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Abstract—
Over the past few years, large human populations around the world have been affected by an increase in significant seismic activities.
Both for conducting basic scientific research and for setting critical government policies, it is crucial to be able to explore and under-
stand seismic and geographical information obtained through all scientific instruments. In this work, we present a visual analytics
system that enables explorative visualization of seismic data together with satellite-based observational data, and introduce a suite
of visual analytical tools. Seismic and satellite data are integrated temporally and spatially. Users can select temporal and spatial
ranges to zoom in on specific seismic events, as well as to inspect changes both during and after the events. Tools for designing high
dimensional transfer functions have been developed to enable efficient and intuitive comprehension of the multi-modal data. Spread-
sheet style comparisons are used for data drill-down as well as presentation. Comparisons between distinct seismic events are also
provided for characterizing event-wise differences. Our system has been designed for scalability in terms of data size, complexity (i.e.
number of modalities), and varying form factors of display environments.

Index Terms—Earth Science Visualization, Multivariate Visualization, Seismic Data, Scalable Visualization

1 INTRODUCTION

Earthquakes have tremendous impacts on the human society as one
of the most devastating forces in nature. The energy released in a
strong earthquake can wipe out entire cities and towns near its epi-
center, causing permanent geological and geographical changes in the
environment and the disastrous loss of human lives totalling in the
hundreds of thousands. On May 12th, 2008, an earthquake of ML 7.9
(Richter scale) hit the Sichuan province of China and resulted in at
least 68,000 fatalities; On January 12th, 2010, an earthquake of ML

7.0 struck Haiti with a death toll of over 230,000. As the earth en-

• Xiaoru Yuan, He Xiao, Hanqi Guo and Peihong Guo are with Key

Laboratory of Machine Perception (Ministry of Education), and School of

EECS, Peking University, E-mail:

{xiaoru.yuan,xiaohe.pku,hanqi.guo,peihong.guo}@pku.edu.cn.

• Wesley Kendall and Jian Huang are with Department of Electrical

Engineering & Computer Science, the University of Tennessee, E-mail:

{kendall,huangj}@eecs.utk.edu.

• Yongxian Zhang is with China Earthquake Networks Center, E-mail:

yxzhseis@sina.com.

Manuscript received 31 March 2010; accepted 1 August 2010; posted online

24 October 2010; mailed on 16 October 2010.

For information on obtaining reprints of this article, please send

email to: tvcg@computer.org.

ters another era of increased seismic activity, there is an urgent global
demand for a better understanding of earthquakes–a call to leave no
stone unturned in exploring the novel sources of digital data from seis-
mic events. This effort is critical not only for conducting scientific
research on earthquake prediction and prevention, but also for evalu-
ating the aftermath of earthquakes and preemptively designing better
governmental policies in all areas.

Making earthquake predictions is currently very difficult, primar-
ily due to highly sensitive, oftentimes unmeasurable, fine details deep
underneath the ground with governing physical laws that are far from
well-known. Fortunately, despite such great limits in human knowl-
edge, occurrences of earthquakes are not entirely random.

Many instruments have been developed to monitor seismic events.
An earthquake can be recorded by seismometers located at great dis-
tances from the quake’s origin. Modern societies keep complete
records of seismic events with information such as time of occur-
rence, location, magnitude and depth. It is fruitful to analyze these
data spatially and temporally. For instance, it is generally known that
seismic events show cluster patterns [28]. One sign that has been
suggested to precede large mainshocks is a period of seismic quies-
cence [23, 33, 32], where seismicity rates appear reduced in and near
the epicentral area but enhanced at farther distances. Other theories
suggest patterns of seismic events like seismic gap and seismic belt.

More recently, scientists have begun to consider integrating obser-



vational satellite data with seismic event data to find out more reli-
able precursors to major earthquake strikes. Although not yet fully
implemented, architectural studies about the Global Earthquake Satel-
lite System (GESS [25]) have made great strides towards the ultimate
goal of monitoring crustal deformation with high temporal and spa-
tial resolutions. Similarly, an equatorial space mission (the ESPERIA
project [29]) has just been proposed to observe near-Earth electromag-
netic, plasma, and particle environments, as well as perturbations and
instabilities in the ionosphere-magnetosphere transition region. It is
also worth noting that, separate from seismic event prediction, popu-
lation density and building codes also greatly affect an earthquake’s
outcome. For example, while the ML 7.0 Haiti earthquake resulted in
a death toll of 230,000, only four deaths were caused by a recent ML

7.2 quake near Mexicali [7]. Understanding these differences requires
a highly integrated visual analytics system that can handle data from
heterogeneous sources.

