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GPU-Accelerated Minimum Distance and Clearance
Queries

Adarsh Krishnamurthy, Sara McMains, Kirk Haller

Abstract—We present practical algorithms for accelerating distance queries on models made of trimmed NURBS surfaces using programmable
Graphics Processing Units (GPUs). We provide a generalized framework for using GPUs as co-processors in accelerating CAD operations. By
supplementing surface data with a surface bounding-box hierarchy on the GPU, we answer distance queries such as finding the closest point on
a curved NURBS surface given any point in space and evaluating the clearance between two solid models constructed using multiple NURBS
surfaces. We simultaneously output the parameter values corresponding to the solution of these queries along with the model space values.
Though our algorithms make use of the programmable fragment processor, the accuracy is based on the model space precision, unlike earlier
graphics algorithms that were based only on image space precision. In addition, we provide theoretical bounds for both the computed minimum
distance values as well as the location of the closest point. Our algorithms are at least an order of magnitude faster and about two orders of
magnitude more accurate than the commercial solid modeling kernel ACIS.

Index Terms—Minimum Distance, Closest Point, Clearance Analysis, NURBS, GPU, Hybrid CPU/GPU Algorithms
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1 INTRODUCTION

Distance queries such as finding the minimum distance to a
surface play an important role in many computer aided design
and analysis applications, including tolerancing, clearance
analysis, and accessibility analysis. Minimum distance queries
are especially useful while designing complex assemblies to
allow for sufficient clearance between different mechanical
components. Such queries are easily answered if the objects or
models are made of planar faces and have boxy shapes. How-
ever, modern designs make use of curved freeform surfaces;
the standard representation of choice being Non-Uniform Ra-
tional B-Spline (NURBS) surfaces. Minimum distance queries
on such freeform surfaces are currently being solved by
commercial solid modeling software by first evaluating and
tessellating the surface and then finding the minimum distance
to the tessellation vertices [1]. This approach, in addition
to being extremely slow and computationally intensive, is
dependent on the tessellation resolution for the accuracy of
the solution; the surface has to be very finely tessellated to
get the required accuracy.

A technique to accelerate such slow geometric queries is
to use programmable GPUs. We have developed a unified
framework that uses GPUs as co-processors in accelerating
geometric computations; we make use of the fragment pro-
cessor in a GPU to perform parallel parts of the computations
and use the CPU to perform the inherently serial parts.
This framework can be extended to solve a wide range of
geometric queries; we give a few practical examples of using
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this framework to answer distance queries. Previous GPU-
based algorithms that render to the screen to perform these
computations have restricted accuracy corresponding to the
dimensions of the pixel or window. Our framework allows for
the GPU algorithms to operate in the model space; therefore,
the results of these geometric queries are accurate to any
arbitrary user-defined tolerance.

Solid modeling kernels support certain distance queries
such as the minimum distance from a point to a surface and
the minimum distance between two surfaces. Applications
of such distance queries include: finding the closest surface
point on a surface to provide haptic feedback; dimensioning
and tolerancing of CAD models; and constructing distance
fields. In this paper, we present an algorithm that uses our
hybrid CPU/GPU framework consisting of surface bounding-
boxes to accelerate these queries. We focus on performing
distance queries on objects made of trimmed NURBS surfaces
in this paper. However, our algorithms are applicable for any
surface that can be supplemented with a surface bounding-box
structure. We provide theoretical bounds on the accuracy of
both the computed minimum distance as well as the location of
the closest point on the surface, which allow for arbitrary user-
defined tolerance values. This is especially important in CAD
systems since these distances might be used by the designer to
define subsequent features; the model might fail to regenerate
if there is an error in the computed distance.

In this paper, we provide a hybrid CPU/GPU framework to
accelerate minimum distance computations, which is expanded
from our previous conference presentation [2]. Our main
contributions include:
• A practical GPU algorithm to find the minimum distance

to a surface given any point in space. We use our hybrid
framework to compute the distances efficiently in parallel
using the GPU.

• A fast algorithm that computes the minimum distance
between two surfaces or between two solid models rep-
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(a) NURBS Clearance (b) Trimmed NURBS Clearance (c) Object Clearance

Fig. 1. Minimum distance/closest point computations between NURBS surfaces and complex CAD models accelerated using
the GPU.

resented by B-reps, using bounding-box hierarchies on
the GPU. Our algorithm is orders of magnitude faster
and more accurate than the commercial solid modeling
kernel ACIS in calculating these distances.

• An extension to the minimum distance computation al-
gorithm to compute the minimum distance between two
trimmed NURBS surfaces.

• A unified framework that uses the GPU as a co-processor
to improve the performance of algorithms used for solv-
ing geometric queries. This framework can be extended
to accelerate several related queries that are based on
properties of the underlying shapes such as normals or
curvature.

• Theoretical guarantees for all of our geometric computa-
tions. They allow for user-defined tolerance values that
are essential for integrating our algorithms in a CAD
system.

1.1 Hybrid Framework

We present a hybrid framework that can use both the CPU
and GPU to perform geometric computations. The main idea
is to split the computations into serial and parallel stages as
shown in Fig. 2. To perform the parallel operations on the
GPU, we make use of the map-reduce parallelism pattern
that consists of assigning the computations to separate non-
communicating parallel threads [3]. The inter-communication
between the CPU and GPU is shown in Fig. 3. Once the
computations are performed, the computed result can be used
by the modeling system in the three different ways shown.
Read-back is important for integrating the GPU algorithms
with traditional modeling systems. In addition, since GPUs are
designed for pipelining the data only in one direction from
the CPU to the GPU for display, the method of read-back
significantly affects the performance of hybrid algorithms. The
most efficient method of read-back is reducing the results to a
smaller set of values by using operations such as finding the
maximum, minimum, sum, or by using non-uniform stream
reductions ( [4], [5]). The second method is to directly display
the output on the screen using the GPU. This is ideal for

certain operations that require only visual outputs; for example
displaying the evaluated NURBS surface directly. The last
and the most expensive method is to read back all the results
from the GPU to the CPU; this might be required for certain
computations where the result of a computation is required for
further processing on the CPU.

