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Fig. 1: Visible male data set (www.stereofx.org): Fractal box span dimension, number of isosurface components and sample iso-
surfaces. Noisy isosurface at isovalue 68 corresponds to high fractal dimension and large topological noise. Topological noise is
measured by the number of connected components in the isosurface. (Visible male data set provided by the National Library of
Medicine, USA.)

Abstract—A (3D) scalar grid is a regular n1 × n2 × n3 grid of vertices where each vertex v is associated with some scalar value sv.
Applying trilinear interpolation, the scalar grid determines a scalar function g where g(v) = sv for each grid vertex v. An isosurface with
isovalue σ is a triangular mesh which approximates the level set g−1(σ). The fractal dimension of an isosurface represents the growth
in the isosurface as the number of grid cubes increases. We define and discuss the fractal isosurface dimension. Plotting the fractal
dimension as a function of the isovalues in a data set provides information about the isosurfaces determined by the data set. We
present statistics on the average fractal dimension of 60 publicly available benchmark data sets. We also show the fractal dimension
is highly correlated with topological noise in the benchmark data sets, measuring the topological noise by the number of connected
components in the isosurface. Lastly, we present a formula predicting the fractal dimension as a function of noise and validate the
formula with experimental results.

Index Terms—Isosurfaces, scalar data, fractal dimension.

1 INTRODUCTION

A (3D) scalar grid is a regular n1×n2 ×n3 grid of vertices where each
vertex v is associated with some scalar value sv. The grid covers some
rectilinear region Ω and partitions Ω into cubes (or, more generally,
rectilinear boxes.) Applying trilinear interpolation to each cube, gives
a scalar function defined on each cube. Combining these scalar func-
tions gives a scalar function g : Ω → R defined on Ω. An isosurface
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with isovalue σ is a triangular mesh which approximates the level set
g−1(σ).

Scalar grids can be created by scanning devices such as MRI or CT
scanners, can be generated by numerical solutions of partial differen-
tial equations such as fluid flow simulations, or can be sampled from a
scalar function f : R

3 → R. Increases in the resolution of the scanning
device, the numerical simulation or the function sampling, permit in-
creases in the size of the scalar grid representing the data. As the scalar
grid grows, the size of the isosurface with isovalue σ also grows. What
is the relationship between the growth of the scalar grid and the growth
of the isosurface? Specifically, if N is the number of cubes in a scalar
grid, how fast does the isosurface size grow as a function of N?

The size of an isosurface can be measured in terms of its area or the
number of its triangles, but those measurements depend upon the spe-
cific approximation to g−1(σ). A better measurement is to count the
number of grid cubes intersected by the isosurface. More specifically,
count the number of grid cubes with span [α,β ] such that α < σ ≤ β .



For isosurfaces constructed by the Marching Cubes Algorithm and nu-
merous variants, the number of grid cubes where α < σ ≤ β is exactly
the number of grid cubes intersected by the isosurface. For such iso-
surfaces, isosurface area and the number of isosurface triangles are
directly proportional to the number of intersected grid cubes.

Let X be a subset of a rectangular region Ω. Let IN(X) be the num-
ber of grid cubes intersected by X when Ω is covered by a grid of N
cubes with dimensions δ ×δ ×δ . The fractal box counting dimension
of X is [7, Chapter 3]:

lim
δ→0

log(IN(X))

log(1/δ )
.

The volume of Ω equals Nδ 3. Since this volume is constant, δ is
proportional to 1/N1/3. The fractal box counting dimension can be
redefined as:

lim
δ→0

log(IN(X))

log(1/δ )
= lim

N→∞

log(IN(X))

log(N1/3)
= lim

N→∞
3

log(IN(X))

log(N)
.

The fractal box counting dimension represents the growth in the num-
ber of grid cubes intersected by X as a function of the grid size. The
fractal box counting dimension is one of a number of different ways to
define fractal dimension, not all of them equivalent [7].

While isosurfaces are not simply subsets X of Ω, they are similar
enough so that an equivalent fractal box counting dimension can be
defined for isosurfaces. Instead of taking a limit as N goes to infinity,
we subsample the scalar grid and compare the number of intersected
grid cubes of the full resolution and subsampled grid. In Section 3, we
present a definition of the fractal box counting dimension of an isosur-
face and compare it with a previous definition of isosurface fractality
in [17].

The fractal dimension is directly related to the growth in isosurface
size. If the number of cubes intersected by an isosurface grows as
Θ(N2/3), then the fractal box counting dimension of the isosurface is
two. If the number of intersected cubes grows as Θ(N), then the fractal
dimension of the isosurface is three. More generally, if the number of
intersected cubes grows as Θ(Nκ ) where 2/3 ≤ κ ≤ 1, then the fractal
dimension is 3κ .

Using the techniques from [1] and [7], we can plot the fractal box
counting dimension as a function of the isovalues in the data set.
(See Figures 1 and 2.) Fractal dimensions near two suggest relatively
smooth isosurfaces while higher fractal dimensions suggest rough iso-
surfaces with numerous small features.

If a scalar grid is a sampling of an algebraic function f : R
3 → R,

then, for all isovalues, the fractal dimension is two. Similarly, if an
isosurface is nearly planar, then its fractal dimension is also two [9].

However, what is the average fractal dimension of isosurfaces pro-
duced from benchmark data? A similar question was first asked in [4]
and [18] which compared the isosurface sizes of different benchmark
data sets. The conclusion in that paper was that the number of inter-
sected cubes grows at a rate of Θ(N0.82) for a fractal dimension of
2.46. A subsequent paper, [18], suggested an even higher growth rate
of Θ(N0.96) with a fractal dimension of 2.88. In this paper, we con-
clude that the average growth rate and average fractal dimension is
substantially smaller.