In this work, we present a visual analytics system that enables ex-
plorative visualization (shown in Figure 1) of seismic data together
with satellite-based observational data. Seismic and satellite data are
integrated temporally and spatially. Users can select temporal and spa-
tial ranges to zoom in on specific seismic events, as well as to inspect
changes both during and after the events. Tools for designing high-
dimensional transfer functions have been developed to enable efficient
and intuitive comprehension of the multi-modal data. Spread-sheet
style comparisons are used for data drill-down as well as presenta-
tion. Comparisons between distinct seismic events are also provided
for characterizing event-wise differences.

Our system is scalable in terms of the number of dimensions in
modality, the size of the data, and the display environment. We im-
plement techniques for level-of-detail and out-of-core rendering to
achieve interactivity with datasets over hundreds of gigabytes. We
also implement a flexible data exploration tool for investigating multi-
variate as well as multi-modal data. Our system supports display en-
vironments ranging from a single monitor up to a large tiled display
wall. In summary, the contribution of this work includes:

• Data Integration: we are able to integrate seismic catalog data
with observational satellite data.

• Data Presentation: we are able to present multi-modal data
through high-dimensional transfer functions.

• Scalable Visualization: we are able to handle complex large data
in large-format display environments.

The remainder of this paper is organized as follows. We summarize
related work in Section 2, overview our test datasets in Section 3 and
overall system design in Section 4. We then describe functional com-
ponents of our visualization system in Section 5. Sample usage of the
system and the corresponding results are shown in Section 6. Finally,
we go through important implementation details in Section 7, issues
of discussion in Section 8, and conclusions in Section 9.

2 RELATED WORK

Many researchers have studied seismic visualization, covering both
simulation and field-measured seismic data as well as earthquake cat-
alog data.

For visualizing earthquake simulation data, 2D snapshot images [1,
22, 11] or videos [2, 5] have been applied to illustrate the spatio-
temporal evolutionary behavior of the simulation results. The sim-
ulation results are often superimposed over a 2D map. More recent
parallel methods implemented on supercomputers have tackled 3D
earthquake simulation. In a related manner, parallel volume rendering
methods have been developed to visualize 3D time-varying earthquake
simulation data [1, 34, 6, 21]. In-situ visualization has also been ap-
plied to earthquake visualization, tightly coupling together simulation
components and runtime visualization [30, 20]. In terms of innovative
rendering systems for earthquake simulation data, Chopra et al. lever-
aged an immersive virtual environment to enhance collaboration be-
tween structural engineers, seismologists and computer scientists [4].

Field-measured seismic data have been another focus for visualiza-
tion research. Wolfe et al. visualized the seismic volume data gener-
ated from ultrasound reflections [31]. Patel et al. developed the Seis-
mic Analyzer for interpreting and illustrating 2D seismic data [26].

In their toolbox design, illustrative visualization, scale invariant vi-
sualization, and multi-attribute visualization worked together to pro-
vide both top-down and bottom-up methods for exploring 2D slices
of seismic volumetric reflection data. Hsieh et al. visualized the
field-measured seismic data of time-varying multidimensional earth-
quake accelerograph readings of the ML 7.6 Chi-Chi earthquake in
Taiwan [13, 12]. The temporal information of the wave-field volume
was illustrated through volume rendering. Researchers, such as Ko-
matitsch et al., have also compared simulation vs. field-collected seis-
mic data to superimpose simulated seismic wave propagation data over
field-measured waveform data [19].

Besides simulation and field-collected seismic data, the earthquake
catalog data provides a third source of information. The catalogs con-
tain detailed information about occurrences of earthquakes. Naka et
al. visualized seismic-center distribution by showing the distributed
points on a stereo display and applying a 3-D correlation graph for
the time sequence analysis [24]. Dzwinel et al. applied cluster anal-
ysis on the observed and synthetic seismic catalogs to discover the
multi-resolution structure of earthquake patterns, with clustering re-
sults illustrated by 3D visualization [9]. Yuen et al. [36] used a web
client-server service to cluster and visualize seismic catalog data in a
grid environment. Very recently, scientists have begun to study the
relationship between seismic events and other observational data. For
example, earth observation satellite images can help rescue efforts by
providing updated views of the landscape and infrastructure changes
after a powerful earthquake [8]. However, we are not aware of any
previous work with the aim of discovering intrinsic patterns in obser-
vational data related to the occurrences of major earthquakes.

