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Abstract—Pixel-based visualization is a popular method of conveying large amounts of numerical data graphically. Application
scenarios include business and finance, bioinformatics and remote sensing. In this work, we examined how the usability of such visual
representations varied across different tasks and block resolutions. The main stimuli consisted of temporal pixel-based visualization
with a white-red color map, simulating monthly temperature variation over a six-year period. In the first study, we included 5 separate
tasks to exert different perceptual loads. We found that performance varied considerably as a function of task, ranging from 75%
correct in low-load tasks to below 40% in high-load tasks. There was a small but consistent effect of resolution, with the uniform
patch improving performance by around 6% relative to higher block resolution. In the second user study, we focused on a high-load
task for evaluating month-to-month changes across different regions of the temperature range. We tested both CIE L*u*v* and RGB
color spaces. We found that the nature of the change-evaluation errors related directly to the distance between the compared regions
in the mapped color space. We were able to reduce such errors by using multiple color bands for the same data range. In a final
study, we examined more fully the influence of block resolution on performance, and found block resolution had a limited impact on
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the effectiveness of pixel-based visualization.

Index Terms—Pixel-based visualization, evaluation, user study, visual search, change detection.

1 INTRODUCTION

Pixel-based visualization is a collection of techniques that use colored
position in 2D space to encode data [15]. These techniques can dis-
play a large amount of encoded data, and have been found useful in
a range of applications, including business and finance [38], bioinfor-
matics [14] and remote sensing [18, 28].

In a typical pixel-based visualization, colored pixels are grouped
into blocks (also termed as sub-windows in the literature), and blocks
are normally organized in matrix form with two primary attribute di-
mensions (e.g., month and year). The typical objective of the visual-
ization task is to establish the correlations, causality or other relations
between blocks of pixels, and to identify unusual patterns in the data.
Block resolution (i.e., the number of pixels in each block) can vary
substantially. A block may contain one data value (e.g., temperature),
or over a million pixels (e.g., in a satellite image). Visualizing a series
of high resolution pixel blocks can benefit from a large power-wall
display.

A challenging scientific question naturally arises from such varia-
tion: what are the factors that mainly determine user performance with
such displays? Will it depend only on the number of pixels in each
block? Or will other variables have a greater impact? The answer to
such a question will clearly depend on a number of factors, such as the
nature of the task, the skill level of the user and, more fundamentally,
the limits of human vision, attention and cognition. However, so far,
there has been little quantitative analysis of pixel-based visualization,
especially in terms of task variations and block variations. It is this
gap that we try to fill in the current work.

In three user studies, we examined performance in a common sce-
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nario in which month-to-month variations in temperature were visu-
alized over a six-year period. Block resolution was varied within a
small range (from uniform patches up to 8 x 8§ arrays), allowing the
whole visual design to be easily reproducible on a ordinary computer
displays. In the first study, we examined block resolution and task dif-
ficulty, by presenting different comparative visual search and change
detection tasks. This initial study allowed us to identify upper and
lower limits of performance and to make an initial assessment of the
impact of resolution. In the two subsequent studies, we selected tasks
at the two extremes of performance, and examined more closely the
role of block resolutions and color maps in determining patterns of
behavior. Across all three studies, we found that:

e block resolution had a limited impact on the effectiveness of
pixel-based visualization;

e task demands and related perceptual constraints accounted for
most of the observed variation;

e careful selection of color palettes is essential for reducing task-
related errors.

2 RELATED WORK

Pioneered by Keim [15], pixel-based visualizations are known for the
capability of making the best possible use of screen space [17, 10].
Such display can visually present more data than many other tech-
niques, such as iconic and projection-based techniques [16, 6]. The
controls of its design space normally include the choice of color space,
subwindow shapes, pixel arrangement, dimension ordering and query
specification [27, 19]. With the advent of giga-pixel displays [37], it
is desirable to learn how well pixel-based visualization will scale ac-
cording to the increasing block resolution.

Natural images contain detail at a wide range of spatial scales [29,
32, 31]. The human visual system has evolved mechanisms to parse
information according to spatial frequency content [35, 8]. In image
perception, it is thought that coarse-scale information, captured by low
spatial frequency filters, conveys information about general shape and
structure, while fine-scale information, captured by high spatial fre-
quency filters, carries information about edges and surface texture.
Human perception of images at different resolutions has been exten-
sively studied (e.g., [11, 31]). Much work in this area focused on
object and face recognition from degraded images. The practical ob-
jective, in pixel based visualization, is to achieve cost-effectiveness
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(a) 2006 to date month-year calendar heatmap

(b) September 2009 heatmap (c) October 2009 heatmap

Fig. 1. (a) A heatmap of Microsoft's stock price adjust close from 2006 to date (data source: Yahoo), generated with R [9] and plotted using Paul
Bleicher’s calendarHeat function. (b-c) Comparative visualization of two financial heatmaps depicting the secondary market statistics of the London

Stock Exchange (courtesy of [7]).

by using relatively low resolution images or videos while maintaining
reasonable accuracy and speed in recognition.

In pixel-based visualization, much of the high spatial frequency
content originates in the block contours themselves. Indeed, such
“block quantization” effects are often used to mask inherent fine-scale
information [11]). It remains to be seen whether such local, high fre-
quency “noise” affects the ability of users to extract global, low fre-
quency content. For example, when comparing the average tempera-
tures between two months, will additional details of the daily temper-
atures help or hinder the decision? However, the practical objective
in pixel based visualization is normally the opposite of that for recog-
nition from degraded images. As high-resolution pixel blocks depict
more information, it is desirable to use such blocks as long as visual-
search and change detection speed and accuracy rates are reasonable.

In addition to block resolution, human performance with pixel-
based visualization may also be influenced by a number of other fac-
tors. These may include the effect of surrounding context, work-
ing memory and attention demands of a given task. Oliva and Tor-
ralba [23] provide and excellent review of the impact of context on
human performance. There are many examples in the literature show-
ing that context can influence visual performance (e.g., [3, 5, 13]).
Objects appearing in familiar or consistent context (e.g., a plate on top
of a kitchen table) will be more efficiently processed than when ap-
pearing in an inconsistent context (e.g. on top of a bathtub). This is
particularly true when using degraded or low-resolution images (e.g.,
[3, 31]). However, most pixel-based visualizations do not benefit from
such context, which may affect cognitive load.