Parallel Operations

Serial Operations

Serial Operations

Map

Reduce

Fig. 2. Operation flow for performing geometric computations.
The parallel operations are mapped and performed on the
GPU while serial operations are performed on the CPU. The
intermediate parallel output is reduced and read back to the
CPU.

Our operations on the GPU fall into three main types. The
first type includes parallel geometric computations that can
be performed efficiently on the GPU. The outputs of such
operations are usually numeric values that are then stored in
the GPU as textures. If an operation produces more than one
output value for each parallel operation, we can store those
using separate channels of the same texture or using different
textures. The second GPU operation type is parallel search
operations that give a binary output of 0 or 1 based on the type
of search; these include operations such as bounding-box in-
tersection tests, finding if a value lies within a given range, etc.
The third GPU operation type is reduction, which is performed
using multiple passes on the GPU. GPU reductions can in turn
be classified into two types. The first type, called standard
reductions, include reducing the given input to a single value
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Fig. 3. Schematic showing our hybrid framework that extends
traditional geometric computations to use the GPU as a co-
processor to perform some parts of the computations in paral-
lel.

such as computing the sum, min, max, etc. Standard reduction
operations are usually performed in O(log n) passes and hence
are very efficient. The second type of reductions, called non-
uniform stream reductions, reduces the input to a smaller
set of values. Non-uniform stream reduction operations are
particularly important when the result of a reduction operation
is not a single value but multiple values that satisfy a particular
criterion. Since the positions of the output elements do not
have any fixed correspondence with the positions of the input,
the stream-reduction process is considered non-uniform. We
make use of an O(n) GPU stream-reduction algorithm that
we presented in previous work [6] to perform non-uniform
stream reductions.

To perform geometric computations on NURBS surfaces or
assemblies, we make use of a surface bounding-box structure
to map the computations to the GPU. We make use of
Axis-Aligned Bounding-Boxes (AABBs) constructed from an
evaluated mesh of points on the NURBS surface to accelerate
the computations [6]. The main advantage of AABBs over
Oriented Bounding-Boxes (OBBs) is that several geometric
computations such as finding intersections and distances are
simpler in the case of AABBs. This is especially important
because the efficiency of GPU programs can be reduced
dramatically with increases in the complexity of the parallel
kernels that are used. The individual computational kernels
for OBBs are more complex and contain many branching
conditions; the GPU has to wait until the most computationally
intensive branch of the kernel in a particular pass is completed
before proceeding to the next pass. In addition, since OBB
kernels make use of more temporary registers, the number of
computations that can be active simultaneously on the GPU
(called fragments in flight) is reduced; it is difficult to hide the
memory access latency in this case. Thus, we found that the
advantage provided by tight OBBs is offset by the increase
in complexity of the algorithms that use them. We achieve
better results by using AABBs even if we must decompose
the model to a finer resolution with AABBs than OBBs in
order to maintain the same tolerance bounds.

2 BACKGROUND AND PREVIOUS WORK

2.1 Related Work

Minimum distance computations are used by many algorithms
that generate geometrical constructs such as Voronoi diagrams
and medial axis transforms. They are also used in path plan-
ning and robot motion planning [7] and for projecting points
onto a patch of a CAD model [8]. Minimum distance compu-
tations on curved NURBS surface are very time-consuming;
hence, the commercial solid modeling system ACIS makes
use of the tessellation of the surface to find the closest vertex
or pair of vertices while performing tolerance analysis [1].
Johnson et al. [9] gave a unified framework for minimum
distance computations, which was later extended to find the
closest point for haptics applications by Nelson et al. [10].
We use a similar method that uses AABBs to find the regions
of the model that are likely to contain the closest points.
However, the methods they describe were better suited for
a serial CPU implementation, since they make use of the
convex hull of the freeform surface to iteratively refine the
search. In our algorithm, the distance computations and search
operations are done in parallel, which is better suited for a
GPU implementation. In addition, we also provide theoretical
guarantees for the solutions we compute.

Edelsbrunner [11] proved that the minimum distance be-
tween two convex polygons can be computed in O(log n).
However, the algorithm used in the proof is theoretical and
has large time-constants in practice. Quinlan [12] extended
the minimum distance computations to non-convex objects
by first performing a convex decomposition and then using
bounding spheres for the convex pieces to create a hierarchy.
However, this method is not practical for dynamic geometries
since the convex decomposition might be expensive. Chen et
al. [13] compute the minimum distance between a point and
a NURBS curve by subdividing the curve into portions that
might contain the closest point. Many minimum distance algo-
rithms use Bounding Volume Hierarchies (BVHs) to accelerate
the computations. CPU algorithms usually make use of BVHs
that are more complex than AABBs. Gottschalk et al. [14]
make use of OBBs to perform distance computations. Larsen
et al. [15] perform proximity queries using a construct called
a sphere swept volume, which consists of a sphere swept over
a point, line or a plane, as primitives of a BVH.