As noted in [4] and [18], the isosurface fractal dimension increases
with the addition of noise. In [18], synthetic noise is added to data sets
and the increase in fractal dimension is measured and graphed. Is there
a way to measure the noise in the benchmark data sets and correlate it
to the fractal dimension?

One problem in isosurface construction is topological noise, small
topological features such as small connected components, loops or
tunnels, created by noise in the scalar data. Counting the number of
connected components in an isosurface gives us some measure of this
topological noise. We measured the number of such connected com-
ponents and showed that it is correlated to the fractal dimension of the
isosurface.

As shown from the synthetic experiments and the measurements of
benchmark data sets, the fractal dimension increases with noise. What
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Fig. 2: Tooth data set (www.stereofx.org): Fractal box span dimension
as a function of isovalue. (Tooth data set provided by GE Aircraft
Engines, USA.)

exactly is the relationship between the two? In Section 5, we derive
and present an analytic formula for the fractal dimension as a function
of uniform noise added to a data set. We confirm the formula with
experimental results.

The main contributions of this paper are as follows:

1. Definition of the fractal box counting dimension which can be
easily computed and plotted as a function of scalar values;

2. Measurements of the isosurface growth and fractal dimension of
benchmark data sets using grid subsampling;

3. Correlation of the fractal dimension with topological noise;

4. An analytic formula for the fractal dimension as a function of
uniform noise.

2 PREVIOUS WORK

The most popular algorithm for constructing isosurfaces from scalar
data sets is the 1987 Marching Cubes Algorithm by Lorensen and
Cline [11]. There are numerous variants [2, 3, 12, 14, 16, 19, 20]
and readers are referred to the survey paper [13] for a more complete
listing. Other approaches to isosurface construction use dual contour-
ing [8, 10, 15] and Delaunay triangulations [6].

In a 1995 paper presenting a new technique for isosurface construc-
tion, Itoh and Koyamada noted that a nearly planar isosurface will
intersect Θ(N2/3) grid cubes [9]. They did not present any formal
analysis or experimental evidence to justify this claim.

In 1997, Bajaj et. al. [1] proposed analyzing scalar data by mea-
suring and plotting various isosurface statistics as a function of scalar
values. They measured isosurface areas, volumes enclosed by isosur-
faces and some gradient measures over the isosurface. Pekar et. al.
in [17] showed how to quickly compute some of these gradient mea-
sures without explicitly computing the isosurface.

Let G0 be a scalar grid with N vertices and let G1,G2, . . . be sub-
sampled versions of G0 where Gk has (1/8)kN vertices. Let Aσ (Gk)
be the area of an isosurface with isovalue σ in Gk. Pekar et. al. [17]
defined the fractal dimension of an isosurface as the slope of the linear
regression of log(Aσ (Gk)). They did not make any conjectures or give
any experimental data on the expected or average fractal dimension of
isosurfaces. The definition of fractal isosurface dimension provided in
this paper is different although similar to the one in [17].

In 2006, Carr et. al. [4] presented the first measurements on bench-
mark data sets of isosurface growth as a function of grid size N. They
plotted isosurface size versus grid size for a set of ninety benchmark
data sets and used least squares to fit a line to the data. Using the slope
of the line, they estimated the growth rate as Θ(N0.82). A subsequent
paper by Scheidegger et. al.[18] corrected some errors in [4] and esti-
mated a growth rate of Θ(n0.96). They also experimented with adding
synthetic noise to their data sets and measuring the growth rate as a
function of the noise.

3 FRACTAL DIMENSION

As previously noted, there are numerous algorithms for isosurface
construction and these algorithms produce numerous different, albeit



Table 1: Measurements of fractal box dimension and correlation between fractal dimension and number of isosurface components. a) Type of
data sets. Data sets of type “medical” are MRI and CT scans of humans. Data sets of type “measured” include non-organic data sets such as
engine and organic data sets such as bonsai, monkey-CT and lobster. All other data sets are of type “synthetic”, and include numerical simulation
data such as bluntfin, neghip or shockwave and computer generated models such as hydrogenAtom, nucleon or silicium. b) Number of data sets.
c) Average fractal dimension. (Average of the average fractal dimension of each data set.) d) Standard deviation of fractal dimension. e) Average
of the standard deviation of the fractal dimension. (Average of the standard deviation of the fractal dimension of each data set.) f) Average
fractal dimension of subsampled data sets. g) Average of the magnitude of the difference between the fractal dimension of the full resolution
and subsampled version of each data set. h) Average correlation between the fractal dimension and the number of connected components for
each data set. i) Standard deviation of the correlation.

Data Sets Fractal Box Dim Correlation
a) Type b) Num c) Avg d) Std Dev e) Avg Std Dev f) Avg Subsampled g) Avg |Full−Sub| h) Avg i) Std Dev
All 60 2.26 0.16 0.13 2.38 0.14 0.61 0.18
Medical 24 2.29 0.12 0.14 2.42 0.13 0.65 0.11
Measured 22 2.26 0.17 0.13 2.39 0.15 0.61 0.19
(non-medical)
Synthetic 14 2.20 0.22 0.09 2.30 0.13 0.52 0.25
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Fig. 3: Histogram of average fractal dimensions for 60 benchmark data
sets.

similar, isosurfaces. Since the sizes of these isosurfaces vary by only
a constant factor, they all have the same asymptotic growth rate.

