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Abstract

Conveying data uncertainty in visualizations is crucial for preventing viewers from drawing
conclusions based on untrustworthy data points. This paper proposes a methodology for efficiently
generating density plots of uncertain multivariate data sets that draws viewers to preattentively
identify values of high certainty while not calling attention to uncertain values. We demonstrate
how to augment scatter plots and parallel coordinates plots to incorporate statistically modeled
uncertainty and show how to integrate them with existing multivariate analysis techniques,
including outlier detection and interactive brushing. Computing high quality density plots can be
expensive for large data sets, so we also describe a probabilistic plotting technique that
summarizes the data without requiring explicit density plot computation. These techniques have
been useful for identifying brain tumors in multivariate magnetic resonance spectroscopy data and
we describe how to extend them to visualize ensemble data sets.

Index Terms
Uncertainty visualization; brushing; scatter plots; parallel coordinates; multivariate data

1 Introduction

Uncertainty can have a critical impact on what can be properly inferred from a data set.
Consider the parallel coordinates (PC) plots in Figure 1. A viewer may think that the
apparent cluster of values in the second column of the discrete plot is meaningful. Actually,
the cluster is statistically indistinguishable from other values on the column when the
uncertainty of individual values is considered. Visualization techniques should be designed
to prevent such incorrect conclusions by taking into account the reliability of the underlying
data. Another example of this comes from basic statistics: if two normal distributions
overlap significantly, one cannot confidently argue that they represent different populations.
Simple overlapping error bars indicate the difference between the two means, but as data
sets grow in size and complexity, encoding uncertainty into visualizations becomes more
challenging. Multivariate data poses a particularly difficult problem, as uncertainty
estimations may exist on a per-variable, per-sample basis.
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This work proposes several methods for visualizing uncertainty that leverage known
characteristics of visual perception. The plots enable viewers to preattentively identify
patterns in confident values while preventing them from making false inferences based on
uncertain values. The goal is not simply to let viewers distinguish certain values from
uncertain values, but to disengage the visual system’s preattentive feature detection
mechanisms for uncertain values. This ensures that a data value’s visual saliency is
proportional to its certainty.

We propose density plots as the fundamental tool for visualizing uncertain multivariate data.
More formally, we use kernel density estimation (KDE, also known as Parzen windowing)
techniques to approximate the probability density function (PDF) of the data [24]. Because
the PDF describes the likelihood of each value, it naturally deemphasizes unreliable data
points in the original data. KDE requires data point uncertainty to be quantified using
statistical distributions.

Uncertainty also influences how the user interacts with the plot. The user does not select
discrete samples but rather statistical distributions with infinite extent. By integrating a data
value’s distribution within the brush area, we can determine the probability that the brush
would contain a sample from the distribution. This likelihood is useful as a threshold for
selection, meaning that uncertainty values require a larger brush. This paper describes how
to efficiently perform this integration in scatter plots and PC plots of uncertain data.

Density plots are useful tools for summarizing extremely large data sets. Whereas normal
plots become over-plotted, PDFs always highlight regions of high density. We demonstrate
that density-based plots are useful for visualizing uncertain data sets, large or small.
However, density plots have two noticeable problems: data values are no longer always
individually identifiable and outliers are de-emphasized. We address these problems with
two modifications of density plots. First, scaling the distribution mean to a brighter intensity
introduces a discrete, identifiable feature that fades in proportion to its uncertainty. Second,
a novel animated plot called the probabilistic plot cycles through PDF samples so that
outliers draw the viewer’s eye by intermittently flickering in and out. Confident regions
remain stable over time. When summed, these random samples aggregate into a histogram
approximation of the fully integrated PDF.

Our contributions can be summarized as follows:

1. Density Plots for Uncertain Data: density plots with mean emphasis
preattentively highlight certain values and prevent false conclusions based on
uncertain values.

2. User Interaction in Density Plots: augmented standard brushing techniques select
distributions by integrating the PDF within the bounds of the brush.

3. Probabilistic Plots: an animated plot efficiently cycles through PDF samples,
highlights outliers, and converges to the PDF.

Density-based methods are directly applicable when value uncertainty is represented by
statistical distributions, which are a common result of statistical analysis. For example,
clusters of values can be represented by their mean and variance. Ensemble data sets, which
are usually collections of simulations with different parameter settings, can be understood by
looking at the distribution of individual samples. The distribution of a sample across an
ensemble of simulation runs can be used to describe the sensitivity of a varying parameter.

The design of these uncertainty visualization techniques was driven by the needs of
radiologists studying magnetic resonance (MR) spectroscopy. They require a visualization
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system that enables them to explore the relationships between many variables representing
the concentrations of different brain metabolites. Each data point is a normally distributed
metabolite concentration, and some of the standard deviations are large enough that they
should not contribute to the hypothesis generation process. We show how uncertain scatter
plots and PC plots help radiologists identify metabolite relationships that distinguish
between tumor tissue and healthy tissue.

2 Related Work

The design of density plots for uncertain data builds on previous work in visual perception,
basic statistics, uncertainty visualization, multivariate visualization, scatter plots, and PC
plots.