3 DATA DESCRIPTION

Ideally, in this work we should study earthquake event datasets to-
gether with satellite data dedicated for studying seismic events like
data from NASA’s planned GESS system [25] or the newly proposed
ESPERIA project [29]. Unfortunately neither project has been imple-
mented yet. To proactively start our research, herein we chose to use
NASA’s MODIS (Moderate Resolution Imaging Spectroradiometer)
satellite dataset as the source of the observational data. From applied
system development perspective, MODIS and GESS datasets are of
similar sizes, complexity and resolutions.

3.1 MODIS Data

NASA MODIS data comes from sensors on NASA’s Earth Observing
System (EOS) Aqua and Terra satellites. MODIS is able to view the
entire Earth in two days and continuously collects data at up to 250-
meter samplings. MODIS data are stored in 36 wavelength bands,
and many variables (i.e. MODIS products) can be computed from
combinations of wavelength bands. Among the many to choose from,
we used 6 computed variables that capture properties of ground veg-
etation and soil, which are widely studied and most likely related to
earthquake effects.

These computed variables are: Leaf Area Index (LAI), a measure of
the extent of leaf canopies (the lowest value would result from barren
land, while the highest value would result from a dense forest); Land
Surface Temperature (LST), the temperature of land; Normalized Dif-
ference Vegetation Index (NDVI), a measure of the vegetation content
of the area; fraction of absorbed photosynthetically active radiation
(FPAR), a measure of the water content of the soil; Enhanced Vegeta-
tion Index (EVI), similar to NDVI but improves on quality by correct-
ing for some distortions in the reflected light caused by the particles
in the air as well as the ground cover below the vegetation; and Gross
Primary Productivity (GPP), a measure of the compounds created by
carbon dioxide. Our dataset is a 1-kilometer sampling spanning 222
timesteps in 16 day intervals from February 2000 to September 2009.
It is approximately 60 GB.

3.2 Earthquake Catalog Data

Our earthquake catalog dataset is provided by China Earthquake Net-
works Center. Events are recorded on Richter magnitude scale (also
known as the local magnitude (ML) scale). Our dataset includes all
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Fig. 2. Our visual analytics system with five major viewable compo-
nents: 3D Spatial-temporal Viewer, Time-line Viewer, High Dimensional
Transfer Function, Image Array Spread-sheet, and Event Comparison
Viewer.

earthquakes in China and the bordering regions from January 1, 1970
to January 31, 2010. The data for all regions are complete with earth-
quakes over ML 3.0, except in the area of Tibet where instrument
placement is sparse and the corresponding catalog is only complete
with earthquakes over ML 4.0. In addition, for many major cities the
dataset is ML 2.0 complete. Altogether, 494,956 seismic events have
been recorded.

In our system, the seismic catalog data can be spatially registered
with the MODIS data in a common latitude and longitude coordinate
system. MODIS is available in a much shorter time period and more
sparsely allocated in the time axis when compared to the catalog data.
Considering the time range, nearest neighboring sampling is applied
to MODIS data.

4 OVERVIEW

The components of our system are illustrated in Figure 2 in the con-
text of how visualizations of seismic catalog data and satellite data are
integrated. The five major components are described as follows.

• 3D Spatial-temporal Viewer: In a 3D space, satellite images are
plotted on the ground. The catalog event data are rendered as 3D
points, where the z-axis is time and animated. Location selection
is enabled and linked with selections in other displays.

• Time-line Viewer: From the total 30-year time span, a
focus+context-enabled time-line viewer is used to select a short
period of time to explore.

• High Dimensional Transfer Function: Color maps for multiple
MODIS variables are controlled through parallel coordinates and
multidimensional scaling (MDS) methods.

• Image Array Spreadsheet: MODIS images of multiple dimen-
sions or dimension combinations that are selected in time and
space can be displayed as an image array.

• Event Comparison Viewer: Multiple seismic events with differ-
ent space and time coordinates can be visually compared.