The span of a grid cube C is a closed interval [α,β ] where α is
the smallest scalar value of any cube vertex and β is the largest. If
an isovalue σ is strictly between α and β , then any isosurface with
isovalue σ will intersect C. (If σ equals α or β , then the isosurface
may or may not intersect C.) For a scalar grid G, let Iσ (G) be the
number of cubes whose span contains σ .

Let f : Ω → R be a scalar function defined on a rectangular region
Ω. Function f is not necessarily continuous. Let GN be a scalar grid
with N cubes covering Ω which samples f at its vertices. Define the
fractal box span dimension of f for isovalue σ as:

lim
N→∞

log(Iσ (GN))

log(N1/3)
= lim

N→∞
3

log(Iσ (GN))

log(N)
.

(If this limit does not exist, then we should use upper and lower limits.)
The fractal box span dimension is similar to the fractal box counting

dimension defined in the introduction. However, it is not necessarily
the same as the fractal box counting dimension of the level set f −1(σ).
If f is not continuous, there may be no point p for which f (p) equals
σ and yet an infinite number of arbitrarily close pairs of points (p,q)
such that f (p) ≤ σ ≤ f (q).

A standard technique to measure the fractal box counting dimen-
sion of a point set X is to plot 3 log(IN(X)) as a function of log(N),
use linear regression to fit a line to the plot, and then take the slope
of that line. Similarly, Pekar et. al. [17] measure the fractal box span
dimension by plotting 3log(Aσ (GN)) as a function of log(N), and tak-
ing the slope of the line fitting that plot. (Pekar et. al. used Aσ (GN),
the area of the isosurface with isovalue σ ∈ GN , instead of Iσ (GN).)

If we take just two regular grids, GN and GN/8, where GN/8 has N/8
cubes, then the slope of the line through (log(N/8),3log(Iσ (GN/8)))

and (log(N),3log(Iσ (GN))) is:

3 log(Iσ (GN))−3log(Iσ (GN/8))

log(N)− log(N/8)
=

log(Iσ (GN))− log(Iσ (GN/8))

log(2)
.

Using base two for the log, simplifies this to:

log2(I
σ (GN))− log2(I

σ (GN/8)) = log2

(
Iσ (GN)

Iσ (GN/8)

)
.

Let G be a scalar grid with N cubes and let G′ be the subsampled
regular grid of G with N/8 cubes. We define the fractal box span
dimension of scalar grid G for isovalue σ as:

log2

(
Iσ (G)

Iσ (G′)

)
.

Subsampling a data set usually involves using nearby data points
such as in a Gaussian filter to construct as good an estimate as possible
of the remaining scalar values. However, doing so implicitly smooths
the data. It raises the possibility that the differences between G and G′

measured by the fractal dimension are caused by the better estimation
of scalar values in G′, not an inherent growth in the isosurface area.
Using a filter also begs the question of which filter and which filter pa-
rameters to use. Subsampling in this paper always refers to the simple
selection of every other point in the data set without any application of
a filter.

We measured the fractal box span dimension of 60 public bench-
mark data sets from the two web sites www.stereofx.org and
www.volvis.org. Each data set represented a scalar grid. For all
the data sets, scalar values at grid vertices were 8 bit or 12 bit inte-
gers. For each data set, we computed the fractal box span dimension
for each isovalue between the minimum and maximum scalar value in
the data set. (See Figure 2.) We averaged the fractal dimension over
the isovalues to compute an average fractal dimension for the data sets
and then computed an average over all the data sets. (See Figure 3 and
Table 1.) The average fractal dimension for all the data sets is 2.26
(standard deviation 0.16). We also computed the standard deviation of
the fractal dimension of each data set and the average of those standard
deviations. (See column e) in Table 1.) The average standard deviation
is 0.13.

Average fractal dimension 2.26 indicates that the isosurface grows
as Θ(N0.75) which is significantly less than the previously estimated
Θ(N0.82) [4] or Θ(N0.96) [18]. As suggested in [4] and [18], we parti-
tioned the data sets into three categories, medical, measured but non-
medical and synthetic. In [18], the isosurface growth was reported
as Θ(N0.70), Θ(N0.82) and Θ(N0.87) for medical, measured (non-
medical) and synthetic data sets. Our corresponding measurements
are Θ(N0.76), Θ(N0.75) and Θ(N0.73).
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Fig. 4: Noisy isosurfaces from the Tooth data set.
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Fig. 5: Tooth data set: Number of isosurface components as a function
of isovalue (log scale).

Our definition of fractal dimension uses only two grids to estimate
the fractal dimension as opposed to the multiple subgrids suggested
by Pekar et. al. Our definition has the advantage that it is a precise
formula. We do not have to specify the number of subgrids and/or the
criterion and algorithm used to fit a line to the plot. Our definition
also uses the number of grid cubes whose span contains the isovalue
instead of isosurface area. This definition is simple and precise, does
not depend upon an isosurface construction algorithm, and does not
require constructing an isosurface.

The fractal box span dimension of a scalar grid is meant to approx-
imate an infinite sequence of scalar grids. To see how well it does
so, we subsampled the scalar grid in the 60 benchmark data sets us-
ing one-eighth the number of vertices, and then measured the average
fractal dimension of the subsampled grids. The average fractal box
dimension of the subsampled grids is 2.38 (standard deviation 0.16).
The average magnitude of the difference between the subsampled and
the full resolution fractal dimension is 0.15 (standard deviation 0.08.)
Note that the fractal box span dimension of a subsampled grid G′ de-
pends upon Iσ (G′′) where G′′ is a subsampled grid of G′. Grid G′′ has
1/64 the vertices of the original grid, which is a significant subsam-
pling of the original grid.