Tasks can vary greatly in the demands they place on a user, par-
ticularly with respect to memory and attention. Cognitive loads for
different types of tasks have been studied in the paradigms of visual
search [36], change detection [25], and working memory [24]. For
pixel-based visualization, there are no previous studies that relate di-
rectly to the cognitive load of different tasks. A primary goal of this
paper will thus be to provide an initial assessment of the impact of res-
olution impact within tasks and their demands in pixel-based displays.

3 APPLICATION SCENARIO

Pixel-based visualization can be applied to spatial and non-spatial
data. In this work, we consider three application scenarios. The first
scenario concerns the use of tabular form of pixel-based visualization
to aid the analysis of numeric data captured at regular temporal in-
tervals, such as stock market data. The second scenario concerns the

common practice of color coding gene sequences for analyzing indi-
vidual gene expressions within clusters from a single array. The third
scenario concerns the common practice of juxtaposing an image se-
quence in analyzing remote sensing data.

Fig. 1b-c show a pixel-based visualization depicting the monthly
percentages of changes of the 8 indices of the London Stock Exchange
between September 2009 and November 2009, for 43 different sectors.
The 8 indices are normally grouped into a block, and blocks are orga-
nized into year-month matrices. In comparison with Fig. 1a where the
average changes are depicted, the 43 x 6 pixel blocks in 1c and 1b con-
tain more information useful for localized reasoning while incurring
additional perceptual burden in global reasoning. While acknowledg-
ing the necessity for the kind of visualization in Fig. 1, it would be
helpful to know the effects upon the viewers in their global reasoning.
For instance, when reasoning a global trend, would the users mentally
determine the average color of each block first? If so, would the errors
in determining the average colors result in less accurate reasoning?

Fig. 2a shows a pixel-based visualization of part of a microarray
archive derived from a leukemia study [4].

Fig. 2b shows a sequence of Landsat images at two different reso-
lutions with their locations marked on the left. Glaciologists need to
compare imagery features at different scales, while trying to establish
the overall patterns of the geo-environmental changes. They usually
know well the regions that they are interested in. Even when they are
given images with a large coverage, their attention immediately fo-
cuses on the regions of interests. During a period of collaboration with
glaciologists, we observed the typical visual tasks in their scientific
discovery work. For instance, they visually estimate the temperature
variation over a period, compare the cyclic patterns between differ-
ent years, and discuss the spatial and temporal relationships between
identified phenomena. The varying degrees of uncertainty expressed
by the glaciologists when they visualize and analyze such image se-
quences led us to examine the dependency of the visual analytical ac-
curacy upon the resolution of the pixel blocks and task variations.

There have been numerous prior works on the impact of image res-
olution upon a viewer’s ability to recognize an object or a scene cap-
tured by an image (e.g. [31, 33, 1]). These works confirmed that as
the resolution increases, viewers perform their recognition tasks better.
However, the results of such studies cannot be applied to pixel-based
visualization. As the viewers in the above mentioned scenarios per-
form analytical tasks that are very different from object recognition,
the increase of the block resolution could very well have a negative
impact. This provides this work with a motivation.
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Fig. 2. (a) A pixel-based bioinformatic visualization, with its spatial layout
controlled by two trees; (b) Landsat image of Greenland glacier outlet
Geiki.

4 EXPERIMENTS OVERVIEW

The three application scenarios mentioned in the previous section in-
dicate several different tasks when using pixel-based visualization.
These may include, but not limited to, (i) block-based pattern, change
and trend detection (e.g., Figs. 1a and 2a), and (ii) pixel-in-block and
pixel-across-blocks analysis (e.g., Fig. 1b-1c and Fig. 2b). The block
size can vary from individual primitive blocks (e.g., monthly blocks
in Fig. 1b-1c) and composite blocks (e.g., yearly blocks in Fig.1a).
In some cases, such as Fig. 2a, the block size varies according to the
levels of the two indexing trees. It is thus necessary to make some
abstraction from the details of application-specific tasks.

In order to provide our study with an intuitive scenario that all the
participants can easily understand, we decided to focus on temporal
pixel-based visualization, and chose the common experience of tem-
perature time series as the source of stimuli. A temporal pixel-based
visualization is essentially a visualization of multiple time series. In
our experiments, we group the values of multiple time series at each
time step in a block of pixels.

In designing our experiments, we considered the following factors:

e Data Focuses — Time series data consists of sequences of mea-
surements that follow a specific order. Many time series are ex-
pected to exhibit some cyclical behaviors. Such a time series
normally features several properties. Amplitude measures the
magnitude of the peak of a cycle against the mean of a cycle
(or sometimes a predefined base value). Frequency measures the
number of cycles in a pre-defined period. Phase shift measures
the extent of displacement of one cycle in relation to the preced-
ing cycle, or a predefined reference cycle.

o Task Goals — The goals of time series analysis and pixel-based
visualization typically include the measurement of difference and
distribution, cycle length at different scales and the identification
of peak, trend, seasonality, and irregular fluctuations.

o Types of Changes — There are many types of changes, including
existence change (e.g., adding or deleting an object), attribute
change (e.g., color, size, etc.), layout change (e.g., relative spatial
relationship between objects), and semantic identity change (e.g.,
a square to a triangle) [26].

e Block Resolution — The number of pixels in each block can vary
from application to application. In this work, we explore a rela-
tive small range of variation, due to scalability of both stimulus
design and test length. This limit is compensated by the varying
of block hierarchy.

e Block Hierarchy — Blocks can be the primitive blocks, such as
the monthly blocks in Fig. 1b-c and composite blocks such as
yearly row in Fig. 1la. More complex hierarchy is exhibited in

-40 +40
(a) Red White-CIE L*u*v*

-40 +40
(b) Red White-sRGB

-40 +40

(c) Blue-White-Red Color Scale

Fig. 3. The three color sequences used in experiments 1, 2 and 3.