The five different views are linked dynamically. For example, users
can specify a time range in the time-line viewer and the corresponding
changes are displayed in the 3D viewer window where the earthquake
catalog data and the satellite images are also updated. When the user
applies a new transfer function to the satellite image(s), the color-map
changes are simultaneously applied to the image array spreadsheet and
the 3D viewer windows.

5 SYSTEM DETAILS

The interface for our scalable multi-variate analytics system is shown
in Figure 3. The right part shows the 3D spatial-temporal viewer of
seismic events, along with the associated observational data and the

Fig. 4. 3D Spatial-temporal Viewer. Seismic catalog dataset is displayed
as 3D points, together with satellite images in a common temporal-
geographical coordinates system.

time-line control. The top left of the figure shows the image panel
array, and bottom left is the interface for the multi-dimensional transfer
function. The top center depicts the event comparison viewer for two
selected seismic events.

5.1 3D Spatial-temporal Viewer

In this viewer, seismic catalog data are displayed together with satel-
lite images in a common temporal-geographical coordinate system as
shown in Figure 4. The seismic catalog data are displayed as points
in 3D space above a ground plane, and each point represents a seismic
event recorded in the catalog. The 3D location of the point is deter-
mined by the latitude and longitude coordinates on the ground plane
(i.e. the X and Y dimensions) and time (i.e. the Z dimension).

We implemented animation by shifting the z-axis such that seismic
events appear as though they are “falling from the sky” as time pro-
gresses. This option effectively facilitates data overview by users. In
the animation, the colors of the points of seismic events are compos-
ited onto the ground plane after falling from space. The magnitude of
the earthquake is used to dual-code point size and color. Satellite im-
ages are plotted and overlaid on the ground plane. Since the MODIS
data contains multiple variables, the system allows the selection of the
variable modality by clicking the tag along the border of the map as
shown in Figure 4. Location selection is enabled in this window and
the information of the selection made is also used to update other dis-
play windows, which are discussed in the following subsections.

5.2 Time Line Viewer

Supported by modern technology, researchers have been able to collect
comprehensive records of seismic event around the world over long
periods of time. In this work, we dealt with the over 30 years of seis-
mic catalog data of China. Users typically want to inspect earthquakes
in a particular region in a limited time span. To facilitate such studies,
a time line viewer window, employing context+focus techniques, has
been designed to set the observation time window.

As shown in Figure 5, the bottom part of the window is the full
time range covering all of the seismic data available. A histogram of
the earthquake occurrence is plotted over time. The small rectangu-
lar window indicates a sub-range of time for detailed view, which is
shown in the top portion of the window. Each individual earthquake
is plotted along the timeline. Events with large magnitudes are plot-
ted above those with smaller ones. The vertical lines indicate which
satellite images are available since the MODIS data are sampled on
a 16-day interval. In this part, another rectangle widget can be tuned
by the user, which indicates the time range of the window upon fur-
ther examination. Three time lines are specified: beginning time, end
time, and current time. For example, in the image arrange window, all
satellite images included in the specified range will be displayed and
compared.



Fig. 3. Interface components of our system. Right-top, 3D view of seismic events and associated observational data; right-bottom, time-line control;
left-top, image panel array; left-bottom, interface for multi-dimensional transfer function; top-center, comparison of two seismic events.

Fig. 5. Time-line control for selecting region of interest. Histogram and scatterplot of seismic events are shown.

In the 3D viewer window, the MODIS data of the current time is
displayed on the ground plane; catalog data within the beginning time
and the end time are displayed. The points between the beginning time
and the current time are composited on the ground plane; the rest are
above the ground plane. Animation can be achieved by dynamically
changing the current time. After the selection of the time window, our
system enables the user to compare the satellite sampled images in
other views.

5.3 High Dimensional Transfer Function

Since the satellites can take the ground plane images with many dif-
ferent channels, it is necessary to develop a strategy to enable the user
to view the multi-modality images conveniently. In our system, a high
dimensional transfer function has been designed to color map multiple
images into an integrated view, taking advantage of high dimensional
data visualization techniques on parallel coordinates and dimension
reduction [35].

Parallel coordinates, introduced by Inselberg and Dimsdale [15,
16], represents an N-dimensional data tuple as one polyline crossing
parallel axes. For a large multidimensional dataset, parallel coordi-
nates can turn the tuples into a compact two-dimensional visual repre-
sentation. In Figure 6, the left side of the the transfer function design
interface is a parallel coordinate plot. Pixel values of each modality
are mapped to a corresponding axis. Such techniques of using parallel
coordinates to generate color maps for volume rendering have been
exploited [27].

