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Smooth, Volume-Accurate Material Interface Reconstruction

John C. Anderson, Member, IEEE , Christoph Garth,

Mark A. Duchaineau, Member, IEEE , and Kenneth I. Joy, Member, IEEE

Abstract—A new material interface reconstruction method for volume fraction data is presented. Our method is comprised of two

components: first, we generate initial interface topology; then, using a combination of smoothing and volumetric forces within an

active interface model, we iteratively transform the initial material interfaces into high-quality surfaces that accurately approximate the

problem’s volume fractions. Unlike all previous work, our new method produces material interfaces that are smooth, continuous across

cell boundaries, and segment cells into regions with proper volume. These properties are critical during visualization and analysis.

Generating high-quality mesh representations of material interfaces is required for accurate calculations of interface statistics, and

dramatically increases the utility of material boundary visualizations.

Index Terms—Material interface reconstruction, volume fractions, embedded boundary, active interfaces, segmentation.

F

1 INTRODUCTION

I NTERFACE reconstruction and tracking is an important

problem with broad application. Interface problems arise

in combustion applications, climate studies, and astrophysics.

Scientific simulations of fluid transport naturally produce

interfaces – the boundaries between sloshing fluids in tanks,

between cavity and casting in mold filling applications, and

waves breaking on shorelines.

The material interface reconstruction (MIR) problem is to

construct smooth, continuous boundary interfaces between

regions of homogeneous materials. Depending on the type of

input data two major MIR problems exist: reconstruction based

on labeled voxels or vertices (MIRLV), and reconstruction

based on cell-based volume fractions (MIRVF). This paper

addresses the latter.

In many of the above applications it is necessary to

reconstruct interfaces between multiple material regions of

known volume. Multi-fluid hydrodynamics simulation codes,

for example, often produce datasets in which cell-centered

scalar quantities report the fractional volume of each material

contained within the cell. In this paper we develop a method

to create high-quality MIRVF reconstructions – i.e., boundary

interfaces between different material regions – for visualiza-

tion and analysis purposes in applications that depend upon

volume fraction information.

Volume fraction data exists within a spatial domain that has

been decomposed into a finite grid of cells C. In an n-material

setting, each cell c∈C has an associated tuple Vc =(v1, . . . ,vn),
where the value vi is the fractional volume of material i within

the cell. Volume fractions are non-negative (vi ≥ 0), and form

a partition of unity over the volume of the cell (∑n
i=1 vi = 1).

Mixed cells have multiple non-zero volume fractions, while

pure cells contain only a single material.
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Material interface reconstruction using volume fractions is

an under-constrained problem. There are an infinite number

of boundary interfaces that can satisfy a given set of volume

fractions; consider Figure 1. Several attempts have been made

to recast the MIRVF problem into a MIRLV, isosurface-like

problem (as discussed in Section 2); but this creates significant

errors and reconstructions that are inconsistent with the input

data. After some study, one realizes that material interface

reconstruction based on volume fractions is fundamentally dif-

ferent from the problem of reconstructing material interfaces

from labeled voxels without volume fraction information. The

primary difference is that there are no explicit material labels

at the mesh vertices, only cell-based volume fractions. Volume

fraction information must be used by MIRVF algorithms

to generate interfaces that segment space into homogeneous

material regions with specific volume.

Our goal is to develop a high-quality MIRVF algorithm

for visualization and analysis, that can be broadly applied to

volume fraction data from many sources. In this setting, the

reconstructed material interfaces should be piecewise linear,

continuous across cell boundaries, and segment cells into

regions that approximate the given volume fractions with low

error. Generating high-quality, volume-accurate material inter-

faces allows for meaningful calculations of interface surface

statistics such as area and curvature, allows us to texture

accurately the interface mesh with other data items from

the simulations (temperature, pressure, etc.), and dramatically

increases the utility of material interface visualizations.

We introduce a new material interface reconstruction

method based upon a volume-adaptive active interface model

that adjusts an initial boundary approximation toward a better

solution. Our algorithm consists of two general stages:

• We generate the topology of the material interfaces using

a pipeline that includes a rule-based examination of mixed

cells, and a robust discretization method for ambiguous

regions; and,

• We employ a volume-adaptive active interface model

that balances internal curve/surface metrics with external

volume objectives to iterate the interfaces toward a low-

error solution.
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Fig. 1. Four reconstructions for the same volume fraction data.

Section 3 begins by describing some of the difficulties of

topology initialization: each mixed cell must be segmented

into a number of homogeneous material regions based upon

its volume fractions; adjacent pure cells of different materials

must be separated; and interfaces should be continuous across

cell boundaries. Further, the under-determined nature of this

problem that leads to topological ambiguity must be addressed.

We detail a robust topology generation pipeline which satisfies

these requirements for two- and three-dimensional problems

with multiple materials.

Unlike previous methods that force an interface topology

and sacrifice volume-preservation (e.g., by recasting MIRVF as

an isosurfacing-like problem), our approach largely decouples

topology generation from volume preservation. The initial

interface topology that we generate is simply a starting point

from which we can improve our MIRVF solution.

From the initial cell-level interface topology, we create a

piecewise linear surface mesh, as described in Section 4.

We then develop a volume-adaptive active interface model in

Section 5 to update the location of the mesh control points

such that the interfaces approach a low-error solution to the

MIRVF problem. At the heart of this model are smoothing

and volumetric forces that iteratively adjust the surface mesh,

simultaneously attempting to satisfy the volume fractions

prescribed by the initial problem while improving the mesh

quality. Results for 2D and 3D problems are presented in

Section 6.