Fig. 2a, while the hierarchy in Fig. 2b is feature-dependent. In
this study, we focus on the basic primitive blocks and composite
blocks at one hierarchy upper.

e Colormap — There are many properties of colormaps, including
the number of principle colors, and colorimetric transformation.
In this work, we had a fixed colormap in the first user study,
and examined a small number of foundational variations in the
second and third user studies.

All of these factors could influence the perceptual load of a task.
We thus designed our first user study, to capture the variation of differ-
ent tasks. As it is not feasible to explore all combinations of different
factors, we designed five tasks to reflect typical tasks in pixel-based
visualization for supporting time-series analysis. We found noticeable
performance variations between tasks, which likely reflect the differ-
ent levels of perceptual loads. We then chose two tasks with the best
and worst performance for detailed investigation in subsequent stud-
ies (studies 2 and 3). Performance was assessed by analyzing both
accuracy and reaction time (RT). However, in Studies 1 and 3, RT re-
sults were collected as a secondary factor because participants were
encouraged to focus on accuracy and were allowed to take as long as
they wished to perform the tasks. These RT results are thus prone to a
larger variance, and their evidential contribution should be treated with
caution. The three studies are described in the following sections.

5 COLOR MAPS

In the choice of our color scales we followed the taxonomy provided
in [2] and the ColorBrewer guidelines [12] (in particular for color-
blind friendliness). To guarantee a consistent representation of the
structure in the data we choose isomorphic colormaps. By design the
generated stimuli mimic the output from a weather model comput-
ing the variation in relative temperature over a geographic region. The
structure of this low spatial-frequency temperature variations over a re-
gion, and tasks, which required mental integration of the color-mapped
values especially for resolution levels > 1, made us choose low fre-
quency colormaps therefore guaranteeing a uniform luminance and a
monotonically increasing saturation.

6 USER STUDY 1

The purpose of this study was to assess accuracy in temperature related
judgments as a function of block resolution and specific task demands.

6.1 Participants

Twenty four participants (9 female, 15 male) took part in this experi-
ment in return for partial course credit or a £5 book voucher. Students
were recruited from the Swansea University community, from a vari-
ety of disciplines including Psychology, Humanities, Engineering and
Economics. Ages ranged from 18 to 46 (Mean=27.39, SD=5.97). All
participants had normal or corrected to normal vision and were not in-
formed about the purpose of the study at the beginning of the session.
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Table 1. User Study 1. Tasks description and relative complexity.
Task | Question Unit | Task Goals Data Focuses | Type of Change | Block Hierarchy | Chance
1 Which month is the hottest? Month glef;irence, amplitude attribute primitive 1/72
2 Which month is followed by a sudden Month difference, amplitude implicit attribute primitive 1/66
change in temperature? trend
3 Which year is the hottest on average? Year g;f;lirence, amplitude attribute composite 1/6
4 Which year has an irregular pattern? Year irregula}r phase shift existence, layout composite 1/6
’ fluctuations ’
Which year has most frequent changes distribution, . .
5 between hot and cold months? Year seasonality frequency existence, layout composite 1/6

6.2 Apparatus

Visual stimuli were created using custom software that was written in
C++ in conjunction with Qt. Stimuli were saved as static images and
presented to participants using a custom made interface. Experiments
were run using Intel® dual core PCs running at 2.13 GHz, with 2 GB
of RAM and Windows XP Professional. The display was 19” LCD at
1280x1024 resolution with a 32bit SRGB color mode. Each monitor
was adjusted to have same brightness and same level of contrasts. Par-
ticipants interacted with the software using a standard mouse at a desk
in a dimmed experimental room.

6.3 Stimuli

A total of 120 stimuli were used in this study, and they were organized
as 5 groups for different tasks. The 24 stimuli were further divided into
four levels, each with 6 stimuli. Each stimulus is a 6 x 12 image grid
as shown in Fig. 4, and it corresponds to a unique temperature dataset.
The datasets were designed to represent the temporal distribution of
12 monthly temperature samples from a fictional territorial area spread
over a period of 6 years. Temperature datasets were created artificially,
and mimicked, as far as possible, real temperature distributions taken
from [22]. Our artificial temperature range varied from -40 to +40
degrees.

For each temperature value, a 400 x 400 PNG uniform pixel block
was created (LO block, see Fig. 5a). Colors were determined based
on a white-to-red gradient mapping as shown in Fig. 3a. This map-
ping has proven to be colorblind friendly in accordance to the guide-
lines provided in [12]. Color mapping was performed using a two step
conversion process: first from a temperature value to a CIE L*u*v*
value, and then from an L*u*v* value, via the CIE XYZ color space, to
gamma-corrected SRGB value for display on sRGB calibrated screen.
For this white-to-red CIE L*u*v* color space transformation we used
standard correction formula as in [20]. The value of the reference

Task |
Related WHICH MONTH IS THE HOTTEST?
Question Months
uu--.......-
e i I

--Illlllllln
 EEEENENEE -
i EEEEEE W

Next

Next Button

Fig. 4. User Study 1. User Interface Description.

white chosen for the present study was the maximum monitor white
as in [34]. From each L0 block, three higher resolution blocks at lev-
els 1, 2, and 3 (L1, L2 and L3 blocks, see Fig. 5b-c-d) were created
iteratively. These L1, L2 and L3 blocks were generated by using a
quadtree, with the LO block as the root. The nodes of each quadtree
at level L > 0 contained the pixel values for the block at resolution
L, and these values were computed from values at level L — 1 using a
midpoint displacement algorithm with roughness factor equal to 0.5.
The background color was chosen to convey neutrality in relation to
the color information within the grid quadrants.