2.1 Image Structure and Preattentive Vision

Visualizations that use simple primitives like lines and points rely on the fact that the human
visual system has low-level physiological structures dedicated to the perception of such
features [22]. For example, on-center/off-surround cells identify bright points at different
scales, and more complex cells identify edges, lines, and bars at different scales and
orientations. These structures contribute to preattentive visual processing, a phenomenon in
which humans perceive certain visual properties so quickly (~200-250ms) that they do not
seem to require conscious attention. The list of properties includes hue, size, luminance, and
(most relevantly) blur, among many others [38].

Kosara et al. have shown that preattentive perception of blur can be used to obscure
irrelevant image features using a technique called semantic depth of field [16]. In essence,
our proposed density plots uses the statistical distributions of uncertain data as the blurring
kernel. Uncertain data values with large distributions are blurrier, so the viewer’s attention is
drawn to high contrast image features.

2.2 Density Estimation

The visualization techniques described in this work use kernel density estimation (also
called Parzen windowing), which is a class of techniques for estimating the probability
density function of a data set [24]. For scalar-valued data, KDE superimposes a distribution
for each value (Figure 2). The distribution width is a user-controlled parameter that
determines the feature size in the density estimate.

Histograms are another technique for density estimation that separate the range of data
values into regularly spaced bins. Each bin stores how many data points fit into its range of
values. After normalizing to a total bin area of one, the histogram approximates the
probability density function of the data set. KDE and histograms will be very similar when
the histogram bin width is close to the KDE kernel width.

2.3 Uncertainty in Information Visualization

Uncertainty can arise from a number of sources, including errors in simulation models,
numerical error, measurement/hardware error, uncertainty due to statistical estimation, and
even error due to the visualization algorithm [39, 34]. Pang et al. further classify these
uncertainties into three categories: statistical, error, and range [23]. Statistical uncertainty
can be represented as a statistical distribution. Error uncertainty is a measured difference
with respect to a correct value. Range uncertainty prescribes an interval in which a data
value falls, which is similar to a uniform statistical distribution. We describe techniques for
visualizing data with uncertainty from any source provided it can be represented using a
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statistical distribution, which includes uncertainty falling into the statistical and range
categories.

The study of statistical uncertainty in information visualization techniques has discussed the
use of error bars [25], glyphs [26], scale modulation [29], and ambiguation [21]. While
many of these techniques are useful for one-dimensional (1D) data sets, uncertainty
annotations can overlap in multivariate plots like the scatter plot and PC plot. Over-plotting
becomes more problematic as the number of data points grows. Density plots have been
shown to be useful for graph visualization [35] and are a scalable solution for visualizing
uncertainty in multivariate plots.

This paper describes an animated plot related to Fisher’s soil map visualizations and
PixelPlexing [10, 31]. In Fisher’s maps, each pixel can have one of several classifications
that has its own likelihood. Over time, a classification is chosen for each pixel based on
those likelihoods. Pixelplexing emphasizes different randomized subsets of a visualization
over time. The probabilistic plots described in Section 3.7 quickly sample random data
values from the data PDF in a similar manner, and we show how these values can be
aggregated into an approximation of the PDF of the data.

2.4 Multivariate Visualization

Visualizing spatial multivariate data is challenging. One approach is to combine multiple
univariate visualization techniques such as direct volume renderings [36]. Another is to map
the variables to different glyph channels [17, 9]. Researchers often address the challenge of
multivariate 3D visualization by linking spatial views to abstract views. Tools such as
Spotfire [1], tri-space visualization [2], Xmd-vTool [37], GGobi [33], and a previous MR
spectroscopy visualization [8] demonstrate how to combine multiple views of the same data
in a single interface. This work addresses the issue of how to incorporate statistical
uncertainty into the abstract plots used by these tools.

2.5 Scatter Plots

The scatter plot is a standard technique for graphically representing a bivariate data set that
places discrete glyphs on a Cartesian grid. It is commonly used to identify value clusters and
trends like linear relationships. The most straightforward and scalable way to incorporate
more variables is to use a scatter plot matrix [6]. The scatter plot matrix sacrifices the
resolution of a single plot to display more plots comparing other pairs of variables. In this
instance, both navigating through the plots [7] and choosing display order become
interesting problems [30]. Because our work describes the use of KDEs in a single plot, it
can be applied generally to any scatter plot technique.

Bachthaler and Weiskopf propose a modification to the standard scatter plot for use with
spatially embedded data sets [3]. The technique, called continuous scatter plots, leverages
knowledge of the sample footprint (e.g. voxel, tetrahedron, etc.) to replace discrete glyphs
with a composition of all values contained therein. A glyph from a single voxel becomes a
shape representing all of the interpolated values within that voxel. The primary contribution
of their work is the transformation of complex geometry from the spatial domain into data
distributions. Our work uses similar distribution-based scatter plots for visualizing uncertain
data. Our distributions come from the statistical uncertainty of the samples themselves rather
than spatial interpolation.

2.6 Parallel Coordinates

The parallel coordinates plot is a multivariate visualization technique that bypasses the two-
variable limit of the scatter plot. Popularized by Inselberg, PC plots arrange individual
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variable axes parallel to each other and represent individual samples as a segmented line
passing through all of the axes [14]. All variable values are therefore represented in a single
plot. These visualizations are useful for identifying clusters and trends between pairs of
variables and observing how a collection of lines behaves for all variables.