4 CORRELATING FRACTAL DIMENSION AND NOISE

As demonstrated in Figure 2, the fractal box span dimension often
varies greatly with the isovalue. On closer inspection, isosurfaces with
large fractal dimensions are greatly affected by noise in the scalar data.
For instance, the isovalues 400 and 850 in Figure 2 with high fractal
dimensions correspond to the noisy isosurfaces in Figure 4.

Noise in a scalar data set is a set of random values under some
probability distribution which is added to the scalar values of the grid
vertices. The noise may have various frequencies, although it is the
high frequency noise which affects the fractal box span dimension.

In [18], Scheidegger et. al. added computer generated noise to
scalar data generated from an algebraic equation and showed that the
fractal box span dimension increased as the noise amplitude increased.
While this experiment shows that noise can cause a high fractal box
span dimension, it does not necessarily follow that the high fractal
dimension measured in the benchmark data sets is caused by noise.

To show that noise is at least partially the cause of the high fractal
dimension in benchmark data sets, we need some measure of noise.
Topological noise in an isosurface is topological isosurface features,
such as connected components, loops or tunnels, created by noise in
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Fig. 6: Histogram of correlation between average fractal dimension
and number of isosurface components for 65 benchmark data sets.

the scalar data. We measured the noise in the data set by measuring
the number of connected components in the isosurface. Assuming the
data sets represent surfaces with a dozen or fewer components, most
of the components represent noise.

For a given data set, the number of isosurface components and the
fractal box span dimension vary with the isovalue. How well are those
two values correlated? For instance, in Figure 5 the large number of
components for isovalues 400 and 850 correspond to the high fractal
box span dimension for those values shown in Figure 2.

The number of isosurface components is dependent upon noise but
it is also dependent upon the isosurface area. To correct for this depen-
dency upon isosurface area, we divided the number of isosurface com-
ponents by the area and correlated the resulting number with the frac-
tal dimension. We approximated the isoarea by the number of edges
intersected by the isosurface. We ignored isovalues for isosurfaces
which had very small area since such small isosurfaces biased the re-
sult. More specifically, for each data set we took the size of the small-
est two dimensional facet of the grid and divided by four. Isosurfaces
which intersected fewer than that number of grid edges were consid-
ered insignificantly small, and their isovalues were ignored. Correla-
tion statistics are presented in Table 1 and Figure 6.

To measure the number of connected isosurface components, we
used the algorithm by Carr et. al. [5] for constructing contour trees.
Each contour tree edge represents a set of connected isosurface com-
ponents which vary with the isovalue. For each isovalue, we counted
the number of contour tree edges which represent an isosurface com-
ponent with that isovalue. This number equals the number of con-
nected components of an isosurface with that isovalue.

Some data sets had average fractal dimension very close to two with
very little variance as a function of isovalue. We ignored the four data
sets whose standard deviation of the fractal dimension was less than
0.05. The average correlation coefficient for the remaining data sets
was 0.61 (standard deviation 0.18).

5 FRACTAL DIMENSION AS A FUNCTION OF NOISE

As Scheidegger et. al. [18] showed, the fractal box span dimension
increases with noise. What exactly is the relationship between the
two?

Computing the probability that a grid cube is intersected by the iso-
surface is complicated, since it depends on the scalar values of eight
grid vertices. Instead of using grid cubes, we use grid edges. The span
of a grid edge e is a closed interval [α,β ] where α and β are the scalar
values of the grid endpoints and α ≤ β . For a scalar grid G, let Iσ

e (G)
be the number of edges whose span contains σ .

Let G be a scalar grid with N vertices and let G′ be the subsam-
pled regular grid of G with N/8 vertices. Define the fractal edge span
dimension of G for isovalue σ as:

log2

(
Iσ
e (G)

Iσ
e (G′)

)
.

As shown in Figure 7, the fractal edge span and box span dimensions
are similar but not equivalent.



Let G be a scalar grid. Each grid vertex va of G has a scalar value
sa. For each grid vertex va of G, create a “noisy” scalar value, s̃a,
which is sa plus a random value with uniform distribution in the range
[−µ,µ]. Let G̃ be the scalar grid created by replacing the scalar value
sa with s̃a for each vertex va of G. We wish to give a formula for the
fractal dimension of G̃ as a function of µ , the range of the noise.

To make any predictions about the fractal dimension of an isosur-
face, we need some conditions on the grid edges in the neighborhood
of that isosurface. If edge e has edge span [αe,βe], (where αe ≤ βe,
by convention,) then the minimum scalar value of edge e is αe. The
magnitude of the span of e is |βe −αe|. Define a bivariate function Ψ
on the grid edges as:

Ψ(e) = (Ψ1(e),Ψ2(e)) = (αe, |βe −αe|).

Let σ be an isovalue and Eσ (η) be the edges whose minimum
scalar values are in the range [σ − η,σ + η]. Our formula will be
based on the assumption that Ψ restricted to Eσ (η) approximates a bi-
variate uniform distribution where Ψ1(e) varies uniformly in the range
[σ −η,σ +η] and Ψ2(e) varies uniformly from 0 to γ .