6.4 Tasks

Participants performed five main tasks each probing a specific aspect
of the exploratory process typically conducted by scientists. Table 1
summarizes the main design attributes of the five tasks as outlined in
Section 4. For each task, it lists the question asked, the unit of response
(month/year), the nature of the task demands, the nature of the time
series phenomena, the nature of the evaluation performed, the nature
of the target response and the overall probability of a correct answer
via random guess.

Task 1 involved visual search for a unique target, the hottest month,
within the grid. Target months were designed to have at least a 15%
magnitude difference from the next nearest distractor.

Task 2 involved estimating temperature changes between consec-
utive months, in order to locate the largest such increase across the
whole display. Temperature increases always occurred from left to
right. Target pairs were designed to have at least a 20% magnitude dif-
ference between each other, compared to 10% for the nearest distractor
pair. In Tasks 1 and 2, users were asked to indicate their response by
clicking with the mouse over the target month. The comparison in
Task 2 is based on the evaluation of changes between two neighboring
blocks. Such changes are not explicitly given, and we hence call such
an attribute an implicit attribute. The participants have to carry out two
levels of change evaluation, first between two neighbors in each pair,
and then between changes taking place in different months and years.

Task 3 required participants to evaluate which year was the “hottest”
on average. For this and the remaining 2 tasks, the selection of any
month within a row resulted in the selection of the entire row/year.

Both Tasks 4 and 5 required the participants to search for the year
with a pattern of behavior not synchronized with the others. Task 4 in-
volved detecting a difference in phase between the signal characteriz-
ing the target and all other years. Non-target years were created using
sine or cosine functions with a uniform phase shift as their only dif-
ferentiating feature. Target stimuli were created using functions with
non-uniform or opposite phase shifts to the distractors.

Task 5 required users to detect and count temperature transitions
within each year. Target years included at least 20% more transitions
than the nearest distractor year. Transition periodicity was inserted
into the data in the form of functions with different frequency. Target
stimuli were designed to be high frequency sine or cosine functions
while distractors followed a normal distribution.
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(a) LO block (b) L1 block (c) L2 block (d) L3 block

Fig. 5. Stimuli samples at 4 different levels of resolution.

6.5 Procedure

The experiment began with a brief overview read by the experi-
menter using a predefined script. Detailed instructions were then given
through a self-paced slide presentation. Brief descriptions of the re-
quirements of each task were also provided (at each terminal).

Each participant completed a total of 120 trials, separated into 5
blocks of 24 trials. The 5 tasks were always completed in sequential
order, as we wanted to block month and year trials and to avoid con-
founding task difficulty with initial familiarization with the scenario.
For a similar reason, we also controlled the presentation order of block
resolution. Within a given task, all trials at level O were completed be-
fore moving on to level 1, then level 2 and finally level 3. Randomness
was introduced at “year” level, rows were randomly swapped between
each display to reduce the learning effect.

Specific instructions were given onscreen before each task and 12
practice trials were also completed. At the end of each task, partic-
ipants took a short break. When all tasks had been completed each
participant completed a short debriefing questionnaire and were pro-
vided with information about our experimental goals.

6.6 Results

Performance in this experiment, as a function of task and block reso-
lution level, is summarized in Fig. 6. There is clearly noticeable vari-
ation in performance across tasks, and the magnitude of this variation
is more striking than we expected. As shown in Fig. 6a, peak accu-
racy performance is in Task 1, with 76% on average across all 4 levels,
followed by 72% for Task 3, 65% for Task 5, 52% for Task 4, and
conspicuously 39% for Task 4. Reaction time patterns (Fig: 6b) show
a similar trend show a similar trend where Task 3 leads to fastest av-
erage responses, at 4.8 sec., followed by Task 1 at 6.2 sec., Task 5 at
6.5 sec., Task 4 at 11.2 sec. and Task 2 at 15.0 sec. The impact of
block resolution appears to be less clear-cut, with the largest change in
performance occurring in Task 1, where uniform patterns gave rise to
an accuracy advantage of around 10% and a speed decrease of several
seconds. Overall, the pattern of accuracy and reaction time data show
no hint of a speed/accuracy tradeoff.

To explore these patterns in more detail a 5 (Task) x 4 (Level) re-
peated measures analysis of variance (ANOVA) was used to examine
the accuracy and the reaction time data.

For accuracy data, there were main effects of both Task,
F(4,92)=21.5, p < 0.001, and Level, F(3,69)=5.2, p < 0.001, and no
interaction. To further examine the impact of Task, we computed pair-
wise comparisons of all means, using Bonferroni correction to adjust
for multiple testing. This indicated that performance in both Task 2
and Task 4 were significantly lower than in the other three tasks (all
ps < .05) but were not statistically different from each other. No other
comparisons were significant. To examine the effect of levels upon
each task, we ran separate one-way repeated measures ANOVAs. In
Task 1, there was a main effect of level, F(3,69)=9.5, p < 0.001. Ac-
curacy at level 0 is consistently better than those at levels 2 and 3, but
the difference against Level 1 is not statistically significant. Level 1
stimuli also led to better accuracy than those at level 2, but not com-
pared with Level 3. For the accuracy of other four tasks, there were no
other reliable differences.

For reaction time data there were main effects of both Task,
F(4,92)=29.6, p < 0.001 and Level, F(3,69)=14.1, p < 0.001, and
no interaction. One-way ANOVAs showed a consistent main effect

User Study 1
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Fig. 6. User Study 1. Overall accuracy and reaction time for the four
levels per task. Error bars show standard error.

of level for Task 1, F(3,69)=10.6, p < 0.001, with comparison of
means indicating that responses to level 1 were slower than all other
levels. Task 2 also showed a main effect of level, F(3,69)=3.3, p <
0.05, which appears to be driven by rapid responses to level 3 stimuli
(p=.05). The Task 4 main effect, F(3,69)=6.9, p < 0.001, is driven by
slow responses to level 0 stimuli, although this was only reliably dif-
ferent from level 2 responses. Finally, Task 5 responses were affected
by level, F(3,69)=18.9, p < 0.001, with levels 1 and 2 being slower
than levels 3 and 4.