Heinrich and Weiskopf show how PC plots can be made continuous in the same manner as
scatter plots [13]. They create a generic point density model to transform continuous
distributions into PC space using the well-known duality between points and lines in PC and
scatter plots. We show how data distributions can be used effectively to visualize
statistically uncertain data by leveraging such transformations. Miller and Wegman describe
the analytical solution to evaluating normal distributions in PC plots [18]. The data set that
drove our system design is normally distributed, so we demonstrate uncertainty visualization
using Miller and Wegman’s analysis. More general distributions can use Heinrich and
Weiskopf’s transformation.

Related work in parallel coordinates addresses over-plotting for large data sets by only
plotting lines representing clusters of values [11]. Novotny and Hauser perform this
clustering in 2D histograms for adjacent variable pairs and also identify outliers through
histogram analysis [20]. Our approach naturally integrates with this technique, as described
in Section 3.5.

Previous work visualizes uncertain multivariate data with PC plots [8]. This work
generalizes and formalizes those ideas into a methodology based on KDEs that
demonstrably applies to other information visualization techniques. Additionally, we
describe here how to approximate these visualizations to achieve interactive frame rates with
larger data sets.

3 Uncertain Plots

Uncertainty visualizations should prevent viewers from making incorrect observations based
on unreliable data. More specifically, they should prevent uncertainty from leading to false
positives, in which viewers mistakenly identify a feature, and false negatives, in which
viewers fail to identify existing patterns. Figure 1 shows a real-world example of a false
positive in real MR spectroscopy data: the glutamate column appears to contain a cluster of
values, but the corresponding density plot shows that the cluster is not statistically
distinguishable from the rest of the glutamate values. The top of Figure 3 presents a
constructed example of a PC plot that results in a false negative. The viewer may incorrectly
assume that the data is uncorrelated for all variables. The bottom of Figure 3 presents a
density plot that incorporates uncertainty. Viewed in this way, the remaining lines with high
certainty show strong correlation between variables. Visualizations that do not incorporate
such uncertainty display put their viewers at risk of making false conclusions. We present a
method to generate plots that help viewers to preattentively identify trustworthy values
while avoiding uncertain values.

3.1 From Scatter Plots to Density Plots

The standard scatter plot overlays a set of glyphs at Cartesian coordinates corresponding to
all the (x,y) value pairs in the data set. When the data set is sufficiently large, regions with
high densities become over-plotted. The simplest solution to this problem is to make the
glyphs partially transparent: as glyphs accumulate, bright regions indicate higher glyph
density. Such a plot is similar to a form of KDE with a glyph-shaped kernel. In statistics, the
most commonly used kernel is a normal distribution with standard deviation used to control
the feature size of the resulting PDF.

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 November 1.
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For statistically uncertain data, the appropriate kernel is the statistical distribution of each
individual sample. In this way, large overlapping distributions become difficult to
distinguish and small, high-valued distributions are easy to locate. For the sake of example,
we demonstrate using KDE to compute the PDF with normal distributions, which is one of
the most common statistical distributions:

1 N
PDF(x,y)== » Di(x,y)

1 —(x =) = )’
Di('\""‘):”nrr--a'v-eXp 20'/; * )

Xi

2
20; (2)

where PDF is the probability distribution function, which is the average of the N individual
distributions. D;j is an arbitrary distribution, here demonstrated as a normal distribution
where oy; and oy; are the standard deviations of the zj and xy; means for the it sample. This
form of the normal distribution assumes that x and y are uncorrelated; a more complex form
of Dj includes the correlation coefficient p. The data sets that drove the development of these
techniques (see Section 4) assume uncorrelated data, so Equation 2 applies. However, Dj can
easily be replaced with any distribution in Cartesian space. The distributions as described
must be discretized for display. The simplest way to do so is to subdivide the domain into
pixel-sized bins.

Using the PDF as a basis for uncertainty visualization highlights regions of high point
probability density, which is useful for discovering clustered values and trends. It also
emphasizes points with high certainty (small, bright spots) while de-emphasizing points with
low certainty (large, dim spots) by leveraging the human visual system’s ability to
preattentively separate high and low contrast image features.

As described in Section 2.1, differences in blur of image features are perceived
preattentively. As distributions with high variance tend to overlap, they become harder to
distinguish from each other and easier to distinguish from small, high density values. The
result makes intuitive sense from a statistical perspective as well: the viewer should not be
able to distinguish two distributions that overlap significantly.

Direct visualization of the PDF scales with data set size more effectively than standard
opaque glyphs. Whereas traditional opaque glyph scatter plots become easily over-plotted, a
one-time cost of sampling the PDF produces a density image that can be displayed at both
high and low resolutions. Figure 4 demonstrates the transition from a normal scatter plot to
direct PDF visualization.

Encoding uncertainty magnitude with glyph hue may seem like a reasonable alternative to
blur. Color is also perceived preattentively, so the viewer will be able to quickly distinguish
between certain and uncertain values. However, the uncertainty color scale must be chosen
arbitrarily. The viewer will have to refer to the legend to interpret the hue differences they
perceive. Worse still, discrete representations of uncertain points can mislead the viewer into
identifying unreliable clusters or patterns (false positive), which they must then disregard
after consulting the legend. Density plots represent uncertainty magnitude directly in data
space, leaving less room for confusion. Finally, using color for uncertainty also makes
selection more difficult, as color is often used to distinguish between multiple selections of
values.