The simplest example of a scalar grid with this property is a reg-
ular grid of unit cubes whose scalar values are sampled from a point
cloud. Let f : R

3 → R represent the Euclidean distance to the origin
and let G be a regular grid of cubes centered at the origin. The gra-
dient magnitude of f is one. The vertices of G uniformly sample the
region between the concentric spheres f−1(σ −η) and f−1(σ + η).
Within this region, the gradient directions vary uniformly over the unit
sphere. Projecting these gradients onto the x-axis, the projections vary
uniformly from −1 to 1. (The area of a sphere cap with height h is
2πh so the probability that the projection is in the range [−1,−1 + h]
is 2πh/(4π) = h/2.) These projections determine the magnitudes of
the spans of edges parallel to the x-axis. Thus the magnitude of these
spans vary uniformly from 0 to 1. Similarly, the magnitude of the
spans of edges parallel to the y and z axis vary uniformly from 0 to 1.

While grid G uniformly samples the region between f −1(σ −η)
and f−1(σ + η), the volume between f−1(σ − η) and f−1(σ) is
greater than the volume between f−1(σ) and f−1(σ + η). Thus, Ψ1
restricted to Eσ (η) does not vary uniformly in the range [σ −η,σ +
η]. When σ is much larger than η , the difference between these vol-
umes is small and the distribution of minimum scalar values in Eσ (η)
is nearly, although not quite, uniform. Thus, Ψ restricted to Eσ (η)
approximates a bivariate uniform distribution only if σ is much larger
than η .

Instead of the distance to one point, grid G could sample the dis-
tance function to a finite set of random points. Gradient magnitudes of
this function are constant and with high probability the gradient direc-
tions vary nearly uniformly. When σ is much larger than η , function
Ψ restricted to Eσ (η) approximates a bivariate uniform distribution.

Let E ′
σ (η) be the edges of the subsampled grid G′ whose minimum

scalar values are in the range [σ −η,σ + η]. The following theorem
relates the fractal dimension to noise under the appropriate conditions:

Theorem 1. Let r and γ be non-negative real numbers and let η equal
(r +2)γ . Let G be a regular grid and σ be an isovalue such that Ψ re-
stricted to Eσ (η) and Ψ restricted to E ′

σ (η) approximates the bivari-
ate uniform distribution on [σ −η,σ + η]× [0,γ] and where |E ′

σ (η)|

approximately equals |Eσ (η)|/8. Let G̃ be a scalar grid created by
adding random noise with uniform distribution in the range [−rγ,rγ]
to G.

1. If r ≥ 1, then the expected fractal edge span dimension of G̃ is:

log2

(
32r3 +8r−1

32(r/2)3 +8(r/2)−1

)
. (1)

2. If 1/2 ≤ r ≤ 1, then the expected fractal edge span dimension of
G̃ is:

log2

(
32r3 +8r−1

r4 +6r2

)
. (2)
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Fig. 7: Plot of fractal formula (Equations 1, 2 and 3.) Function f (r)
represents the fractal edge span dimension as a function of uniform
noise in the range [−rγ,rγ] where γ is the gradient. Plot of fractal edge
span dimension and fractal box span dimension versus noise added to
a point cloud data set.

3. If r ≤ 1/2, then the expected fractal edge span dimension of G̃
is:

log2

(
4

2r2 +3
2(r/2)2 +3

)
. (3)

Setting r to zero means no noise is added to the data set. In that case,
Equation 3 gives the expected fractal dimension of G as two. Thus
the formula represents the growth in fractal dimension as a function
of noise. The fractal formula (Equations 1, 2 and 3) is graphed in
Figure 7.

To derive the formula, we first compute the probability that an edge
(va,vb) in G̃ intersects the isosurface (Lemma 1). This probability
depends upon the scalar values of va and vb in the original scalar grid
G. We next compute the probability that an edge whose gradient span
is δ intersects the isosurface (Lemma 2). We do so by integrating over
all minimum scalar values of edges with span magnitude δ . Finally,
we integrate over the span magnitude δ to compute the probability that
a random edge intersects the isosurface (Lemma 3). We compute the
expected number of edges in G̃ and its subsampling G̃′ which intersect
the isosurface and compute the fractal dimension from the expected
number of intersections.

Let (va,vb) be a grid edge in G̃. An isosurface with isovalue σ
in G̃ intersects edge (va,vb) if σ ∈ [s̃a, s̃b]. (Note that we make no
assumptions about whether s̃a or s̃b is greater.)

Lemma 1. Let G̃ be a scalar grid created by adding random noise
with uniform distribution in the range [−µ,µ] to G. Let (va,vb) be a
grid edge of G where va has scalar value sa in G and s̃a in G̃ and vb
has scalar value sb in G and s̃b in G̃.

1. If σ ∈ R is a scalar value where σ − µ ≤ sa ≤ sb ≤ σ + µ , then
the probability that σ ∈ [s̃a, s̃b] is: 1

2 −
(sa−σ)(sb−σ)

2µ2 .

2. If σ ∈ R is a scalar value where sa ≤ σ − µ ≤ sb ≤ σ + µ , then
the probability that σ ∈ [s̃a, s̃b] is: 1

2 + sb−σ
2µ .

3. If σ ∈ R is a scalar value where σ − µ ≤ sa ≤ σ + µ ≤ sb, then
the probability that σ ∈ [s̃a, s̃b] is: 1

2 + sa−σ
2µ .

Proof. If σ − µ ≤ sa ≤ σ + µ , then the probability that s̃a is greater
than σ is:

P(s̃a ≥ σ) =
µ + sa −σ

2µ
=

1
2

+
sa −σ

2µ
.