2 RELATED WORK

Our work focuses upon the reconstruction of material in-

terfaces from volume fraction data by means of evolv-

ing, dynamic interfaces. Section 2.1 discusses past work

in binary- and multi-label surface extraction (MIRLV), as

well as simulation- and visualization-oriented methods for

reconstructing surfaces from volume fraction information –

rather than labels – over a meshed domain (MIRVF). We also

discuss dynamic surface models in Section 2.2 to familiarize

readers with active contour/interface methods – an important

component of our approach.

2.1 Material Interface Reconstruction

Segmented grid data are abundant. The reconstruction of

material interfaces from segmented grid data has been a staple

problem in the visualization community for many years; the

problem, simply stated, is to partition a labeled mesh into

regions with homogeneous material labels (MIRLV). Binary

labelings can be dealt with algorithms based on Marching

Cubes [1], while multi-label data can be handled with ad-

ditional rules and extended lookup tables [2], [3], [4], [5].

Further, the topic of computing multiple isosurfaces through a

mesh has been studied by Nielson and Sung [6]. Beyond case

tables, adaptive particle-based sampling has recently been used

to segment labeled, multi-material data [7].

The problem we address in this paper, on the other hand,

is the reconstruction of surfaces based upon volumetric con-

straints (MIRVF). This class of material interface reconstruc-

tion algorithms has received less attention from the visual-

ization community, however it is an essential component in

the Volume-of-Fluid (VOF) method for Eulerian and arbitrary

Lagrangian-Eulerian multi-fluid hydrodynamic flows [8], [9],

[10]. In a VOF simulation, fractional material volumes are

maintained for each cell. To advance the simulation, interface

geometry is reconstructed in order to calculate the flux of

material between cells. Storing per-cell volumes, rather than

explicit boundary interface geometry, eases the simulation of

complicated flows and provides for a straightforward means

of mass conservation.

Material interface reconstruction methods can be broadly

split into simulation and visualization approaches. The re-

construction methods employed within VOF simulation are

a crucial part of accurately advecting materials [11], and

understandably the focus is upon volume conservation and

convergence. In the visualization setting, the goal is to produce

high-quality surface meshes that approximate the volume

fractions with low error and integrate into the visualization

and analysis framework of existing tools (e.g., [12]).

One of the first simulation methods is Simple Line Interface

Calculation (SLIC), described by Noh and Woodward [13],

where cells are simply partitioned with axis-aligned planes,

such that the total material volume in each cell is correct. The

Piecewise Linear Interface Calculation (PLIC) algorithm of

Youngs [14] is similar to SLIC, however each cell is instead

partitioned by planes aligned to local material “gradients.”

While PLIC is fast and preserves volume fractions, the re-

construction is discontinuous across cell boundaries and thus

not suitable for visualization (see Figure 7(a)). Furthermore,

PLIC is ambiguous for three or more materials due to the

ordering of its binary segmentations.

Pilliod and Pucket [11] describe two modifications to the

PLIC method, both of which use least-squares to minimize the

error of approximately linear interfaces. Garimella et al. [15]

demonstrate how to fix certain local topological inconsisten-

cies in PLIC reconstructions. Dyadechko and Shashkov [16]

and Schofield et al. [17] present interface reconstruction al-

gorithms for volume fraction data augmented with material

centroid information. These methods either inherit the parti-

tioning ambiguity of PLIC, or produce discontinuous interface
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boundaries.

While simulation methods such as PLIC minimize inter-

face geometry and have useful convergence properties, they

are ill-suited for visualization purposes due to the “soup”

of cell-cutting geometry produced. As a result, there are a

number of visualization-oriented MIRVF algorithms. Several

such methods have attempted to recast MIRVF as a multi-

labeled segmentation problem (MIRLV). Bonnell et al. [18],

[19] move the segmentation problem to the dual mesh by

assigning volume fractions from the original mesh’s cells to

vertices of the dual mesh. They calculate intersections using

barycentric interpolation in the space of the volume fractions.

One problem with this approach is that interfaces are not

calculated from the original data, but from a dual grid, which

induces significant error. Meredith averages volume fractions

to mesh vertices, and then utilizes a multi-label isosurfacing-

like approach [20]. Both methods, however, miss small scale

features entirely (e.g., filaments and thin shells), have problems

with many materials, and do not preserve volume fractions.

Anderson et al. [21] take a discrete approach to MIRVF

based upon optimizing the labeling of fractional volume

elements in a discretization of the original spatial domain.

This approach produces useful interface topology with rel-

atively low volume error, but their final boundary surfaces

are “blocky” and not suitable for analysis. Later in this work,

we consider the use of a labeled discretization as a means to

disambiguate interface topology in complex, mixed material

regions.

2.2 Dynamic Surface Models

Active contours – or snakes – were first proposed by Kass

et al. [22]. These contours are parametric curves constructed

with an energy functional that achieves a minimum value

near a “boundary.” Snakes have been utilized in numerous

applications due to their segmentation capabilities [23], and in

three dimensions snakes become an alternative surface recon-

struction method. Cohen and Cohen [24], [25] published the

initial extensions to achieve active surfaces – called balloons –

and used them in three dimensions to extract facial skin from

MRI volume data. Takanashi et al. [26], [27] directly extended

the definition of snakes from curves to surfaces, creating an

“active net” method, which was used to segment and extract

muscle tissue from the visible human dataset. Gibson [28]

uses a three-dimensional surface net to segment binary data

smoothly. Ahlberg [29] also provides a good discussion of the

extension of active contours to three dimensions. In this paper,

we use the term active interface to mean an explicit, dynamic

surface in either two or three dimensions.