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 November 1.
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3.2 Mean Emphasis

For data sets that are small enough to avoid over-plotting, emphasizing distribution means
can help viewers see the locations of distributions contributing the density plot. The degree
of emphasis should scale with the certainty of the point. For normal distributions, the
maximum value is at the mean, and smaller values of ¢ increase the value of the mean.
Therefore, scaling the center of the distribution by a constant factor (e.g. doubling its value)
emphasizes the mean more for certain values than it does for uncertain values. The center of
Figure 4 depicts a density-based scatter plot with mean emphasis.

Mean empbhasis is similar to overlaying points on the PDF with transparency scaled by the
height of the distribution mean. When combined with the density plot, such points enable
viewers to see directly both the scale of the distributions and the location of their means. If
the data set is large enough that many of the means overlap, the viewer can look directly at
the density plot for a summary of the data set.

3.3 PDFs in Parallel Coordinates

We now demonstrate how to compute the PDF in PC space as a technique for visualizing
uncertain multivariate data. Heinrich and Weiskopf describe how to transform an arbitrary
distribution into PC space [13], and Miller and Wegman provide analytical solutions for
bivariate normal distributions and uniform distributions [18]. Conceptually, the idea is to use
the well-known point-line duality between scatter plots and PC plots to transform samples
from one space to the other while maintaining the formal properties of distributions (e.g. a
unit integral). For the bivariate normal distribution discussed so far, the analytical form of
the distribution is as follows:

Ha=(1 — @)1 +apiz (tc)}
o2=(1 - a):(r%+a2¢r§ (4)

PCla, b=—rl=exp [ “b—‘f)—]
a€l0,1] ()

where a and b are the horizontal and vertical axes of the PC plot: b is in the space of the data
values and a is in a normalized space where the left axis is at a = 0 and the right axis is at a
= 1. ua and o, are the mean and variance of the interpolated distribution. This definition of
o4 assumes that the two variables are uncorrelated. A more complex definition includes the
correlation coefficient p.

Figure 5 demonstrates the transition of individual distributions into PC plots, in this case
differing by the value of their correlation coefficient p. The more linear the distribution, the
stronger the positive or negative correlation. Notice how significant differences in the scatter
plot PDF do not necessarily produce equally noticeable differences when transformed into
PC space.

Many applications use curved PC plots, for example cardinal splines [12, 15] or sigmoid
curves [19]. The KDE representation of the PC plot can accommaodate both representations,
but for brevity we demonstrate only the latter case. The premise is to warp the sample grid
of the KDE to match the shape of the curve. Sigmoid curves can be represented by a number
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of functions, including the logistic function, sinusoid, and cubic polynomial. The following
warps a PC plot with a cubic polynomial with a change of variables:

d — =2a°+3d> (6)

The constants above produce a cubic polynomial that passes approximately through (0,0)
and (1,1). It should be noted that such a nonlinear change in variables results in a function
which is no longer formally a PDF. This introduces a trade-off between the perceptual
benefits of sigmoid curves and mathematical rigor.

For plots with a manageable number of lines, the density representation may remove a
seemingly useful feature of the PC plot: the viewer’s ability to follow individual lines
through the plot across multiple axes. However, this is in fact a benefit. The density plot
discourages the user from following lines that may lead them to incorrect conclusions. When
there are a large number of lines, density plots are a reasonable solution to over-plotting.
This work demonstrates how to compute density plots for statistically uncertain data. Figure
6 demonstrates the transition from a traditional line-based PC plot to a density-based PC
plot. The center of the figure demonstrates a PC density plot with mean emphasis, computed
similarly to the meanemphasized density plot.

Previous work by Feng et al. proposes a similar scheme for visualizing uncertain
multivariate data in PC plots that linearly interpolates Gaussians between axes. Strictly
speaking, this is only correct for normal distributions that are positively correlated with p =
1. Figure 5 shows qualitative difference between p =0 and p = .9 in PC plots. The
formulation described here is correct for all values of p and is clearly extensible to other
distributions types. Additionally, this work properly derives the plots from a detailed
statistical point of view, which leads to the statistical user interaction and plotting techniques
described in the following sections.

3.4 User Interaction

Just as density plots emphasize certain values and draw attention away from uncertain
values, interaction with the plot should likewise favor certain points over uncertain ones. We
now describe how to incorporate uncertainty into three plot-interaction techniques: interval
queries, angular brushing, and linear function brushing. While the interaction primitives
(lines, boxes, etc.) differ between scatter plots and PC plots, the mathematics of selection is
the same. The following discussion assumes a Cartesian space.

Interval queries select values that fall within a prescribed range of values for a set of
variables. In Cartesian space, the user either draws a box to define that range or clicks a
point to select values within a distance threshold. The PC plot analog is to either manually
specify ranges on axes or to draw a representative line segment. When the data values are
statistical distributions, deciding whether a point falls within the range of values is no longer
a simple inside/outside test. In this case, we must estimate the likelihood that a point drawn
from that distribution will fall within the interval.