6.7 Discussion

The main purpose of Study 1 was to provide an initial assessment as
to how the task performance is affected by the nature of tasks and
the different levels of block resolution. From Fig. 6, we can observe
the difference between different tasks, suggesting different perceptual
load because of the task characteristics shown in Table 1. Meanwhile,
the cost associated with higher resolutions in all tasks was modest,
never exceeding a 6% increase in errors. In general our users were able
to extract monthly or yearly averages of (the increased) resolution.

Results showed a clear per task variation in performances, tasks that
required searching for specific trends, either at the month or year level
(Tasks 1, 3 and 5) were performed well, those that required processing
of change or detection of seasonal variations across the display gave
rise to high error rates.

The surprising finding in Study 1 was that the performance of Task
2, in both accuracy and reaction time, was very poor. We had not
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Fig. 7. User Study 2. Examples of stimuli pairs seen on each trial
for the four categories in both white-red (a-d) and blue-white-red (e-h)
conditions.

expected performance to drop below 40% correct, though this is still
much higher than the chance of a random guess (1.5%). Note we
cannot compare the perceptual load with tasks 3, 4 and 5 directly based
on the results in Fig. 6, as they have a much higher chance of a correct
answer via random guess (17%).

In addition to the empirical results, post-hoc discussions with the
users also indicated that this task was particularly difficult. Although
we had designed the target change to be at least 20% larger than the
next nearest change in temperature, many users reported that locating
the target change was extremely difficult, while others reported iden-
tifying multiple possible targets with no way to distinguish between
them. Such large variation in performance highlights the relationship
between task load and visual characteristics of a display. Therefore
we chose Task 1 and Task 2 for further inspection as the two tasks
with highest and lowest performance results. In the following studies,
we tried to establish whether other aspects of the displays, such as the
context or the color spaces, in addition to the change task itself, might
be contributing to this pattern of results.

7 USER STUDY 2

In order to explore the source of the errors in Task 2 of the previous
study, we made a number of design modifications aimed at increasing
the diagnostic power of the experimental procedure. Specifically, we
removed the search component of the task, focusing more directly on
assessment of change, reduced the number of block resolutions levels
from four to three, and sampled the color space in a more comprehen-
sive manner. More details in these modifications are provided below.

7.1 Participants

There were 21 participants recruited for this study (4 male and 17 fe-
male), each took part in this experiment in return for partial course
credit or a £5 book voucher. Students were recruited from the Swansea
University community, again from a variety of disciplines. Ages
ranged from 18 to 39 (Mean=21.76, SD=4.18). Participants were ran-
domly assigned to one of three experimental conditions, with 7 par-
ticipants in each group. All participants had normal or corrected to
normal vision and were not informed about the purpose of the study at
the beginning of the session.

7.2 Apparatus and Stimuli

Visual stimuli were created using the custom software written in C++,
with Qt as graphics library used in Study 1, which mapped a -40 to
+40 temperature range into the appropriate color space (see details
of each condition below). Stimuli were saved as static images and
presented to participants via custom written MATLAB routines using

Psychophysics Toolbox Version 3 (PTB-3) [5]. Presentation was con-
trolled using a Macintosh G5 computer running at 2.1 GHz, with 4
GB of RAM and OSX 10.4.2. The monitor was a color-calibrated 21”
cinema display (visible area 41cm by 30cm) with a resolution of 1024
x 768 pixels and an effective refresh rate of 75 Hz. Participant re-
sponses were recorded via a standard keyboard at a desk in a dimmed
experimental room.

7.3 Task Design and Procedure

On each trial, users were presented with two pairs of images (one pair
in the upper part and one pair in the lower part of the screen, see Fig. 7)
representing the change in temperature between consecutive months.
Users had to indicate which pair contained the greatest increase in tem-
perature by pressing either ”T” or ”B” for top and bottom respectively.

The size of the target change was randomly selected to be either 12
or 16 degrees. The distractor change was randomly selected to be 4
or 8 degrees. Target pairs had an equal probability of occurring in the
upper or lower part of the screen. Trials were organized into four cate-
gories, depending on the section of the temperature range that each
pair originated from. These categories were labeled hot-hot (HH),
cold-cold (CC), hot-cold (HC) and cold-hot (CH). The first member
of each Hot pair was randomly selected to be within the range +2 and
+12 degrees, and the first member of each Cold pair between -32 and
-28 degrees. These constraints were designed to sample the mid re-
gions of each temperature range while avoiding the end points. As
before, the block resolution was varied. This time only 3 levels were
used and were randomly intermixed rather than blocked. The order of
trial presentation was randomly generated on a user-by-user basis.

Participants were assigned to one of three groups; Red-White RGB,
Red-White CIE L*u*v* or Blue-White-Red sRGB. Each participant
was presented with a total of 480 trials, presented in blocks of 60, fol-
lowing which the participants were given the option of a short break.
In a change to the previous study, the resolution of the images was
randomized, as was each of the four conditions (hot-hot, cold-cold,
hot-cold, cold-hot), leading to a 3 (conditions) x 3 (block resolution
level) x 4 (categories) repeated measures design. All other aspects of
the procedure were the same as described in Section 6.5.

7.4 Condition 1: White-Red in CIE L*u*v*

The users in Condition 1 were shown stimuli that were generated us-
ing the same color mapping as in Study 1. Our purpose was to see
whether the high error rates measure in Task 2 of Study 1 would be
replicated, and whether our experimental modifications allowed us to
more precisely locate the source of those errors.

7.4

Performance in this experiment, as a function of color category and
block resolution level, is summarized in Fig. 8a and Fig. 8b. When
changes had to be evaluated in pairs from the same category, perfor-
mance was consistently good, exceeding 75% correct and remaining
below RTs of 2 seconds across all resolutions. In both the HH and CC
categories, there appears to be a clear performance advantage, in both
speed and accuracy, for level O representations. When changes across
categories had to be evaluated, however, the story is very different.
Users appear to have a strong bias to select the pair from the colder
category, leading to much slower, chance-level performance in the HC
category. Although performance appears to be excellent in the CH
condition, it seems highly likely that this is an outcome of the general
bias to favour the cold pair.