Although parallel coordinates can show the data distribution of all
dimensions clearly, it is not very efficient in showing the correlation or
clustering over more than 3 dimensions simultaneously. In this work,
we augment the high dimensional transfer function design with one
additional plot of MDS. Data are also projected to the 2D plane with
multi-dimensional scaling. The difference between each data item re-
sembles their distance in the original high dimensional space. As show
in Figure 6(a), the MODIS images of the 6 variables at a specified time
can be projected and clustered into different groups. It is very intuitive
for the scientists to select a particular group of pixels and apply desir-
able colors. After the selection in MDS region, further modification
can also be applied in the parallel coordinate plot. In Figure 6, the
right side of the transfer function interface shows clusters selected and

refined via the MDS interface.
More specifically, the process of color mapping multivariate images

via the MDS interface has three major steps:

1. Pick up sample points from input images, usually user selected
ROI (region of interest);

2. Project the sample points from multi-dimensional feature space
to a 2D plane;

3. Estimate the parameters of a Guassian transfer function with the
brushed sample points as input.

The sample points are picked up randomly from the input images
with a heuristic sampling rate of 5%, which is sufficient to preserve im-
portant data features based on our experiments. These sampled points
are then projected to a 2D plane with pivot MDS [3]. We adopted pivot
MDS for the projection mainly because it produces very nice projec-
tion results with relatively low computation complexity. Besides, pivot
MDS is also well suited for data sets with large amount of homoge-
neous items, which is exactly the case in our problem.

The pivot MDS algorithm can be summarized as follows:

• Randomly pick up k pivot item from input data set;

• Construct the double-centered dissimilarity matrix C(ci j) be-
tween pivot items and all input items, whose elements are defined
as

ci j = −0.5(δ 2
i j −

1

n

n

∑
r=1

δ 2
r j −

1

k

k

∑
s=1

δ 2
is +

1

nk

n

∑
r=1

k

∑
s=1

δ 2
rs) (1)

where k is the number of pivot points, and n is the total number
of data points. δi j stands for the dissimilarity of the ith item of
input data with the jth pivot item, which is the Euclidian distance
between the two items by default [3];

• Calculate the eigenvalues and eigenvectors of the matrix CTC;

• Pick up the largest d eigenvectors {v}, the low dimension em-
bedding is achieved by

xi = Cvi, i ∈ {0, 1, 2, . . . , d} (2)

Users can perform free selection on projected sample points with
a lasso tool. The selected sample points are considered as interest-
ing features. A multivariate Gaussian transfer function is then con-
structed for each interested feature: for a set of selected sample points
P{pi}, i = 1, 2, · · · , n, assume their distribution in the feature space
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Fig. 6. High dimensional transfer function. (a) The transfer function
design interface integrating parallel coordinates and MDS plots, 6 vari-
ables are considered; (b) One color mapping by the user; (c) Weighting
of selected variables have been changed. (d) and (e) the color mapped
multivariate satellite image using transfer function specified in (b) and
(c) respectively.

satisfies the Gaussian Mixture Model (GMM), i.e., the probablity of
appearance of the points is governed by the following function:

P(p) =
n

∑
i=0

ωi exp(((p−µi)
Tσ−1

i (p−µi))) (3)

The Gaussian transfer function is then constructed as follows: the
chromatic components of the transfer function is specified by user, and
the opacity component of the multivariate Gaussian transfer function
is written as [18]:

GT F(v) =
n′

∑
k=0

αkPk(v) (4)

where v is the input data vector, αk is the maximum opacity value
for scaling each Gaussian bolb. The final color and the opacity values
are:

α = ∑αi,C =
∑αiCi

∑αi
, (5)

where Ci is the color of each Gaussian transfer function. Gaussian
transfer functions are applied to the images using GPU acceleration
technology. The images of different dimensions and the parameters
of the Gaussian transfer functions are stored as textures in the video
memory, and then the per-pixel fragment shader generates the result
images in real time for the image array.

Figure 6(b) shows a coloring scheme for the interface. Note our
system also allows a user specified weight for each dimension, by al-
lowing the user to click and change the weight wheel below each axis.
A clustering with different weights for several dimensions is shown in
Figure 6(c).