Collision detection and distance field computation are two
problems that are closely related to minimum distance com-
putations that have been effectively accelerated using the
GPU. Occlusion queries on graphics hardware were used by
Govindaraju et al. [16] to detect collisions of polygonal meshes
in large environments. Greß et al. [17] solve the collision
detection problem by generating a bounding-box hierarchy for
deformable parameterized surfaces and then detect collisions
by checking overlap between the bounding-boxes using the
GPU. Sud et al. [18] use the GPU to generate 3D distance
fields by first slicing the model into 2D slices and by using
culling and spatial coherence to reduce the number of distance
computations in each slice. Lauterbach et al. [19] use the GPU
to construct BVHs that can then be used to accelerate collision
detection.
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There has been only limited use of GPUs to perform
geometric operations because they are restricted to image-
space resolution if the computations are to be performed by
rendering on the screen. Agarwal et al. [20] make use of the
GPU to perform geometric computations on a stream of points
by using point-line duality. They compute geometric properties
such as diameter and width of a set of points. However, these
algorithms are not stable for points that are very close and
are limited to image-space resolution. Hoff et al. [21] use
the GPU to perform fast proximity queries on 2D shapes
using a pixel grid to perform distance computations, but their
technique does not extend to 3D shapes. To overcome the
image-space resolution for spline intersections, researchers at
SINTEF adapted the serial subdivision algorithm to use the
GPU. They accelerate the computations by using the GPU
to test for intersections and iteratively subdivide the spline
patches until a prescribed accuracy is attained [22], [23].

Prior algorithms for proximity queries on spline models
used higher-order bounding volumes such as OBBs or swept
spheres. Krishnan et al. calculate contact between spline
models using a combination of bounding volumes that include
spherical shells and OBBs [24]. Even though these higher-
order bounding volumes have low memory requirements, the
individual overlap computations are more complex. We make
use of an AABB hierarchy in which the bounding boxes are
not as tight as higher-order bounding volumes, but reduce the
complexity of the computations for each bounding-box pair.

Our algorithm to compute the minimum distance between
objects is an hybrid CPU/GPU algorithm that uses the CPU
for certain computations that are inherently serial. Lauterbach
et al. have recently developed a GPU algorithm where the
hierarchy traversal and primitive queries are also performed
on the GPU [25]. Even though such an exclusive GPU
algorithm overcomes the CPU/GPU bottleneck, it requires
newer hardware to perform the atomic operations on the
GPU. However, these operations are not supported by all GPU
hardware vendors; as a result, such algorithms will be difficult
to be adopted by the CAD industry. Furthermore, parts of our
algorithm that are performed on the CPU can be easily ported
to the GPU when atomic operations are more widely supported
by all GPU vendors.

2.2 NURBS Evaluation and Modeling

Our minimum distance computation and silhouette extraction
algorithms build on our previous papers on GPU NURBS
evaluation and modeling. We present a short outline of our
algorithms that were explained in detail in [2], [6], [26], [27].
In our NURBS evaluation paper [27] we developed a method
to directly evaluate a mesh of points on a NURBS surface
using the GPU. Our algorithm used a fragment program to
evaluate a NURBS surface of arbitrary degree in several
passes. After evaluation we have the sampled NURBS surface
as 4-component vectors—(x, y, z, w) coordinates—in space
stored as a texture on the GPU. While rendering, we interpret
these values stored in the texture as vertex coordinates using a
Vertex Buffer Object (VBO) and display the VBO as a mesh
directly on the screen.

Fig. 4. Surface bounding-boxes constructed from points eval-
uated on a NURBS surface.

In our NURBS modeling work [2], [6], we construct surface
AABBs that enclose a surface patch having four adjacent
surface points as corners (Fig. 4). As a first step in the
construction, we find the minimum and maximum coordinates
of the four adjacent surface points to fit an AABB. However,
the AABBs constructed by this method do not guarantee
that the surface patch lies completely inside the constructed
bounding-box. In order to guarantee complete coverage of the
surface patch, we find the maximum possible deviation K
of a curved surface from the linearized approximation, and
then expand the bounding-boxes in all three dimensions by
K (Fig. 5). The analytical expression for the factor that can
be used to expand the bounding-boxes based on the surface
curvature is given by Filip et al. [28]. They show that if a
parametric C2 surface is evaluated at (n + 1) × (m + 1)
grid of points, the deviation of the surface from the piecewise
linear approximation cannot exceed the constant K defined by
Equations (1) – (4). We use this constant K in computing the
bounds for our closest point algorithms.

M1 = max
∀(u,v)

[
max

(∣∣∣∣∂2x∂u2

∣∣∣∣ , ∣∣∣∣∂2y∂u2

∣∣∣∣ , ∣∣∣∣∂2z∂u2

∣∣∣∣)] (1)

M2 = max
∀(u,v)

[
max

(∣∣∣∣ ∂2x∂u∂v

∣∣∣∣ , ∣∣∣∣ ∂2y∂u∂v

∣∣∣∣ , ∣∣∣∣ ∂2z∂u∂v

∣∣∣∣)] (2)

M3 = max
∀(u,v)

[
max

(∣∣∣∣∂2x∂v2

∣∣∣∣ , ∣∣∣∣∂2y∂v2

∣∣∣∣ , ∣∣∣∣∂2z∂v2

∣∣∣∣)] (3)

K =
1

8

(
1

n2
M1 +

2

nm
M2 +

1

m2
M3

)
(4)

K K

K
K

Fig. 5. We expand the AABBs by K in all three dimensions to
guarantee that the surface patch is completely enclosed.
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An alternative approach for constructing an AABB hi-
erarchy for the NURBS surface is to recursively construct
the bounding-boxes by evaluating surface points using knot
insertion. This method has the advantage that it can be adap-
tively refined based on the curvature of the surface. However,
implementing this method on the GPU is tedious since the
number of bounding-boxes in the finest level of the hierarchy
is not known a priori. In addition, recursive algorithms do not
achieve optimal performance when implemented on the GPU.
Hence, we construct AABBs as explained above.

3 DISTANCE QUERIES ON NURBS SURFACES

We first present distance queries that are performed on indi-
vidual NURBS surfaces and later in Sec. 5 extend them to
complex objects made up of multiple curved surfaces.