The level set method, introduced by Osher and Sethian [30],

represents dynamic interfaces as the zero level set of a time-

dependent, implicit function. By solving the equations of mo-

tion in an adaptive, narrow-band Eulerian grid [31], the level

set method is a computationally efficient solution for a number

of fluid simulation, surface reconstruction, and segmentation

applications – especially where surface topology change is

required (see [32], [33], [34], [35]). Like active contours, the

level set method scales well from two to three dimensions,

and recent work has focused upon handling multiple spatial

regions or fluids; in particular: by using one level set per

region (see [36], [37], [38], [39]), or combinatorically using

n level sets to represent 2n material regions as done by Vese

and Chan [40].

Both explicit and implicit dynamic surface models have

been widely used in a range of applications. We have elected

to use mesh-based active interfaces [29]. As we show in

Section 5, an explicit scheme allows for straightforward cal-

culations of local forces, and updates to the current per-cell

reconstruction error; moreover, meshed surfaces are ideally

suited for later use in the visualization and analysis pipeline.

The choice of an explicit versus implicit surface model is

further discussed in Section 7.

3 MATERIAL INTERFACE TOPOLOGY

Generating the initial surface topology for a volume fraction

problem comprises the first stage of our reconstruction process.

The topology of a surface describes its fundamental shape,

such as the number of components and holes in the surface.

The embedding of the surface refers to a geometric representa-

tion with specific spatial location, often represented explicitly

as a mesh of vertices and faces. In the MIRVF problem, our

initial focus is on generating cell-level interface topology – i.e.,

the general configuration of boundary surfaces within each cell

– for mixed cells in two and three dimensions.

Consider a cell with two materials A and B: possible, valid

topologies might range from a simple continuous interface

between A and B, to multiple disconnected “islands” of A

within B. The embedding of the continuous interface topology

could be linear or curved, and the islands might be round or

ellipsoidal. These are unknowns that make material interface

reconstruction difficult: for any mixed material cell, there are

limitless topologies and embeddings that might satisfy the

volume fractions.

Figure 1 shows four possible reconstructions for the same

volume fraction data. Our solution to the topology problem is

a pipeline of three topology generation methods to initialize

per-cell material interface topology. In the first pass, we use

the boundary method to extract coarse, mesh-aligned interface

topology. Next, the rule-based marching method – which can

handle common binary- and multi-labeled segmentation cases

– is applied across the mixed cells of the volume fraction

data. This stage initializes the topology in cells containing

few materials and simple interface configurations. Finally, the

discretized boundary method is applied in complex regions

where ambiguity caused by fine-scale features or many mate-

rials makes case-table analysis difficult. Figure 2 provides a

working example of this pipeline.

3.1 Boundary Method

Our topology generation pipeline starts with the extraction of

the most basic material interfaces. Pure cells contain only

a single material; we start by extracting interfaces between

pure cells of different material. Given two neighboring cells

c1 and c2, with volume fractions of 1.0 for materials A and

B, respectively, the shared face f between the cells is part
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of the A-B material interface. Such interfaces often arise in

simulation, where it is common to initialize each cell as a

homogeneous material; mixed cells are then the result of

advected material interfaces [8], [9]. These trivial boundaries

are often required to form complete, closed material regions,

and extracting them at this stage simplifies the next stage of

the topology generation pipeline.

3.2 Rule-based Marching Method

While MIRVF is a fundamentally different problem than

isosurfacing, it is often the case that simple topologies are

sufficient for interface reconstruction. In many simulation

codes, for example, a goal is to have approximately linear

interfaces within each cell [11]; correspondingly, the average

cell size is set (or adapted) based upon the expected interface

curvature and complexity. In this situation, the vast majority of

cells in a volume fraction dataset will either have no interface,

or relatively simple interfaces between a few materials. In this

section, we develop a rule-based “marching”-style segmen-

tation method to generate cell-level interface topology based

upon this observation.

The rule-based marching method applies a small set of rules

to a problem’s volume fractions in order to derive a partial

vertex labeling, along with edge and cell characteristics. From

this labeling, it is possible to derive material interface con-

figurations from binary- and multi-label segmentation lookup

tables. One of the primary differences between our rule-based

marching method and previous isosurfacing approaches for

MIRVF is that vertex labels are implied, rather than forced,

from the volume fraction data. Bonnell et al. [18], [19] cast

volume fraction data onto a dual mesh, while Meredith [20]

forces vertex labels through volume averaging. Our approach,

on the other hand, is to construct a partial labeling through

the application of labeling rules; cell-level topologies from

a lookup table are only used when they are suitable in the

context of the problem’s volume fractions.

Consider the labeling L, where L(v) is the label of vertex

v. In a complete labeling, each vertex in an n material

problem has a known material label in the set {1, . . . ,n}.

Partial labelings, however, allow vertices to have an unknown

material:

L(v) =

{

1, . . . ,n if the material at vertex v is known, or

undefined otherwise.

Volume fraction data is without vertex information, and thus

the initial labeling of each vertex is undefined.

The first step of the rule-based marching method is to label

mesh vertices using the volume fraction data. For each vertex

in the mesh we evaluate the following rules:

Pure Cells If all pure cells neighboring vertex v are

of material i, then L(v) = i; if there are

neighboring pure cells of different material,

however, then L(v) is undefined.

Neighborhood Consider the set of materials M common

to all (pure and mixed) cells neighboring

vertex v. If M contains a single material

then the vertex label is set to that material.