By user specifying different weighting on different dimensions, we
could achieve user configurable clustering through our transfer func-
tion interface. In Figure 6(d), the yellow color indicate the region with
low LST, low LAI and low FPAR values. While after re-weighting, we
are able to select a clustering with high values of LST with low LAI
and low FPAR values, resulting in different color maping highlighting
different features in Figure 6(e). We are currently collaborating with
domain scientists to obtain their feedback.

5.4 Image Array

In our visualization system, one window is created and dedicated to
satellite image visualization and comparison. In the image array win-
dow shown in Figure 7, color mapped observational satellite data are
aligned for easy comparison. Each row in the image array corresponds
to one observational dimension or a combination of dimensions. The
color map function is supplied from the transfer function design in-
terface. In each row, images are placed according to their time stamp,
while the time range range is specified in the time-line interface as dis-
cussed previously. Each individual image can be set as the focus and
enlarged for detailed inspection. Easy side by side comparison can be
achieved by enlarging selected images.

Fig. 7. Image Array Window. Color mapped satellite observational data
are aligned for easy comparison. Images in the same row belong to the
same observational dimension or the same dimensional combination
and aligned according to the observation time from the left to the right.

5.5 Comparison

In the event comparison window, the user can specify two events with
different spatial and temporal ranges. The parameters are defined in
the time-line window for the time range and in the 3D spatial-temporal
viewer window for the spatial range. The user can first navigate the
earthquake catalog histogram, overview in the time line window, and
identify a specific seismic event to be visualized. Then, the user
brushes on the ground plane in the 3D spatial-temporal viewer win-
dow to circle a geographic area. Only earthquakes within the area will
be displayed. The user can take the same approach to select the second
event. The selected events are then shown side by side in the compar-
ison window as illustrated in Figure 11. Earthquake shocks are linked
with line segments according to the time occurrence. The earthquake
plot is aligned in in two images so that their time axis is in parallel.
The user can adjust an optimal viewing setting for better understand-
ing and comparing the events.
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Fig. 8. Spatial-temporal exploration of Great TangShan Earthquake and
SongPan, PingWu Earthquake, two major seismic event series occurred
in China in 1976.

6 SAMPLE USE

In this section, we discuss the results of visualizing the seismic cata-
log data in China from 1970 until Jan. 2010, together with MODIS
satellite data spanning from 2000 to 2009 with our system.

6.1 Spatial-Temporal Exploration on Seismic Catalog Data

The first seismic event we explore with our tools is the Great TangShan
Earthquake which is believed to be the largest earthquake in recent a
few centuries by death toll. The outbreak of Tangshan Earthquake
can be easily identified as an outstanding peak in the overview his-
togram bar of the time-line view in our visualization system as shown
in Figure 8. After placing the time focus near the August, 1976, a few
peaks appear in the histogram in the zoom-out view. The 3D view,
as shown as the top plot of Figure 8 reveals there were two major se-
quences. The first that occurred is the TangShan Earthquake, which
consists many large seismic strikes. The second sequence, located in
SiChuan province of China, can be identified as the Song Pan, Pingwu
Earthquake. Although it has large peaks (higher number of earthquake
shocks) in the histogram, other than the three major strikes, th majority
of the earthquake shocks have much lower magnitudes and appear in
green in the display as indicated by the magnitude color map. From the
enlarged part of the time line shown, the major hits and the different
characteristics of these two events are clearly illustrated: In TangShan,
the second largest hit, believed to contribute greatly to the increase of
the death toll, closely following the first hits; while in the later earth-
quake, three major hits can be identified and other aftershocks are rel-
atively small in magnitudes.

From the overview histogram bar, a trend of increasing over the
seismic events recorded can be observed. This is due to the advance-
ment in detection technologies and an increase in the number of record
stations, both of which contribute to better detection of small magni-
tude events. As illustrated in the middle snapshot of Figure 9, it is
difficult to identify the large Sichun Earthquake that occurred on May
12, 2008; by increasing the magnitude threshold, the event is clearly
discernable in the bottom snapshot of Figure 9.

As illustrated in above two cases, our visualization tool, with only
the time line view and 3D viewer, can provide a very convenient way
of spatial-temporal exploration of seismic events and enable close in-
spection of their spatial-temporal characteristics. The spatial-temporal
distribution is an important tool for understanding the overall story
of an earthquake. As illustrated the earthquake hits with magnitudes
within a certain range are linked. The distribution along time is clearly
displayed. It is not only useful for researchers working on earthquake
understanding and prediction, but also an easy to use tool for presen-
tation and educational purpose.