3.1 Minimum Distance to a NURBS Surface

The first distance query we accelerate using the GPU is
computing the minimum distance and the closest point on a
NURBS surface given any point in space. As a first step, we
evaluate the NURBS surface as a grid of points using our
NURBS evaluator and construct surface AABBs enclosing
four neighboring points. Using these bounding-boxes and
the input point, we calculate the range of distances to each
bounding box as explained in Sec. 3.2.

Fig. 6 shows how our GPU closest point algorithm fits into
our hybrid framework. We first use the GPU to compute the
minimum and maximum distance to each AABB efficiently in
parallel. These distances are stored using the red and green
channels in a min/max texture on the GPU. We then perform
a parallel reduction in log n passes on the GPU to find the
bounding-box with the minimum lower value for the distance
range. We read back the range of this particular bounding-box.
In the next pass, we use the upper bound of this particular
bounding-box as a distance cutoff to search for potentially
close bounding-boxes. We use the GPU to perform a parallel
search on the same min/max texture we computed in the first
step to find all the bounding-boxes whose ranges overlap with
the upper bound. This prunes the list of bounding-boxes to
search for the closest point; we read back this smaller list by
performing non-uniform stream reduction on the results of the
search.

Once we read back the potentially close bounding-boxes,
we approximate the surface patch inside each of the bounding
boxes with two triangles formed from the evaluated surface
points. We then find the distance to each of these triangles and
finally choose the one with the minimum distance. We also find
the point lying on the triangle that has the minimum distance
as the closest point on the surface. We prove theoretical error
bounds for the evaluated minimum distance and the calculated
closest point in Section 4.

3.2 Minimum and Maximum Distance to an AABB

The first step of our minimum distance algorithm requires the
computation of the minimum and maximum distance between
a point and an AABB. Since we want to perform these

C
P

U
/G

P
U

  
  

  
 D

a
ta

 T
ra

n
s
fe

r

Min Reduce

Min/Max Distances

Parallel Find

Non-Uniform 

Stream 

Reduction

0 0

0 1

1 0

1 2

1 3

Addresses

Upper bound of 

Minimum Distance

Bounding-Boxes 

within Range

= Distance Range

0

Max KEY

Fig. 6. Schematic of our closest point algorithm showing the
inter-communication between the CPU and GPU. The vertical
bars represent the range of minimum and maximum distances
from the point to the bounding box.

computations in parallel for each AABB, the computations
have to be efficient and optimized for the GPU. The maximum
distance can be computed in a straightforward manner by
finding the vertex of the bounding-box that is farthest from the
given point. However, to compute the minimum distance, we
not only need to find the minimum distance to the vertices of
the AABB but also to the faces. The number of computations
becomes prohibitively many if we have to check all the
possibilities.

We make use of the fact that the bounding-boxes are axis-
aligned to efficiently compute the minimum and maximum
distance. This makes the calculations simpler and unified for
computing both the minimum and maximum distance simulta-
neously (Fig. 7). For computing the maximum distance from
a point O to an AABB, we compute the maximum distance
along each axis separately and finally take the L2 norm of the
individual maximum distances to find the maximum distance
(Equations (5) – (8)). However, if we extend the same method
to compute the minimum distance, we have to make sure
that the individual distance components are non-zero; if we
directly subtract the half bounding-box widths, we will end
up with negative distances. To overcome this, we take the
minimum distance along a particular direction as zero if it is
negative (Equations (9) – (12)).

xmax = Dcx +Bx (5)

ymax = Dcy +By (6)

zmax = Dcz +Bz (7)

Dmax =
√

(x2max + y2max + z2max) (8)

xmin = max(Dcx −Bx, 0) (9)

ymin = max(Dcy −By, 0) (10)

zmin = max(Dcz −Bz, 0) (11)

Dmin =
√
(x2min + y2min + z2min) (12)
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Fig. 7. Efficiently computing the maximum and minimum distance between a point and an AABB. The example shown here is
for the 2D case, but the method can be extended to 3D. See Equations (5) – (12).

This formulation is efficient for GPU implementation, since
it has only one branch for each max while computing the
minimum distances. We implement these equations using
a single fragment program and output the minimum and
maximum distance to a texture using the red and green
channels. Thus, the minimum and maximum distances are
computed simultaneously for all AABBs in parallel. We then
use these min/max distances as the input texture for finding the
minimum distance to a NURBS surface (Fig. 6) as explained
in Sec. 3.1.

4 THEORETICAL BOUNDS

In this section, we give theoretical bounds for both the
computed minimum distance and the location of the closest
point on the curved surface given any point in space.

Theorem 1. (Minimum Distance Bound) The computed min-
imum distance does not deviate from the theoretical minimum
distance to the actual surface by more than the surface
deviation value K.

Proof: Let O be the point from which we want to find the
minimum distance to a curved surface patch S showed in green
in Fig. 8. Let A1, A2, A3 be three points (of the four points
used to construct the bounding-box) evaluated on the surface.
The surface can be approximated linearly by triangle A1A2A3;
the maximum deviation of the linear approximation from the
curved surface is K (Eqn. (4)). Let Q be the actual point
closest to O on the curved surface and P ′ be the computed
closest point on the triangle. Let P be the closest point to
P ′ on the surface. Since Q is the closest point on the surface
from O, OQ < OP . From triangle OPP ′, by applying the
triangle inequality to the sides, we get OP < OP ′ + PP ′.
Since the maximum deviation of the surface from the triangle
is K, distance PP ′ < K. Combining these inequalities, we
get OQ < OP ′ + K or OQ − OP ′ < K. This shows that
the distance OQ, the theoretical minimum distance, cannot be
larger than the computed distance OP ′ by more than K.