Since sa is in the range [σ −µ,σ + µ], the value on the right is always
between 0 and 1. The probability that sa is less than σ is:

P(s̃a ≤ σ) =
µ − (sa −σ)

2µ
=

1
2
−

sa −σ
2µ

.



Similar probabilities hold for sb and s̃b.
The probability that σ ∈ [s̃a, s̃b] is the probability that s̃a ≤ σ ≤ s̃b

or that s̃a ≥ σ ≥ s̃b. Since these two events are mutually exclusive,
(except for the zero probability event that s̃a = s̃b = σ ,) the probability
that σ ∈ [s̃a, s̃b] is the sum of these two probabilities.

Case 1: σ −µ ≤ sa ≤ sb ≤ σ + µ .

P(σ ∈ [s̃a, s̃b]) = P(s̃a ≤ σ ≤ s̃b)+P(s̃a ≥ σ ≥ s̃b)

=
1
2
−

(sa −σ)(sb −σ)

2µ2 .

Case 2: sa ≤ σ −µ ≤ sb ≤ σ + µ .
The probability that s̃a ≥ σ is zero. Thus,

P(σ ∈ [s̃a, s̃b]) = P(s̃a ≤ σ ≤ s̃b) =
1
2

+
sb −σ

2µ
.

Case 3: σ −µ ≤ sa ≤ σ + µ ≤ sb.
The probability that s̃b ≤ σ is zero. Thus,

P(σ ∈ [s̃a, s̃b]) = P(s̃a ≤ σ ≤ s̃b) =
1
2

+
sa −σ

2µ
.

To compute the probability that a random edge with span [x,x + δ ]
intersects the isosurface, we integrate over all the possible values of x.
Let spanG̃(e) be the span of edge e in G̃. Let E(G) be the set of edges
of G.

Lemma 2. Let G̃ be a scalar grid created by adding random noise
with uniform distribution in the range [−µ,µ] to G. Let e be a random
grid edge with span [x,x + δ ] chosen from some E ′ ⊆ E(G) such that
x is uniformly distributed over [σ −Λ,σ +Λ] for some Λ ≥ µ +δ .

1. If δ ≤ 2µ , then the probability that σ ∈ spanG̃(e) is

8µ3 −δ 3

24µ2Λ
+

δ 2

4µΛ
.

2. If δ ≥ 2µ , then the probability that σ ∈ spanG̃(e) is δ/(2Λ).

Proof of Statement 1: Applying Lemma 1, Statement 1, the probabil-
ity that σ ∈ spanG̃(e) given that σ −µ ≤ x ≤ x +δ ≤ σ + µ is:

1
2µ −δ

∫ σ+µ−δ

x=σ−µ

(
1
2
−

(x−σ)(x +δ −σ)

2µ2

)
dx

=
1

2µ −δ

(
2
3

µ −
δ 3

12µ2

)
=

1
2µ −δ

(
8µ3 −δ 3

12µ2

)
.

The probability that σ −µ ≤ x ≤ x +δ ≤ σ + µ is (2µ −δ )/(2Λ).
The probability that σ −µ ≤ x ≤ x+δ ≤ σ + µ and σ ∈ spanG̃(e) is:

(
2µ −δ

2Λ

)(
1

2µ −δ

)(
8µ3 −δ 3

12µ2

)
=

8µ3 −δ 3

24µ2Λ
.

Applying Lemma 1, Statement 2, the probability that σ ∈ spanG̃(e)
given that x ≤ σ −µ ≤ x +δ ≤ σ + µ is:

1
δ

∫ σ−µ

x=σ−µ−δ

(
1
2

+
x +δ −σ

2µ

)
dx =

δ
4µ

.

The probability that x ≤ σ − µ ≤ x + δ ≤ σ + µ and σ ∈ spanG̃(e)
is: (

δ
2Λ

)(
δ

4µ

)
=

δ 2

8µΛ
.

Similarly, the probability that σ − µ ≤ x ≤ σ + µ ≤ x + δ and σ ∈
spanG̃(e) is also δ 2/(8µΛ).

Adding the three cases, σ −µ ≤ x≤ x+δ ≤ σ +µ and x≤ σ −µ ≤
x + δ ≤ σ + µ and σ − µ ≤ x ≤ σ + µ ≤ x + δ , the probability that
σ ∈ spanG̃(e) is:

8µ3 −δ 3

24µ2Λ
+

δ 2

8µΛ
+

δ 2

8µΛ
=

8µ3 −δ 3

24µ2Λ
+

δ 2

4µΛ
.

Proof of Statement 2: If σ is in spanG̃(e), then x must be in the range
[σ −µ −δ ,σ + µ]. We divide this range into three cases:
x ∈ [σ − µ − δ ,σ + µ − δ ] and x ∈ [σ + µ − δ ,σ − µ] and
x ∈ [σ −µ,σ + µ].

Applying Lemma 1, Statement 2, the probability that σ ∈ spanG̃(e)
given that σ −µ −δ ≤ x ≤ σ + µ −δ is:

1
2µ

∫ σ+µ−δ

x=σ−µ−δ

(
1
2

+
x +δ −σ

2µ

)
dx =

1
2
.

The probability that σ − µ −δ ≤ x ≤ σ + µ −δ and σ ∈ spanG̃(e) is
µ/(2Λ).

The probability that σ ∈ spanG̃(e) given that σ +µ−δ ≤ x≤σ −µ
is 1 since µ ≤ δ/2. The probability that σ + µ −δ ≤ x ≤ σ − µ and
σ ∈ spanG̃(e) is (δ −2µ)/(2Λ).