A 4 (pair color category) x 3 (block resolution level) repeated mea-
sures ANOVA was used to explore these patterns for both speed and
accuracy.

For the accuracy data there were main effects of both Category,
F(3,15)=40.6, p < 0.001, and Level, F(2,10)=4.6, p < 0.05, and no
interaction. Comparison of means indicated that the HC category was
significantly lower than all other categories (all ps < 0.05, accuracy).
No other comparisons were significant. Separate one-way ANOVAs
were computed for each category to more fully explore the effect of

Results
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Fig. 8. User Study 2. Overall accuracy and reaction time for the 3 levels
x 4 conditions of each color space. Three color spaces are White-Red
in CIE L*u*v*, White-Red in sRGB, and Blue-White-Red in sRGB. Error
bars show standard error.

level. This revealed that only the CC category has a reliable main ef-
fect of level, F(2,10)=15.6, p < 0.001. This resulted from performance
in level O being significantly greater than levels 1 and 2.

The reaction time data showed main effects of both Category,
F(3,15)=7.8 , p < 0.01 and Level, F(2,10)=8.0, p < 0.01 and no in-
teraction. Comparison of means showed a significant decrease in per-
formance only between HC and CC categories (p < 0.02). No other
comparisons were significant. Separate one-way ANOVAs revealed
main effects of Level for both the HH, F(2,10)=8.0, p < 0.01, and CC,
F(2,10)=10.1, p < 0.01 reflecting the rapid responses to level O stimuli.

7.4.2 Discussion

Our goal was to try and localize the cause of the poor performance in
evaluating changes during Task 2 of Study 1. The current results indi-
cate errors arise when users need to explicitly compare the magnitude
of changes in pairs from different sides of the temperature range. More
specifically, there is a bias to judge changes in lower temperature pairs
as being greater when compared to a higher temperature pair. If a sim-
ilar bias were present in our previous study, this may have led users to
miss-assign the target change, and even to identify multiple potential
targets.

How can we explain this bias? It has been well established that
physically equal steps in color space are not perceived as such [30, 34].
The visual systems response to certain color and luminance changes is
not linear, but varies according to overall intensity [21]. Psychophys-
ical “laws” such as Weber’s Law and Stephen’s Law describe neatly
how detection varies inversely with the overall intensity of a display.

The standard color mapping and correction we used to create our
stimuli attempts to account for these perceptual effects, essentially by
amplifying changes when intensity levels are high. That is, steps for
each degree of temperature at the lower end of our range are physically
larger than steps at the upper end. Theoretically, this should give rise
to perceptually equalized steps in color space. Clearly, however, our
users place more weight on the overall intensity differences than on
the intended “perceptually uniform” color changes.

The effect of block resolution observed in this condition was again
similar to that observed in Study 1. Block resolution did not appear to
be the source of errors, a significant decrement in performance could
be measured only between level O and other levels.

7.5 Condition 2: White-Red in sRGB

If the errors we have observed in the previous studies originate in our
attempts to use a perceptually uniform color space, or at least in our
users assigning more weight to intensity differences rather than per-
ceived color changes, can we improve performance by using a physi-
cally linear color space? To test this idea, we generated a new set of
stimuli using uncorrected SRGB values. In these stimuli, the physi-
cal difference in intensity from degree-to-degree is uniform across the
whole temperature/color range. All other aspects of the experiment
were identical to Condition 1, except data was collected from 7 new
users.

7.5.1 Results

Performance in this experiment, as a function of color category and
block resolution level, is summarized in Fig. 8c and Fig. 8d. It is
clear from the figure, that overall performance has not been improved
by removing the CIE L*u*v* mapping, rather the location of the bias
has shifted. Again, when pairs came from the same temperature range
(HH and CC), performance was rapid and near to ceiling. Now though,
the slow, error-prone responses have shifted to the CH category. This
indicates that users in this condition have a strong bias to see changes
in the warmer part of the range as larger.

The same 4 (pair category) x 3 (block resolution level) repeated
measures ANOVA was again used to explore both accuracy and reac-
tion time.

For accuracy, there were main effects of both Category,
F(3,15)=62.4, p < 0.001, and Level, F(2,10)=46.7, p < 0.001. There
was also a significant interaction between these factors, F(6,30)=7.6,
p < 0.001. This interaction would appear to arise due to the large in-
crease in errors between levels in the CH category. To further explore
the main effect of category, a comparison of all means was conducted.
This indicated that performance in the CH category was significantly
worse than in all other categories and that performance in the HC cat-
egory was significantly better than both the CC and the CH conditions
(all ps < 0.05). A similar comparison for the main effect of level in-
dicated that performance with level O stimuli was significantly better
than with level 1 or 2 stimuli (ps < 0.05). To further examine the inter-
action between Category and Level, separate one-way ANOVAs were
conducted for each color category. This confirmed the presence of a
level 0 advantage in accuracy, in all categories except HC (all Fs >
6.0, ps < 0.05).

For reaction time, there was only a main effect of Category,
F(3,15)=24.4, p < 0.001. Means comparison indicated that perfor-
mance in the CH category was significantly slower than in any other
category. There was a trend for level O responses to be faster, although
this did not reach significance, p=0.09.

7.5.2 Discussion

Rather than reducing the overall rate of errors, the physically uniform
color space simply shifted them in a rather predictable manner. That is,
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the tendency of users to over-estimate the changes occurring at the hot
end of our temperature range (i.e. when overall stimulus intensity is
lower) is precisely the pattern of results that would be predicted based
on the non-linear properties of the visual system. Simply ignoring
these limitations, would not seem to be an option, at least given the
current task. As in the previous condition, a small, but reliable cost
of increasing block resolution was again present in this task between
level 0 and other levels.