These vertex labeling rules are illustrated for the central

vertex in the following diagrams (where material one is red,

and the dashed lines are hypothetical interfaces):

Pure Cells Neighborhood

The pure cells rule is designed to “push” the material of pure

cells onto neighboring vertices, without promoting arbitrary

material precedence. (Note that interfaces between pure cells

have already been extracted by the boundary method.) The

neighborhood vertex labeling rule is useful for labeling ver-

tices in the presence of thin filaments and shells, where the

feature in question spans one or more vertices but not an entire

cell.

From vertices, we move on to the edges of the mesh.

Consider a mesh edge e between vertices v1 and v2. In typical

marching schemes, the number of interface crossings χ along

e is known a priori based upon the vertex labeling: edges

with matching labels have no intersection (χ = 0), while edges

with mismatched labels have one intersection (χ = 1). In the

MIRVF problem more flexibility is required; thin filaments,

shells, fine-scale features, and multiple materials can produce

multiple intersections along a single mesh edge. Here, edges

with matching vertex labels are either not intersected, or

intersected more than once (χ = 0 or χ ≥ 2); edges with

mismatched vertex labels must have one or more intersections

(χ ≥ 1).

Edge labeling rules are used to determine – to the extent

possible – the number of interface crossings along each mesh

edge. In our work, we use the following pair of rules:

Pure Cells The edge e has no intersections if any

neighboring cell along e is pure.

Neighborhood Consider the set of materials M common

to all (pure and mixed) neighboring cells

along the edge e. If M contains a single

material then e has no intersection.

Largely analogous to the vertex labeling rules above, edge

labeling rules are based on the observation that edge inter-

sections are building-blocks for defining material regions that

span cells; i.e., if an edge is intersected by an interface,

then there are at least two materials along that edge and

those materials must be present in the neighboring cells. The

neighborhood rule can also be used to derive certain vertex

labels: if edge e (connecting vertex v1 to vertex v2) has no

intersections, then the labels of its end vertices must match;

i.e., L(v1) = L(v2). For three-dimensional problems these rules

translate naturally to cell faces as well.

Once we have applied the above rules we are left with a

partially labeled mesh. Figure 2(b) shows the results of this

labeling process when applied to the volume fractions derived

from the three-material model problem shown in 2(a). The

majority of vertices were labeled using the pure cells vertex

labeling rule, however the circled vertices were labeled with
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(a) Model (b) Vertex Labeling (c) Multi-label Marching

(d) Discretized Boundary (e) Final Reconstruction

Fig. 2. The first step toward a material interface solution is the generation of initial surface mesh topology. In (a), we show an
example 3-material problem. The rule-based marching method is used to (b) label the vertices and (c) fill in topology from binary-
and multi-label segmentation lookup tables. In (b) the majority of vertices were labeled using the pure cells vertex labeling rule,
however the circled vertices were labeled with the neighborhood rule, and the two vertices marked with an “X” could not be labeled
using our rules. In (c), topology has been filled from the case table shown in Figure 3; blank cells could not be initialized due to
ambiguity. The discretized boundary method is applied in (d) to generate topology for the remaining, uninitialized cells. In (e) we
show our proposed reconstruction after applying volume-adaptive active interface optimization.

the neighborhood rule, and the two vertices marked with an

“X” could not be labeled using our rules.

The next step in the rule-based marching is to generate per-

cell interface topology. As with other marching-style segmen-

tation methods, we iterate over each cell in the mesh incremen-

tally adding surface fragments to our material interfaces. To

find the appropriate surface fragment(s) to add to the interface

for each cell, we perform a lookup using the cell’s labeling

configuration in a binary- or multi-label segmentation table.

Fig. 3. Partial 2D (top) and 3D (bottom) case tables for per-cell
interface generation used in the rule-based marching method.

Consider the cell c. If c has an unlabeled vertex v – i.e.,

L(v) is undefined – then the cell topology is left uninitialized.

Otherwise, if all vertices are labeled, then we perform a lookup

in the segmentation case table. In most cases, the returned

surface fragment(s) from the case table will properly segment

the cell into enough regions to provide for a valid MIRVF

solution. Unlike typical binary- and multi-label segmentation,

however, two situations might occur: the case table might

indicate ambiguity, or more materials might be needed. In

both of these situations the cell’s interface topology is left

uninitialized. To test if more materials are required, let M be

the set of materials with nonzero volume fractions in cell c,

and let M′ be the set of material labels for the vertices of the

cell. If M 6= M′ then c has “residual” material. The implication

is that there are either internal “pockets” of material within the

cell or there are multiple intersections along one or more of

the edges (or faces) of the cell.

Figure 3 partially illustrates the case tables we use to

generate interfaces in 2D (top) and 3D (bottom). We have

created our 2D table to allow multiple intersections along mesh

edges, and for extra material regions within cells in certain

configurations – e.g., a triple point where one edge of the

cell is intersected twice. In the 2D case table in Figure 3,

residual material regions have been colored red. We also mark

cases in the table as “ambiguous” if there are multiple valid
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ways to segment a labeling (consider the ambiguity addressed

by Nielson and Hamann for marching cubes [41], and the

complexity introduced by allowing multiple intersections per

edge). To construct the 2D table we use a recursive scheme that

first labels vertices, then intersects edges, and finally connects

those intersections with interface segments – this process is

straightforward (and finite), because at each stage there is a

limited set of actions that can be performed given a cell’s

current configuration. Constructing the 3D case table is slightly

more involved – however, because its construction depends

upon a more complete view of our topology generation pro-

cess, we postpone that discussion to Section 4.