The probability that σ − µ ≤ x ≤ σ + µ and σ ∈ spanG̃(e) is sym-
metric to the first case and is also µ/(2Λ).

Summing the three cases, the total probability that σ ∈ spanG̃(e) is
δ/(2Λ).

To compute the probability that a random edge e intersects the iso-
surface, we integrate over the magnitude of edge spans.

Lemma 3. Let G̃ be a scalar grid created by adding random noise
with uniform distribution in the range [−µ,µ] to G. Let e be a random
grid edge with span [x,x + δ ] chosen from E ′ ⊆ E(G) such that Ψ
restricted to E ′ has bivariate uniform distribution on [σ −Λ,σ +Λ]×
[0,γ] for some Λ ≥ µ + γ .

1. If γ ≤ 2µ , then the probability that σ ∈ spanG̃(e) is:

32µ3 +8µγ2 − γ3

96µ2Λ
.

2. If γ ≥ 2µ , then the probability that σ ∈ spanG̃(e) is:

3γ2 +2µ2

12γΛ
.

Proof of Statement 1: Applying Lemma 2 and integrating over δ , the
probability that σ ∈ spanG̃(e) is:

1
γ

∫ γ

δ=0

(
8µ3 −δ 3

24µ2Λ
+

δ 2

4µΛ

)
dδ =

32µ3 +8µγ2 − γ3

96µ2Λ
.

Proof of Statement 2: We integrate the probability that σ ∈ spanG̃(e)
over δ , splitting the integrand into two cases, one where δ ≤ 2µ and
the other where δ ≥ 2µ . Applying Lemma 2, the probability is:

1
γ

(∫ 2µ

δ=0

(
8µ3 −δ 3

24µ2Λ
+

δ 2

4µΛ

)
dδ +

∫ γ

δ=2µ

(
δ

2Λ

)
dδ
)

=
1
2γ

(
7µ2

3Λ
+

γ2

2µ
−

2µ2

Λ

)
=

1
2γ

(
γ2

2Λ
+

µ2

3Λ

)
=

3γ2 +2µ2

12γΛ
.



From Lemma 3, we derive the expected number of edges intersect-
ing the isosurface and thus the fractal dimension.

Proof of Theorem 1, Statement 1:
Let M be the number of edges in Eσ (η). By assumption, M/8

equals |E ′
σ (η)|/8. Let µ equal rγ . The added noise is uniformly

distributed in the range [−µ,µ]. By Lemma 3, the expected value
of Iσ

e (G̃), the number of edges of G̃ intersecting the isosurface is:

M
(

32µ3+8µγ2−γ3

96µ2Λ

)
.

Let G̃′ be the subsampled regular grid of G̃ with N/8 vertices.
Since each subgrid edge covers two edges of grid G̃, the magni-
tudes of edge spans of G̃′ vary uniformly from 0 to 2γ . Thus
the expected number of edges of G̃′ intersecting the isosurface is:
(M/8)

(
32µ3+8µ(2γ)2−(2γ)3

96µ2Λ

)
.

Dividing the number for the full grid by the number for the subsam-
pled grid and replacing µ by rγ gives

8
(

32µ3 +8µγ2 − γ3

32µ3 +8µ(2γ)2 − (2γ)3

)
= 8

(
32(rγ)3 +8(rγ)γ3 − γ3

32(rγ)3 +8(rγ)(2γ)2 − (2γ)3

)

= 8
(

32r3 +8r−1
32r3 +32r−8

)
=

32r3 +8r−1
32(r/2)3 +8(r/2)−1

.

Thus the expected fractal dimension is: log2

(
32r3+8r−1

32(r/2)3+8(r/2)−1

)
.

Proof of Theorem 1, Statement 2:
As in the proof of Statement 2, the number of edges of G̃ intersect-

ing the isosurface is: M
(

32µ3+8µγ2−γ3

96µ2Λ

)
.

Let G̃′ be the subsampled regular grid of G̃ with N/8 vertices. The
magnitudes of edge spans of G̃′ vary uniformly from 0 to 2γ . Since
2γ > 2µ , Statement 2 of Lemma 3 applies, and the expected number
of edges of G̃′ intersecting the isosurface is: (M/8)

(
3(2γ)2+2µ2

12(2γ)Λ

)
.

Dividing the number for the full grid by the number for the sub-
sampled grid, replacing µ by rγ , and taking the logarithm gives Equa-
tion 2.

Proof of Theorem 1, Statement 3:
By Statement 2 of Lemma 3, the expected number of edges of G̃

intersecting the isosurface is: M
(

3γ2+2µ2

12γΛ

)
.

Let G̃′ be the subsampled regular grid of G̃ with N/8 vertices.
The expected number of edges of G̃′ intersecting the isosurface is:
(M/8)

(
3(2γ)2+2µ2

12(2γ)Λ

)
.

Dividing the number for the full grid by the number for the sub-
sampled grid, replacing µ by rγ , and taking the logarithm gives Equa-
tion 3.

6 EXPERIMENTAL RESULTS

To check the fractal formulas (Equations 1, 2, and 3), we created a
point cloud data set representing the Euclidean distance from the ori-
gin and added uniform noise in the range [−µ,µ] for various values
of µ ∈ [0 : 4]. We plotted the resulting fractal edge span dimension
and the formula prediction where r equals one. For µ ≥ 1.0, Equa-
tion 1 applies, for µ ∈ [0.5 : 1.0], Equation 2 applies, and for µ ≤ 0.5,
Equation 3 applies. As shown in Figure 7, the prediction matches the
experimental data.