Now, consider the point on the triangle that is closest to Q,
call it Q′. In this case OP ′ < OQ′ since P ′ is the closest point
on the triangle from O. Again from triangle OQQ′, we get
OQ′ < OQ+QQ′ and QQ′ < K since Q′ is the closest point
on the triangle from Q. Combining these three inequalities,

A1

A3

P
Q

P´

O

Q´

d

A2

Curved Surface (P, Q)

Linear  Approximation (P', Q')

Fig. 8. Illustration to prove the bound for the minimum com-
puted distance. The actual surface is shown in green while the
linearized approximation is shown in orange.

we get OP ′ < OQ + K or OP ′ − OQ < K. This shows
that the theoretical minimum distance cannot be smaller than
the computed distance by K. Combining the minimum and
maximum bound on the distance, we get |OP ′ −OQ| < K.

Thus, from Theorem 1, we know that the theoretical mini-
mum distance is bounded to lie within the range (d−K, d+K),
where d is the computed minimum distance. We now show
how we use this bound to prove that the location of the closest
point we compute is also bounded.

Theorem 2. (Closest Point Location Bound) The maximum
possible distance between the computed closest point and
the theoretical one is

√
4Kd+K2 where d is the computed

minimum distance to the surface.

Proof: From Theorem 1, the theoretical minimum dis-
tance cannot deviate from d by more than K, i.e. OQ ∈ [d−
K, d + K]. We have two possible cases: the closest point
P ′ computed on the plane lies inside the triangle used to
approximate the surface or it lies on one of the edges of the
triangle (see Fig. 9(a) and Fig. 9(b), which show a 2D cross-
section). In the first case (Fig. 9(a)), the minimum distance
bound restricts the theoretical closest point Q to lie in an
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Fig. 9. Illustration to evaluate the bound for the computed closest point location when the closest point on the plane lies either
(a) inside or (b) on the edge of the triangle approximating the surface.

annular region between spheres with center O and radii d+K
and d − K (marked in blue). From our tessellation bound
K, we know that the actual surface lies within a region of
width 2K centered around the approximating triangle (marked
in red). Thus the point Q lies in the intersection of these
overlapping regions. The maximum possible distance P ′Q
in this intersecting region is

√
4Kd+K2. In the second

case (Fig. 9(b)), the approximating triangle is oriented at an
obtuse angle with respect to OP ′. In this case, the maximum
distance in the overlapping region occurs only when OP ′ is
perpendicular to the triangle; for all other angles of rotation of
OP ′, it is always less than

√
4Kd+K2 (please refer to the

Appendix for a detailed explanation). Hence, the maximum
possible distance between the computed closest point and the
theoretical one is always

√
4Kd+K2.

Thus, both the computed minimum distance and the location
of the closest point are bounded. We show in the Results
section that these theoretical bounds translate to realistic values
that are useful in practice. Next, we extend our minimum
distance computations to compute the minimum distance be-
tween two NURBS surfaces or two complex CAD objects
represented as B-reps.

5 CLEARANCE ANALYSIS

5.1 Minimum Distance Between Two NURBS Surfaces

We use a method similar to finding the minimum distance from
a point to a surface to find the minimum distance between
two surfaces. However, it is impractical to use this method
directly because the number of distance comparisons increase
as O(n2), where n is the number of AABBs of each surface.
Therefore, we make use of a method that uses bounding-box
hierarchies to successively refine the number of potentially-
close bounding-box pairs. We show that this approach, which
is similar to a breadth-first search, can also be fit into our
hybrid framework. We perform the search for potentially-close
bounding-box pairs in parallel at each level using the GPU.

1
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Fig. 10. We perform minimum distance computation between
two NURBS surfaces with the help of AABB hierarchies for
both the surfaces. We compute a list of potentially close
bounding-boxes at each level using the GPU and then refine
on the CPU until we reach a set of potentially close bounding-
boxes at the lowest level.

We first construct surface AABBs as shown in Fig. 4; denote
these as original AABBs. We then generate a bounding-box
hierarchy by recursively combining four AABBs in a level to
get a bigger AABB of the next higher level. Thus, we construct
an AABB hierarchy starting with the original AABBs and
finally reaching a single, level-0 bounding box. This operation
can be effectively performed in O(log n) passes using the
GPU. We store the bounding-boxes in a manner that optimizes
GPU storage space (Fig 10) similar to mip-map layouts. When
the model is transformed (translated or rotated), we fit new
AABBs that contain the transformed original AABBs and
rebuild the hierarchy. However, we still store and use the
original AABBs for fitting after every transformation, since
if we keep only the newly fitted AABBs, the bounding-boxes
will keep growing in size.

We compute the minimum distance between the surfaces by
recursively going down the hierarchy and finding potentially-
close bounding-boxes at the finest level of the hierarchy.
We start at level 1 of the hierarchy where we compute the
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Fig. 12. Plot showing the actual number of AABB pairs
compared during a typical minimum distance computation.
The number of pairs being tested in parallel remains almost
constant after level 3 of the hierarchy. Note logarithmic scale
used for the y-axis.

minimum and maximum distance between four AABBs from
surface 1 with each of the four AABBs of level 1 from
surface 2, a total of 16 minimum and maximum distance pairs.
The method used for finding the minimum and maximum dis-
tance between two AABBs is explained in Section 5.2. Once
we compute the set of minimum and maximum distances,
we prune those AABB pairs that are outside the min/max
distance range of the closest AABB pair, similar to our method
described in Section 3.1. We get a list of potentially-close
AABB pairs for this level of the hierarchy at the end of the
search. We then use the GPU to map the next finer level of
the hierarchy, in sets of 4× 4 AABB pairs, and repeat finding
the potentially-close AABB pairs in the next finer level on
the GPU (Fig. 10). Finally at the end of the recursion, we
get a list of potentially-closest AABB pairs in the finest or
highest level of the hierarchy of both the surfaces. Using a
hierarchy to prune AABBs outside the range keeps the number
of potentially-close AABB pairs almost constant. Fig 12 shows
that the number of pairs to be tested increases at first and after
level 3 remains almost constant at a few thousand potentially-

close pairs. These computations can be done efficiently by the
GPU in parallel at each level, as seen in the Results section.