7.6 Condition 3: Blue-White-Red in sRGB

In the final condition of this study, we wanted to explore one simple
option for reducing the errors seen in conditions 1 and 2. Our idea
was to effectively compress the overall range of intensity values by
using two color hues instead of one. We re-mapped temperatures lower
than zero using a White-Blue scale and temperature above zero using
a White-Red scale (see Fig. 3c). This re-mapping, together with the
target selection method employed in the previous two studies, ensured
that pairs across all four of our color categories were now much more
closely matched in terms of overall intensity. Would this modification
improve overall performance?

7.6.1

The results from this manipulation are shown in Fig. 8e and Fig. 8f.
It is immediately obvious that systematic errors have been reduced.
Performance in all Categories and across the three levels remained
close to ceiling levels. The same 4 (pair category) x 3 (block res-
olution level) repeated measures ANOVA used in the previous two
experiments was applied to both speed and accuracy data. For accu-
racy there were no main effects, nor interactions. For the reaction time
data, there were main effects of both Category, F(3,15)=3.4, p < 0.05,
and Level, F(2,10)=5.9, p < 0.05, but no interaction. The Category
effect would appear to reflect slightly faster responses for the within
category decisions of HH and CC, although further analysis revealed
no significant differences. The effect of Level was also limited to the
HH, F(2,10)=4.5, p < 0.05, and CC, F(2,10)=5.4, p < 0.05 conditions.
Although this pattern would seem to favor faster responses for level 0
stimuli, further analysis could not confirm this pattern.

Results

7.6.2 Discussion

Conditions 1 and 2 of this study demonstrated that user responses can
sometimes be biased by properties of a color space other than those
intended by a given task. It seems likely that performance in Task 2
of Study 1, were also caused by such factors. Although our tasks were
aimed at detecting changes in color saturation, observers were highly
sensitive to changes in intensity. The results of condition 3 suggest
that one possible solution, at least in this specific task, would be to try
and compress the range of intensity values, in our case, by introducing
a second hue. No block resolution effect in this condition was reported
even with near ceiling levels of performance.

8 USER STUDY 3

In our final study, we examined more fully the influence of block reso-
lution on the participants’ performance. In Studies 1 and 2, there have
been small but reliable advantages for the uniform patterns of level 0
versus other levels. In Study 1, this advantage was most apparent for
the simple task of identifying the hottest month (i.e., Task 1). Here,
we return to this particular task with a slightly modified procedure, to
explore whether this advantage is truly robust. The same design frame-
work described in Section 6 was adopted and interface, interaction and
apparatus remained unchanged.

8.1 Participants

Eleven participants (7 female, 4 male) took part in this experiment in
return for partial course credit or a £5 book voucher. Students were
recruited from the Swansea University community as in the previous
studies. Ages ranged from 18 to 43 (Mean=27.9, SD=6.36). All partic-
ipants had normal or corrected to normal vision and were not informed
about the purpose of the study at the beginning of the session.

8.2 Stimuli

Stimuli used in Test 1 were modified for this study. The changes are:
o We kept the three lower levels of resolution but removed the
highest level (level 3), since it was found in Study 1 that there
is no sufficiently noticeable difference between resolution levels
2 and 3.

e We randomized the positions of pixel blocks at each level, rather
than following a seasonal pattern, as in User Study 1, where
the positions of pixels blocks were governed approximately by
a cold-to-warm-to-cold annual cycle.

e Stimuli were divided into 4 basic bands of the temperature range,
labeled as Very Hot (VH, target chosen from the hot region ex-
treme between 70% and 90% of gradient), Hot (HO, target cho-
sen half way of hot region between 50% and 70% of gradient),
Warm (WA, target chosen close to mid region between 30% and
50% of gradient), and Cold (CO, target chosen half way of cold
region between 10% and 25% of gradient). We avoided to chose
target/distractor from the extremes of the gradient to compensate
the difficulty of detecting changes in these areas.

Same as for Study 1 the CIE L*U*V color space was used. Target
months were still required to have at least a 15% magnitude difference
from the distractors.

8.3 Procedure

The experiment followed the same overall procedure detailed in Sec-
tion 6.5. For the purpose of this study though each participant was
presented with a total of 288 trials, presented in blocks of 72, follow-
ing which the participants were given the option of a short break. The
order in which the four temperature bands were shown was also ran-
domized.

8.4 Results

Fig. 9 shows the performance summarized as a function of block res-
olution and temperature band. It is clear that the performance was
extremely good, remaining above 90% in all conditions. There is
not much noticeable difference in terms of mean accuracy, though
a 4 (temperature band) x 3 (block resolution) repeated measures
ANOVA revealed main effects of Level, F(2,20)=4.5, p < 0.05, Band,
F(3,30)=9.0, p < 0.001, and their interaction, F(6,60)=4.8, p < 0.001.
Further analysis of the main effects revealed that the performance at
level 0 (M=97%) was only marginally better than at either level 1
M=97%; p=0.08) or level 2 M=96%; p=0.08). The effect of tem-
perature band related to the fact that the performance in the middle
two bands were slightly better than at either the Very Hot or Cold
extremes (ps < 0.05). To explore the interaction, we ran separate one-
way ANOVAs to examine the pattern of block resolution at each tem-
perature band. This revealed that the only reliable difference occurred
in the Cold temperature band, F(2, 20)=8.0, p < 0.001, where level 0
performance was approximately 6% better than at levels 1 and 2. A
similar trend was seen for the Hot temperature band, although this did
not reach significance, F(2, 20)=2.9, p = 0.08. Reaction time analy-
sis via 4 (temperature band) x 3 (block resolution) repeated measures
ANOVA revealed main effects of Level, F(2,20)=3.7, p < 0.001 (RT),
Band, F(3,30)=46.4, p < 0.001 no interaction was significant. Sepa-
rate one-way ANOVAs to examine the pattern of block resolution at
each temperature band revealed main effect of Level for all bands but
a significant interaction only between level 0 and the other levels (p <
0.001), with an increase of approximately 30%.