The problem now becomes estimating a definite integral of a statistical distribution. For the
general distribution, this will require numerical integration within the user-specified interval.
The data sets that drove the design of these techniques have uncorrelated bivariate normal
distributions, for which there is a fast, analytical integral solution using the error function:
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1(x)=— [oe™ dt
erf(x)=—— e
Vr? (7)

erf(x) is available in many mathematical libraries, and is usually implemented as a table
lookup. It can be used to compute an area under a normal distribution N(u, o) in the range [«
—a,u +a] as follows:

AN, [p - a,p+a))= [’ ﬁﬁjN(ﬂ, o) dx

:erf(”"ﬁ) (8)

The integral with arbitrary boundary conditions is:

AN, [a,bl)= ["N(u, o) dx
:% l erf( b ) - erf(ﬂ)

V2 a2 (9)

This extends to 2D for the uncorrelated bivariate normal distribution Nyy(ux,1y,0x,0y) by
evaluating the area within a bounding box:

A(N\i\‘v [a- b]- [C, d]):fif:]N\\(ﬂ\s /J)., T x, O-y) d." dx

= ["N (s ) dx [Ny (ay ) dy
=A(N..[a, b)) - ANy, [, d]) (10)

This uses the separability of the uncorrelated distributions to simplify the computation.
Because distributions integrate to 1, we can decide if the range has selected enough of the
distribution with a simple threshold test. We advocate a 95% confidence for selection (A > .
95), which means that the distribution will be selected only if the brush contains at least 95%
of the distribution area. This ensures that the viewer is aware of the magnitude of the
uncertainty before selection of large, uncertain distributions can succeed.

Angular brushes in PC plots can use a similar set of techniques as interval queries. Also,
angular brushing is a subset of the more general linear function brushing, as the latter
enables the user to select points using a wider set of linear functions [8]. Angular brushing is
equivalent to selecting points within a distance threshold to a line in Cartesian space, which
is to say within two bounding lines L, and L, around a drawn line L. As with interval
queries, we must evaluate how much of the distribution is contained between L; and L, via
integration.

As before, it is possible to evaluate this analytically for bivariate normal distributions using
the error function. In this case the solution is more complex because erf(x) is axis-aligned
and selection lines may not be. Therefore, the coordinate space must be transformed so that
the distribution is zero-centered and radially symmetric, at which point erf(x) can then be
applied to the distance from the line to the origin. In this transformed space, the distance
from a point to the origin is called the Mahalanobis distance.

We can derive the transformed distance of a line to the distribution mean using the steps
illustrated in Figure 7. The steps are enumerated as follows:

1. Translate (ux.uy) to the origin.

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 November 1.
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2. Scale by (1/ay,1/ay) so the distribution has unit variances.
3. Compute the distance from the line to the origin.

Rotation of the lines is unnecessary because an isotropic normal distribution is radially

symmetric. To evaluate the integral, we need only know the distance from L; and L, to the

origin. The signed distance for an implicit line (Ax+By+C = 0) in transformed coordinates is:
—Apy — Buy - C

(A0 +(Ba,)? an

We can now integrate the area of the distribution within distance t to the line by constructing
two lines and taking the difference of their error function results. L1 and L, will have the
same orientation (same A and B), but different values of C:

d(As B,C, N\}‘):

Cl=C -t VA2+B? (12)
C2=C+1VA2+B? (13)

Using the implicit line equations with coefficients (A,B,C1) and (A,B,C2), we can compute
the area between the two lines as follows:

1
A=zlerf[d(A, B, C1, Nyy)] — erf[d(A, B, C2, Ny)]| (14)

If the user wishes to select all points near a line segment instead of an infinite line, one
would only need to repeat the process for two more perpendicular lines that intersect the
endpoints of the line segment. Note that this process also applies for normal distributions
where p # 0, with the additional step of rotating the oriented distribution (and its covariance
matrix) to be axis-aligned before the scaling in step 2.

When dealing with large data sets distributed across multiple computers, all user selections
should occur in data space rather than in the space of the visualization. For example,
selecting all points within a box on a scatter plot is equivalent to a filter on data values that
fall within values ranges in x and y. In this manner, the selection operations can occur
concurrently on each machine and the results can be combined on a single node and sent to
the client. Direct PDF visualization only requires easily parallelizable queries to all
machines and subsequent visualization of the compiled results.

3.5 Focus and Context

One difficulty with PDF-based representations is that they emphasize the most likely values
while hiding potentially interesting outliers. In the PDF, outliers will manifest as a small
range of values with high probability density. A clustered set of distributions with large
variances will not be outliers, as their distributions cover a large range of values. The left
frame of Figure 6 contains an apparent outlier, but its variances are so large that it cannot
confidently be considered interesting. Large data sets exacerbate this problem: as the data
set grows and values cluster in the most likely regions, small sets of outliers are de-
emphasized even more.

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 November 1.
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Novotny and Hauser suggest several methods for identifying outliers in multivariate data
sets by analyzing pairwise 2D histograms of variables. Their algorithm analyzes the
connectivity of the histogram and attempts to discover small islands of histogram bins that
contain a small number of values. Because histograms are closely related to PDFs, their
techniques can be applied without modification to the PDFs computed above for statistically
uncertain values. All distributions that predominantly fit within small, isolated regions can
be labeled as outliers and drawn separately. This naturally handles uncertainty: a small
isolated cluster of values that would otherwise be considered outliers will be ignored if their
distributions are too large.