To generate cell-level interface topology in this stage, the

cell’s vertices must be labeled, the case table must not indi-

cate ambiguity, and the materials provided by the returned

segmentation must match the cell’s material requirements.

Figure 2(c) shows the result of rule-based marching over

our running 2D example. Interface configurations typically

seen in isosurfacing problems, as well as some “T” junctions

between three materials have been captured. Several cells

remain uninitialized, however, either as a result of uncertain

vertex labels, or because an ambiguous choice would have

been required given the available segmentation topologies.

In Figure 2(c), blank cells represent those that could not be

initialized; the final stage of our pipeline, however, is able to

generate topology in these cells.

3.3 Discretized Boundary Method

We solve for the topology of any remaining uninitialized cells

using a discretized boundary method. In this stage of the

topology generation pipeline, we apply the discretized labeling

method of Anderson et al. [21] on a per-cell level. Figure 4

provides an overview of this topology generation method.

Cells that have been left uninitialized by previous stages in the

pipeline are subdivided into small, fractional volume elements

at a discretization resolution D. These “subcells” are then

labeled by a material, where the number of subcells with label

i is proportional to the volume of material i within the cell.

Next, we perform energy minimizing optimization to improve

the labeling; by using a “quenched” Potts-model energy,

the labeling energy will monotonically decrease and rapidly

converge. Here, “quenched” refers to simulated annealing with

a 0 temperature (see [21] for details). Once the labeling has

converged, coincident faces between subcells with different

labels are extracted to become part of the initial material

interfaces. Figure 2(d) illustrates the use of the discretized

boundary method to generate topology within ambiguous cells

left over from the rule-based marching method.

4 INITIALIZATION

At this point in the reconstruction process, each mixed cell

has been attributed an initial cell-level interface topology.

Before applying our volume-adaptive active interface model to

improve the topological embedding, however, a single mesh-

based representation of the interfaces must be created. To

represent the interface, we use a mesh data structure with

vertex-face incidence information (see [42]), which facilitates

(a) Problem (b) Initial State

(c) Swap (d) Converged State

Fig. 4. Overview of the discrete boundary method introduced
by Anderson et al. [21]. The mixed cell with given volume
fractions (a) is discretized and labeled (b). Optimization of this
labeling through swaps (c) results in coalesced regions that
define material boundaries.

merging cell-level interface topologies into a single material

interface mesh.

We begin by combining the interfaces produced by the

boundary and rule-based marching methods. These interfaces

are disjoint and thus easy to merge – the former are derived

from shared cell faces between pure cells, while the latter are

formulated within and between mixed cells. To perform the

merge, the vertices and faces produced during these two stages

are inserted into a single mesh data structure. Next, however,

we must integrate the interfaces produced by the discretized

boundary stage.

In two dimensions, adding the discretized interfaces is

simple. First, we construct a closed, mesh-based representation

of sub-cellular faces produced by the discretized boundary

method. Next, we create the union of this mesh with the mesh

derived from the boundary and rule-based marching stages.

Discarding any degenerate faces – i.e., faces that create a

partition between regions of the same material – will then

yield a consistent material interface mesh. While some mesh

processing is required, the operations to merge topologies

in 2D are fairly straightforward. Figure 2(d) shows material

interfaces (in black) that result from combining interfaces from

the rule-based marching and discretized boundary methods.

In 3D, however, merging meshes can be more difficult;

depending upon the output of the rule-based marching stage

significant re-meshing might be needed to obtain a crack-

free interface. To simplify our implementation and avoid re-

meshing, we construct our 3D case table in such a way that

the surfaces returned from rule-based marching can be easily

joined with interfaces produced during the discrete boundary

stage. This construction process is directly based upon the
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work of Hege et al. [2] (however, without a simplification

step); here we describe the initialization of a single entry in

the 3D case table.

Given a hexahedral input cell, we label the cell’s eight

vertices according to the table entry being considered. Next,

the cell is discretized at a resolution D matching the resolution

used in the discrete boundary stage of topology initialization.

The vertex labels are then used to interpolate a probability

function for each label to the inside of the cell (sampled at

the subcells in the discretization). This probability function

indicates how strongly each subcell “belongs” to a label.

After interpolation, each subcell is attributed a material corre-

sponding to the label with maximal probability. (Note that for

binary-labeling cases we slightly bias the probabilities toward

the label with lower index to produce manifold topologies that

match standard Marching Cubes cases; this is not done in [2].)

The final surfaces inserted into the case table are those faces

that separate subcells with different material labels.

Repeating this process for valid binary- and multi-label

configurations produces a “discretized” 3D case table for rule-

based marching. The reader is referred to the work of Hege et

al. [2] for additional details, and a full case table for two and

three materials – albeit with simplification and non-manifold

binary-labeled cases. In this paper, we highlight select cases

from our full table on the bottom row of Figure 3.

By carefully constructing our 3D case table for rule-based

marching to contain discretized interface geometry at the same

resolution used by the discrete boundary method, the task of

merging the output from different topology generation stages

in 3D becomes straightforward. As with 2D, we can take the

union of meshes from each stage – now without significant

re-meshing – and discard faces that create degenerate bound-

aries. Note that while material interfaces produced from our

discretized lookup table (and by the discrete boundary method)

will be “blocky”, all interfaces will be optimized in Section 5.

After creating a single material interface mesh data structure

from the results of each topology initialization stage, two

bookkeeping tasks remain:

• Every surface mesh face – i.e., segment in 2D, or triangle

in 3D – is marked with the two materials that it segments.