Finally, once we obtain all the potentially-closest AABB
pairs at the highest level, we compute the closest distance
between the surface patches enclosed by these AABBs on the
CPU since the list of pairs is usually small. We approximate
each surface patch with two triangles and then compute the
minimum distance between the triangles. Similarly, we also
compute the pair of closest points that have the minimum
distance between them.

5.2 Minimum and Maximum Distance Between AABBs

We extend our computations described in Sec. 3.2 to com-
pute the minimum and maximum distance between two
AABBs (Fig. 11). Similar to the point case, we compute
the minimum and maximum distance along each dimension
and then calculate the overall minimum and maximum dis-
tances (Equations (13) – (20)). As before, if any component
is negative while computing the minimum distance, we take
that component as zero.

xmax = Dcx +B1x +B2x (13)

ymax = Dcy +B1y +B2y (14)

zmax = Dcz +B1z +B2z (15)

Dmax =
√
(x2max + y2max + z2max) (16)

xmin = max(Dcx −B1x −B2x, 0) (17)

ymin = max(Dcy −B1y −B2y, 0) (18)

zmin = max(Dcz −B1z −B2z, 0) (19)

Dmin =
√
(x2min + y2min + z2min) (20)

These equations are implemented using a fragment program
on the GPU; we output the values to the red and green channels
of a texture. The distances are computed for all potentially-
close AABB pairs at a particular level in parallel and are then
used for finding the potentially-close AABB pairs in the next
level as explained in Sec. 5.1.

Dcx

2B1x

B1y

2B1y

Dcy
C1

B1x B2x

C2

B2y

(a) Maximum Distance

Dcx

2B1x

B1y

2B1y

Dcy
C1

B1x B2x

C2
B2y

(b) Minimum Distance

Fig. 11. Computing the maximum and minimum distance between two AABBs. The equations are similar to the point-AABB
distance case. See Equations (13) – (20)
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5.3 Minimum Distance Between Two Trimmed NURBS
Surfaces

We extend our NURBS minimum distance computations to
find the minimum distance between two trimmed NURBS
surfaces. In order to address trimmed NURBS surfaces, we
have to cull the bounding-boxes that lie in the trimmed regions
of the surface. We generate bounding-boxes for a set of four
points evaluated on the surface only if any of the four points
lie outside the trimmed region. Since we store the bounding-
box data using two four-channel floating-point textures, we
can indicate whether the bounding-box is valid by using the
fourth alpha channel in the texture. If all the four points
lie inside the trimmed region of the NURBS surface, we
cull the bounding-box by setting the alpha channel of the
corresponding bounding-box texels to zero.

To perform this culling operation, we first generate a trim-
texture [27] of the same size as the evaluated points. This gives
a one-to-one correspondence for checking whether an evalu-
ated point lies inside the trimmed region. While generating
the bounding-boxes for the surface patches on the GPU, an
extra test is performed to check if every set of four points lie
inside the trimmed region in the parametric space. If so, the
bounding-box is culled by setting the alpha channel to be zero;
otherwise, it is set to one. Fig. 13 shows surface bounding-
boxes for a trimmed NURBS surface that are not culled. Once
we generate the bounding-boxes, we construct the bounding-
box hierarchy similar to the method explained in Sec. 5.1.
However, we combine only the bounding-boxes that are not
culled to generate the hierarchy.

After we have generated the bounding-box hierarchy, we
use the same algorithm given in Sec. 5.1 to find a list of
potentially-close bounding-box pairs. While performing the
search operation, we make sure that we do not include the
bounding-boxes that are culled in the calculations. Finally,
once we obtain all the potentially-closest AABB pairs at the
highest level, we approximate each surface patch with two
triangles and then compute the minimum distance between
the triangles. However, we have to do an additional check to
make sure that the computed closest point lies outside the
trimmed region of the surface. If the point lies inside the
trimmed region, we discard the point and continue the search.

Fig. 13. Example of non-culled surface bounding-boxes for a
trimmed NURBS surface. The bounding-boxes that lie in the
trimmed region are culled.

Fig. 14. A complex model and its voxel representation. We
store the surfaces that intersect with a particular voxel to
accelerate the minimum distance computation.

A main implication of the presence of trims is that we
cannot always guarantee as tight a tolerance for the minimum
distance as in untrimmed surfaces. There are two cases where
the tolerances may be looser. The first case happens when
the closest point lies on the edge of a trim-curve. In this
case, since we do not explicitly find the intersection of the
trim-curves and the surface patches that lie inside the closest
bounding-boxes, the tolerances calculated for the untrimmed
surface cannot be used. However, the tolerance values are still
guaranteed to be less than the size of the bounding-box that
contains the surface patch. The second case is the degenerate
case when the closest point is on an untrimmed feature that
is smaller than the parametric tolerance used for creating the
trim-texture and the corresponding bounding-box is culled as
a result. In this case, since we use the same trim-texture for
display, the small feature will also display as trimmed away.
When this happens, the user will get visual feedback that
the model has not regenerated correctly and can adjust the
parametric tolerance accordingly.

5.4 Minimum Distance Between Two Complex Objects

Finally, we extend our minimum distance computations be-
tween NURBS surfaces to complex objects made up of many
NURBS surfaces. CAD systems have support for this query
to give feedback about the clearance between the models in
an assembly while the user is manipulating them. However,
existing systems are not interactive due to long computation
times for performing this query. We perform this query in two
stages; in the first stage we find a list of potentially close
surface pairs and in the second stage we find the minimum
distance between the surfaces.