Integrating outliers with density plots combines both focus (the outliers) and context (the
PDF). The outliers should be drawn differently from the rest of the plot. Representing
outliers as discrete glyphs does this naturally for direct PDF visualization.

3.6 Scalability and Accelerated Rendering

It is important to consider the scalability of PDF computation, as it is the basis for the
techniques described above. Because computational cost grows with grid resolution and data
size, PDF computation may be expensive for extremely large data sets. However, the
computation is also embarrassingly parallel: if the data is distributed across many nodes,
each node can compute a local PDF which can then be averaged on a single node. In a multi-
core shared-memory environment, the PDF bins also can be computed in parallel in separate
threads.

For PC plots, the PDF computation time has an important effect on plot interactivity.
Incurring the precomputation cost of PDF computation may be acceptable, however if the
user wishes to interactively rearrange the plot axes, it is no longer a one-time cost. Spawning
a background process to compute pair-wise PDFs for potential plot arrangements would
address this case.

For data sets that have analytical solutions to PDF computation and are sufficiently small
(like our MR spectroscopy data set), graphics processing units (GPUs) are extremely
efficient. A scatter-based algorithm renders each distribution into a texture with additive
blending and then renders the texture to the screen. The fragment shader quickly and
accurately samples the distributions on a per-pixel basis.

3.7 Probabilistic Plots

For extremely large data sets that require significant PDF computation time, we propose the
probabilistic plot as one way to quickly summarize the data point distribution. The
probabilistic plot is composed of a set of random samples that have the same distribution as
the underlying PDF. For a simple PDF composed of a single normal distribution, the random
samples will be clustered around the mean and have the same variance as the distribution. If
multiple distributions contribute to the PDF, points will similarly cluster around the other
distribution means as well. Figure 8 illustrates a discrete scatter plot and PC plot with
random points drawn from an underlying PDF.

A single set of random samples will not accurately represent the total variability of the PDF
and may contain false patterns. Therefore, we animate the plot by continually replacing old
samples with new samples from the distribution. There are two benefits to this type of
animated display. First, regions of high density will remain fairly stable over time whereas
unlikely values will only appear briefly. Second, any outliers will flicker in and out of
existence in regions with local density spikes. Intermittent flickering signals the viewer to
look at the outlier region. This animated plot naturally provides a summary of the overall
data while also highlighting potentially interesting outliers.
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The probabilistic plot depends on the ability to acquire random samples with the same
distribution as the PDF quickly without explicitly computing it. Note that in this case we are
referring to the N-dimensional (ND) PDF, where N is the number of variables, rather than
the simple bivariate PDFs computed in the previous plots. There are several ways to sample
a distribution, including inverse transform sampling, rejection sampling, and others [28]. Of
course, all of these techniques require that the ND PDF be known a priori, and storing
discretized ND PDFs is intractible for even modestly sized data sets.

Fortunately, properties of the MR spectroscopy data set that drove the design of this
technique make random sampling of the ND PDF extremely efficient. First, the individual
data points have equal weight (1/N) in the kernel density estimate of the PDF. Second, the
distribution of each data point is composed of N independent normal distributions.
Therefore, we can randomly sample the PDF in two steps:

1. Pick a random data point p.
2. Randomly sample all N of p’s independent normal distributions.

Step 1 is trivial, requiring only a single uniform random integer. Step 2 uses the well-known
Box-Muller transform to quickly generate N normally distributed values with with x = 0 and
o =1 that can be converted to an arbitrary x« and o with a simple shift and scale [4]. To
summarize the entire data set, we simply repeat this process M times to acquire M random
data points. Over time, new sets of samples can be acquired and replace the old ones. The
result is an animated plot in which regions of high probability density are stable and outliers
intermittently flicker in and out of existence.

As new random samples are acquired over time, they can also be accumulated to
approximate the underlying distribution, performing Monte Carlo integration of the PDF. As
each new set of samples gets added into a floating point buffer, the more likely points will
overlap to produce brighter intensities. The result is a line density histogram. Each pixel is a
bin, and the sampled lines vote in those bins. The convergence rate of the computation
depends on the number of data set samples and the overall magnitude of uncertainty. When
the area of the histogram is normalized to one, the histogram closely approximates the PDF.

Figure 9 demonstrates the expected ~ VN convergence of a PC plot with ~250 distributions.

A probabilistic PC plot has the benefit that it is composed of discrete lines. Not only are the
lines easy to draw, but the viewer can follow cords of lines passing through stable regions of
high density. In regions of low density, lines only appear briefly and sporadically, making
them difficult to follow. The viewer’s ability to follow lines is directly proportional to
probability density.

Tumor Segmentation

The application that drove the design of these uncertainty visualization techniques was MR
spectroscopy (MRS), for which full metabolite spectra are captured in a regular 3D spatial
grid, shown in 2D in Figure 10. Spectral peaks for individual metabolites are useful for
understanding the makeup of the tissue contained within the voxel. Radiologists hope to
distinguish between tumor tissue and healthy tissue by exploring the relationships among
different metabolite concentrations.