This makes it simple to determine the orientation of mesh

faces and the material regions that they bound.

• We next calculate the per-cell, per-material volume pre-

scribed by the initial surface mesh. The boundary method

separates only pure cells, and thus no volume calcula-

tion is necessary; in the rule-based marching method

we precompute the per-material volume of each cell

segmentation during the lookup table initialization; and

in the discretized boundary method, summation over the

discretized labeling yields the correct volume for each

material.

5 VOLUME-ADAPTIVE ACTIVE INTERFACES

In this section, we develop a volume-adaptive active interface

model that iteratively refines the initial interfaces created in

Section 3 toward a better reconstruction. The basis of our

model is to deform the material interfaces under the influence

of local forces. At each iteration step we pick a random control

point, and move that point to satisfy our model’s objectives

better: surface quality and volume accuracy. We continuously

update the volume error of the material interfaces, and discuss

methods to monitor and enhance convergence.

Active interfaces are represented as piecewise linear curves

or surfaces composed of a set of k control points P =
{p1, . . . , pk} connected by line segments or triangles. Our

volume-adaptive model defines two local forces that can be

computed per-vertex in the interface mesh. The first is an

internal smoothing force that attempts to reduce the curvature

of the mesh and make control points equidistant; the second is

an external volumetric force normal to the surface that adjusts

the mesh to better fit the volume fraction data. Both forces are

computed directly from local interface mesh information, and

thus scale with the mesh.

Laplacian smoothing [43] is widely used to approximate

internal surface forces within active interface models [28],

[29]. The smoothing operation is performed by iteratively

replacing a point by the average of its neighboring vertices.

Given a sequence of points p1, . . . , pn representing a piecewise

linear curve, Laplacian smoothing at point i replaces pi by the

average of pi−1 and pi+1. In the case of a surface in three

dimensions, pi is replaced by the average of the points in the

1-ring of point i.

We use Laplacian smoothing to determine the internal force

pushing on each point of the interface. Let pi be a control

point defining the piecewise linear interface, then the force is

determined to be

Fint = d − pi,

where d is the average position of the control points that

neighbor pi.

One difficulty with Laplacian smoothing is that it tends

to shrink a curve. Historically, shrinking has been counter-

balanced by an external force normal to the curve (see Cohen

and Cohen [24], [25]). In a material interface context, how-

ever, the shrinking of a curve bounding one material region

corresponds to an increase in other materials’ volumes. This

observation motivates the addition of an external force that

does not simply try to increase every bounded region’s volume,

but instead adaptively pushes the interface toward a better local

match to the volume fractions.

Let ε(c,A) be the signed error between the known and

reconstructed fractional volume of material A within the cell c

containing control point pi. If the signed error is positive, then

there is too much volume assigned to material A, and surfaces

bounding material A within the cell should shrink to reduce

the volume. On the other hand, when the error is negative, the

bounding surface should grow such that A is awarded more

volume within the cell.

To capture this desired behavior, we define the volume-

adaptive external force at pi for material A to be the oriented

average of the normals of the faces surrounding pi:

Fext(A) =

(

ε(c,A) ∑
f∈RA

⊥A ( f )

)

,
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(a) Interface (b) Forces (c) Swept Volumes (d) Subsequent Interface

Fig. 5. An interface point is updated within our volume-adaptive active interface model. Consider the blue control point in (a), part
of the interface between the empty white region and the shaded grey region. We use local forces – shown in (b) – to update the
position of the control point. The smoothing force is the offset needed to move the control point to the average of its neighboring
control points (shown in orange); the volume force is the average of the oriented normals for the faces surrounding the current
control point. After moving the control point in (c), we update the volume of each material region by analyzing the area swept by
the control point (shaded green). As this update step is repeated for other points on the interface the reconstruction improves.

(a) Model (b) PLIC (c) Meredith (d) Proposed

Fig. 6. Two 2-dimensional volume fraction problems: the letter “A”, and a four-material junction between intersecting curved
interfaces. We show the model interfaces in (a) from which we calculate volume fractions for reconstruction. The PLIC reconstruction
of these problems is shown in (b), an isosurfacing-like reconstruction using the method by Meredith is shown in (c), and our
proposed reconstruction method in (d).

where RA is the set of faces surrounding pi that are marked

with material A in cell c, and ⊥A ( f ) is the normal of face

f oriented into material region A. Multiplying by ε(c,A)
adaptively orients the external force to shrink or grow the

region bounding material A as needed to better match the

problem’s volume fractions.

We now combine these forces – illustrated in Figure 5(b) –

to update the positions of points that define the piecewise

linear material interfaces. Consider a control point pi within

the mixed cell c. At pi there is a single smoothing force, but

there will be multiple volumetric forces: two if the control

point’s neighborhood is a topological disk separating two

materials; more if the neighborhood is multi-material junction.

We address this issue stochastically in our active contour

model by only considering a single material’s volumetric force

per iteration.

For a randomly chosen material ξ , the total local force at

pi becomes:

F = αFint +βFext(ξ ),

where α is the weighting of the internal force within the active

interface model, and β is the weighting of the external force.

Finally, we update the position of the control point:

p′i = pi +F.

After moving a control point it is necessary to update the

current error of the reconstruction ε in order to maintain

the accuracy of the volume-adaptive force. We calculate the

volume swept by the 1-ring of pi as it moves to p′i: in

two dimensions line segments are swept to form triangles as

shown in Figure 5(c); triangles are swept into tetrahedra in

three dimensions. The swept triangles or tetrahedra are then

clipped against mesh cells in the local neighborhood, and the

oriented volume of the clipped triangles or tetrahedra is used

to update the current error of the reconstruction. Incrementally
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maintaining material volumes is much faster than recomputing

the entire volume each update.