Voxel-based First Stage

In the voxel-based approach for the first stage, we construct a
grid of voxels in the region occupied by the object (Fig. 14).
We then consider these voxels as individual AABBs to perform
the minimum distance computation. We create the voxel
representation of the model as a preprocessing step. We first
overlay a regular voxel grid that covers the object completely.
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Min/Max Distances

Map

List of Voxels 

Fig. 15. We map the list of voxels of one object to the rows
and the other object to the columns of a 2D texture to compute
the minimum and maximum distances between the voxels.

We then use the coarse tessellation of the object that is used
for display to populate the voxel grid. For each triangle in the
tessellation, we find the voxels that the triangle intersects and
then add a reference in the voxel to the surface to which the
triangle belongs. Thus, each voxel has information about its
minimum and maximum point extents that define the AABB
and a list of surfaces that intersect it. Since this is done only
once per object when the object is loaded for display, we
perform this operation on the CPU. In addition, since this is
a linear O(n) operation, where n is the number of triangles
in the tessellation, it is fast.

As a first step in finding the closest points, we find a set
of potentially-close voxel pairs by performing a single pass of
minimum distance computation. To perform this operation on
the GPU, we map the voxels from the first object to the rows
and the voxels from the second object to the columns of a 2D
texture (Fig. 15). We compute the minimum and maximum
distances for each voxel pair of the two objects and output
these distances to the texture. This texture is then used to
find the list of potentially-close voxel pairs that lie within the
range of the closest voxel pair (as in Fig. 6). We perform non-
uniform stream reduction to transfer address information of
the potentially-close voxel pairs to the CPU. Since each voxel
has information about the surfaces that pass through it, we
can create a list of potentially-close surface pairs from these
potentially-close voxel pairs. We also make sure that there are
no duplicated entries in the surface pairs list, since the same
surface can pass through many voxels in the potentially-close
voxel pair list.

Surface-based Second Stage
In the second stage, we compute the minimum distance for
each surface pair in the potentially-close surface list using
our algorithm explained in Sec. 5.3 or Sec. 5.1, depending
on whether the surface is trimmed or not, respectively. We
can then output the minimum distance or clearance between
the two objects as the minimum distance computed from all

the surface pairs. We also output the points on each surface as
the closest points on the two objects. Even though we use the
coarse tessellation for constructing the voxel grid, we do not
use it for the minimum distance computations. Our computa-
tions are performed using the NURBS surfaces directly and lie
within the computed bounds. Hence, they are more accurate
than only using the tessellation for the computations. In the
Results section we show that our algorithm performs orders
of magnitude faster than a commercial CPU-based kernel.

6 RESULTS

We timed our GPU-accelerated distance queries on a 2.66GHz
(quad-core) CPU running Windows Vista with 4GB of RAM
and an NVIDIA Quadro FX5800 with 4GB graphics memory.
We compare our timings to perform the geometric queries with
those of the commercial solid modeling kernel ACIS (v20).

NURBS Minimum Distance Timings
We timed our minimum distance computations between two
curved NURBS surfaces by interactively translating as well as
rotating one surface made of 199× 33 control points relative
to the another surface made of 100 × 105 control points
(Fig. 1(a)). Fig. 16(a) shows the interactive computation times
recorded during the interaction; the computation times were
less than 0.15 seconds for most positions, a near-interactive
average frame rate of 9.07 fps. Fig. 16(b) shows the distance
and position tolerances computed corresponding to the runs
in Fig. 16(a). Since these tolerance values are dependent on
the model size, we report them as a fraction of the model size
in order to make them consistent with tolerance definitions
used by ACIS [29]; a value of 0.01 corresponds to 1% of the
model size. The model size is the length of the diagonal of
the smallest AABB that will enclose the model.

Position ACIS Time (s) GPU Time (s) Speed-up

1 64.4 0.218 296x
2 65.4 0.109 600x
3 66.9 0.093 720x
4 66.2 0.171 387x

TABLE 1
Time for performing minimum distance computations between

two NURBS surfaces.

We recorded the time taken by ACIS to compute the
minimum distance at some arbitrarily chosen positions of
the NURBS surfaces relative to one another by using the
api command api check face clearance. We set the tolerance
value for ACIS to be 4× 10−2, well looser than our closest-
point position tolerances reported in Fig 16(b). We chose this
tolerance because we can guarantee it in our algorithm even if
the closest point lies on a trim-curve edge; the tolerances can
be guaranteed to be much tighter if the closest point does not
lie on a trim-curve edge. Table 1 summarizes the results of our
NURBS minimum distance computations for these positions,
including the positions where our algorithm was slowest (note
that there is little variation in the ACIS timings for different
positions). The GPU accelerated algorithm is at least two
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Fig. 16. Interactive times for evaluating the minimum distance between two NURBS surfaces and the corresponding distance
and position tolerances scaled with respect to the maximum model size.

orders of magnitude faster than ACIS. This can be explained
by the fact that ACIS first tessellates the object to get a dense
mesh of points on the surface and then performs the minimum
distance computation on these points. We on the other hand
use our fast NURBS evaluator to evaluate the surface and
construct surface bounding-boxes in real time. In addition, we
not only achieve better performance but also a higher accuracy;
our results have theoretical bounds that are practical for use
in a CAD system.

Table 2 lists the break-down of the timings for performing
different operations while computing the minimum distance
between two NURBS surfaces shown in Fig. 1(a). It can be
seen that evaluation and hierarchy traversal operations have
similar run times.