Sichuan Earthquake

May 12, 2008

Sichuan Earthquake

May 12, 2008

Fig. 9. Spatial-temporal exploration of the Sichuan Earthquake that oc-
curred in China in May 2008.

(a) (b) (c)

(d) (e) (f)

Fig. 10. Regional MODIS data variation before and after a ML 7.1 earth-
quake in Hetian, China in 2008. In the fist row, images are satellite data
obtained on (a) March 5th, (b) March 21st, (c) April 6th, 2008, respec-
tively. In (b), earthquake event dot are overlayed; (d)-(f) are Satellite
data obtained on exactly one year before the earthquake as (a)-(c).

6.2 Correlation Between Seismic Event and Satellite Ob-
servational Data

The MODIS data has been studied near a region where an ML 7.1
earthquake in Hetian, Xinjiang Uygur Autonomous Region of China.
The NDVI data before and after the earthquake shows evidence of
traceable changes around the earthquake region as shown in Figure 10.
As indicated in Figure 10(c), after the earthquake there are feature vari-
ations west of the seismic center as illustrated in Figure 10(b). The
data obtained one year prior is shown in the second row for compar-
ison. Although more specific reasons are under further investigation,
one hypotheses is that the earthquake changed the regional vegetation
coverage.

In our visualization, the user can specific a time range to explore in
the time line viewer, corresponding images of each dimension are col-
ored and shown in the image array viewer. The system also provides
functionality that allows the user to specify a range and observe the
average value over the time range.

6.3 Seismic Event Pattern Comparison

Our visualization enables quick comparison and evaluation of seismic
events. The example shown in Figure 11 demonstrate the different
foreshock activity behaviors between Haichen earthquake, which oc-
curred in 1975 and was able to be successfully predicted, and Tang-
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Fig. 11. Seismic event pattern comparison between Tangshan earth-
quake (Right) and Haichen earthquake (Left). It is obvious from the
visualization that two earthquakes have very different patterns in fore-
shock activities.

shan earthquake, which occurred in 1976 and no prediction was made.
For the Haichen earthquake, there are a series of foreshocks as illus-
trated in green dots in the left image. Very differently, there are no
foreshocks at all in the Tanshan event. The side by side comparison of
these two earthquakes can clearly demonstrate such differences. With
our visualization tool, it is very intuitive to explore the difference or
similarity between earthquakes.

7 IMPLEMENTATION DETAILS

Our PC is a Dell T3400 workstation having a 2.66GHz CPU, 4GB
Memory, and Nvidia Geforce GTX 275 graphics card with 896MB
Memory. Our display wall consists of 32 tiled 32-inch LCD panels.

The multi-dimensional transfer function is computed on GPU us-
ing Cg fragment shaders. The input of the shader program include the
satellite images treated as texture images, and the parametric Gaus-
sian transfer functions. Since the space for uniform variables of the
shader is limited, we composite the parameters to textures as the input
instead of uniform variables, in order to ensure the scalability of the
program. The colors, centers and covariance matrices of the Gaussian
components are stored as 1D, 2D and 3D textures. The output im-
age of the shader is bound to a framebuffer object, and the system can
directly obtain the output textures for next operations and user inter-
action. The GPU-accelerated image transfer is about 10 times faster
than CPU works.

The parallel version of our system is based on CentOS Linux 5.4
64-bit and NVidia X servers. Xdmx and Xinerama combine the in-
dividual X servers on each node into a uniform large one display en-
vironment. Chromium [14] streams the OpenGL command from the
control node to the rendering nodes. Since Chromium only supports
OpenGL 1.5, and it has not been updated for a long time, many mod-
ern OpenGL extensions cannot be used when migrate the system to
the tiled display wall. For example, GL EXT framebuffer object ex-
tension is not supported in Chromium system, but we can avoid using
framebuffer objects by rendering the contents to the buffers and then
reading pixels from them, we can then add application-only extensions
to Chromium system, which can be only used on the application node.
Our shading program of multi-dimensional image transfer used ’for’
statement, which requires a relatively modern shader profile, does not
work on the tiled display. We run the shading program on the con-
trol node instead. In the future we plan to improve the capability of
the parallel visualization environment and make it compatible to more
advanced graphics features.