To obtain useful results with any active interface model,

the forces within the system must be controlled. In our

implementation, a simple yet effective rule is to set the weight

of the internal force proportional to that of the external force

α ∝ β ,

and then monotonically decrease α and β at a rate relative

to the change in error until the material interfaces con-

verge. Managing the weights in this manner is analogous to

gradually reducing the temperature parameter of simulated

annealing [44].

Finally, we note that in order to obtain both volume-

accuracy and smoothness it can help to subdivide large

faces on the boundary surface. A threshold parameter σ is

introduced to control the maximum surface face size – i.e.,

maximum line segment length or triangle area. Using a very

large value for σ will ensure that subdivision is not used in

cases where coarser surfaces are desired.

6 RESULTS

This section evaluates our method – and compares it to

existing methods – over multiple volume fraction datasets.

We have generated synthetic data in two and three dimen-

sions to compare against model reconstruction solutions. In

three dimensions we present two real-world volume fraction

examples. The first example is from a CFD simulation using

the Volume-of-Fluid (VOF) method. The second is from an

Embedded Boundary (EB) problem. In EB problems, a fixed

boundary surface is represented using volume fractions –

rather than geometry – in order to facilitate multi-physics

simulation around the boundary. Results were obtained on an

Apple MacBook Pro notebook computer with a 2.33 GHz Intel

Core 2 Duo processor and 2 GB of memory.

TABLE 1

Problem sizes, surface complexity, and reconstruction times.

Materials Extents Mixed Faces Time (m:ss)

A 2 202 17.5% 242 0:10

Junction 4 72 42.86% 130 0:13

3D Bubble 2 643 2.65% 143,640 3:42

SF Bay 2 2582 ×10 1.99% 117,610 5:17

Swirler 2 643 6.13% 356,904 4:24

Sphere/Box 3 133 15.66% 15,014 3:02

Spheres 6 133 58.03% 73,392 2:56

As a reference, Table 1 provides summary information about

the datasets and our reconstructions, including: number of

materials, dataset size, percent of mixed cells, number of faces

in the reconstructed interface, and convergence time. Table 2

plots on a logarithmic scale the average reconstruction error

of our method, the isosurfacing-like reconstruction of Mered-

ith [20] (as implemented in VisIt [12]), and the discrete method

of Anderson et al. [21]. Error is computed as the average

maximal volume fraction differential between a reconstruction

and the problem’s known volume fractions:

E =
∑c maxi∈(1,...,n) |ε(c, i)|

|Mixed Cells|
.

For example, an error of 0.01 indicates that the expected

maximum misclassification of material in each mixed cell is

1% of the cell’s volume.

Our first set of tests are over two-dimensional synthetic

volume fraction data for which we have a model solution. We

compute the volume fractions from the model images in 6(a),

and attempt to reconstruct the boundaries using PLIC [14],

the method of Meredith [20], and our proposed reconstruction

method. The top row in Figure 6 shows reconstructions of

a letter “A” in serif font embedded within a 202 cell grid.

Our topology generation pipeline correctly captures the thin

filament structures, and our volume-adaptive active interface

model iterates the boundary to an average mixed cell error

of only 0.3924%. The bottom row of Figure 6 shows recon-

structions of a problem in which multiple curved interfaces

intersect at a 4-material “junction.” This problem also requires

the generation of non-trivial topology. PLIC does a poor job of

reconstructing this interface because the correct topology can-

not be represented by manifold, binary segmenting surfaces.

The rule-based marching method is able to extract the curved

2-material interfaces, although the center cell containing four

materials remains uninitialized under that method. Running the

discretized boundary method upon the center cell produced the

correct topology. Another valid topology that is occasionally

generated by the discretized boundary method has two 3-

material junctions, similar to the reconstruction produced by

the method of Meredith [20]. Our final reconstruction has an

average mixed cell error of 0.0043%.

Next, we consider a three-dimensional Volume-of-Fluid

simulation of a low density bubble rising through a denser

fluid. The computational domain was 643. After the bubble

reaches the surface, it bursts as a result of surface tension.

Figure 7 provides a closeup view of this dataset after the

bubble has burst: in 7(a) we show a 3D version of the PLIC

algorithm, the result of which is a set of disconnected polygons

that partition each mixed cell into two material regions; in 7(b)

we show the reconstruction by Meredith [20]; and in 7(c)

we show the surface mesh generated by our proposed recon-

struction. Pseudocolor has been used to visualize the local,

cell-level error on reconstructed interfaces in 3D problems. A

TABLE 2

Log plot of average per-cell error for various methods.
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(a) PLIC

(b) Meredith

(c) Proposed

Fig. 7. Reconstructions in three-dimensions of a low-density
bubble of fluid rising through a higher density fluid after the
bubble has burst through the surface. In (a), we show the
PLIC interface reconstruction; (b) shows an isosurfacing-like
reconstruction using Meredith’s method; (c) is our proposed
reconstruction. Interfaces have been pseudocolored by the per-
cell reconstruction error.

blue-to-red colormap is used for the range of [0.0,1.0] volume

error: blue indicates low error with little misclassification of

material, while red indicates higher error.