Radiologists generate the MR metabolite spectra using a technique based on traditional
MRI, which was derived from Nuclear Magnetic Resonance (NMR) spectroscopy. NMR
was originally developed to probe the structure of molecules in a sample. Lauterbur and
Mansfield extended these principles to provide spatially resolved information, thus creating
the field of MRI [5]. MRI utilizes the signal from protons within tissues of interest to
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produce an anatomical scalar data set. MR spectroscopy uses principles of NMR
spectroscopy to probe the underlying metabolic spectrum of spatially resolved tissue [32].

Each magnetic imaging system has unique noise patterns so complex that absolute
concentrations of individual metabolite can only be estimated. Provencher designed
LCModel, a tool that iteratively optimizes the contributions of pure metabolite spectra for a
given in vivo spectrum [27]. The result is that all estimated concentrations are normally
distributed. Concentrations with large variances are those that are not well explained by the
basis spectra. The data set consists of a set of voxels, each of which contains the means and
standard deviations of multiple metabolite concentrations. Although the data has a spatial
embedding, it is the relationships among metabolite data values that is of primary interest in
this application.

This section demonstrates how a hypothetical viewer familiar with MRS would explore the
data set using density-based PC plots and scatter plots with linked interaction. The goal for
this data set is to identify and understand the metabolic properties of a glioblastoma, an
aggressive type of brain tumor. Figure 1 illustrates how a density-based PC plot of MRS
data with mean emphasis prevents the viewer from noticing an erroneous cluster of values in
the glutamate column. In fact, the density plot clearly reveals that the glutamate values are
all sufficiently uncertain that glutamate should be discounted entirely for investigation. The
viewer therefore reorders the axes via click-and-drag to place glutamate off to the side of the
plot.

Radiologists are aware that the ratio of choline to creatine is a useful tumor indicator. The
viewer therefore examines a density-based scatter plot comparing choline and creatine.
Compare the density plot in Figure 12 to the discrete case in Figure 4: the density plot
reveals the important features of the traditional scatter plot without drawing attention to
uncertain values that manifest as distracting outliers. The lone value in the upper-left of the
discrete plot in Figure 4 has extremely large standard deviations and therefore is not visible
in the density plot. The density plot retains the meaningful bulk of values with an apparent
positive linear relationship, and mean emphasis highlights the subpopulation of values
clustered below the large group. The selection of these values using a linear function brush
propagates to the PC plot, which enables the viewer to follow the trend on to other axes.
These values align well with the contrast-enhanced mass and tend to have lower
concentrations of n-Acetylaspartate (NAA). The second row of Figure 12 depicts a second
selection in which a separate population of values is selected via an angular brush on the PC
plot. This defines a higher relationship between choline and creatine, which tends to select
voxels outside of the tumor. This new selection also tends to have higher values of NAA,
which supports the hypothesis drawn after the first selection. Applying the same analysis to
other brain tumor data sets has confirmed the metabolic makeup of this type of tumor.

Looking at the MRS data in a probabilistic plot is also useful. As shown in Figure 11, the
animated plot reveals outlier values in the PDF. Selection reveals that those voxels are in the
center of the tumor despite having a choline-to-creatine ratio that differs from the other
tumor voxels. This discovery warrants further scrutiny, as it may indicate that the center of a
tumor may have a different signature than invasive tumor tissue. Also, a comparison of the
glutamate column in Figure 11 to the glutamate column in the standard PC plot in Figure 1
shows that random sampling has produced no clusters in this frame. While a bad set of
random samples may reproduce the cluster, plot animation fills in the region over time on
average.

While these visual explorations are possible with standard scatter plots and PC plots, density
plots enable the viewer to preattentively focus on useful information. They guide the
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viewer’s search away from unreliable data points and thereby reduce the rate of false
conclusions.

5 Conclusion

Incorporating KDEs into plots of statistically uncertain multivariate data using the
visualization and interaction techniques described in this work can lead viewers to identify
useful and interesting variable relationships. Just as important, they inhibit preattentive
perception for uncertain values and therefore prevent viewers from forming false
hypotheses. Clusters of very uncertain values combine into a large, low contrast shape,
which correctly prevents viewers from distinguishing between the means. Likewise,
uncertain values are spread across a wide area and do not draw the viewer’s attention.

The use of normally distributed uncertainty enables simple, parallelizable PDF computation
in both scatter plots and PC plots. For extremely large data sets, probabilistic plots are a way
of summarizing the data using a fast random sampling technique. Animated over time, these
plots help draw viewer attention to outliers while approximating the underlying PDF. Once
the PDF has been reasonably approximated, more rigorous density-based multivariate
analysis tools for outlier and pattern identification integrate without modification. The
probabilistic plot has many potential future areas of exploration. Given that the plot changes
over time, a time-aware interface for navigating the space of random plots would be
interesting. The interaction techniques described in this work apply to probabilistic plots,
however interaction techniques with dynamic plots deserve further consideration.

Although the availability of per-sample statistical distributions makes KDE accurate and
simple, it is not a prerequisite to using the visualization techniques described here.
Traditional Parzen windowing lets the user manually control the shape of the statistical
distribution used for each data point. The selected shape controls the emphasized feature
size in the resulting PDF. Ensemble data sets can be summarized with the mean and
variance of each sample. Clusters in large multivariate visualizations can be visualized
similarly. Any PDF can be used as input for these techniques, regardless of how it is
estimated.