In Figure 7, we also plotted the fractal box span dimension. As
shown in the figure, the fractal box span dimension is not quite the
same as the fractal edge span dimension.
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Fig. 8: Plot of fractal edge span dimension versus noise added to a
data set representing Euclidean distances to a set of 10 random points.
Plot of fractal edge span dimension versus noise added to a data set
representing distance to a circle. Plot of fractal formula.
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Fig. 9: Plot of fractal dimension (isovalue 650) vs. noise added to the
Tooth data set and plot of fractal formula adjusted for the gradient 120.

As noted in the previous section, sampling
the distance function to a finite set of random
points also produces a scalar grid satisfying the
conditions of Theorem 1. Figure 8 contains the
fractal dimensions of the isosurface at the right
after noise was added to the data set. The for-
mula prediction again matches the experimen-
tal data.

In a third experiment, we created a data set
representing the scaled distance to a circle. Isosurfaces in such a data
set are tori. The edge spans of this data set are not uniformly dis-
tributed and so this data set does not satisfy the conditions of Theo-
rem 1. Nevertheless, the formula does a good job of predicting the
fractal dimension. (See Figure 8.)

Finally, we experimented with certain isosurfaces of the benchmark
data sets. We looked for isosurfaces where the gradient magnitudes
were constant in a neighborhood of the isosurface. If the gradient
directions vary uniformly in all directions, then the magnitude of edge
spans vary uniformly from 0 to γ . Examples are Tooth with isovalue
650 and γ equal to 120 and Boston Teapot with isovalue 65 and γ
equal to 25. Around isovalue 650 (+/-50), the edge span magnitudes
of Tooth vary uniformly from 0 to 120. Around isovalue 65 (+/-15),
the edge span magnitudes of Boston Teapot vary uniformly from 0 to
25. For each data set and range, the minimum edge scalar values also
vary uniformly.

Figures 9 and 10 contain plots of the fractal dimension of the Tooth
and Boston Teapot data sets as a function of noise added to those data
sets. As can be seen from the figures, the fractal dimension predicted
by the formula approximates the experimental data, although not as
well as for the synthetic data sets.

7 DISCUSSION

The Θ(N0.75) isosurface growth estimated in this paper is much
smaller than the Θ(N0.82) growth estimated in [4] or the Θ(N0.96)
growth in [18]. The results reported by this paper also did not vary
much between the three different categories of data sets, medical, mea-
sured and synthetic. This was not the case in [4] or [18]. The 60 data
sets used in this paper were a subset of the approximately 80 data sets
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Fig. 10: Plot of fractal dimension (isovalue 65) vs. noise added to
the Boston Teapot data set and plot of fractal formula adjusted for the
gradient 25.

used in [18]. We eliminated some apparent duplicates and some syn-
thetic data sets which seemed extremely trivial. We do not believe
that the difference in estimates is due to any difference in the set of
benchmark data sets.

The authors of [18] suggested that their estimates may have been
biased because the benchmark simulated data sets tended to be smaller
while the measured and medical data sets were larger. We believe
this to be the case. We note that our methodology, which compares
each data set with itself, has no such bias. We also think that within a
category of data sets, the sample size was too small for the line fitting
approach in [18] to provide stable results. In contrast, we measured a
standard deviation of 0.16 in the fractal dimension for all the data sets,
and of 0.12, 0.17 and 0.22 for the medical, measured and synthetic
data sets, respectively.

For many data sets, there is great variance in the topological noise
and fractal dimension depending on the isovalue used. Isovalues with
small topological noise and fractal dimension tend to be in high gra-
dient regions representing surface boundaries. Isovalues with large
topological noise and fractal dimension tend to be in low gradient re-
gions with near constant scalar values. In data sets produced by scan-
ning devices, isosurfaces with isovalues in high gradient regions of-
ten represent boundaries between different objects or materials [17].
Isosurfaces representing the boundaries between objects are often the
most useful for visualization and modeling. The fractal dimension of
such isosurfaces may be much lower than the simple average isosur-
face fractal dimension over all scalar values.

Conversely, isosurfaces in scalar regions with very low gradients
often represent a volume consisting of a uniform material. Such re-
gions are not well represented by isosurfaces since they are really three
dimensional. (Interval volumes are a better representation.) Thus, re-
gions with high fractal dimension may be the very regions which are
least relevant to isosurface construction.

Our formula for the fractal edge span dimension as a function of
uniform noise leaves many open questions. First, uniform noise is not
the best noise model for most real situations. What is the formula for
the fractal edge span dimension as a function of Gaussian noise added
to a scalar data set? Second, our formula assumes that the edge span
magnitudes are uniformly distributed in the neighborhood of the iso-
value. This assumption does not hold for many isosurfaces. What is
a more realistic model of the distribution of edge span magnitudes?
What is the expected fractal dimension as a function of noise under
that model? Thirdly, as shown in Figure 7, the fractal edge span di-
mension is not quite the same as the fractal box span dimension. What
is a formula for the expected box span dimension as a function of
noise?

8 CONCLUSION

By subsampling scalar grids, we measured the fractal box span di-
mension of 60 benchmark data sets. The average fractal box span
dimension is 2.26 with an isosurface growth rate of Θ(N0.75). We also
measured the topological noise in the benchmark data sets and found
an average correlation of 0.61 between the topological noise and the

fractal box span dimension. Finally, we presented a formula for the
fractal edge span dimension as a function of uniform noise added to a
data set.
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