algorithm to sketch on NURBS surfaces as
well as our GPU-accelerated algorithm to calculate inter-
section curves give real-time feedback to the designer about
the shape of the curves in the parametric space. This gives a
direct handle for the designer to check for inconsistency if
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Fig. 17. Detection and evaluation of self-intersections in NURBS surfaces.

Fig. 18. NURBS surfaces used for timing the evaluation of intersection

curves.

Fig. 19. Time taken for evaluating the intersection curves of the two

NURBS surfaces shown in Fig. 18 with different resolutions. Note that

we are evaluating many more points on the intersection curve for a given

resolution (Fig. 20).
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models fail during rebuilds in a CAD system. Our
interactive trimming tool helps the designer to easily
interact with and edit the NURBS models. Moreover, the
applications that we have outlined in our paper form only a
small part of the different kinds of applications that can be
developed with the help of GPU-accelerated basic modeling
operations. There is large potential for developing diverse
applications that use these operations as building blocks.
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Fig. 20. Number of points evaluated on the intersection curve for

different resolutions.

TABLE 1
Breakdown of the Timing

Breakdown of the timing to perform different operations of our
intersection algorithm. The values are for the example shown in Fig. 14
for a tolerance value of 10�3.
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