8.5 Discussion

The goal of this study was to explore in more detail the impact of res-
olution observed during Task 1 of Study 1. As part of this study, we
also examine the impact of resolution in different color bands. The
current results confirm that there may be a small cost when the res-
olution of pixel blocks increases. However, this effect is a marginal
one in terms of mean accuracy. The presence of a level x temperature
band interaction indicates that this impact is influenced by other fac-
tors. Specifically, our post-hoc analysis suggests that the effect of level
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is more observable in the lowest temperature band (CO) that maps to
a white-to-pale red color band. The Reaction Time results also sup-
port this observation. This indicates that the effect of resolution may
depend on the color band, or at least it may be more apparent in some
color bands than others.

9 DISCUSSION SUMMARY

In this section, we consider the results of three user studies together,
and provide our overall observations, each is accompanied by a sum-
mary of evidence and the suggested practical impact on the use of
pixel-based visualization.

9.1 The Effect of Resolution of Pixel Blocks

Observation. Block resolution has a limited impact on the effective-
ness of pixel-based visualization, when visualization tasks focus pri-
marily on block-level reasoning.

Evidence. In all three studies the effect of block resolution on ac-
curacy was both numerically small (less than 10%) and restricted to
sub-sets of the data. In Task 1 of Study 1, for example, the results
show that it is generally statistically insignificant to differentiate the
effect of different levels. Similar results can be found for the same
category conditions of Study 2 and the cold temperature band of Study
3. There thus appears to be no general or consistent accuracy-cost for
increasing block resolution. In Study 3 that focuses on Task 1, the
observed effect of resolution is marginal in terms of mean accuracy.
Reaction time slowing for increasing resolution was observed in some
conditions, but again, this was relatively modest and not universal.

Practical Impact. This confirms that pixel-based visualization is
a cost-effective, and to a large extent scalable, technique. Although
the user studies involved only three or four levels of resolution, the
studies have clearly indicated that the impact of levels upon accuracy
is expected to be small. There is a noticeable impact on reaction time
when changing from level O to other levels, but there is no suggestion
that the trend of decreasing performance will continue along with the
increasing resolution.

Limitation. We focused only on block level reasoning in our
user studies, and did not experiment with the spatial reasoning within
blocks (e.g., determine how two hottest pixels in different blocks are
spatially related). Our finding about the lack of effect of levels should
not be generalized to spatial reasoning. Further study is necessary to
determine the effect of resolutions for such a task.

9.2 The Effect of Difference in Tasks Demand

Observation. There are noticeable effects, depending on the task
complexity and cognitive load to perform the task. The order of task
difficulty can be expressed as (i) Task 1 < Task 2 and (ii) Task 1 <
(Task 3, Task 5) < Task 4.

Evidence. User study 1 confirms that the performance of Task 2
and Task 4 are significantly worse than other tasks in terms of both
accuracy and reaction time.

The results in Section 6.6 confirm both (i) and (ii). It is not con-
clusive when comparing Task 2 with Tasks 3, 4 and 5 due to the sig-
nificant difference in the chance of a correct answer by random guess.
Meanwhile, taking the chance into account, Task 1 is much easier than
Tasks 3, 4, and 5.

Practical Impact. Pixel-based visualization is effective for some
tasks but not always effective for others. Some tasks can be performed
poorly, with a below average accuracy. The poor performance is likely
related to the difficulties in quantifying, comparing, and reasoning
with changes of pixel blocks. As a guideline, it is recommended that
users should be made aware of the possibility of poor accuracy when
performing some tasks using pixel-based visualization. As a disci-
pline, we need to develop new visualization techniques to address such
difficulties.

Limitation. We have not precisely established the reasons for the
poor performance in some tasks. Further study is necessary, especially
with a focus on the cognitive load of different tasks.

9.3 The Effect of Color Mapping

Observation. In pixel-based visualization, the choice of color space
affects the task performance. The CIE L*u*v* color space is not as
perceptually uniform as stated in the literature. The White-Red col-
ormap in CIE L*u*v* has no clear advantage over that in RGB color
space. In pixel-based visualization, using two or more color gradi-
ent bands does improve the performance in accuracy, but there is no
evidence to suggest any improvement in reaction time.

Evidence. User study 2 confirms these findings. Similar findings
on using two color gradient bands were reported previously [34].

Practical Impact. Qualifying changes in any color space is an
error-prone task, and should be exercised with caution. For a large
data value range coupled with a need for evaluating relatively small
changes, multiple color gradient bands can improve the detection of
just noticeable difference (jnd) as well as the comparison between
changes taking place at different data ranges, provided that in each
band the color distance increases significantly between every two
neighboring data values.

Limitation. User study 2 only examined Blue-White-Red color
map. It is not appropriate to generalize this finding to many bands.
In this study, we considered that the white color was the middle point
of zero degree, which is the middle point of the data value range as
well. Further study is necessary to understand of the effectiveness of
multi-color gradient bands for a data value range without semantically
meaningful breaking points or with irregularly-spaced breaking points.

10 CONCLUSIONS AND FUTURE WORK

In this work we conducted three user studies on aspects of pixel-based
visualization, resulting in a quantitative analysis of task and block vari-
ations in using such a technique. Our results are most relevant to the
users and developers of pixel-based visualization systems, particularly
those working with time series analysis (see Section 3).

Based on the four levels examined, we can conclude that pixel-
based visualizations do not suffer from noticeable impact due to res-
olution variation. The perceptual load associated with different tasks
can impact upon the performance of the users in a more noticeable
manner. For example, Task 2, which reflects a simple day-to-day visu-
alization task in many applications, exhibited a high perceptual load,
resulting in poor performance. Study 2 also showed that common
judgements, such as estimating change, sometimes interact in unex-
pected ways with particular display characteristic.

This suggests that users should be provided with careful guidance
as to the nature of the errors that could potential be encountered in
a specific tasks. Based on the results obtained in this work, we have
been discussing our findings with remote sensing researchers. We also
hope to further explore our findings as to how the appropriate selection
of colormaps can alleviate task problems in more complex practical
situations. We also believe that the current empirical work makes a
useful first step towards understanding some of the factors that affect
the usability of hierarchical pixel-based visualizations.
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