We implemented level-of-detail (LoD) and out-of-core rendering to
achieve interactivity with datasets on 100GB level. The system can

handle multi-variate data as well as multi-modal data with scalability,
and can also support display environments as small as a single monitor
and as large as a 32-panel tiled display wall.

MODIS satellite images are preprocessed into a quad-tree data
structure to facilitate quick display in the 3D view. The displaying
LoD is determined by the zooming factor of earth surface. Images
of the specified regions are extracted from the tree structure to allow
further processing; by doing so we carefully restrict runtime process-
ing and computation on the satellite images to only the small areas
selected by the user. As the images could be larger than the memory
available, we also implemented out-of-core rendering. In addition, as
done in many applied visualization system, we implement caching and
prefetching. To ensure smooth interaction, while images of the current
time step is always loaded in-core, a few neighboring time steps are
also prefetched from hard drive.

8 DISCUSSION

Our visualization system can adapt to various display environments.
The users can explore the data with a workstation or just a laptop.
Several users can also work in a collaborative visualization environ-
ment with large display setup. As shown in Figure 1, our system has
been implemented on a tiled display wall system with over 130 million
pixels. Multiple seismic scientists can work side by side to explore the
data. Large display enables simultaneous viewing of the different as-
pects of the data. Our visualization consists of many individual com-
ponents, which can be customized into different combinations on the
fly, according to special needs by domain users. For example, the time
line viewer alone can be a very effective tool for exploring earthquake
catalog data. It can also work with the 3D spatial-temporal viewer to
provide geographical information of seismic events with user interac-
tion enabled.

The image array component, together with high dimensional trans-
fer function, also provides scalability in dimensionality. At the current
stage, our test dataset only includes earthquake catalog data and satel-
lite data that approximately covers China and surrounding areas. Our
seismic scientists actually strong urged that we add the capability to
handle datasets that cover the entire globe. Especially more recently,
seismologists are very interested in exploring the relationship between
certain types of low frequency electromagnetic activity (e.g. the iono-
spheric electron density) and the seismically most active zones on the
Earth. We will closely work with seismologists and include more data
sources in our visualization system to fully explore the potentials of
the tool we have developed. The key limiting factor in our prototype
system is unfortunately with I/O and other system bandwidth related
bottlenecks. We plan to leverage cutting edge parallel visualization
techniques [17] that are closely integrated with parallel I/O.

Currently, our prototype system is deployed in a academic labo-
ratory environment and have been evaluated by the a few scientists
working in the field of seismology, including a coauthor of this paper.
The feedback is in general very positive and encouraging. At cur-
rent stage, although visualization techniques have been widely applied
in many geologically relevant domains, and used for understanding
earthquake simulation data, there are few existing tools for exploring
abnormal seismic events and their correlation with other observational
earth surface data. Due to the extremely complex nature of the seismic
activities, it is also premature to assess our system’s potential of help-
ing to make correct seismic event predictions. However, our system
has revealed spatial-temporal correlations that are unique and inter-
esting. These findings provide a stepping stone for seismic scientists
to further hypothesize and explore for potential relationships between
foreshock patterns and mainshock (Figures 9, 11), as well as between
earthquake events and the aftermath impacts (Figure 10).

9 CONCLUSION

This paper proposes a visual analytics framework to explore seismic
event catalog data together with satellite imagery data. Our prototype
system allows users to visually zoom in on interested time periods
and spatial regions around seismic events, while revealing temporal
changes in satellite imagery data in nearby areas. We have designed



special transfer functions to handle multi-modal observational data,
which can be further analyzed through a spread-sheet style interface.
Our system enables data drill-down. Users can simultaneously explore
and understand seismic and geographical information.

In current usage, the users can explore correlations between the het-
erogeneous MODIS and seismic catalog data sets by specifying time
and spatial ranges. It works for the users who already have knowl-
edge of the possible auspicial locations. A thorough blind search is
not possible in currently working mode. We plan to introduce more
powerful analysis tools, for example regular expression based query
driven visualization [10], in this system to help the seismic scientists.

In the future, we also plan to integrate more data modalities into the
system. For example, to add an ability to visualize changes in terrain
surface due to a seismic event. Population density and building codes
can be integrated for policy evaluations based on studies about correla-
tion between earthquakes and fatality consequences. We will also test
our system using larger computing systems for the purpose of handling
datasets with even more details. We also plan to perform user studies
with seismic scientists to quantitatively evaluate the effectiveness of
our system.
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