Operation Time (s)

NURBS evaluation 0.036
Normal evaluation 0.038
Bounding-box construction 0.019
Bounding-box hierarchy construction 0.008

Total evaluation time 0.101

AABB distance evaluation 0.027
Finding potentially close AABBs 0.045
Finding closest triangles on CPU 0.048

Total hierarchy traversal time 0.120

Total computation time 0.221

TABLE 2
Break-down of the timings for performing different operations

of the minimum distance computation algorithm.

Trimmed NURBS Minimum Distance Timings
Table 3 summarizes the results for computing the minimum
distance between two trimmed NURBS surfaces, where the
bottom surface from Fig. 1(a) is replaced by a trimmed version
of the same surface (Fig. 13). The surfaces were timed by
positioning them at the same positions as in Table 1 and

using the same tolerance of 4× 10−2 for ACIS. As expected,
the GPU timings for finding the minimum distance between
trimmed NURBS surfaces are slightly higher than the timings
for un-trimmed surfaces. This is because of the extra tests that
are performed at each stage to exclude the trimmed regions
from the computations. However, the timings are still at least
two orders of magnitude faster than ACIS.

Position ACIS Time (s) GPU Time (s) Speed-up

1 55.9 0.234 239x
2 57.7 0.125 461x
3 59.1 0.109 542x
4 58.5 0.187 313x

TABLE 3
Time for performing minimum distance computations between

two trimmed NURBS surfaces.

Object Surfaces Triangles

Car Body 80 7134
Toy Car 127 17170
Scooby 157 72094
Plane 215 68696
Space Ship 631 37914

TABLE 4
Complexity of the objects used for the clearance

computations. The number of triangles shown is the default
coarse level of tessellation used for display.

Object Clearance Timings

We performed object clearance computations using the CAD
models listed in Table 4; the models are made of trimmed
NURBS surfaces and are of approximately the same complex-
ity as standard CAD models used in a mechanical assembly.
We used a voxel grid of 40×40×40 to perform the first-stage
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Object1 Object2
ACIS GPU Improvement

Time (s) Tolerance Time (s) Tolerance Time Tolerance

Toy Car Car Body 9.73 10−2 0.672 2.5× 10−5 14x 408x
Car Body Car Body 17.34 10−2 0.439 2.2× 10−5 39x 463x
Scooby Scooby 70.62 10−1 0.382 13.7× 10−5 185x 728x
Plane Plane 156.03 10−1 1.501 5.2× 10−5 104x 1938x
Plane Space Ship 263.01 10−1 0.794 2.9× 10−5 331x 3453x

TABLE 5
Time for performing minimum distance computations between different complex objects.

Fig. 17. The different pairs of objects that were timed for the minimum distance computations.

of the minimum distance computations. The objects were also
tessellated to a coarse level that is sufficient for display; the
number of triangles in this tessellation is given in Table 4.

Minimum distance queries were performed between the
object pairs shown in Table 5; the objects were randomly
positioned with respect to each other to perform the queries
using both ACIS and our GPU accelerated algorithm. We
use parametric tolerances that are at least as tight as those
specified in the models are. This guarantees that we can accu-
rately calculate the tolerances. We used the api function call
api check solid clearance to compute the minimum distances
in ACIS. It can be seen that the GPU accelerated algorithm is
again at least an order of magnitude faster than ACIS.

7 CONCLUSIONS

We have developed a hybrid framework that uses GPUs
to accelerate distance computations. Our algorithms have
theoretical bounds; they have resolutions that are based on
object-space instead just image-space. They make use of
actual surface data and not just the tessellation, which make
them independent of tessellation errors. We can also compute
minimum distances between trimmed NURBS surfaces, which
make the implementation of our algorithms in an existing
CAD system simpler. We also show tremendous performance
improvements over existing commercial CPU-based systems.

Our framework can be easily extended to solve other CAD
geometric operations such as silhouette extraction, intersection
curve evaluation and collision detection. We find that having
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alternating serial and parallel stages and using the map-reduce
motif for parallelism to be ideally suited for developing geo-
metric algorithms that use the GPU. In addition, the parallel
stages can be easily modified and executed on a multi-core
CPU in the absence of a powerful GPU. Our framework
provides for maximum flexibility and optimized performance
in developing fast geometric algorithms.
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APPENDIX

Detailed Explanation for Theorem 2

We give a detailed explanation for our closest-point bound
proved in Theorem 2. From Theorem 2, we know that there
are two possible cases. In the first case, the closest point P ′

lies inside the triangle and the bound can be computed directly
to be

√
4Kd+K2. However, in the second case, to find the

maximum possible value of P ′Q, we have to consider all
possible orientations of the triangle with respect to OP ′. Let
α denote the angle the triangle makes with OP ′; α can vary
from 90◦ to 180◦ (the two extremes and a general case are
shown in Fig. 18). Angle α cannot be less than 90◦ because
then P ′ will no longer be the closest point on the triangle.
The angle subtended by P ′Q at the center of the sphere,
denoted by θ, monotonically decreases from θmax to θmin, as
α increases from 90◦ to 180◦. The values of θmax and θmin

can be computed to be sin−1
(√

4dK
d+K

)
and sin−1

(
K

d+K

)
from

Fig 18(a) and Fig 18(b) respectively.
Consider the general case when 90 < α < 180. P ′Q can

be computed to be
√
(d+K)2 + d2 − 2d(d+K) cos θ from

the cosine rule on triangle OP ′Q. P ′Q will be maximized
when the term 2d(d + K) cos θ is minimized, since all the
other terms in the expression are positive. 2d(d+K) cos θ is
minimized when θ is the maximum possible value in the range
[θmin, θmax]. Thus P ′Q is maximized when θ = θmax; the
extreme case is shown in Fig 18(a) with maximum value of
P ′Q again being

√
4Kd+K2 as shown in Fig 9(a).
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