We now turn to a three-dimensional embedded boundary

representation of bathymetry – or underwater depth – for the

San Francisco Bay. This type of data can be used in a wide

range of simulations, from ocean currents and tidal flow to

modeling oil spills. The dataset is a 2582 ×10 rectilinear grid

with one explicit volume fraction, representing two materials:

above and below the boundary. Figure 8(a) shows the recon-

struction produced by the Meredith’s algorithm [20], while our

proposed reconstruction is shown in 8(b). The colormap in this

figure is also blue-to-red and indicative of volume error, but the

range is [0.0,0.5624]. Our reconstruction produces smoother

interfaces with much lower average per-cell error: 0.7640% per

mixed cell for our method, versus 43.8410% for the method

by Meredith [20].

Next, we consider reconstructing a “low-swirl burner.” Low-

swirl combustion is an aerodynamic flame stabilization method

that produces ultra-lean flames with low emission, and is

largely used for industrial heating and gas turbines [45]. The

embedded boundary dataset we use is a 1283 rectilinear grid of

volume fractions derived from the constructive solid geometry

definition of a low-swirl burner. Our reconstructions focus

upon the lower 643 octant of the full dataset due to the

symmetric nature of the geometry. Figure 9 compares the

reconstruction by Meredith’s method (left) to our proposed

reconstruction (right); notice that our method fully captures

the swirler blades and central screen. In our reconstruction,

the rule-based marching method generates interface topology

for 71% of the mixed cells (mostly on the large cylindrical

portions of the burner), while the discrete boundary method

generated interfaces for the swirler blades and central screen.

Finally, constructive solid geometry has been used to cre-

ate analytic test datasets in three-dimensions. Two datasets

are shown in the left column of Figure 10: on top, a box

intersected by a sphere (box: (0.2,0.2,0.2) to (0.6,0.6,0.6);
sphere: center (0.6,0.6,0.6), radius 0.2); on bottom, five

concentric spheres (centers (0.5,0.5,0.5), radii 1
13

, 2.25
13

, 3.5
13

,
4.75
13

, and 6
13

). The sphere/box problem has 3 materials, while

the multiple spheres problem has 6 materials – in both

problems, “empty” space is another material. In the middle

column of Figure 10 we show the reconstructions performed

using the algorithm of Meredith [20], while our proposed

reconstructions are shown in the right column. Error results are

listed in Table 2, however the figure also includes horizontal

lines to help illustrate differences between the reconstructions

and the problem models.

7 CONCLUSION

We have described a new material interface reconstruction

method that produces high-quality boundary meshes with low

error in two and three dimensions. Our approach separates

interface topology generation from iterative surface improve-

ment using a volume-adaptive active interface model. Exper-

imental results show our approach to be very well-behaved:

per-cell error tends to be significantly less than 1%, while

producing continuous, piecewise linear meshes.
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(a) Meredith (b) Proposed

Fig. 8. Reconstructions of an embedded boundary (EB) representation of bathymetry – or underwater depth – data from the San
Francisco Bay using: (a) Meredith’s method, and (b) our active interface reconstruction method. Interfaces have been pseudocolored
by the per-cell reconstruction error.

Fig. 9. Comparison of Meredith’s reconstruction (left) to our
proposed reconstruction (right) for one quadrant of the swirler
dataset.

Numerous directions for future work remain:

• Develop methods to generate a parameterized range of

topology solutions. For example, users should be able

to control – on a per-material basis – whether they

want interfaces that tend toward thin filaments/shells or

multiple disconnected blobs.

• Explore the use of level set methods [30] as an alternative

to our current mesh-based active interface model, espe-

cially in the presence of parameterized topology control.

• Support unstructured meshes and adaptive mesh refine-

ment (AMR) grids. In our proposed framework, this

would require the extension of our topology generation

pipeline to support different mesh types; the volume-

adaptive active interface model presented is largely in-

dependent of the underlying mesh.

• In this work we have focused on generating high-quality

material interfaces (in terms of geometric quality and

low volumetric error), rather than running time. It is

not uncommon for volume fraction datasets to contain

billions of elements; additional work should focus upon

the speed of our algorithm through parallelism, simpler

surface meshes, and possibly multi-resolution methods.

• Volume fraction data is often dumped on a coarse

timescale from fine-grained simulations. Interface track-

ing at the visualization time scale should be investigated

to encourage timestep-to-timestep topology consistency

when possible.

• Parameter optimization remains an open topic; the fol-

lowing parameters control our algorithm:

– D is the discretization parameter (for the discrete

boundary method, and 3D case table construction);

– α and β are local smoothing and volumetric weights

in the active interface model, respectively; and,

– σ is a size threshold parameter.

We are continuing to investigate optimal methods to set

and tune these parameters based upon the problem’s

dimension, number of materials, and interface complexity.

As a general guide, however, we have found that setting

D = 5, σ = 0, and α = 1.5β (decreased during run-time)

to be a good starting point for these parameters.

• The “discretized” case table discussed in Section 4

dramatically eases the implementation of our method.

However, in the future we plan to implement and test

re-meshing capabilities that would merge interfaces pro-

duced by existing multi-material MIRLV algorithms with

our discrete boundary output.
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Model Meredith Proposed

Fig. 10. Analytic three-dimensional problems with multiple materials: on top, a box intersected by a sphere (3 materials); on
bottom, five concentric spheres (6 materials). Horizontal lines help to illustrate the differences between reconstructions; note the
volume loss with an isosurfacing-like approach compared to our proposed method.

• Finally, we note that Laplacian smoothing is only one

possible choice for the internal surface force in an active

interface model. Our choice of Laplacian smoothing re-

flects our goal to promote smoothness and general surface

quality [43]; other force models could be explored to

promote or preserve sharp corners while smoothing.
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