We also describe how to augment traditional brushing techniques to incorporate knowledge
of uncertainty. Rather than selecting discrete values, brushes select distributions, which
requires integration of the distributions within the region of the brush. For normal
distributions, integration is often as simple as applying a transform to the brush shape and a
few function lookups.

The techniques presented here formalize and extend previously explored techniques and
apply them to MR spectroscopy data for the identification of metabolite relationships in MR
spectroscopy data. Specifically we have shown that linking these views is useful for
understanding glioblastomas, a type of brain tumor. MR spectroscopy is also used for a wide
array of other disease processes, including multiple sclerosis and many cancers throughout
the body. Outside of MR, another source of uncertain spectroscopy data comes from an
optical inspection technique called Matrix-Assisted Laser Desorption/lonization (MALDI)
that decomposes spatially localized tissue samples into their protein spectra. Each point
sample is often the average of many local spectral signals, which leads to normally
distributed spectral peaks. We hope that continued interdisciplinary collaboration between
visualization researchers and domain scientists will help improve multivariate uncertainty
visualization to address complex problems such as these.

Density-based plots apply directly to any multivariate data set that includes statistically
quantified uncertainty. They have been demonstrated in both scatter plots and PC plots of
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ch data in an interactive, linked-views display. Abstract density plots are a useful

technique for exploring this and other uncertain data sets while preventing false conclusions
based on untrustworthy values.
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Fig. 1.

A false positive. Left: a standard parallel coordinates plot reveals a potential cluster of
interesting values on the Glu variable. Right: density plots with mean emphasis reveal that
the selection actually is not a cluster when uncertainty is taken into account.
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Kernel Density Estimate

m——— Normal Distribution

Fig. 2.

An example of KDE for multiple normal distributions with different means and standard
deviations. The blue lines are individual distributions. The red line is the KDE, computed by
summing the distributions.

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 November 1.



1dussnuein Joyny vd-HIN 1duosnueln Joyny vd-HIN

1duosnuey JoyIny vd-HIN

Feng et al.

Page 19

Fig. 3.

A constructed example of a false negative. Top: a PC plot of three variables. Bottom:
visualization of the PDF using the distributions of values preattentively highlights the more
certain values.

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 November 1.



1dussnuein Joyny vd-HIN 1duosnueln Joyny vd-HIN

1duosnuey JoyIny vd-HIN

Feng et al.

Page 20

Uncertain
Outlier e

Fig. 4.

Scatter plot of two MR spectroscopy metabolites. From left to right, means are emphasized
by varying amounts. Left: a standard scatter plot of MR spectroscopy data, with choline
concentration on the x-axis and creatine concentration on the y-axis. Middle: the PDF of the
data with emphasized means, computed using KDE over normal distributions assuming p =
0. Right: direct rendering of the PDF.
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.

. .
Fig. 5.
Normal distributions with different values of p, the correlation coefficient, mapped from

Cartesian space into PC space. p = .9 and p = 0 look different in the Cartesian plot, despite
looking similar in PC.
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Fig. 6.

Parallel coordinates plots of four MR spectroscopy metabolites. From left to right, means are
decreasingly emphasized. Left: a sigmoidal PC plot of the same data shown in Figure 4 with
two additional variables (glutamate and n-acetylaspartate). Center: the estimated PDF
mapped into PC space, with means emphasized according to their uncertainty. Right: direct
visualization of the PDF.
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Fig. 7.

Computing the integral of a bivariate normal distribution within a distance threshold to an
infinite line. Step 1: translate the line and distribution to the origin. Step 2: rescale the
distribution to unit variances. Step 3: estimate the integral from the near and far bounds of
the line.
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Fig. 8.

Left: a demonstration of probabilistic scatter plots (here for choline and creatine). The gray-
scale image in the background is the PDF of the two variables. Red dots are positions
randomly sampled from the PDF. Right: the same random samples from the scatter plot
extended to multivariate lines in a PC plot. The gray-scale image in the background is the
PDF in PC space.
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Fig. 9.

Above: randomly sampled lines accumulating into a histogram PDF approximation, labeled
with the number of contributing lines. Below: a log plot of mean square error as compared to
the correct solution.
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Fig. 10.
Background: anatomical MRI containing a stained region defining a probable tumor.
Radiologists want to use metabolite spectra (foreground) to understand tumor composition.
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Fig. 11.

Several frames of an animated probabilistic plot. Outliers flicker in and out in the
highlighted green region. Compare the red region to the Glu column in Figure 1. The
random sampling of lines prevents clusters from appearing on average over time.
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Fig. 12.

An example of using a linked density-based scatter plot, PC plot, and 3D view to analyze
tumors using MR spectroscopy (upper row). The lines and points in the 2D plots correspond
to voxels in the 3D plot. A selection of an unusual cluster of voxels in the scatter plot with a
low choline-to-creatine ratio tends to isolate tumor voxels. The PC plot show’s that
glutamate is not a useful variable due to high uncertainty, and n-Acetylaspartate (NAA) is
lower than normal in tumor voxels. The second row contains the same PC plot, this time
with an angular selection. That isolates a different linear relationship in scatter plot space,
which tends to select voxels outside of the tumor.
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